LOCALLY WELL-COVERED GRAPHS

I. ZVEROVICH AND O. ZVEROVICH

ABSTRACT. A graph G is called *locally well-covered* if there exists a vertex $v \in G$ such that each maximal stable set which contains v is a maximum stable set.

We prove that every graph G which is not locally well-covered contains at least one of graphs G_1, G_2, \ldots, G_6 (Figure 1) as an induced subgraph. Hence the maximal hereditary subclass $\mathcal{HLOCWELL}$ of locally well-covered graphs is characterized by the set $\{G_1, G_2, \ldots, G_6\}$ of minimal forbidden induced subgraphs. The class $\mathcal{HLOCWELL}$ is polynomial-time recognizible and there is a polynomial-time algorithm for finding a maximum stable set, which is valid for every graph in the class $\mathcal{HLOCWELL}$.

2000 Mathematics Subject Classification: 05C85 (05C75, 68Q15 68Q25 68R10).

1. Introduction

A set $S \subseteq V(G)$ in a graph G is stable or independent if no vertices of S are adjacent. A maximal stable set is an inclusion-wise maximal set that is stable. A stable set S is maximum if $|S| \ge |S'|$ for each stable set S' of the graph. Plummer [3] defined a graph G to be well-covered if every maximal stable set in G is a maximum stable set. The class WELLof all well-covered graphs is widely studied, see, for example, Hartnell [2], Plummer [4], Ravindra [5], Staples [7], and Zverovich [8]. Chvátal and Slater [1] and Sankaranarayana and Stewart [6] independently proved that recognizing well-covered graphs is an co-NP-complete problem.

Definition 1. We define a graph G as locally well-covered if there exists a vertex $v \in G$ such that every maximal stable set which contains v is a maximum stable set. We denote by LOCWELL the class of all locally well-covered graphs.

Clearly, $WELL \subseteq LOCWELL$.

Proposition 1. There exists a polynomial-time algorithm for finding a maximum stable set, which is valid for every graph in the class HLOCWELL.

¹Corresponding author: Igor Zverovich, e-mail: igor@rutcor.rutgers.edu

Date: March 10, 2004.

Key words and phrases. Locally well-covered graphs, independent set, stable set, stability number, hereditary class, polynomial-time algorithm.

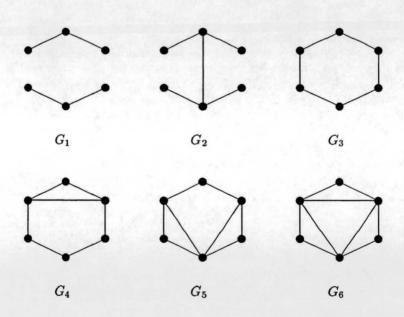
Proof. Let $G \in \mathcal{LOCWELL}$. For every vertex $v \in V(G)$, we construct a maximal stable set I_v which contains v and choose a maximum set among them.

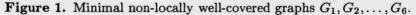
We show that the maximal hereditary subclass $\mathcal{HLOCWELL}$ of locally well-covered graphs is characterized by a finite set of minimal forbidden induced subgraphs. Therefore the class $\mathcal{HLOCWELL}$ is polynomial-time recognizible, and there is a polynomial-time algorithm for finding a maximum stable set within $\mathcal{HLOCWELL}$.

2. Minimal non-locally well-covered graphs

A non-locally well-covered graph is a graph $G \notin LOCWELL$.

Theorem 1. Every non-locally well-covered graph G contains at least one of the graphs G_1, G_2, \ldots, G_6 , see Figure 1, as an induced subgraph.





Proof. Suppose that there exists a graph $G \notin \mathcal{LOCWELL}$ without induced subgraphs G_1, G_2, \ldots, G_6 . Let $I = \{u_1, u_2, \ldots, u_k\}$ be a maximum stable set in G. Since $G \notin \mathcal{LOCWELL}$, there exists a maximal stable set J_i that contains a vertex $u_i \in I$, $i = 1, 2, \ldots, k$, and which is not a maximum stable set. Clearly, $|J_i \setminus I| < |I \setminus J_i|$.

Since J_i is a maximal stable set, for every vertex $u \in I \setminus J_i$ there exists a vertex $v \in J_i$ that is adjacent to u. Since $u \in I$ and I is a stable set, $v \notin J_i$, i.e., $v \in J \setminus J_i$. It follows from $|J_i \setminus I| < |I \setminus J_i|$, that there exists a vertex $v_i \in J_i \setminus I$ that is adjacent to at least two vertices of $I \setminus J_i$.

We fix such a vertex v_i for every J_i , i = 1, 2, ..., k, and denote $V = \{v_1, v_2, ..., v_k\}$. Note that the vertices $v_1, v_2, ..., v_k$ are not necessarily pairwise distinct.

Let $t = \max\{r: \text{ for every subset } W \subseteq V \text{ of cardinality } |W| \leq r \text{ there} exists a vertex in I that is adjacent to all vertices of W}.$

Claim 1. 0 < t < |V|.

Proof. Every vertex $v \in V$ is adjacent to a vertex of I, therefore $t \geq 1$. Every vertex $u_i \in I$ is not adjacent to $v_i \in V$ [since $u_i, v_i \in J_i$], therefore t < |V|.

Claim 2. $t \geq 2$.

Proof. Suppose that t < 2. By Claim 1, t = 1. By the definition of t, there exist distinct vertices $v_i, v_j \in V$ such that every vertex $u \in I$ is adjacent to at most one of them.

The vertex v_i is adjacent to at least two vertices of I, say, without loss of generality, to u_1 and u_2 . Then v_j is non-adjacent to both u_1 and u_2 . The vertex v_j is also adjacent to at least two vertices of I, say u_3 and u_4 . Then v_i is non-adjacent to both u_3 and u_4 . Thus, the set $\{v_i, v_j, u_1, u_2, u_3, u_4\}$ induces either

- G_1 [when v_i is non-adjacent to v_j] or
- G_2 [when v_i is adjacent to v_j],

a contradiction.

The definition of t and t < |V| [Claim 1] imply that there exists a set $W \subseteq V$ of cardinality |W| = t + 1 such that every vertex of I is not adjacent to at least one vertex of W. Without loss of generality, let $W = \{v_1, v_2, \ldots, v_{t+1}\}$. Note that the vertices in W are pairwise distinct.

We denote $W_j = W \setminus \{v_j\}$ for each $j = 1, 2, \ldots, t+1$. Since $|W_j| = t$, there exists a vertex $u_{i_j} \in I$ that is adjacent to all vertices of W_j . Since the vertex u_{i_j} is non-adjacent to a vertex of W, u_{i_j} is not adjacent to v_j . By Claim 2, $|W| = t+1 \geq 3$. It is easy to see that the set $\{v_1, v_2, v_3, u_{i_1}, u_{i_2}, u_{i_3}\}$ induces one of the graphs G_3, G_4, G_5 or G_6 , a contradiction. A non-locally well-covered graph G is *minimal* if all proper induced subgraphs of G are in $\mathcal{LOCWELL}$. It is easy to check that minimal nonlocally well-covered graphs are exactly G_1, G_2, \ldots, G_6 .

Corollary 1. The maximal hereditary subclass HLOCWELL in LOCWELL is defined by $\{G_1, G_2, \ldots, G_6\}$ as the set of all minimal forbidden induced subgraphs.

Corollary 2. The class HLOCWELL is polynomial-time recognizible.

Proof. Indeed, by Corollary 1, $\mathcal{HLOCWELL}$ has exactly six minimal forbidden induced subgraphs.

It would be interesting to extend our main result to wider classes of graphs.

Definition 2. For every $k \ge 0$ we define a class $\mathcal{LOCWELL}(k)$ of k-locally well-covered graphs in the following way: $G \in \mathcal{LOCWELL}(k)$ if and only if there is a stable set I of G such that $|I| \le k$ and every maximal stable set that contains I, is a maximum stable set.

Thus, WELL = LOCWELL(0) and LOCWELL = LOCWELL(1).

Conjecture 1. The maximal hereditary subclass of LOCWELL(k) has a finite forbidden induced subgraph characterization.

Acknowledgment

We thank the anonymous referees, whose suggestions helped to improve the presentation of the paper.