
practice

ffl Article development led by aCITTQUeUe
laJ queue.acm.org

The use of post-incident artifacts
in high-performing organizations.

BY J . PAUL REED

Beyond
the 'Fix-It'
Treadmill

DOl :10 .1145/3380322

OF ALL THE traits the technology industry is known
for, self-reflectivity and historical introspection do not
rank hig-h on the list. As industry legend Alan Kay once
famously quipped, "The lack of interest, the disdain
for history is what makes computing not-quite-a­
field." It is therefore somewhat cognitively dissonant,
if not fully ironic, that the past few years have seen
renewed interest in the mechanics of retrospectives
and how they fit into the daily practice of our craft.

Of course, retrospectives are not new, in software
development at least. For more than 15 years
capital-A Agile software development methods have
been extolling the virtues of a scheduled, baked-in
reflection period at the end of each development
sprint. (Whether these actually occur in organizations
practicing Agile remains an open question.) Those
same 15 years have also seen a tectonic shift in the way
software is delivered: the general industry trend has
sharply moved fro1n packaging up those bits and bytes

58 CO MMUNICATI ONS OF THE ACM MAY 2020 VOL. 63 NO. 5

into boxes to be shipped to users to
"operate" themselves toward deploy­
ing it on massive server installations
that we are responsible for maintain­
ing, operating the software we have de­
veloped for users.

This shift has made the practice of
software operations, and thus the study
of how to do it and do it well, of inter­
est to industry practitioners and spec­
tators alike. As a part of the practice of
software operations, there is renewed
examination into the role played by op­
erational retrospectives-more com­
monly referred to in an industrial con­
text as postmortems. In short, looking
back at the past to improve the future
has become front-of-mind for many
companies, precisely because the cost
of not doing so in the development
phase of software can be nebulous to
measure, but the cost of not doing so
in software operations is very appar­
ent: Service-impacting incidents can
be (and often are) easily translated to
eye-popping dollars of lost revenue or
service-level agreement penalties.

Think back to the last incident post­
mortem in which you participated (or
if you have never had the opportunity
to participate in one, take a moment
and imagine what might occur there).
It probably looks something like this:
A few days after the incident, a group
of people meet for an hour. (It 's always
an hour.) The size of the group (and
how many managers are present) is
directly proportional to how impor­
tant- code for visible or costly- the
incident was. The discussion kicks off
by going through the details of the in­
cident, often starting with the specif­
ics of exactly how costly or how visible
the outage was. Next up , what "actu­
ally happened" during the incident is
discussed: how it started, who did (or
didn't) do what, a nd perhaps how the
teams interacted with each other to ad­
dress the problem. Maybe this discus­
sion is aided by a timeline compiled
beforehand (or maybe this timeline is
put together at the meeting); logs and
other metrics might be presented.

Conversations might tend toward

communication
Protocols

.. , . . ········
1. :

Response
Time
1. 2. -
3.

c. d.-
.,_ ~ ·- ,..... •···· _ _..._ ·-... "•·, ··- ·----.. , . .. _...., .. F ,

~ .. · • ,.w
• • • • •• • •o••

~ ···-··--
•· ---­. _ ...• ··- --·····" •··_.,
ti,, " _
..... _,,.. ... ,_, .. _ __ _

.. s..., , ···-·
u _._. - - ··• ·--·· ., •• ~... -~- ---
-:~ :~.-; .. ~..:::·:..,.--:7._-.;:_ ;-::::""
-:::- • .. ··-....... ,;!_

:-:·; •· :::.:~;_:~---~~;:,:: •• =::.:::-;- --;~- •

--··-- ---~·--·---·~·
4.

.,, ___ , _ ___ -------...-.. .--
::: ":':',•;::_;:;:•.; •r.'-.-:.::••: ,.."•

. -··- ·-, ··-·· "":~-:-:. .:·"-:,."':. ... :·

tense, and depending on a number of
organizational factors, blame might be
flung around the room. Or maybe it's
someone's job to remind everyone they
are all blameless. Maybe they believe
it. Maybe whether or not they believe
it depends on who is in the room. At
some point, either to defuse a tumul·
tuous situation, because someone no­
tices there are 10 minutes remaining
in the hour, or just to change a topic
that no one wants to dive too deeply
into, the discussion ~hifts to reme­
diation items. The que tion is asked,
"What are we doing to 100% make
sure this never happens again?" The
group brainstorms a list of remedia­
tion items. They range from low-cost,
high-value items- "We already imple­
mented those," one engineer proudly
reports-to high-cost, questionably
valuable items, which would otherwise
be laughed at but in this specific set­
ting everyone quietly nods their head

in agreement. Someone writes down
those remediation items or takes a pic­
ture of the whiteboard where they are
written. And the team disperses.

Maybe the suggested remediation
items get entered into a ticket-track·
ing system. Maybe the company has a
team whose sole purpose is to chase
down these items and ensure each
development and infrastructure team
completes every item on that list in
some (maybe discussed, maybe agreed
upon, maybe neither) time frame. May­
be the team completes a large number
of the items on the remediation list
in the next two or three sprints; hope­
fully, the organization feels pretty good
about that. Or maybe the importance
of that work, once thought so critical,
gets lost in the shuffle to meet the con­
tinuing onslaught of other goals, like a
promised new feature or a big platform
migration. Or maybe another critical
incident-possibly related? - takes

d.-
up all the mindshare available for "do
something" about the earlier incident.

If this pattern feels familiar, it
should. Most operational retrospec·
tive and incident-analysis processes
in technology companies look more or
less like this. Some organizations are
more experienced at the practice than
others, some foster a "healthier" envi­
ronment for it than others, and some
value it more in the calculus of how
they deliver software to and operate
it for their customers. But the model,
and its expected outputs, are generally
the same, which leads to an important
question: Are we missing anything in
this prevalent rinse-and-repeat cycle of
how the industry generally addresses
incidents that could be helpful?

Put another way: As we experience
incidents, work through them, and
deal with their aftermath, if we set
aside incident-specific, and therefore
fundamentally static, remediation

MAY 20 20 I VOL 6 3 I NO 5 COMMUNICATIONS OF THE ACM 59

practice

items, both in technology and pro­
cess, are we learning anything else
that would be useful in addressing
and responding to incidents? Can we
describe that knowledge? And if so,
how would we then make use of it to
leverage past pain and improve future
chances at success?

What Is Meant by "Learning"?
The topic of organizational learning
has been of long-standing interest to
the safety sciences, and researchers
have been observing how it works in
the context of industries from aviation
to healthcare to maritime shipping for
almost 90 years . Organizational learn­
ing has been deconstructed into three
distinct categories of inquiry, follow­
ing an evolution not dissimilar to the
operation of Web-scale infrastructure
and software:

► First is simply how individual,
singular lessons are learned-that is,
what constitutes an incident, how do
you detect that you are in the midst of
one, and exactly how do these occur­
rences serve as fodder from which to
learn, for individuals or the entire or­
ganization.

► Second, now that we can identify
what the input looks like, we can ask
what the processes for learning from
incidents look like on the ground.
Much of the focus of organizational
learning is on this specific facet, be­
cause it gets into the details of how
real-world teams identify lessons to be
learned and go about implementing
them in their systems (or don't).

► The final category of inquiry looks
at the conditions required for organi­
zational learning, essentially elements
that promote it (or, often, hurdles
that inhibit it). Topics in this area are
likely to feel familiar and include or­
ganizational trust and blame, how the
organization conceives of incident im­
pact, and various mechanics of how
incidents are investigated and remedi­
ated-for example, who is and is not
involved in these processes (and when
they are or are not, and why that is).

Types of Insights
Separating these various phases of or­
ganizational learning is important be­
cause it allows us to describe each area
in terms of the types of insights that we
would do well to pay attention to while

looking through what happens in orga­
nizations and teams.

► The first of these insights is root­
ed in a psychological /cognitive view,
the importance of which has been cov­
ered in recent articles in the Practice
section.

► This insight is closely related to
the second type: sociological insight,
which is what happens in a team- and
company-wide context when you look
less at the individuals and more at
groups of individuals trying to make
sense of an incident and how to ad­
dress it.

► Finally, there is "political insight,"
both on the front end and the tail end
of incidents. In other words, you must
admit that in any system, politics play
a role in determining what consti­
tutes an incident, what prompts that
incident to get reported, and what
ultimately happens to that report­
ing. Then, after an incident, politics
also plays a role in how remediation
items are communicated (or not), how
they're implemented (or not), and how
the entire process gets funded in time,
mindshare, or actual dollars. (Or not.)

These frameworks for investigating
organizational learning have been ap­
plied to numerous industries. (A per­
sonal favorite delved into how Swedish
rail workers learn from incidents, ver­
sus how the rail company thinks they
learn, versus how the rail company
itself"learns.") Only in the past five or
so years, however, have software op­
erations been brought under the same
lens, which necessarily drags software
development along with it under the
microscope (in an interesting twist,
this is missing from other industries
the safety sciences have studied).

A focus of these inquiries in the
technology industry has been impact­
ful or visible site/service outages, pre­
cisely because there are a set of prac­
tices that engineers and companies
engage in during and after an event,
but they are highly variable and not
well described in the literature. (I
aimed to change that in research con­
ducted in late 2017 and recently pub­
lished as a master's thesis.)

Post-Incident Analysis Artifacts
Even the most nascent of incident
postmortem processes produce some­
thing as an output. Common examples

80 COMMUNICATIONS OF THE ACM I MAY 2020 I VOL . 63 I NO. 5

include a postmortem report, reme­
diation item tickets (relating to the
software, the infrastructure, or both),
updated documentation or runbooks,
or distilled communications for other
groups such as customers or execu­
tives . My deep dive into organizational
learning in software development and
operations organizations focuses spe­
cifically on these outputs, beginning
with the various forms they take. All of
the other details about the incident­
the incident itself, what happened dur­
ing the retrospective, and even how
those artifacts came to be created­
were considered to be a black box.

The study of these artifacts began at
a broader, industry-wide level, by solic­
iting retrospective and postmortem
templates via survey. These templates
were then analyzed for structural ele­
ments in order to find commonalities
(examples include an incident sum­
mary, basic timeline, and action items
were the top three structures observed
in postmortem templates), as well as
the more unique structures. (Among
the least common elements: docu­
ment version/last modified date, a re­
minder to template users that root
cause does not exist, and broad organi­
zational findings.)

Perhaps the . most notable finding
from analyzing these various postmor­
tem templates was that different tem­
plate archetypes are used within the in­
dustry, each with a different focus and
serving a different purpose. Three were
apparent from the industry samples:

► The Record-keeper. This is the
most common industry template and
what most practitioners think of when
they think of a postmortem report:
It serves to provid ditional prompts
and "hints" to facilitate the running
of post-incident analysis processes.
These can include questions the orga­
nization wants asked during postmor­
tem meetings or reminders to par­
ticipants about the cultural ethos the
organization values (blamelessness,
for example) or otherwise wants high­
lighted to participants or facilitators
during these processes.

► The Facilitator. While similar in
structure to the record-keeper, the fa­
cilitator includes additional prompts
and "hints" to facilitate the running
of post-incident analysis processes.
These can include questions the or-

ganization wants asked during post­
mortem meetings or reminders to par­
ticipants about the cultural ethos the
organization values (blamelessness,
for example) or otherwise wants high­
lighted to participants or facilitators
during these processes.

► The Signpost. This template arche­
type can be aptly described as a point­
er: It can provide either a reporting
function, to be distributed to the larger
organization for training or informa­
tion purposes, or serve as a shorthand
"itemized receipt," pointing to addi­
tional data sources, usually various
organizational systems of record, re­
garding the incident. In either case, it
is marked by a lightweight treatment
of the incident and the analysis out­
comes and, as such, is typically used as
a means of broad organizational com­
munication regarding (especially im­
pactful) incidents.

These three template archetypes do
not preclude the existence of others; if
more industry templates were collect­
ed and analyzed, other commonalities
with enough uniquely identifiable el­
emental structures could define addi­
tional archetypes. In fact, as the prac­
tice of incident analysis evolves within
the industry, so too should these ar­
chetypes.

Artifact Usage in
the Production Environment
The second phase of inquiry into the
industry's use of post-incident analy­
sis artifacts centered around a phe­
nomenological case study of their ob­
served actual use in a living, breathing
organization, and the effects of that
usage. An important aspect of select­
ing an organization for the case study
was it both develop software and op­
erate that software. It had to be con­
sidered a high-performing organiza­
tion under the guidelines described
in the 2016 and 2017 State of DevOps
reports . Twelve engineers from three
distinct teams (development, opera­
tions , and security) were observed
over the course of three months to see
how they used various post-incident
artifacts in the course of responding
to incidents- analyzing, remediating,
and learning from them. During this
period, a rtifacts from the organiza­
tion 's actual incidents were also col­
lected and analyzed.

Looking back at the
past to improve the
future has become
front-of-mind for
many companies,
precisely because
the cost of not
doing so in the
development phase
of software can
be nebulous to
measure, but the
cost of not doing
so in software
operations is
very apparent.

practice

One of the initial findings was that
different teams use these same post­
incident analysis artifacts in different
ways to go about their work. Various
themes emerged in analyzing the fre­
quency of references each engineer
made to different specific uses of arti­
facts. Operations engineers, for exam­
ple, used the artifacts to perform trend
analysis about various system factors
and for other longer-term uses (the cre­
ation of models for bucketing their
company's incidents, for example).
They also made heavy use of the arti­
facts to create knowledge base-type in­
formation repositories for operational
work. (In fact, their use of the artifacts
to generate and update documenta­
tion was notably higher than other
groups.)

Developers tended to use these arti­
facts to help determine (what they re­
fer to as) the "root cause" of an inci­
dent, as well as to generate
requirements specifications for new
feature work and architectural refac­
toring. Artifacts were also used to jus­
tify or clarify engineering decisions
that had been previously made both to
new team members and to other
teams, but that individ ual engineers
had forgotten the specific reasoning
for over time. (Astute followers of the
safety sciences will be familiar with the
problems associated with the concept
of root cause; those discussions aside,
it is worth noting that developers used
the term root cause twice as often as se­
curity engineers used it, who used it
twice again as often as operations engi­
neers , who seldom used it at all.)

Finally, security engineers used the
artifacts more than other teams as one
of the primary tools to drive their work.
In the context of responding to security
incidents, this makes intuitive sense:
Security engineers need to respond to
real-world threats they are seeing
against production systems, so they
use past incidents as a way of getting
stronger signals indicating where they
should plan their efforts and focus for
the future. This includes guiding the
generation and distribution of securi­
ty-related documentation and driving
internal security product roadmaps.

Taken together, these various uses
add up to more than the sum of their
parts. In today's modern distributed
systems, it is neither novel nor contra-

MAY 2020 I VOL. 63 I NO. 5 COM MUNICATIONS OF THE ACM 61

practice

versial to point out that engineers work
in complex systems. In the safety sci­
ences, the term complex socio-technical
system is usually used to point out that
systems are an amalgam of not only
code, compute, network, and storage,
but also of people and teams. These
people naturally have competing pri­
orities, preferences, incentives, and
goals, and they are often confronted
with situations where they have to
make critical decisions under extreme
time and stress pressures, where all
these factors consciously (and subcon­
sciously) weigh into their decisions
and actions.

One of the most important findings
about the uses of these post-incident
artifacts is that actors use them to help
create and update mental maps of the
emergent, complex socio-technical
systems that they are responsible for
engaging with. Because these Web­
scale complex software and infrastruc­
ture systems constantly evolve, both in
terms of technology and the teams be­
hind that technology, individuals',
teams', and even the organization's
mental maps of how systems work can
degrade over time. Anyone who has
been frustrated at finding four archi­
tectural diagrams on the internal wiki,
none of which is current, has experi­
enced this. Incident artifacts provide,
in effect, "patches" to these maps, al­
lowing engineers and teams to update
their above-the-line representations of
the system and to discuss with each
other where their cross-boundary
(team or system) mental models were
mismatched, inaccurate, or otherwise
hampered their work.

This updating of the map of the or­
ganization's complex socio-technical
systems was observed in a couple of
ways. First, the artifacts provided evi­
dence of a linkage between seemingly
disparate, unconnected components
of the wider system. There were many
technical examples of this ("This mi­
croservice, in a particular failure
mode, will call this other microservice
that it used to rely on, but that depen­
dency was thought to be removed;
however, the dependency actually still
exists, but only in this specific error
condition"). But this effect also identi­
fied unknown and missing linkages
between people and teams in the sys­
tem. The most prominent example

was a team that turned out to be field ­
ing a large number of security issues.
They were located in a different state
and focused on customer support, so
they had no way to contact security en­
gineers who could help them; because
of this, a security incident occurred,
and one of the updates to the socio
part of the socio-technical system
map was, "These people need to be in­
troduced to those people, and an on­
going channel of communication
needs to be established between
them." Part of this included a need for
training, which was eventually rolled
out to a series of teams.

The second way this artifact usage
was observed was as a way to identify
hot spots within the socio-technical
system. The old adage, "Where there 's
smoke, there's fire," is apt here, and
post-incident analysis artifacts give en­
gineers a sense of whether the smoke
is from a small grease fire that set off
the kitchen smoke detector for a few
seconds, or if the smoke is visible from
four blocks away and potentially more
attention should be paid. Again, this
provides input into mapping the ter­
rain of the complex socio-technical
system on which not only operations
engineers are operating, but also de­
velopers are updating and changing,
and security engineers are defending
from external attack. This "smoke" can
be indicative of (again, both technical
and social) areas the organization has
neglected and needs to invest more in,
but it can also highlight entirely emer­
gent areas that need to be addressed
merely because the complex system
has evolved in some unconceived way.

As an example of this effect, a secu­
rity engineer disabled a particular set
of options available to engineers via
the use of a company-wide networking
library; this improved the company's
security posture. Some days later, a
team went to deploy a new version of
their microservice, and the deploy­
ment prompted an outage. After the is­
sue was detected and remediated, one
of the "smoky" issues the incident
analysis raised, via distribution of the
post-incident artifacts, was that the se­
curity team did not have any data on
which versions of their library were in
use across the company.

This was not neglect in terms of the
organization focusing on other priori-

62 COMMUNICATIONS OF THE ACM I MAY 2020 VOL . 6 3 NO. 5

ties; rather, it was the system had
evolved in terms of microservice- and
software-dependency complexity to
such a point that such data was now
worth collecting and could highlight
other potential problems, where a fac­
tor is teams using older versions that
had been assumed to have been depre­
cated. This resulted in both a technical
solution (starting to track library ver­
sion use) and a social solution (that
team now regularly engages other
teams which the data shows are con­
tinuing to use old versions of the li­
brary to see why they have not migrat­
ed, if they can help them migrate, and
if they need any new features before
they do so).

A Move Toward Dynamic
Remediation Items
Industry survey data indicates that 91 %
of respondents consider collection
and recording of remediation items
to be the core purpose of their post­
incident analysis meetings and the ar­
tifacts produced from those meetings.
Spending three months watching how
a high-performing organization used
their artifacts differently, however,
sheds light on another approach: a fo­
cus on collecting, understanding, and
sharing deeper, richer context about
the technical state of a subsystem and
the priorities, preferences, incentives,
and constraints of the team respon­
sible for operating and maintaining
it. In this organization's environment,
static lists of remediation items took a
back seat to the search for and promul­
gation of this rich context.

The prevailing organizational focus
during the post-incident analysis
phase, and thus encoded into the doc­
uments produced by that phase, in­
cluded:

► How individuals and teams han­
dled the incident and how they coordi­
nated their work.

► What their mental models were of
the system at the time, including the
state of the code, the infrastructure,
and the expectations of other teams,
and how those mental models contrib­
uted to their decision making.

► Where their mental models were
divergent and the effects of this diver­
gence during incident response.

► At the edges of the incident, what
context the team had for factors that

may have contributed to the incident
(that is, what other pressures, in­
centives, or circumstances the team
faced with that may have made their
local environment more prone to pro­
moting factors identified as related to
the incident).

Rote remediation items are not
where the bulk of the discussion oc­
curs. Of course, it's not that remedia­
tion items are not discussed; rather,
it 's the expectation that the team has
internally identified the items they are
responsible for before the post-inci­
dent analysis and are (allowed to be)
responsible for deciding on the priori­
tization of those fixes. In some cases,
they are completed before the post­
mortem meeting. In others, further
discussion is required to gain-you
guessed it-further context, to under­
stand fully all the potential remedia­
tions and their relative priority in a
broader organizational context.

Perhaps most fascinating: Teams
can decide not to implement remedia­
tion items at all. They may determine
that taking a series of small outages
that they believe can be remediated
quickly enough is the right decision,
given the other priorities the organiza­
tion has tasked them with. This works
in their organization because it is rec­
ognized that the development, opera­
tions, and security teams are closest to
the systems they operate, and there­
fore are trusted to make the right deci­
sions, given their local rationality and
the context they have gathered from
the other teams and systems around
them. If that decision results in further
outages that impact the rest of the or­
ganization or customers, then the ex­
change of context flows the other way
between the involved teams-not a !is t
of remediation items for a specific inci­
dent-and drives a more resilient, flex­
ible resolution. One engineer aptly de­
scribes this model as "strategic
accountability more than tactical ac­
countability. "

This sharing of context has another
benefit: It promotes the concept of
blamelessness. The idea of the blame­
less postmortem has been bandied
about in the industry for quite a while
and has been met with some skepti­
cism. With outages that have the po­
tential to cost millions (or even pose an
existential threat to the company-just

ask Knight Capital), it is entirely un­
derstandable to wonder if blameless­
ness can ever exist when the tempo is
high and the consequences are very
real. But because this search for and
exchange of the context of the various
subcomponents of the socio-technical
system are valued higher than remedi­
ation items alone, in the aftermath of
incidents the first step to understand­
ing what happened is "share the con­
text for why whatever happened, hap­
pened." This is a marked departure
from an approach that begins with the
question, "What did you do?" and then
seeks to hold a group referendum on
whether or not that was the "correct"
action to have taken.

Early Times, Exciting Times
The technology industry loves to hold
aviation as the gold standard in inci­
dent and accident investigation, but
it was not always that way. One of the
biggest contributions to improved
aviation safety was the introduction
of crew resource management (CRM)
in the 1980s. The insight that brought
CRM to the fore of the aviation indus­
try was not based on a set of remedia­
tion items from a specific accident,
but rather from a holistic view of a
series of accidents and looking for
commonalities across companies,
situations, equipment, and people. It
was born not of a focus on piecemeal
fixes but on a realization that improv­
ing how people go about doing their
work, interacting with each other and
their equipment, and effectively com­
municating about and responding to
changes in their complex socio-tech­
nical environment is a place where
some of the biggest discoveries of "hot
spots" can be and where the biggest
safety wins can emerge.

Given that humanity's study of the
sociological factors in safety is almost
a century old, the technology indus­
try's post-incident analysis practices
and how we create and use the artifacts
those practices produce are all still in
their infancy. So don 't be surprised
that many of these practices are so sim­
ilar, that the cognitive and social mod­
els used to parse apart and understand
incidents and outages are few and ce­
mented in the operational ethos, and
that the byproducts sought from post­
incident analyses are far-and-away fo-

practice

cused on remediation items and pre­
vention (often with varying degrees of
blame sprinkled in, whether we want
to admit it or not).

But it doesn't have to stay this way.
The industry is prime for a renais­
sance, but we must get past the notion
the only value of post-incident analysis
is in the list of static remediation items
that so many of those processes are
modeled, even optimized, to produce.
Disavowing this notion requires be­
coming comfortable with moving away
from the (admittedly comforting) as­
sumption that if all the items on that
list are implemented-we "100% reme­
diate the incident!"-then it won't
happen again.

Getting past that (admittedly tall)
hurdle can create the cognitive and
social space needed to explore all the
various lessons an impactful, even
painful, incident is trying to impart.
Organizations can begin to approach
solutions not from a list of tasks and
bug fixes that try to address a situation
that may never happen again, but in­
stead from a place of moving toward
broader solutions that address fac­
tors which tend to create situations
where such incidents can occur. And
this, ultimately, will push incident­
analysis processes to evolve from such
a laser-focus on the specific event that
resulted in our Bad Day, toward what
that Bad Day reveals about the true
nature of our practices, processes, in­
centives, local contexts, the complex
systems we operate every day, and per­
haps most valuably: each other. DI

ffl Related articles
liJ on queue.acm.org

Postmortem Debugging
in Dynamic Environments
David Pacheco
https://queue.acm.org/detail.cfm?id=2039361

The Network is Reliable
Peter Bailis, Kyle Kingsbury
https://queue.acm.org/detail.cfm?id=2655736

Why SRE Documents Matter
Shylaja Nukala and Vivek Rau
https://queue.acm.org/detail.cfm?id=3283589

J, Paul Reed is a a senior applied resilience engineer
on Netflix's CORE team in San Francisco, CA, where
he focuses on incident analysis, systemic risk
identification and mitigation , resilience engineering,
and the human factors expressed in company's various
socio-technical systems.

Copyright held by author/owner.
Publications rights licensed to ACM.

MAY 20 20 I VOL. 63 I NO. 5 I COMMUNICATIONS OF THE ACM 83

