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Abstract. Currently images are more often noisy than regular, and 
universal contour extraction operators are few. The purely discrete 
operators are rather crude and inaccurate, while the more precise 
operators, which relying on the continuous approach, are compli
cated and rather slow. Using the restriction of gray level images to 
3 x 3 masks interpreted as 30 digital surfaces, we present a new 
way of computing exactly the normal vector, or gradient, at regular 
points. Despite the fact that regular points are seldom on a general 
image, we deduce from this theoretical result a new discrete contour 
extraction operator, based on max area triangles contained in 3 
x 3 masks (the MAT operator), which yields high quality results, 
comparable with those of continuous operators. © 1997 SPIE and 
IS& T. [S 1017-9909(97)00204-3] 

1 Introduction 

If gray level digital images are considered as 3D digital 
surfaces, the most regular images are, obviously, digital 
planes and those having, locally, such a structure. Regular 
images can be met in some specialized fields . 1•

2 The ap
pearance of digital planes in images was noted by many 
researchers who derived results and algorithms from this 
guiding line (cf. Refs. 3 to 10). The work of Veelaert9·

10 

went far in this direction and was especially influential. 
On the other side, in many fields, various processings 

are applied to images (digitalization, half-tone screening, 
dithering, etc.), leading to very irregular surfaces. But 
regularity and irregularity are not that far apart in discrete 
matters, and the study of regular images can shed light on 
irregular ones. This paper extends and makes results of Ref. 
11 more precise. 
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2 Regularity of Digital Images and Debled 
Trlcubes 

Digital images are treated as 3D digital surfaces in the se
quel. We are interested in their local structure, that is, their 
restriction on 3 X 3 masks. This amounts to considering a 
fixed voxel, which can be supposed to be at the origin of 
coordinates, and its 26 neighboring voxels. Even if images 
are functional, requiring the consideration a priori of only 8 
neighbors, the whole collection of images must neverthe
less be introduced in the following. 

Graphical representations of these local configurations 
are built by replacing voxels by unit cubes. Thus the origin 
corresponds to the cube [0,1]3 of R3, while the voxel lo
cated at [ - I , - I , - I ] is replaced by the unit cube 
[ - 1,0]3. More generally, the voxel located at integer point 
[x ,y,:] is imaged by the unit cube [x.x+ I] 
X [y, y+ l) X [ z,z+ I). 

We shall denote by .-7:1 the subset of Z3 defined by the 
product [ - I , I] X [ - I , I] X [ - 2,2]. It consists of 45 vox
els, which give a partition 9f the Euclidean parallelepiped 
[- l ,2]X[- l ,2] X[-2,3). 

The simplest digital surfaces, that is, digital planes, are 
conveniently defined as subsets of Z3 satisfying the follow
ing Diophantine inequalities: 

-y~ax+by+cz<-y+w, (a,b,c)EZ3, (a,b,c) = I. 
(I) 

Such digital planes where w = max(lal,lbl,\cl), are called na
ive digital planes. 

Restrictions on the digital plane normal vector (a,b,c) 
can be assigned using the fundamental domain of the group 
of symmetries of the cube. This domain, also known as the 
standard simplex, is defined by inequalities 
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Fig. 1 Forty Debled-Rennesson tricubes. 

(2) 

Using cube symmetries, the structure of digital planes de
fined by any normal vector can be deduced from those 
where the normal vector belongs to the standard simplex, 
which supports restricting our study of digital planes to 
those satisfying the inequalities of Eq. (2). This is assumed 
in the following. 

It would be interesting to know all possible local con
figurations of digital planes around a given voxel. Because 
they correspond to subsets of .7 3 , there are a finite number 
of them. They are given by intersections of all digital 
planes containing 0, with .7 3 . 

Debled-Rennesson4 found 40 combinatorially distinct 
local configurations of naive digital planes satisfying the 
conditions of Inequality (2). Each is a little piece made of 9 
voxels that projects on a 3 x 3 mask in (x ,y) space. These 
pieces, which appear in Fig. I, are called tricubes. They 
are, in a certain sense, the building blocks of 3D discrete 
diff erentiabi Ii ty. 

If normal vectors of any direction are allowed, that is if 
the condition of Eq. (2) is relaxed, the number of intersec
tions between .:J?j and all naive digital planes going through 
0 increases. Debled-Rennesson found 709 such tricubes, 
showing that they provide a fairly good discretization of 
space. 

Matrix representations and normal vectors (a, b, c) of 
tricubes are shown later in Figs. 3, 4 and 5, completing 
information contained in Fig. I. 

In Ref. 4 tricubes were generated by an exhaustive 
search of the parameters a, b, c , and -y. They are built one 
by one and new elements are added to the set of those 
already discovered. Fig. I was drawn with this algorithm. 

Tricubes whose normal vector satisfies the condition of 
Eq. (2) can be conveniently described in the following way. 
If (x ,y, z) denotes voxels coordinates, the z component de-

pends functionally on x and y. Such a tricube can be con
sidered as the graph of the associated mapping 
(x,y)-:(x,y), where (x,y) belongs to the set [-1 ,0,1] 
X [ - 1,0, I]. Of course, such a graph can also be repre
sented by an integer matrix of dimension 3 whose entries 
are given by the third component and where line and row 
numbers (between I and 3) replace the x and y coordinates. 
Tricubes definition, saying that associated naive digital 
planes contain 0, is equivalent requiring the central value of 
these matrices being equal to 0. 

Our graphical representation choices and the condition 
of Eq. (2) determine how coordinates can be recovered 
from these matrices: 

• The x axis is oriented from right to left. 

• The y axis is oriented downward. 

• The z components are matrix entries. 

Let us be more specific about the way these matrices are 
related to the pictures of Fig. 1. All of them appear later in 
Figs. 3, 4 and 5, though in an order different from that in 
Fig. I. Matrix of tricube number 8 shows up in Fig. 5; its 
first row corresponds to the farthest row of voxels of its 3D 
representation in Fig. I and so on (remember central voxel 
has O value). 

It is rather surprising that tricubes can be intrinsically 
characterized with the help of local conditions, which are 
simple inequalities relating matrix entries. 

If tricube matrices are denoted (z;), where l "" i"" 3 
and l "" j "" 3, these inequalities are: 

(3a) 
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(3b) 

: J.I ~:2,2:5;: J,3, (3c) 

(3d) 

or 

The last restriction concerns values located on the first di
agonal. It says that if the oscillation along the diagonal is 
greater or equal to 2 then all three values are distinct (no 
horizontal step in this case). 

Conjecture 1. There are 40 integer matrices of dimen
sion 3 satisfying Eqs. {3a) to (3d). These matrices corre
spond bijectively to the 40 Oebled-Rennesson tricubes. 

This result has been discovered experimentally; some 
partial results, which appear in Sec. 4, should provide a 
way of proving (fastidiously) this conjecture. A more syn
thetical solution using Fourier-Motzkin theory5 is under de
velopment. This characterization of tricubes gives a simpler 
way of constructing them using an obvious nested loop. 

Thus there are two independent generations of tricubes; 
the first follows their definition and uses parameters a,b,c 
(and -y), that is, the normal vector, while the second is a 
local characterization that relies on voxels with z values, 
ignoring normal vector (a,b,c). But it is of the greatest 
interest to recover these parameters directly from tricubes 
geometry. This is the problem of computing the gradient 
directly from the voxels. It is treated now. 

Obviously this question can be solved if naive digital 
planes can be recognized, in other words, if the four param
eters a , h, c, and -y can be recovered from the knowledge 
of a large enough number of voxel coordinates. This prob
lem is solved in Ref. 4, where an incremental algorithm is 
given. But it would be wasteful, and not very instructive, to 
apply such a deep algorithm to such simple objects. It is 
rather clear that these numbers a, b, and c are present but 
hidden somewhere in the nine-point tricube geometry. 

3 Finding Trlcube Gradient 

Results given in Ref. 4 and intuition suggest that param
eters a, b, and c of the tricube normal vectors should be 
recoverable from the Euclidean convex hull of their nine 
points. But the complexity of 30 convex hull algorithms is 
well known; they are even more demanding than digital 
planes recognition algorithm. After tricube definition, it is 
easy to observe that the origin, or central point, is seldom a 
vertex of their convex hull. Taking this into account means 
that their convex hull is almost the same if we restrict to the 
eight border points. Adding the central point at the end is 
not very costly. We thus obtain a specialized 30 convex 
hull algorithm (not included in this paper) well adapted to 
that kind of wristband point sets. 
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Fig. 2 Convex hull of a 3 x 3 mask. 

When applied to all tricubes, this algorithm gives their 
30 convex hull , unvealing how their normal vector (a,h,c) 
can be recovered. The following classification and a new 
gradient algorithm result. 

For any tricube T we denote by r 3 the 30 Euclidean 
convex hull of its nine integer points. The projection of this 
small polyhedron on the (x ,y) coordinate plane is con
tained in the square S = [ - I, I ]2 . The part of r 1 that 
projects on the S boundary is obviously made of four ver
tical triangles (which can degenerate into line segments); it 
is denoted by B (for boundary). 

The complementary part r 3 \ B is homeomorphic to the 
union of two open disks, whose closures are denoted !::,. + 

and I::,. - . They are, respectively, the upper and lower parts 
of r 3 . Each projection of !::,. + and !::,. - to the (x ,y) coordi
nate plane gives a triangulation of the square S. These pro
jections are, respectively, denoted by D + and D . It is 
clear that the r 3 structure can be easily recovered by lifting 
triangulations D + and D back to space. 

The most interesting part of the r 3 structure, leading to 
the classification of tricubes, is the set of edges of triangu
lations D + and D -, which are not contained in the S 
boundary. We respectively denote these sets of inner edges 
by E+ and E , while their union is denoted by ,/, 

Let us explain, using one example, how the convex hull 
of a wristband can be visualized with the help of its two 
associated triangulations D + and D -. Vertices of this ex
ample are (-1,-1,15), (0,-1,17), ( 1,-1 ,10), {1,0,12), 
(1,1,5), (0, 1,13), (-1,1,1) and (-1 ,0,9). These triangula
tions are given in Fig. 2. Fig. 2{b) represents D + ; it indi
cates that if we look at the convex hull r, from above, its 
apparent contour is the square S = [ - 1, I ]2 divided into six 
triangular faces. Fig. 2(c) represents the view from below, 
D -, made of two triangular faces. All faces are represented 
in Fig. 2(a). Notice that four triangular faces of r 3 are not 
visible in Fig. 2 as they project on the edges of the square 
S. But elements of£+ and£ - (there are respectively five 
and one of them in our example) enable us to reconstruct 
these missing faces. 

Returning to the general case, we easily see that f 3 is 
planar (in the Euclidean sense) if and only if I' is void. 

ln the first case B is a parallelogram and we recover the 
normal vector, or gradient, by computing the vector product 
of two vectors of B projecting on two consecutive sides of 
square S. 

This way of recovering the normal vector also applies 
when E + or E is void, meaning that one face of r 3 is a 
parallelogram, which projects on the filled square S. There 
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a□□rn rn□ 0 0 0 0 1 1 2 1 0 1 1 1 
0 0 0 0 0 1 2 - 1 0 0 2 

- 1 - 1 -1 2 -1 -1 0 2 - 2 -1 - 1 2 

Fig. 3 Seven flat tricubes. 

are. altogether. seven tricubes having such convex hull s. 
We call them fiat tricubes. Their corresponding 3D convex 
hull r 3 , described th rough triangulations D + and D , is 
shown in Fig. 3. with their matrices and normal vectors 
beneath. They are also numbered in accordance with Fig. I. 

The remaining cases split into two subfamilies. 
In the second case, both £ + and £ contain exactly one 

edge; in this case (called double roof) the vector product of 
their inverse image is the sought for gradient (a, h, c). This 
occurs in 14 cases, shown in Fig. 4. Note that the vector 

22 40 

product is computed with the 3D vectors that project on the 
two vectors of£+ and E . Example I ill ustrates this gra
dient computation. 

In the third case, r 3 contains a triangular face whose 
projection on S contains O and that has at least two sides 
nonparallel to the x and y axes; that is, two sides whose 
projection belongs to £ + or £ . There are 19 such cases 
where the normal vector is given by the vector product of 
the two mentioned edges. Relevant convex hulls have a 

12 36 

DLJ □□□[Z]EJ[J 
0 1 1 1 0 1 1 3 0 0 0 1 0 1 1 2 
0 0 0 2 - 1 0 0 4 0 0 0 1 -1 0 0 4 

0 0 0 5 - 2 -1 0 5 -1 0 0 4 - 1 - 1 -1 5 

35 3 8 27 23 

LJ[2 [J[Z] CJ□ [J□ 
1 1 1 2 0 1 1 3 0 0 1 1 0 0 0 1 
0 0 1 4 - 1 0 1 3 0 0 0 3 0 0 0 2 

- 1 -1 0 5 - 2 -1 0 4 -1 -1 -1 5 -1 -1 0 5 

11 3 9 25 37 

[Z][J CJE] □LJ [Z]□ 
0 0 1 1 0 1 2 3 0 1 1 1 0 1 2 3 
0 0 0 1 0 0 1 4 0 0 0 3 - 1 0 1 3 
0 0 0 4 - 1 - 1 0 5 -1 - 1 -1 4 - 1 -1 0 4 

26 2 4 

EJ□ LJD 
1 1 1 1 1 1 1 1 
0 0 0 3 0 0 0 3 

- 1 0 0 5 - 1 - 1 0 4 

Fig. 4 Fourteen double roof tricubes. 
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16 17 20 29 

~~ [Z]~g:JW~~ 
0 1 1 1 0 0 1 1 0 0 1 1 0 1 1 2 
0 0 0 2 -1 0 0 2 0 0 0 2 -1 0 1 2 

-1 -1 0 3 -1 -1 - 1 3 -1 - 1 0 4 -1 -1 0 3 

15 19 9 10 

~[Z] Wed ~~ [SJ~ 
1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 
0 0 1 2 0 0 0 2 0 0 0 1 - 1 0 0 1 

- 1 0 0 3 -1 0 0 4 -1 0 0 3 -1 -1 0 3 

33 21 8 32 

Ll8 [dg:J ~[SJ BM 
0 1 1 2 0 0 0 1 0 1 1 1 0 1 1 2 

- 1 0 0 3 -1 0 0 2 0 0 1 1 0 0 1 3 
- 1 -1 0 4 -1 -1 -1 4 0 0 0 3 - 1 -1 0 4 

18 30 7 34 

CdBJLJ~ □Ll WLl 
1 1 1 1 0 0 1 2 0 0 1 1 0 0 1 2 
0 0 1 2 -1 0 0 2 -1 0 0 1 -1 0 0 3 
0 0 0 4 -2 -1 0 3 -1 -1 0 2 -2 -1 -1 4 

28 6 31 

~[SJ Ll□ M0 
0 1 2 2 0 1 1 1 1 1 2 2 
0 0 1 2 0 0 1 1 0 0 1 3 

-1 0 0 3 -1 0 0 2 -1 0 0 4 

Fig. 5 Nineteen terrace tricubes. 

little terrace. These are shown in Fig. 5. Example 2 ex
plains this last case of our gradient algorithm. 

Example 1. Let us find gradient of tricube T 27 , the sev
enth double roof in Fig. 4(c). Fig. 6(a) reproduces thi s 
tricube and shows the coordinate axes. The first vector is 
upper roof ridge, whose components are u 1 = ( - 2, 1, - I ) 

(a) (b) 

Fig. 6 Gradient computations: (a) double roof T27 and (b) terrace 
tricube T19 • 
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(recall S side length is equal to 2). The second vector is 
u2 = ( - 1,2, - I ). Vector product u I Au 2 is ( 1,3,5), the nor
mal vector right to the matrix of Fig. 4. 

Example 2. This example computes gradient of terrace 
tricube T 19 , the sixth tricube of Fig. 5; a copy of it appears 
on Fig. 6(b). We must choose the triangle for which O is an 
inner vertex; this eliminates the upper triangle. Vectors 
components are: u , = (2, - 1,0), u2 = (2, I , - I ). Again the 
resulting vector product gives the normal vector ( 1,2,4). 
Similar computations can be done for all other tricubes. 

4 Recovering Coordinates from Triangulations 

It is rather interesting to observe that knowing the two tn
angulations D + and D - associated to a given tricube T, 
enables us to recover its matrix, that is, the z components of 
its nine points. 

As extremal points of the 3D convex hull r 3 is used, we 
insist that not every voxel of this set is an extremal point. 
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Fig. 7 Extremal points of tricube T17 . 

Fig. 7 illustrates extremal points of f 3(T8). Seen from 
above, four of them appear, from below two more show up. 

In all cases the four vertices of S are always projection 
of extremal points of r 3 . Other voxels of r 3 may project 
as midpoints of S edges. A point of S is a vertex of a 
triangulation if and only if it lifts to an extremal point of 

r 3 . To be precise, if three voxels A, ii, and C of a tricube 
T are lined up in space, the edge they define on polyhedron 
r 3 has only two extremal points; in this case, the midpoint 
is not extremal and is not a vertex of the triangulations. 
This occurs for the lowest and rightmost sides on Fig. 7. 

The following proposition is a general property of 
tricube matrices resulting directly from the inequalities of 
Eq. (3). 

Proposition 1. Let AB be one edge of square S where 
x A< x 8 or y A< y 8 . Let us denote by z A and z 8 the z values 
taken by a tricube T at A and B. Let M denote the midpoint 

of AB. 

• If M is not a vertex of D + then we have 

zM=:A and z8 -zA= I. 

• If M is a vertex of D + then we have 

zM- zA= I and z8 =zM. 

A similar result is true for vertices of D-. 
We easily deduce from Proposition I that if midpoint M 

of edge AB is neither a vertex of D + nor a vertex of D - , 
then we have 

or 

i.e., points A, M , and B are collinear. 
Let us explain how these results can be used to eliminate 

configurations or to recover z values. If we examine Fig. 
8(a), which describes the possible convex hull of a tricube, 
we see that AB and AD contain no vertex of D + or D - . 
Thus z is linear on these segments. But if z A= 0 and z 8 and 
z0 values were supposed equal to 2, then we would have 

D C D N C D N C D C 

.1:21: JZSL .~ : JSl 
(a) (b) 

Fig. 8 Tricube reconstructed from projection. 

:::M=2, z,v =2 and zc=3. But this would imply that A, B , 
D and M are coplanar (after an obvious determinant com
putation) contradicting existence of edge AM. 

On the other hand, if we suppose zA=;:0 =0 and let 
::: 8 = 2, then the former proposition implies that z M = I and 
z,v = 0. But this would eliminate edge MD. Because Fig. 
8(a) is symmetric, this structure cannot fit any tricube. 

Figure 8(b) shows another possible convex hull similar 
to the example of Fig. 8(a). This time AB and CD contain 
no vertex, thus z is linear on these segments. We can begin 

by fixing the value zA = - I and suppose that::: is constant 
on AB, giving z8 = -1. Thus z,v = - I and zM=0, zc 
= z O = 0; all other values can be deduced from these at 
once; we recognize tricube number 8. All other choices 
lead to incompatible situations. 

A systematic study of all tricubes is certainly possible 
using this kind of reasoning. But this tedious task has not 
yet been done; a complete treatment of all the cases by a 
formal computer system is currently being developed. 

5 New Edge Extractor for General Images 

To understand what tricubes and their convex hulls can 
bring to image processing, we observe that their associated 
Euclidean plane is given by two edges of their convex hull 
r 3 . These two edges generally define a large triangle of 
r 3 , which is a face of this polyhedron in case of flat or 
terrace tricubes (cf. Figs. 3 and 5) or not, as in case of 
double-roof tricubes (cf. Fig. 4). If we define regular points 
of an image as those where a 3 X 3 piece of digital plane 
exists, these points, and their associated gradient, can be 
found using knowledge of all 40 tricubes. The global 
knowledge can be organized in several ways to build effi
cient look-up tables. Observe, for example, that only four 
combinatorially distinct tricubes rows (and columns) ap
pear in the whole family. 

However, except in specialized domains, common im
ages generally do not have many regular points. As 3 X 3 
masks are frequently used, the convex hull r 3 of the eight 
neighbors of the current point can always be considered. In 
this case, our former study of r 3 and the very little com
putation in the following, suggest approximating the Eu
clidean tangent plane by the max area triangle whose ver
tices belong to the eight neighbors. 

If ABC is a triangle whose vertices belong to r 3 verti
ces and if D is the farthest , among r 3 vertices, from the 
Euclidean plane defined by ABC, denoting r 3 volume by 
? ; the ABC area by a and the distance of D to the plane 
by 8, we immediately see that 

so that the upper bound is the smallest when a is the larg
est, i.e., when ABC has maximum area. Of course, this 
does not prevent another Euclidean plane with a smaller 8 
from existing, but this is a rather good approximation of a 
Euclidean tangent plane and, moreover, the properties of 
this simply defined operator can be easily studied. This max 
area triangle operator, or MAT operator, is a new kind of 
gradient operator, having some nice properties for bound-

Journal of Electronic Imaging I October 1997 I Vol. 6(4) 1411 
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-1 0 1 -1 -2 -1 

-2 0 2 0 0 0 

- 1 0 1 1 2 1 

Fig. 9 Sobel masks. 

ary extraction in image processing. It is defined as follows: 
For each image point M compute MAT leaning on the 
eight-neighborhood of M (there are 56 such triangles) and 
replace M gray levels by the area value adjusted to fit the 
gray level scale. 

All areas can be formally precomputed, which makes 
this algorithm especially well adapted to parallel machines. 

6 Comparison of MAT and Sobel Operators 

The simplicity of the MAT operator puts it in the category 
of the most elementary discrete operators, such as the Sobel 
operator, which attempts to provide the gray level variation 
gradient at one point of a digital image using two discrete 
directional derivatives. Several improvements made by 
other authors3

•
12 also follow this line of thinking. 

A comparison of Sobel and MAT operators must briefly 
recall the definition of the Sobel operator. Its value at any 
point is obtained using two 3 x 3 convolution masks, for 
the x and y directions; they are respectively defined as 
follows (see Fig. 9). 

These masks detect gradients in the x and y directions, 
giving two vectors that can be, respectively, denoted by ii, 
and iiy. The modulus of their vector sum 

is the value given to the pixel of the new image (after 
scaling to the interval of actual gray level values and round
ing to the closest integer). This operator recognizes rather 
large local variations, but is generally unable to treat small 
ones. And, as large variations are concerned, it does not 
catch geometrical properties very accurately. 

Synthetical images, produced by discretization of con
tinuous geometrical objects, can be useful to analyze the 
advantages or drawbacks of image processing algorithms. 
As digital lines and segments are very common, let us first 
analyze how Sobel operator acts on them. 

2 10 16 

2 10 16 16 10 2 0 

16 10 2 0 0 2 10 16 

0 2 10 16 16 10 2 

16 

0 

16 

Let us suppose that !/(a ,b, -y, w) denotes the digital line 
made of the integer points (x ,y) satisfying the following 
diophantine inequalities 

-ye;;;ax+ by< -y+ w, w= max(lal,lbl), 

where, a, b, -y, and w are also integers. Let us suppose that 
the gray level of this image is equal to I and the back
ground pixels have a gray level of O (!1/ is grayed in Fig. 
IO). Applying the Sobel operator on it gives another image 
whose values (we use the square of modulus ll ii , 1

2 

+ ll iiyll2) are given in Fig. 10. The following result, which 
can be proved easily, gives the theoretical content of Fig. 
10. 

• On points of 1/ the values given by Sobel operator are 
2 if the point is located at the beginning or the end of 
a horizontal step and O if the point is a middle point of 
!/. 

• On the two bordering digital lines !L'(a ,b,y+w,w) 
and 1/(a,b,y-w,w) the values are 10 on extremal 
points and 16 on middle points. 

• At all points belonging to the digital (nonconnected) 
lines .Q'(a,b, y+ 2w, lal) and 1/(a,b, y- w- lal, lal) 
the Sobel algorithm takes the value 2. 

This shows that if we use a threshold value of 2, the 
resulting image is made of the two digital lines !1/(a,b, y 
+w,w) and 1/(a,b,y-w,w). 

Thus, if the threshold is equal to 2, Sobel operator splits 
a digital line into two identical parallel digital lines. This is 
true for all thresholds greater or equal to 2 and lower than 
I 0. But, if the threshold increases over IO the resulting 
image loses almost all its information and the digital lines 
is broken into little pieces. In all cases, the O value assigned 
to some pixels of the line causes unrecoverable damages. 

MAT operator works differently. When applied to aver
tical or horizontal digital line made of level h pixels, it 
gives the value l/2(8h2 +4) 112 to the line pixels and the 
value ( 1/2)( 5 h 2 + 16) 112 to the neighboring pixels. Thus 
when h > 2, MAT operator takes its maximum value on the 
line and if a threshold value of ( l/2) (5h 2 + 16) 112 is ap
plied, the line itself can be recovered. 

This shows that a grid of parallel (vertical or horizontal) 
lines regularly spaced by 3 pixels can be preserved by the 
MAT operator, which is not the case with the Sobel opera
tor. For a general digital line, the MAT operator is a little 

2 10 16 16 16 10 2 0 

10 2 0 0 0 2 10 16 

2 10 16 16 16 10 2 

10 2 

Fig. 1 O Action of Sobel operator on a digital line. 
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Fig. 11 MAT algorithm on muscle image. 

bit coarser than for vertical or horizontal lines, but it does 
not introduce O values on some of the line pixels, as is the 
case with the Sobel operator. 

It should not be surprising then that the MAT edge ex
traction abi I ities should be better. In Fig. I I specialists will 
recognize the famous butterfly appearing on the lower right 
part of the image (at least on screen!). 

In the "Lena" picture (Fig. 12), one should observe the 
soft outlines and the smoothly treated details. In many 
cases, the MAT operator is comparable to the Canny
Deriche operator13 (derived through a continuous ap
proach). Due to its smoothing processing the Canny
Deriche operator is slightly superior in the average, but the 

Fig. 12 MAT algorithm on "Lena." 

MAT operator comes very close to it, and even goes be
yond it on some images like the well known "office" of 
Fig. 13, where window frames are better treated by the 
MAT operator. 

7 Conclusion 

Two apparently nonrelated kinds of results have been pre
sented here. First was a discrete approach to regular digital 
surfaces using tricubes, giving all local configurations and a 
gradient algorithm to recover their normal vector. Second 
was a general gradient operator for gray level images that 
almost reaches the precision of continuous edge extraction 
operators. 

Fig. 13 Comparing (a) MAT and (b) Canny-Deriche operators. 
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The connection between these subjects is realized by 3D 
convex hull geometry. This shows that research on discrete 
differentiability, for example, the way a tangent tricube 
evolves on a digital surface, may have practical and useful 
by-products. 

As this subject is still new, many questions remain to be 
settled and could be basic for the future, in particular, lan
guages built by tricubes (or smallest pieces) on surfaces as 
well as topology relating neighboring tricubes. Some re
finements of the MAT operator itself have been undertaken 
to achieve thin contours and image smoothing (see Ref. 
14). 
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