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Abstract
Explicit formulae are derived for the first five coefficients of the clique
polynomial of a graph. From these results, explicit formulae are derived for the
first five coefficients of the chromatic polynomial in the complete graph basis.

1. The Basic Ideas

The graphs considered here are all fine, and have neither loops nor
multiple edges. We refer to Harary [8] for the basic definitions in Graph Theory.
We denote by Kp, the complete graph with p nodes. We also call Kp, a clique.
when it is a proper subgraph of a graph. We call K a trivial clique and Kp a
proper clique, when n > 3. We will sometimes refer to Ky as an n-clique.
Definitions

Let G be a graph. A clique cover of G is a spanning subgraph of G,
in which every component is a clique.

Since all the covers referred to, will be clique covers, we will use the
word "cover" to mean "clique cover”, unless otherwise specified. Also, all
indeterminates mentioned in this paper will be over the field of complex
numbers.

Let F be the family of cliques. With each member o of F, let us
associate an indeterminate wy, called the weight of a. Let C be a cover of
G. Then the weight of C is

w(C) = [Tw,
a

where the product is taken over all the elements o in C. The clique
polynomial of G is
K(Gw) = Y w(C),
€
where w 1s a vector of the indeterminates wy; and the summation is taken over
all the covers in G. This polynomial was introduced in [1]. Some of its
properties are also given in [2], [3] and [4].

If we give each element o of F, with r nodes, the weight wr, then the
resulting clique polynomial is called the general clique polynomial of G. If
we give each element of a cover the (same) weight w, then the resulting
polynomial in w, is called the simple clique polynomial of G -and is
denoted by K(G;w). Therefore K(G;w) is obtained from K(G;w), by putting wr
= w, for all r. If G has p nodes, we will write

p-1
KGw)= Y ap(GwP¥
k=0
where ak(G) is the number of covers of G with cardinality p-k.
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Throughout this paper, we will denote the node and edge sets
of a graph G, by V(G) and E(G) respectively. Also, we will assume that
|[V(G)| = p and that |[E(G)| = q unless otherwise specified. If H is a subgraph of
G, the notation G-H will used for the graph obtained from G, by removing all
the nodes of H.

2. The Coefficients of the Simple Clique Polynomial

It is not difficult to see that for any graph G with p nodes, there is only
one possible cover with p components; and that is, the empty graph with p
nodes (We call this cover, trivial ). Therefore ag(G) = 1.

[t is also easy to see that the only possible covers with p-1 components
are those covers that consist of a component edge; together with p-2 component
nodes. Therefore we have
a1(G) =q.

The following lemma is taken from [S] (Lemma 1). It will be useful for
deriving the results in this section.

Lemma 1

Let G be a graph with p nodes and p-n components. Then G consists of
p-¢ component nodes, together with ¢c-n non-trivial components, where

n<c<2n. If 0 <n<p-1, thenn<c < 2n.

We now consider the case , when n = 2. From the lemma the cover C
will have p-c component nodes and c-2 non-trivial components, where 2 < ¢ < 4.

¢=3

The only admissible graph with 3 nodes and 1 component is the
triangle K3.
c=4

The only admissible graph with 4 nodes and 2 components is a pair of
independent edges i.e. Ky U Ko,
Hence, the graphs which contribute to the coefficient of wP-2 are the triangle and
K7 U Kj. Let us denote the number of triangles in G, by Nk, (G). The number
of pairs of independent edges in G can be counted by first choosing any pair of
edges, and then omitting any chain of length 2 -denoted by P3. We therefore get

a2(G) = N (G)+ (g] - Np, (G). ()

We can obtain a chain with 3 nodes in G, by choosing any pair of edges at any
node in G. Therefore

P (d;
Np, (G)= Z( 'j,
=1\ 2
where dj is the valency of node i in G.
Hence we obtain the following result.
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Theorem 1

(4 P (di
a(G) = [2)+ Nk, (G)- i§(2 )

The following corollary shows that the third coefficient ap
characterizes a star graph ( a tree with p nodes and containing p-1 nodes of
valency 1).

Corollary 1.1

A graph G is a star if and only if ax(G) = 0.
Proof

Suppose that G is a star. Then G has p-1 edges. So q =p-1. Also G
will contain one node of valency p-1 and p-1 nodes of valency 1. Therefore we

will have
2 (di p-1
55)-("2 )
=1

Clearly, G has no triangles. Therefore NK3 (G) = 0. From the theorem, we get

a2(G) = 0.

Conversely, suppose that a2(G) = 0. Recall that ap(G) is the number of
covers consisting of p-3 component nodes and a triangle plus the number of
covers consisting of p-4 component nodes and a pair of independent edges. This
means that G has no triangles. Also, G does not have a pair of independent
edges. Then, all the edges in G, have a node in common. Therefore G is a star.

Hence the result follows. [I

We now consider the case, in which n = 3. From Lemma 1, the cover C
will have p-c component nodes and c-3 non-trivial components, where 3 < ¢ <6.
c=4

The only admissible graph with 4 nodes and one component is the
graph K4 .

The number of such subgraphs is N, (G).
€=J

The only admissible graph with 5 nodes and two components is the
triangle K3 together with a component edge .i.e K3 U K».

Let us denote by Til. b;.c, A triangle joining nodes aj, bj, and ¢j. Then
the number of graphs consisting of Tal bi.ci together with a component edge is

E(G— Tai bic)
o= X[EG-Ty, b,.c,)] Q)

i=1
where the summation is taken over all triangles Tai‘bi < in G.

. Hence, the number of covers of this type is

!‘ — {2
The only admissible graph with 6 nodes and three components is the
graph consisting of three component edges i.e.Ky U Kou Kj.
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The number of such covers is taken from [6] (Theorem 1). It is

q P (dj P (di
T= (%)—(q = 2)'21( ’ )-ﬁ— 2.21[ 3 j+ Z‘(di —-D(d; - 1)-NK3 (G). ..(3)
g 1= 1=1\ - 1j
Therefore we obtain the following result.
Theorem 2
a3(G) = Nk, (G)+ o +1.
We now consider the case, in which n =4, From Lemma 1, the cover C
will have p-c component nodes and c-4 non-trivial components, where 4 < ¢ < 8.
€=>
The only admissible graph with 5 nodes and one component is the
graph K35.
The number of such subgraphs is Nk _(G).

c=0

The only admissible graphs with 6 nodes and two components are (i) a
pair of triangles i.e. K3 u K3 and (i1) K4 U K».

Let Gk denote the graph obtained from G by removing the k triangles
Tal bi.ci where

i=1,2, .., k. Then the number of graphs of type K3 U K3 is

o= ZNK3(G). @)
k=1
The number of graphs of type K4 U Kj is
B= S[EG-Quyb,ciq,) 05
i=1

where Qai b.c;.d;1sa 4-clique with nodes aj, bj, ¢j and dj; and the summation
is taken over all such 4-cliques in G.
c=7
The only admissible graph with 7 nodes and three components is a
triangle, together with two component edges i.e. K3 U Kou Ky .
Let Ta, b, ¢, be a triangle in G; and let Gj be the graph

G-T Let

aj,byic; ¢

gi = [E(G- Tai bi.c;)
L.e. the number of edges in G-T, . , - Also, let dj,j be the valency of

node j in G;j.
Then, the number of pairs of independent edges in G; is

(5

Hence the number of covers of the type K3 U Kou Kj is
Y = 281’ ... (6)
i

where the summation is taken over all graphs of type G;j .
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c=8

The only admissible graph with 8 nodes and four components is
K2 u Kyu Kau K.

We denote the number of such subgraphs by 8.

Hence we obtain the following result.
Theorem 3
a4(G) = NK5 (G)+o + B+y+ d.

Clearly, the analysis can be continued in order to obtain expressions for
higher coefficients of K(G;w). The results will become more and more
complicated. It can be observed that the graphs associated with ax(G) are defined
by the various partitions of ¢ with c-n elements, where n+1 < ¢ < 2n. Therefore
the number of different families of graphs that must be counted is the number of
such partitions. Let N(i,j) be the number of partitions of the integer i with j
parts, in which each part is greater than 1. Each such partition defines a unique
family of graphs. Therefore, the number of different families of graphs (or
covers) is equinumerous with the number of different partitions. The number of
different families is therefore

2n
> N(c,c—n).
c=n+l

It is not difficult to see that, for any fixed number of nodes p, the
complete graph with p nodes will contain the greatest number of the different
families of graphs. Therefore

ak(G) < ag(Kp).
for any graph G with p nodes. The following result is taken from [1 ].
Lemma 2
p—1
K(Kp:w) = kz S(p,p—kwPK,
=0
where S(n.k) is the Stirling number of the second kind.
Hence, we have the following result, which gives a useful upper bound
on the coefficients of K(G;w).
Theorem 4
For all graphs G with p nodes,
ax(G) < S(p, p-k).

The following result is added for completeness.

Theorem 5
G is a complete graph if and only ap 1(G) = 1.

Suppose that G has no triangles ( i.e. G "triangle free" ), then, the only
cliques in G, will be nodes and edges. Therefore the expressions for the
coefficients easily reduce to the results given in the following theorem.
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Theorem 6
Let G be a triangle-free graph. Then
(i) ap(G) =1,
(i) a1(G) =q,

Prd.:
(iii)az(G)=(qj—2( 'j,
2) S\2

(iv) a3(G) =1,
and (v) ay(G)= 4.

3. Examples
We now illustrate the results given in the above theorems.
Example 1
Let G be the following graph.

G:
4 3
Figure 1
Then ap(G) =1 and a;(G) = 5. We will use Theorem 1, to find ap(G). In this
case,

q 5
Nk, (G)=2. Nl =10 and

P (d; 3 3 2 2
.212 =l2) o)t o)) =8
1=

= a(G)=10+2-8=4.

Since G has only 4 nodes, ag(G) = 0, for k > 3. Hence we get

K(G;w) = w? + 5w3 + 4w2.
Example 2

Let G be the following graph.

2
1, 3
G:
6 ¢ -+
5
Figure 2

Clearly, ag(G)=1and aj(G) = 11. G has 8 triangles. From Theorem 1, we get

o3 w0 54 (v [£)]

=55+8-32=31.
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From the graph, it can be seen that NK4 (G) = 2. From Equation (2),
0= S[E(G-Ty p,.c,)|=43+41=16.
i=1

It can be easily verified that G has 5 sets of three independent edges. Therefore
T =3,
From Theorem 2, we have

a3(G)= Nk, (G)+0+1 =2+ 16+5=23.

G has no 5-clique. From Equation (4),
o= ZNK3 (G) =2.
k=]
From Equation (5) ( using the complete graphs Q256 and Q2345, we get

B = 2|E(G_Qai.bi.ci.di ) = 2
i=1

Since G has only 6 nodes, Y= 6 = 0. From Theorem 3,

a4G) = Ny (G)+o +B+y+8=0+2+2+0+0=4.
Hence we get

K(Gw) = wO + 11wd + 31w# + 23w3 + 4w2,

4. The Coefficients of the Chromatic Polynomial

The following definitions are well known; and have been added for
completeness.
Definitions

Let G be a graph. A proper colouring of G is an assignment of
colours to the nodes of G, in such a way that adjacent nodes are coloured
differently. A A-colouring of G is a proper colouring of G with A colours.
This is equivalent to a partitioning of the nodes of G into A colour classes, such
that nodes in the same class are non-adjacent. When A is an indeterminate, the
number of A-colourings of G, is a polynomial in G, called the chromatic
polynomial of G. This polynomial will be denoted by P(G;A).

We refer to Read [10], for the basic properties of chromatic
polynomials. Formulae for some of the coefficients of P(G;)A) have been given
in [5].

Let us denote the product MA-1)(A-2)...(A-n+1) by (A)p (n 21) (
referred to as, " A falling factorial n" ). We define (V) as 1. Then clearly, the
chromatic polynomial of Kp is ( )»)p.Wc can write the chromatic polynomial of a
graph G with p nodes in the complete graph basis (or "falling
factorial form'), as

P
P(G:A) = X bx(M)pk.
k=0
We can also write the chromatic polynomial of G, in the null basis, as

P
P(G;A) = Y APk, s e KT
k=0
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The following result was established in [3]. It gives the connection
between clique an chromatic polynomials.

Lemma 3

Let G be a graph. Then the chromatic polynomial of G is the
polynomial obtained from the simple clique polynomial of G, by replacing wk
with (A)g.

The result of the theorem can be written as

P(G;A) = K(Gyw),
where w' denotes the transformation, in which wk is replaced by (A ,
An immediate result can be obtained by replacing G with G.

Lemma 4
P(G;A) = K(G;w),

where w' denotes the transformation, in which wX is replaced by (L)

Notice that the transformation described in the lemmas suggest that the
product
wl ws = wits in K(G;w) is equivalent to the product (A)r. (A)g = (A)r4s in
K(G;w'"). This is the well-known Zykov Product (see Korfhage [9]). This product
will be especially useful, for transforming polynomials of disconnected graphs.

Itis clear from the lemmas, that the coefficients of K(G;w) and those
of P(G;\), in the complete graph basis coincide. Therefore we can immediately
obtain formulae for the first five cocfficients of the chromatic polynomial, in
falling factorial form. The following theorem give the results, which parallel the
results for the coefficients ck in Equation (7), given in [5]. As far as we know,
these result are new.
Theorem 7

Let G be a graph with p nodes and q edges , and with chromatic
polynomial

p

k=0
Then
(1) bp=1
(i) by =q
(4 s
w-{}e e 54
(iv) b3 = Nk, (G)+ o +1,
and (v) by = Nk (G) +o +B+y+3,

where ©,7T, o, B,y and 8 are the sums defined above, but with the graph
replaced by its complement.
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Another immediately corollary of Theorem 1 is the following.
Corollary 1.2
A graph G is a star if and only if by = 0.
The following corollary of Theorem 6 is immediate.
Corollary 6.1
Let G be a graph with p nodes and q edges , and with chromatic
polynomial

P
P(G;A) = zbko‘-)p—k-
{8 k=0
If G is triangle-free, then

(i) bg=1,
(i) by =gq,
q P (d;
by=1.|- ,
ave=(3)- 3(3)
(iv) bz =1,
and (v) bg= §;

where tand § are the sums defined above, but with the graph replaced by its
complement,

Notice that when G is triangle-free, all the clique covers are matchings.
Therefore, the clique polynomial of G, coincides with its matching polynomial .
This corollary is therefore essentially Theorem 2 of [7], when ay = b.

An Illustration
We will find the chromatic polynomial of the graph G, shown in Figure 2
above.

p
P(G;\A) = Zbk()‘)p—k
e k=0
In this case G = H., where H is the graph (with three components) shown
below.

H:
Figure 3
Now, bg=1and b =4. Clearly H is triangle-free. Therefore Corollary
6.1 can be used to find its chromatic polynomial. H has two pairs of independent

edges. Therefore
4 2
by = -4 =2,
2= o)+

Hence from Theorem 7, we get
P(G;A) = (M)g+4(A)s + 2(A)4.
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S. Summary

We have derived formulae for the first five coefficients of the clique
polynomial; and in doing so, have simultaneously derived formulae for the first
five chromatic coefficients, when the chromatic polynomial is expressed in the
complete graph basis. The use of the formulae, necessitates the counting of
various subgraphs of the graph. Wherever possible, we have replaced the
numbers of certain subgraphs, by various sums, which are intended to make the
counting more manageable. For example, if a graph has many edges, .it is more
efficient to counting of the number of paths of length 2, by the summation
given, than to count them directly. The summation o, for the counting of a
pair of disjoint triangles seems quict cumbersome; but it is efficient to use when
the graph has many triangles. Also it is casy to implement on a computer.

When dealing with small graphs ( p < 8), it might be more efficient to
count subgraphs directly. For example, if a graph does not contain many
triangles, it might be casier to count the number of disjoint pairs of triangles,
by simply looking at the graph. The formulae are not meant to be used
slavishly. Basically, the coefficients are the numbers of various types of clique
covers; and this understanding should determine the form in which the theorems
are applied.
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