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Abstract 

In this note we study graphs whose family of open vertex-neighborhoods 
are anti-Sperner. We exhibit properties, show constructions , and 
characterize the case for regular graphs. 

1 Introduction 

We use the standard notation as found in e.g., [7] . We use [n] to denote the 
set {1 , 2, ... , n}. Consider a graph G with vertex set V(G) = {1 , 2, ... , n} 
and edge set E(G). For a vertex x E V(G) denote by Nc(x), or just 
N(x) when G is understood, to be the open vertex neighborhood of x, 
i.e ., Nc(x) = {y E V(G) I xy E E(G)}. The graphs under consideration 
are without loops, so x </. N(x) . Let :F = {N(l), N(2), .. . , N(n)} be the 
family of vertex-neighborhoods in G. The set system :F is anti-Sperner if 
every member of :Fis a subset of some other, i.e., for all i E V(G), there 
exists a j -/:- i where N(i) ~ N(j) . If :F is anti-Sperner we say that G 
is an anti-neighborhood-Sperner (ANS) graph . The results here apply to 
finite or infinite ANS graphs, however they are always locally finite, i.e., 
IN(x)I < oo . Since having multiple edges doesn 't affect the ANS property, 
the graphs considered here are simple. We list some properties of ANS 
graphs that were shown in (6] . Let g(G ) denote the girt h of a graph G , i.e., 
the length of the smallest cycle in G . 

Theorem 1.1 ([6]). IJG is a connected ANS graph theng(G) s; 4. D 
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Theorem 1.2 ( [6]). If G is a finite ANS graph then there must exist two 
vertices x and y with N(x) = N(y). □ 

As an example of a finite ANS graph, the complete multipartite graph 
G = K1A,l ,IAl l, ... ,IA ... I, m ~ 2 is ANS if IAil ~ 2 for i = 1, . .. , m . Here 
A1 U · · · U A"' = V(G), A; n Ai = 0 for i I= j. Also, a connected spanning 
subgraph H ~ K1A,l, ... ,IA ... I is ANS if for each partite set A; there exists 
x,y E Ai with NH(x) = NH(Y) = V\A; . For q ~ 2, Kq,q is an example of 
a q-regular ANS graph. We remark K3,3 - e is ANS. 

A more general procedure uses the tensor product of two ANS graphs, 
C and H, to generate an ANS graph. The tensor product of two graphs 
C and H, denoted C ® H is defined as V(G ® H) = V(G) x Y(H) and 
(g, h)(g', h') is an edge in C ® H iff gg' E E(G) and hh' E E(H) . 

For general properties and applications of the tensor product, please 
consult (1, 2, 4] . 

Theorem 1.3 ([6]). If G and H are ANS graphs {finite or infinite), then 
G ® H is an ANS graph. □ 

2 Further constructions and properties 

We first list some properties of ANS graphs concerning maximum/minimum 
vertex degrees and vertex-connectivity. We use ti.(G), resp., &(G), to denote 
the maximum, resp., minimum degree of a vertex in C . 

Theorem 2.1. If G is an ANS graph of order n, then ti.(G) ~ n - 2. 

Proof. Assume otherwise, i.e., that there exists some vertex x where d(x) ~ 
n-l, so N(x) = V\{x}. Now, since C is ANS there exists a vertex y where 
N(x) ~ N(y) . But y E V(G)\{x} and then necessarily also in N(y) . But 
y E N(y) contradicts that we do not allow loops in C. □ 

Theorem 2.2. If G is a connected ANS graph, then &( G) ~ 2. 

Proof. Assume otherwise, i.e., that there exists a pendant vertex x with 
d(x) = l. Let N(x) = {y}, i.e., xy E E(G); then x E N(y) . Since C is ANS 
there exists a vertex z where N(y) ~ N(z). Since x E N(y) this implies xz 
is also an edge of G. But xy and xz being edges in G contradicts that d(x) 
= 1. □ 

Theorem 2.3. If G is a connected ANS graph, then it is 2-connected. 

Proof. Assume otherwise, i.e., that there exists a cut-vertex x in C. Then 
G - x = Ci U G2 U • • • U Cw has at least two components, i.e., w ~ 2. Since 
C is ANS, there exists some y E V(G) where Na(x) ~ Na(y). This vertex 
y is in some component in G - x, w.l.o.g. say y E V(G 1) . Since x is a 
cut-vertex it has neighbors in V(Gi) n V(G2), hence Na(x) n V(G2) I= 0. 
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Let S = Nc(x) n V(G2). Then since S ~ Nc(x) ~ Nc(y), we have that in 
G, y is adjacent to every vertex in S . But this implies then that G 1 and 
G2 are not disjoint components in G - x. □ 

If one has an r -regular ANS graph wi th r ~ 2, then we can replace the 
containment'~' symbol in the definition of ANS graphs with equality'='. 
This follows since if i E V(G) for some ANS graph G, then by definition 
there exists a j E V(G), j -::/= i , where N(i) ~ N(j) . But IN(i)I = r = 
IN(j)I, hence N(i) = N(j) . We refer to this as the following lemma. 

Lemma 2.4. If G is an r-regular, r ~ 2, ANS graph, then i,j E V(G) 
with N(i) ~ N(j) implies N(i) = N(j) . □ 

For the cases of r = 2, 3, r -regular connected ANS graphs, there is only 
one, namely; C4 ~ K2,2 , resp ., K3 ,3. 

Theorem 2.5. The only connected 2-regular ANS graph is C4 . 

Proof. Any connected 2-regular graph is a cycle. One may check to see 
that C3 is not ANS, also that C4 is ANS. By Thm. 1.1 any other cycle has 
too large a girth . D 

Theorem 2.6. Let G be any ANS graph. lf x, y E V(G) with N(x) ~ N(y), 
then xy </. E( G). 

Proof. On the contrary, assume N(x) ~ N(y) and xy E E(G) . Then 
y E N(x), and hence y E N(y), but this contradicts that G has no loops, 
i.e. y </. N(y). D 

Theorem 2.7. The only connected 3-regular ANS graph {finite or infinite) 
is K3 ,3 . 

Proof. Let G be a connected 3-regular ANS graph . Let x, y E V(C) be 
vert ices with N(x) = N(y). These vertices exist by the definition of ANS 
and Lemma 2.4. Also, by Thm . 2.6, xy </. E(G). Let N(x) = N(y) = 
{ a, b, c}, then {x, y} C N(a) n N(b) n N (c). Now, since IN(a)I = 3, define 
z E V(G) where N(a) = {x, y, z}. Now by definition of ANS there must 
exist an i E V(C) with N(i) = N(a), we show i = (b or c). With N(i) = 
{x, y , z} we have i E N(x) n N(y) = {a, b, c}, consequently i = (b or c). 
Without loss of general ity let i = b, then N(a) = N(b) = {x, y, z}. ow, 
{x,y} C N(c), define w E V(G) where N(c) = {x,y,w}. We show z = w. 
Since G is ANS there exists some d E V(G) where N(d) = N(c) = {x , y, w}. 
Then d E N(x) n N(y) = {a, b, c}, consequently d = (a orb). Without Joss 
of generality let d = a, then {x, y, z} = N(a) = N(d) = N(c) = {x, y, w} 
hence z = w. 

So we have N(a) = N(b) = N(c) = {x, y, z} and N(x) = N(y) = 
N(z) = {a, b, c} . Since G is connected and 3-regular there are no other 
vertices in G . Also, by Thm. 2.6, {a, b, c} is an independent set of vertices 
in G, likewise for {x,y,z}. So G ~ K3 ,3, where one partite set is {a,b,c} 
and the other {x,y,z}. □ 
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The following construction gives us our characterization of regular ANS 
graphs. 

We take a host graph G, with V(G) = {1, 2, ... , n} . Let H 1, H2, . . . , Hn 
be a collection of n graphs. The graph I ( H 1 , H 2 , ... , H n : G) is defined to 
be the graph obtained by replacing vertex i with a copy of Hi, and if 
ij E e(G), then in I we connect all vertices in Hi to all vertices in Hj. 
So, if ij E E(G), we join Hi to Hj in /. The join of two graphs G and H 
denoted C V H, is the graph obtained from the disjoint union of G + H by 
adding the edges {xy I x E V(G), y E V(H)}. So, for examples; K2,2 ,2 ~ 

I(K2, K2, K2: K3); K1A1 t, ... ,IAm l ~ /(K1A1 I• K 1A2 I• ... ' K IA= I : Km), C4 ® 
C4 ~ J(K4 , K 4 , K 4 , K4: 2K2), etc. We remark that the graph C4®C4 is an 
example of a disconnected ANS graph, however we are primarily interested 
in connected graphs here. Also, I(G, H : K2) ~ G V H , i.e., the usual 
definition of the join 'V' between two graphs can be alternatively defined 
via the graph /. For the default case, where G = K IAi with IAI ? 2, then 
each vertex in G has the empty set neighborhood, we do also include this 
as an ANS graph. 

Theorem 2.8. Let C be any connected graph of order n ? 2, with V(G) = 
{1, 2, . .. , n}, then I(K1A, I, . . . , K IAn l : G) where I Ail ? 2 for i E [n], is an 
ANS graph. 

Proof For each i E [n], let Ai = {a1,i, a2 ,i , ... , alA,1,d, then V(I) = A1 U 
A2 • • • U An. Let x E V(J) be any vertex in /, then x E A for some i, let 
y E Ai with x f. y. Then N1(x) = Nr(y), and we then have by definition 
that I is ANS. D 

We remark that the same argument above is also valid when the vertex 
set of G is countably infinite. That is, in the definition of I we allow the 
host graph C to have countably infinite number of vertices. More formally, 
let V(G) = {1, 2, ... } and let H 1, H2, .. . be an infinite collection of graphs. 
Then I(H 1, H2, ... ,: G) is defined analogous to the finite version . 

Corollary 2.9. Let C be any connected infinite graph with V( G) = { 1, 2, ... }, 
then l(K IAi I, K 1A,I, ... : G) where !Ail ? 2 for all i E {1, 2, . .. } is an ex
ample of an infinite ANS graph. 

Proof. The proof is the same as in Thm. 2.8. D 

For the specific case; l(H1, H2, ... , : G) where Hi~ Hj for all i,j say 
Hi~ H, then we use shorthand and write I(H1,H2, . .. ,: G) = I(H;G). 
So, for example, I(K 9 ; P 00 ) , q 2'. 2 is an example of a 2q regular infinite 
ANS graph. (Here P00 denotes the infinite path.) 

Also, we use the name Mirror of C denoted Mir(G) , for any graph G 
(finite or infinite) where Mir(C) ~ J(K 2 ; G), since any two mates x, x in a 
K 2 in Mir( G) have the similar left/right switching as in a mirror reflection . 
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So, Mir(Kn) ~ K2, 2, ... , 2 is the hyperoctahedral graph. Also, for the ________, 
n-times 

hypercube Qn, Mir(Qn) is a 2n-regular ANS graph on 2n+ l vertices. 

Theorem 2.10. For any r 2: 4, there exists an r -regular infinite ANS 
graph. 

Proof. For the case where r is even, the graph I(K r; 2; P00 ) is an example. 
For the case r = 2m + 1 is odd, let V(P00 ) = { .. . , -2, -1, 0, 1, 2, .. . }, and 
for each vertex i E Z = V we replace it with a copy of Hi, where the Hi's 
are described as: 

... , H - 4, H - 3, H - 2, H - 1, Ho, H1, H2, H3, /-/4, Hs, ... 
! ! ! ! ! ! ! ! ! ! 

Km , Km , Km+I , Km+I, Km, Km , Km+1,Km+l , Km, Km , ·· · 

Then, I( ... , H - 2, /-/_ 1, Ho, Hi , /-/2 , ... : P00 ) is a (2m + 1)-regular ANS 
graph. D 

We can generalize Thm. 2.8. 

Theorem 2.11. ff /-11, /-/2, ... , Hn is a collection of ANS graphs, and G is 
any graph with V(G) = [n], then I(H 1 , ... , Hn : C) is an ANS graph. 

Proof. Let x be any vertex in /(/-/1 , ... , Hn: C), then x = Xi where Xi is a 
vertex in some /-Ii. Now, since /-Ii is ANS there exists a vertex Yi E V(Hi) 
where Nu,(xi) ~ Nu,(yi). By the definition of I we then have N1(xi) ~ 
N1(Yi)- □ 

The above argument also holds for infinite graphs G . 

Corollary 2.12. Let V(G) = {1, 2, ... } and let H 1, H2, ... be an infinite 
collection of ANS graphs. Then l (H 1 , fh .. . : C) is ANS. 

Proof. The proof is the same as in Thm. 2.11. D 

The graphs in Figures 1, 2 illustrate Thm . 2.11. 

3 A characterization of regular ANS graphs 

We now give a characterization of regular ANS graphs. Let Q be a finite 
connected r-regular ANS graph . We will show that Q ~ I (K 1A1 I, K IA, I , .. . , 

K IAn l : C} for some graph G of order n, and IA1 I + · · · + IAnl = IV(Q)I. 
For each vertex v V(Q) define P(v) = {w E V(Q) I NQ(v) = NQ(w)}. 

We remark that v E P( v) . We list some propert ies for reference pertaining 
to an ANS graph Q and its associated sets P (v). 
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0 ·x· . . 
. . 

0 
Figure 1: I(C4 , C4 : K2) is an example of an ANS graph with 8 vertices 
and 24 edges. 

Figure 2: I(C4, C4, C4, C4 : C4) is an example of an ANS graph with 16 
vertices and 80 edges. 

Lemma 3.1. IP(v)I ~ 2 for all v E V(Q). 

Proof. We have v E P(v), and since Q is a regular ANS graph we have by 
definition of ANS and Lemma 2.4 that there exists a vertex y f. v, where 
N(y) = N(v); consequently, y E P(v). □ 

Lemma 3.2. For each vertex v E V(Q) the set of vertices in P(v) form 
an independent set in Q. 

Proof. This is a consequence of Thm. 2.6. D 
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Lemma 3.3. If Q is an r-regular connected ANS graph then IP(v)I ~ r 
for all v E V(Q). 

Proof. Let P(v) = {w 1, w2, .. . , wt}, for some v E V(Q). By contrary, 
assume i > r. By the definition of P(v), N(w1) = N(w2) = · · · = N(wt) . 

Also, since Q is connected N(w;) f. </> . Let y E N(wi) n N(w2) · · -n N(wt), 
then deg(y) 2: i > r, which contradicts deg(y) = r. □ 

By Lemma 3.2, the induced subgraph Q(P(v)] in Q is isomorphic to 
K IP(v) I · Let P(v) = {w1, w2, ... , W1P(v)1}, then by the definition of P, we 
have P(w1) = P(w2) = P(w1P(v) 1)- Consequently, the definition of P(v) 
partitions the set of vertices in Q into equivalent classes where two vertices 
x, y are equivalent, x ~ y iff P(x) = P(y). Let P,, 1 , P,,2 , ••• , P,,n denote 
a labelling of the set of equivalent classes of V(Q). These n sets will be 
the vertex set of our host graph G. We define V ( G) = { P,,1 , ... , P,,,.}. Let 
P,,, = {w1,;,w2,;, ... ,w1P.,1,;}, and suppose xy E E(Q). By Lemma 3.2, 
x E P,,, for some i and y E P,,; for some j, with i f. j. We show the join 
P,,, V P,,; is a subgraph of Q. 

Theorem 3.4. With the notation above, the join P,,, V P,,; is a subgraph 
ofQ. 

Proof. Let xy E E(Q) with x E P,,, and y E P,,; for some i f. j . Since 
y E N(x) and N(x) = N(w) for all w E P,,, we have y E N(w) for all 
w E P,,, . Consequently the joint {y} V P,,, is a subgraph of Q. Likewise, 
since x E N(y) and N(y) = N(z) for all z E P,,; we have x E N(z) for all 
z E P,,;. Consequently the join { x} V P,,; is a subgraph in Q. 

To finish the proof we show that for any vertex w E P,,, that the join 
{ w} VP,,; is a subgraph in Q; likewise, { z} VP,,, is a subgraph for all z E P,,; . 
Consequently, the induced subgraph 

Let w be any vertex in P,,, . Above, we have established that {y} VP,,, 
is a subgraph in Q, consequently w E N(y). Since N(z) = N(y) for all 
z in P,,; we have then that w E N(z), so { w} VP,,; is a subgraph of Q. 
Using the above established subgraph { x} V P,,;, an analogous argument 
gives { z} V P,,, is a subgraph for all z E P,,;. □ 

So, combining Lemmas 3.1, 3 .2, 3.3, and Thm. 3.4 gives us our charac
terization of r -regular ANS graphs. Given an r-regular ANS graph Q, we 
partition the vertex set of Q into equivalent classes, P,, 1 , P,, 2 , • •• , P,,n. We 
then define our host graph G, where V(G) = {P,,,, .. . , P,,n} and P,,,P,,; is 
an edge in Giff P,,, VP,,; is a subgraph of Q . We then have 
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We refer to t his as: 

Theorem 3.5. If Q is an r -regular ANS graph, then Q ~ I ( { K n.}i E V(G) : 

C) for some graph C. 

To illustrate this, consider the graph l(C4 , C4 : K2) = Q shown in 
Fig . 1. We have P(l) = P(3), P (2) = P(4), P(a) = P(c), P(b) = P(d) . 
Hence there are four equi valent classes. Let Pv1 = { 1, 3}, Pv, = { 2, 4}, 
Pv3 = {a,b}, and Pv, = {b , d} . Then V (G ) = {Pv,,Pv2 ,Pv3 , Pv4 } and we 
see Pv, V Pv, is a subgraph in Q for all i, j, i -=f. j. Hence I(C4, C4 : K2) ~ 

l(K2,K2,K2, K 2: K4 ) = Mir(K4). 
Also, it is straightforward to check that for the ANS graph in Fig. 2 we 

have l (C4 ; C 4) ~ Mir(Cs) . 
Similar to Thms. 2.5 and 2. 7 we can charcterize 4-regula r ANS graphs. 

Theorem 3.6. If Q is a finite connected 4-regular ANS graph, then Q ~ 
Mir(Cn) for some n ~ 3, or Q = K4,4 · 

Proof. By Thm. 3.5, we have Q ~ I (K IPil• . .. , KIPn l : G) . Let Pvl' 
Pv2 , ••• , Pvn be t he equivalent classes of V(Q). We have by Lemmas 3.1 
and 3.3 that IPvil E {2, 3, 4}. We first show IPv.l -=f. 3 for all i. 

Assume for some i, I Pv, I = 3. Then we have, by Thm. 3.4, that the join 
Pv, V Pv, is a subgraph of Q for some Pv,- Since Q is 4-regular, t here must 
be a Pv"' where Pv, V Pv"' is a subgraph of Q with IPv"'I = 4 - 3 = 1. But 
this contradi cts Lemma 3.1. 

So we have IPv.l = 2 or 4. Suppose IPv.l = 4 for some i. Then t he join 
Pv, V Pv, is a subgraph of Q for some Pv,· Now IPv,I = 2 or 4, if IPv,I = 4 
then Pv, V Pv, ~ K4,4 and since Q is 4-regular connected this is then all 
o f Q . Otherwise IPv,I = 2, but then si nce Q is 4-regula r there exists a 
IPv"'I = 2 with Pv, V Pv"' a subgraph of Q. But then the induced graph 
Q [Pv, U Pv; U Pv"'] ~ K4,4 = Q, one partite set is Pv,, t he other partite set 
Pv; U Pvk · 

Finally, the remaining possibili ty is IPv.l = 2 for all i. But since Q is 
4-regular, Pv, is joined in Q to exactly two other cl asses , say, Pv, and Pv"' 
with IPv;I = IPv"'I = 2. But from (1) our host graph G is then 2-regular, 
i.e. a cycle, consequently Q ~ Mir(Cn) for some n ~ 3. D 

As an immediate consequence of Thm. 3.5 we have that any finite 4-
regular ANS has an even number of vertices. 

Corollary 3.7. If C is a conn ected 4-regular ANS graph then C has an 
even number of vertices. 

Proof. K4,4 has 8 verti ces, and Mir( Cn) has 2n vertices. D 

76 



The developments in Section 3 can be immediately extended to infinite 
r-regular ANS graphs as well, the proofs are identical. So we have if Q is 
an infinite r-regular ANS graph then Q 2='. I(K IA,I, K 1A2 1, ... : C). Also, 
analogous to Thm. 3.5, the only 4-regular connected infinite ANS graph is 
Mir(P00 ) . 

The present work here was motivated by previous study of the converse 
problem. That is, graphs whose set of vertex neighborhoods are Sperner. 

These graphs were shown to have applications to the self-clique graph prob
lem in [3,4]. 

Acknowledgments. We thank the referees for their insightful com
ments. 
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