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Abstract 
Explicit formulae are derived for U1e first five coefficients of U1e clique 
polynomial of a graph . From these results, explicit formulae are deri ved for the 
first five coefficients of U1e chromatic polynomial in the complete graph basis. 

1. The Basic Ideas 
The graphs considered here are all fine, and have neiU1er loops nor 

multiple edges. We refer to Harary [8] for U1e basic definiti ons in Graph Theory. 
We denote by Kp, U1e complete graph with p nodes. W e also call Kp, a clique, 
when it is a proper subgraph of a graph . W e cal l K 1 a trivial clique and Kn a 
proper clique, when n 2". 3. We will sometimes refer to Kn as an n-clique . 
Definitions 

L et G be a graph. A clique cover of G is a spanning subgraph of G, 
in which every component is a clique. 

Since all U1e covers referred to, will be clique covers, we will use the 
word "cover" to mean "clique cover ", unless 0U1erwi se specified. Also, all 
indeterminates mentioned in this paper will be over the field of complex 
numbers. 

L et F be the family of cliques. With each member a of F, let us 
associate an indeterminate wa, called U1e weight of a . Let C be a cover of 
G, Then the weight of C is 

w(C) = rr W a 

a 
where the product is taken over all tlle elements a in C. The clique 
polynomial of G is 

K (G;w) = I, w(C) , 
C 

where w is a vector of the indetermi.nates wa; and the summation is taken over 
all U1e covers in G. This polynomial was introduced in [1] . Some of its 
properties are also given in [2], [3] and [4] . 

If we give each element a of F, wiU1 r nodes, U1e weight wr, U1en U1e 
resulting clique polynomial is called the general clique polynomial of G. If 
we give each element of a cover the (same) weight w, then U1e resulting 
polynomial in w, is called the simple clique polynomial of G -and is 
denoted by K (G; w). Therefore K(G;w) is obtained from K(G;w), by putting wr 
= w, for all r . lf G has p nodes, we will write 

p-1 
K(G;w) = I, ak(G)wp- k 

k=O 
where ak(G) is U1e number of covers of G wiU1 cardinality p-k . 
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Throughout this paper, we will denote the node and edge sets 
of a graph G, by V(G) and E(G) respectively . Also, we will assume that 
IV(G)I = p and that IE(G)i = q unless otherwi se specified. If His a subgraph of 
G, the notation G-H will used for U1e graph obtained from G, by removing all 
the nodes of H . 

2. The Coefficients of the Simple Cligue Polynomial 
It is not difficult to see that for any graph G with p nodes, there is only 

one possible cover with p components; and that is, the empty graph wiU1 p 
nodes (We call this cover. tri vial ) . Therefore ao(G) = 1. 

It is also easy to see Uiat the only possible covers with p-1 components 
are those cover iliat consist of a component edge; together wiU1 p-2 component 
nodes. Therefore we have 
a1(G)=q. 

The following lemma is taken from [5] (Lemma 1). It will be useful for 
deriving the results in this section . 
Lemma 1 

L et G be a graph with p nodes and p-n components. Then G consists of 
p-c component nodes, together with c-n non-trivial components, where 
n ::; c ::; 2n . If O < n< p-1 , then n < c ::; 2n. 

We now consider the case , when n = 2. From ilie lemma the cover C 
will have p-c component nodes and c-2 non-trivial components, where 2 < c ::; 4. 
c=3 

The only admissible graph with 3 nodes and 1 component is the 
triangle K3. 
c=4 

The only admissible graph with 4 nodes and 2 components is a pair of 
independent edges i.e. K 2 u K 2. 
Hence, the graphs which contribute to ilie coefficient of wP-2 are the triangle and 
K2 u K 2. L et us denote the number of triangles in G, by N K, (G). The number 

a 

of pairs of independent edges in G can be counted by first choosing any pair of 
edges, and then omitting any chain of length 2 -denoted by P3. W e ilierefore get 

a2(G) = N K
3 

(G) + ( ~) - N p
3 

(G). . . . (1) 

We can obtain a chain with 3 nodes in G, by choosing any pair of edges at any 
node in G. Therefore 

Np 3 (G)= JJ;} 
where di is the valency of node i in G. 

Hence we obtain the following result. 
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Theorem 1 

a2(G) = (~)+ NK3 (G)- JJ d; )· 

The following corollary shows that the third coefficient a2 
characterizes a star graph ( a tree with p nodes and containing p-1 nodes of 
valency 1). 
Corollary 1.1 

A graph G is a star if and only if a2(G) = 0. 
Proof 

Suppose that G is a star. Then G has p-1 edges. So q = p-1. Also G 
will contain one node of valency p-1 and p-1 nodes of valency l. Therefore we 
will have 

C learly, G has no triangles. Therefore N K
3 

(G) = 0. From the theorem, we get 

a2(G) = 0. 
Conversely, suppose that a2(G) = 0. Recall that a2(G) is U1e number of 

covers consisting of p-3 component nodes and a triangle plus the number of 
covers consisting of p-4 component nodes and a pair of independent edges. This 
means that G has no triangles. Also, G does not have a pair of independent 
edges. Then, all the edges in G, have a node in common. Therefore G is a star. 

Hence the result follows. D 
We now consider the case, in which n = 3. From Lemma 1, ilie cover C 

will have p-c component nodes and c-3 non-trivial components, where 3 < c ~ 6. 
C=4 

The only admissible graph with 4 nodes and one component is the 
graph K4 . 

The number of such subgraphs is N K
4 

(G). 

The only admissible graph with 5 nodes and two components is the 
triangle K3 together wiili a component edge .i.e K3 u K2. 

Let us denote by T a· b· c · a triangle joining nodes ai, bi , and Ci- Then 
1 ' 1' I 

the number of graphs consisting of Ta• b - c- toged1er wiili a component edge is 
I' 1' I 

IE(G - T a- b- c - >I- Hence, the number of covers of iliis type is 
I' I' I 

<J= IIE(G -Ta. b· c->1- ... (2) 
I' I' I 

i= I 
where the ummalion is taken over all tri angles Ta - b- c - in G . 

I' I ' I 

The onl y admissible graph wiili 6 nodes and three components is the 
graph consisting of three component edges i.e.K2 u K2u K2. 
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The number of such covers is taken from [6 ] (Theorem 1 ). It is 

't= G) - (q - 2) I ( d; J +2J J ~ i J + ~ (di - l )(dj - l ) -NK3(G) . .. (3) 

Therefore we obtain tJ1e following result. 
Theorem 2 

a3(G) = NK
4 

(G) + <J +1: . 

W e now consider tJ1e case, in which n = 4. From L emma 1, t11e cover C 
will have p-c component nodes and c-4 non-trivial components, where 4 < c $; 8. 
c=5 

The only admissible graph witJ1 5 nodes and one component is the 
graph K5 . 

The number of such subgraphs is N Ks (G ). 

c = 6 
The only admissible graphs witJ1 6 nodes and two components are (i) a 

pair of triangles i .e. K3 u K3 and (ii) K4 u K2. 
L et Gk denote t11e graph obtained from G by removing the k triangles 

T a. b c - , where 
I' I ' I 

i = 1, 2, ... , k . Then the number of graphs of type K3 u K3 i s 

a= I,NK
3

(G ). . . . (4) 
k=l 

The number of graphs of type K4 u K2 i s 

~= I-IE(G - Q a b c d )I, ... (5) 
I' 1 ' I ' I 

i= l 
where Q 3 . b· c d· is a 4-clique witJ1 nodes ai, bi , Cj and di; and tJ1e summation 

I " I ' 1 • I 

is taken over all such 4-cliques in G. 
c = 7 

The only admissible graph with 7 nodes and tJ1ree components i s a 
Lriangle, together witJ1 two component edges i .e. K3 u K2u K2 . 

L et T a- b c be a triangle in G ; and let Gi be tJ1e graph 
1· I' 1 

G- T a b _ c . L et 
I ' I' I 

Qi= IE(G - T a. b - c )I 
I' I ' I 

i .e. the number of edges in G- T a b c . Also, let di,J. be the valency of 
I ' 1' I 

node j in Gi . 
Then, t11e number of pairs of independent edges in Gi is 

€j= ( qi J- Pi3( di,j J . 
2 j = l 2 

Hence tJ1e number of covers of ilie type K3 u K2u K2 i s 

r = Iici, ... (6) 

where tJ1e summation is taken over all graphs of type Gi . 
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The only admissible graph witJ1 8 nodes and four components i 
K2 u K2u K2u K 2. 

We denote the number of such subgraph by o. 
Hence we obtain the following re ult. 

Theorem 3 
34-(G) = N Ks (G)+a + ~+y + o. 

C learly, tJ1e analy i can be continued in order to obtain expre sions for 
higher coefficient of K (G;w). The result will become more and more 
complicated. It can be observed tJlat tJle graphs associated witJ1 ak(G) are defined 
by the various partitions of c wi th c-n elements, where n+ l $ c $ 2n. Therefore 
tJ1e number of different fam ilies of graph that must be counted is ilie number of 
uch partitions. L et N (i ,j ) be ilie number of partition of the integer i with j 

parts, in which each part is greater tl.1an 1. Each uch partition defines a unique 
family of graph . Therefore, tJ1e number of different families of graphs (or 
cover ) is equinwnerous w itJl tJ1e number of different partition . The number of 
different families is tJ1erefore 

2 11 
2, N ( C, C - 11 ) . 

c= n+l 
It is not difficult to see Ula[, for any fixed number of nodes p, tJle 

complete graph wiili p nodes will contain ilie greatest number of tJle different 
familie of graph . Therefore 

ak(G) $ ak(Kp). 
for any graph G with p nodes. The following result i taken from [1 ). 
Lemma 2 

p- 1 
K(Kp;w) = 2,S(p, p - k )wp- k, 

k=O 
where S(n,k) i tJ1e Stirling number of U1e econd kind . 

Hence, we have tJ1e following result, which give au eful upper bound 
on the coefficient of K (G;w). 
Theorem 4 

For al l graphs G witJ1 p nodes. 
ak(G) $ S(p, p-k). 

The following result is added for completenes . 
Theorem 5 

G is a complete graph if and only ap-1 (G) = 1. 
Suppose tJ1at G bas no triangles ( i .e. G " triangle free" ), U1en, ilie only 

cliques in G, will be node and edges. Theret re tile ex pre sions for Ule 
coefficients easily reduce to tJle results given in ilie following theorem. 
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Theorem 6 
Le l G be a triangle-free graph. Then 

(i) ao(G) = 1, 
(ii)a1(G) =q , 

(iii ) a2(G) = ( ~)- it( d;} 
(iv) a3(G) = 'C , 

and (v) 34.(G) = 8. 

3. Examples 
We now illustrate the results given in lhe above theorems. 

Example 1 
Let G be t11e fo llowing graph. 

G: 'K""7 2 
4 ~ 3 

Figure 1 
Then ao(G) = 1 and a1(G) = 5. We will use Theorem 1, to find a2(G). ln this 
case, 

NK/ G)= 2. ( ~) = G) = lOand 

t (d2i ) = G) + G ) + G ) + G) = 8 ' 

⇒ a2(G) = 10 + 2 - 8 = 4. 
Since G has only 4 nodes, ak(G) = 0, fork ~ 3. Hence we get 

K(G;w) = w4 + 5w3 + 4w2. 
Example 2 

Let G be the fo llowing graph . 

2 

G< C><l><l: 
5 

Figu1·e 2 
Clearly, ao(G) = 1 and a1(G) = 11. G has 8 triangles . From Theorem 1, we get 

a2(G) = ( ~) + NK/ G) - JJ:i ) = (1;) +8- [ 4G)+2G)] 

=55+ 8-32=31. 
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From the graph, it can be seen that N K
4 

(G) = 2. From Equation (2), 

CT= 2,IE(G- T 3 b c )I= 4.3 + 4.1 = 16. 
1 ' 1 1 I 

i =I 
It can be easily verified tllat G has 5 sets of three independent edges. Therefore 
't = 5. 
From Theorem 2, we have 

a3(G) = NK
4 

(G) + cr +1: = 2 + 16 + 5 = 23. 

G has no 5-clique. From Equation (4), 
o. = 2,NK, (G) = 2. , 

k=l 
From Equation (5) ( using the complete graphs Q1256 and Q2345, we get 

~= 2,IE(G- Qa b· c • d , ), = 2. 
tt 1 1 1' I 

i= l 
Since G has only 6 nodes, y = 8 = 0. From Theorem 3, 

¼(G) = N K (G ) +o. +~+y + 8 = 0 + 2+ 2 + 0 + 0 = 4. 
5 

Hence we get 
K(G;w) = w6 + l lw5 + 3]w4 + 23w3 + 4w2. 

4 . The Coefficients of the Chromatic Polynomial 
The following definitions are well known; and have been added for 

completeness. 
Definitions 

Let G be a graph. A proper colouring of G is an assignment of 
colours to tJ1e nodes of G, in such a way that adjacent nodes are coloured 
differently. A A-colouring of G is a proper colouring of G with 'A. colours. 
This is equivalent to a partitioning of the nodes of G into A colour classes, such 
that nodes in the same class are non-adjacent. When 'A, is an indeterminate, the 
number of A-colourings of G, is a polynomial in G, called the chromatic 
polynomial of G. This polynomial will be denoted by P(G ;A). 

We refer to Read [10), for the basic properties of chromatic 
polynomials. Formulae for some of the coeffi cients of P(G;'A.) have been given 
in [5]. 

Let us denote tJ1e product A('A.-l )(A-2) ... ('A.-n+ 1) by ('A.)n (n ;:::,:1) ( 
referred to as, " A fal ling factorial n" ). We define (A)O as 1. Then clearly, tlle 
chromatic polynomial of Kp is (A)p.We can wri te tJ1e chromatic polynomial of a 
graph G witJ1 p nodes in the complete graph basis (or "falling 
factorial form" ), as 

p 
P(G;A) = 2, bk(A)p-k · 

k=O 
We can also write ilie chromatic polynomial of G, in the null basis, as 

p 
P(G;A) = I,ck'A.p- k . . .. (7) 

k=O 
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The following resulL was es tablished in [3]. It gives the connection 
between clique an chromatic polynomials. 

Lemma 3 

L eL G be a graph . Then tl1e chromatic polynomial o f G is the 
polynomial obtained from the simple clique polynomial of G, by replacing wk 
wiU1 (A)k. 

The result of the theorem can be written as 
P( G ;A) = K (G;w'), 

where w' denotes the transformation, in which wk is replaced by (A)k , 

An im.mediaLe resulL can be obtained by replacing G wiU1 G . 

Lemma 4 

P(G;A) = K ( G ;w'), 
where w' denotes the transformation, in which wk is replaced by (A)k , 

Notice that U1e transformation described in the lemmas suggesL U1aL the 
product 
wr. w5 = wr+s in K (G;w) is equivalent to the producl (A)r . (A)s = (A)r+s in 
K (G;w'). This is the well-known Zykov Product (see Korfhage [9]) . This product 
will be especially useful, for transforming polynomials of disconnected graphs. 

It is clear from the lemmas, that tile coefficients of K(G;w) and those 
of P( G ;A), in the complete graph basis coincide. Therefore we can immediately 
obtain formulae for the first five coefficients of the chromatic polynomial, in 
falling factorial form . The following theorem give tl1e results, which parallel the 
results for the coefficients Ck in Equation (7), given in [5] . A s far as we know, 
these result are new. 
Theorem 7 

Let G be a graph wiU1 p nodes and q edges , and with chromatic 
polynomial 

p 
P(G;A) = I, bk (A)p-k . 

k=O 
Then 

(i) bo = 1 
(ii) b1 = q 

(q) - P (di) (iii) b2 = 2 + N K3 (G)- i~l 2 

(iv) b3 = N K
4 

(G)+ <J +'t , 

and (v) b4 = N Ks (G) +a. +p+y + 6, 
where <J, 1:, a., p, y and 6 are the sums defined above. but with the graph 
replaced by its complement. 
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Anotber immediately corollary of Theorem 1 is the following . 
Corollary 1.2 

A graph G is a star if and only if b2 = 0. 
The following corollary of Theorem 6 is immediate. 

Corollary 6.1 
Let G be a graph with p nodes and q edges , and with chromatic 

polynomia l 
p 

P(G ;A) = I,bk (A)p- k · 
k=O 

lf G is triangle-free, then 

and 
where ,: and 8 
complement 

(i) bo = 1, 
(ii) b1 = q, 

(iii) b2 = ( ~) - it( d; } 

(iv) b3 = 1: , 

(v) b4 = 8; 
are the sums defined above, hut with the graph replaced by its 

Notice that when G is triangle-free, all the clique covers are matchings. 
Therefore, the clique polynomial of G, coincides with its matching polynomial . 
This corollary is therefore essentially Theorem 2 of [7] , when ak = bk, 

An Illustration 
We will find the chromatic polynomial of the graph G, shown in Figure 2 
above. 

p 
P(G;A) = I_bk (A)p-k 

k=O 
In thi s case G = H., where His the graph (with three components) shown 
below. 

Figure 3 
Now, bo = 1 and bJ = 4. C learly His triangle-free. Therefore Corollary 

6. 1 can be used to find its chromatic polynomial . H has two pairs of independent 
edges. Therefore 

b2 = (:} 4G) = 2. 

Hence from Theorem 7, we get 
P(G ;A) = (A)6+4(A)s + 2(A)4. 
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5. Summary 
We have deri ved formulae for the first five coefficients of the clique 

polynomial; and in doing so, have simultaneously derived formulae for tJ1e first 
five chromatic coefficients, when tlle chromatic polynomial is expressed in tJ1e 
complete graph basis. The use of the formulae, necessitates the counting of 
various subgraphs of tlle graph. Wherever possible, we have replaced tJ1e 
numbers of certain subgraphs, by various sums, which are in tended to make the 
counting more manageable. For example, if a graph has many edges, .it is more 
efficient to counting of tlle number of patlls of lengtJ1 2, by tJ1e summation 
given, than to count them directly. The summation a, for tJ1e counting of a 
pair of di sjoint triangles seems quiet cumbersome; but it is efficient to use when 
tJ1e graph hac;; many triangles. Also it is easy to implement on a computer. 

When dealing witJ1 small graphs ( p ~ 8), it might be more efficient to 
count subgraphs directly. For example, if a graph does not contain many 
triangles, it might be easier to count the number of disjoint pairs of triangles, 
by simply looking at tJ1e graph . The formulae are not meant to be used 
slavishly. Basically, tJ1e coefficients are tJ1e numbers of various types of clique 
covers; and tJ1is understanding should determine tJ1e form in which the tJ1eorems 
are applied. 
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