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Abstract. To characterize color values measured by color devices 
(e.g., scanners, color copiers, and color cameras) in a device­
independent fashion these values must be transformed to colorimet­
ric tristimulus values. The measured RGB 3-vectors are not a linear 
transformation away from such colorimetric vectors, however, but 
still the best transformation between these two data sets, or be­
tween RGB values measured under different illuminants, can easily 
be determined. Two well-known methods for determining this trans­
formation are the simple least-squares fit (LS) procedure and 
Vrhel's principal component method. The former approach makes 
no a prion statement about which colors will be mapped well and 
which will be mapped poorly. Depending on the data set a white 
reflectance may be mapped accurately or inaccurately. In contrast, 
the principal component method solves for the transform that ex­
actly maps a particular set of basis surfaces between illuminants 
(where the basis is usually designed to capture the statistics of a set 
of spectral reflectance data) and hence some statement can be 
made about which colors will be mapped without error. Unfortu­
nately, even if the basis set fits real reflectances well this does not 
guarantee good color correction. Here we propose a new, compro­
mise, constrained regression method based on finding the mapping 
which maps a single (or possibly two) basis surface(s) without error 
and, subject to this constraint, also minimizes the sum of squared 
differences between the mapped RGB data and corresponding XYZ 
tnstimuli values. The constrained regression is particularly useful 
either when it is crucial to map a particular color with great accuracy 
or when there is incomplete calibration data. For example, it is gen­
erally des,rable that the device coordinates for a white reflectance 
should always map exactly to the XYZ tr,st,mulus white. Surpris­
ingly, we show that when no statistics about reflectances are known 
then a white-point preserving mapping affords much better correc­
tion performance compared with the naive least-squares method. 
Colorimetric results are improved further by guiding the regression 
using a training set of measured reflectances; a standard data set 
can be used to fix a white-point-preserving regression that does 
remarkably well on other data sets. Even when the reflectance sta­
tistics are known, we show that correctly mapping white does not 
incur a large colorimetric overhead; the errors resulting from white­
point preserving least-squares fitting and straightforward least­
squares are similar. © 1997 SPIE and IS&T [S1017-9909(97)01204-XJ 

1 Introduction 

Color sensors in scanners, color copiers, and color cameras 
are not colorimetric, in the sense that device RGB values 
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are not a linear transformation away from the X, Y, Z tri­
stimulus values1 that would be produced by integrating the 
color signal impinging on the optical system with Commis­
sion Internationale de L'Eclairage (CIE) color-matching 
functions. The transformation from RGB to XYZ forms the 
first step in developing a device-independent description of 
color for these devices.2 Given a particular set of targets or 
dyes one can map from RGB to XYZ using interpolation 
and lookup tables,3- 5 polynomial regression,6 or spectral 
reconstruction from a set of basis functions.7 More el­
egantly the device coordinates can be transformed to visual 
tristimuli using a single linear transform (3 X 3 matrix). 

This transform is often defined to be the best linear least­
squares mapping for a particular calibration set of surface 
reflectances. Alternately, we could choose to map any three 
surfaces exactly and hope that this mapping would work for 
other reOectances as well. Vrhe18 has demonstrated that if 
the mapping is defined relative to the first three principal 
components (those surfaces that optimally capture the vari­
ance) of the spectral surface reflectances of the calibration 
set then reasonable color correction results are often ob­
tained for the entire set. 

There are points for and against the least-squares regres­
sion and principal components methods. The least-squares 
regression optimally maps RGBs to XYZs so that the colo­
rimetric error for a calibration data set is minimized. How­
ever, there is no mechanism for choosing the surfaces that 
will be mapped well and those that will be mapped poorly. 
For example, for one calibration set a white renectance may 
be mapped exactly and for another it may be mapped with 
a high colorimetric error. Given the importance of white in 
color reproduction, we would rather not have this variable 
performance. In contrast, in the principal component 
method the surfaces that are mapped correctly are explicitly 
stated and this means that we can choose to map white by 
constraining one principal component to be a white reflec­
tance. Unfortunately, the principal components method 
does not deliver the same mapping performance as simple 
least-squares regression. Indeed there is no reason that 
spectra which are statistically meaningful (e.g., principal 
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components) should supply a good basis for choosing 
the color correction transform. In the worst case, it is 
possible that a principal component spectrum might be 
orthogonal 10 (invoke a Lero response in) the scanner (or 
other color input device) and as such color correction 
would be poor. 

In this paper we develop a compromise constrained re­
gression. Specifically we develop methods for determining 
the best least-squares transform that takes ROBs lo XYZs 
subject to the constraint that the ROB responses induced by 
a single (or possibly two) surface reflectance(s) are mapped 
without error. Because it is important to map white cor­
rectly for color reproduction, we develop and examine in 
detail a white-point preserving least-squares (WPPLS) re­
gression. Any constrained mapping is no longer optimal in 
the usual sense-it must produce larger errors than a least­
squares regression for the particular calibration reflectance 
set used. However, it is interesting to ask how the transform 
derived for one calibration set fares when ii is applied to 
other data. For example, it is fairly common to use a cali­
bration set that contains all reflectances with equal likeli­
hood (the maximum ignorance set). The results of simula­
tion experiments demonstrate that the transfom1 calculated 
using maximum ignorance WPPLS regression performs 
well when applied to real scanner or camera data (e.g .. data 
that doesn ·1 follow the maximum ignorance assumption). In 
contrast the maximum ignorance LS transform performs 
poorly on real scanner or camera data and white is mapped 
with a very large colorimetric error. Even better results can 
be obtained by altering the maximum-ignorance equations 
by applying covariance information from another, known, 
set of reflectances 10 the unknown set being imaged. The 
value of a constrained regression procedure is thus demon­
strated. 

2 Color Space Data Transforms 

In this section we consider how scanner or camera ROBs 
can be mapped to XYZ tristimulus values. For concrete­
ness, we shall focus the discussion on scanners although 
derived results apply equally well to color copiers and color 
cameras. In Section 6 calculations are repeated for a color 
camera in order to demonstrate that results apply across 
devices. 

2.1 Image Formation Model 

Consider the ROB scanner responses p for a given 
pixel. Color scanners are either one-pass or three-pass: in 
a one-pass device a fluorescent illumination source £( X. ) 
is directed at the surface, with spectral reflectance function 
S(X.), and the resulting color signal, the product of £('A.) 
and S('A.). impinges on the imaging system. Here, three 
filters Q(X.) form the color three-vector p via 

( I ) 

where £ 5 (A) denotes the illuminant in the scanner. 
In a three-pass system, the surface is imaged under three 

differently colored lights in turn. In this case. the triple of 

illuminants E,( X.) and the single imaging system response 
Q(X.), that includes the mirror and CCD. are combined to 
form the response vector: 

p= f E5 (A)S(X.)Q(X.)d'A.. (2) 

In practice we do not use continuous functions for spec­
tra. Sampling the visible spectrum, 400 to 700 nm. at inter­
vals of IO nm amounts to replacing all spectra by vectors 
with 31 elements. Let us denote column vectors and matri­
ces by boldface lower case and upper case, respectively. 
Matrix Q is 31 X 3. 

In terms of vectors, then, Eq. (I) for a one-pass scanner 
reads 

(3) 

where r means transpose; here, L( es) is a diagonal 31 
X 31 matrix formed from the illuminant vector e5 sampled 
from £,('A.), and similarly sis the sampled surface reflec­
tance vector. 

Rewriting the three-pass scanner Eq. (2) in terms of vec­
tors. we have 

(4) 

where E, is a 31 X 3 matrix of the three scanner illumi­
nants, and L( q ) is a diagonal matrix formed from the 
sampled optical system response. 

Colorimetric tristimulus values X,Y,Z (which we simply 
call an XYZ vector and denote by x) are defined by a simi­
lar equation: 

or 

(5) 

Here, the matrix X sampled from the set of color matching 
functions X(X.) is linearly related to the responses of human 
observers to color; the columns of X(X.) are usually denoted 
.r(X.) , _v(X.). :('A.), but here we collectively denote them by 
X(X.) for consistency with Eq. (1). The illuminant £ ,( 'A.). 
with sampled vector eu, is the illuminant for which we 
want tristimulus values: x is tied to a particular viewing 
illuminant. Typically, values of x under standard illuminant 
065 are required.1 
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Fig. 1 (a) Response functions QE(A) for Sharp JX450 scanner. (b) 
XE(A) : Color matching functions times D65. 

As a sensor set, we will use the measured sensor curves 
for the Sharp J X450 scanner.2 This is a three-pass device.* 
Figure l(a) shows the three functions E,( X.)Q(X.). In ma­
trix form we denote the three illuminants multiplied by the 
single sensor as Q E. The 31 X 3 matrix of color matching 
curves multiplied by a D65 illuminant is denoted as XE; we 
plot XE in Fig. I (b). 

2.2 Least-Squares Regression 

Below, we give a formal derivation of the least-squares 
regression method. While this technique is adequately ex­
plained elsewhere we include it here since it both motivates 
and simplifies the explanation of the constrained least­
squares regression that follows this section. Under the 
least-squares regression a set of p vectors are mapped to the 
corresponding set of x vectors.9 First let us collect all mea­
surements p1 for I= 1. . .N surfaces into an N by 3 matrix R 
i.e., we stack all instances of pr. Similarly, we collect the 
corresponding x, vectors into an N by 3 array H. 

•The \Canner data for the Sharp JX450 are due to Brian Wandell and 
Joyce Farrell. 
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We wish to map scanner responses to their colorimetric 
counterparts. Assuming a linear mapping, the following ob­
jective function minimiLes the sum of squared residuals for 
such a mapping: 

V 

.7= L ll x{ - pJMll 2, 
/ I 

(6) 

where M is the unknown transformation matrix sought. 
Taking partial derivatives with respect to the elements of 
M. we arrive at the Euler equations 

(7) 

so that a least-squares solution is 

(8) 

Let us adopt as an exemplar test data set the 462 surface 
spectral reflectance functions measured by Newhall et at. 10 

These consisted of paint chips from the Munsell Book of 
Color' 1 and, for the purposes of our simulation experi­
ments, constitute typical reOectances that might be scanned. 
Hence the number of surfaces N used in our data set is 462. 
While the sum of squared residuals is a reasonable error 
measure it does not directly correlate with human visual 
performance. To remedy this we express the residual dif­
ference in terms of the CIELAB, or L*a*b*, error mea­
sure. A CIELAB residual. or .;!J.£:,,, corresponds roughly to 
human judgements of perceptual difference. CIELAB er­
rors of 2 or 3 represent just noticeable color differences 
detectable by humans. 12 

The colorimetric performance of a least-squares fit for a 
linear map 

(H= RM) (9) 

is given. using the CIELAB measure, in the first row of 
Table I. Small mean and median CIELAB errors result-
2.1 and 1.3-both of which are not perceptually noticeable. 
Least-squares performance serves as a control for the other 
results presented in this paper. 

The LS transform makes no a priori assumption about 
the surfaces that will be mapped with low error and those 
that will be mapped with high error. In particular, we do 
not expect the white point to be preserved even although 
we might like this 10 be the case given the importance of 
white for color reproduction. If we take "white" to be the 
scanner output for a uniformly reflecting surface, we find a 
CIELAB .;!J.£:,, error of 1.406 units for the white point for 
the regression described above. That this is small is a prop­
erty of the Munsell data set we used; there is no reason why 
a larger error might not have occurred. Indeed, before per­
fonning the regression we simply have no idea what the 
error in white will be; it just so happens that in this case we 
were fortunate. To ensure the correct mapping of white (or 
any other surface) we need to use a constrained least­
squares regression. 
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Table 1 Scanner. Top two rows: statistics for CIELAB .:i E;b values comparing LS and WPPLS meth­
ods for 462 Munsell samples (see text in Section 3.1) . Bottom two rows: statistics for CIELAB :iEab 
values comparing polynomial LS and polynomial WPPLS methods (see text in Section 3.3). 

Wt.PUEi;b Min 

Munsell LS 1.41 0.03 

Munsell WPPLS 0 0.073 

Munsell PLS 1.39 0.04 

Munsell PWPPLS 0 0.05 

3 Constrained Data Transforms 

We wish to develop a method for mapping RGBs to XYZs 
such that the sum of least-squares residuals is minimized 
subject to the constraint that a particular surface reflectance 
(e.g .. white) is mapped without error. To do so. we apply a 
constraint to the optimization for matrix M. 

3.1 Constrained Least-Squares Regression 

Let p' denote the scanner RGB vector for a constraint sur­
face (a surface we wish Lo map without error). Let xc de­
note the corresponding constraint surface XYZ tristimulus 
vector. We can ensure that the constraint surface is mapped 
without error by augmenting Eq. (6) with a Lagrange mul­
tiplier term: 

Here, A is a Lagrange multiplier that captures the idea that 
the constraint surface in RGB coordinates p' must go over 
to the correct XYZ vector xc. Note that metamers for the 
scanner are unlikely to be the same as for the human eye. It 
follows that the constrained least-squares regression cor­
rectly maps RGB to XYZ for the unique constraint surface 
but will incorrectly map other scanner metamers (of the 
constraint surface). Taking partial derivatives with respect 
to the Lagrange multiplier yields the constraint condition 

( l l ) 

and taking derivatives with respect to the elements M J• of 
M, we obtain 

( 12) 

where p11 is the )'th element of set/. Clearly, the solution 
of Eqs. ( 11) and ( 12) is that the constraint surface is cor­
rectly mapped, 

( 13) 

and, once again. M satisfies Eq. (7). 
However. now M must be of a form that obeys the con­

straint ( 13). Any such matrix M must be of the form 

Median Mean Max % Under 3 .:i E!b 

1.29 2.10 11.50 77% 

1.58 2.37 11.17 84% 

1.012 1.58 8.34 85% 

1.074 1.59 8.42 85% 

M= D+ E (14) 

with D that diagonal matrix formed from the ratios of xc 
and pc, and E any matrix that satisfies (l·)rE=O. Every 
such matrix E can be written 

E= ZN. ( 15) 

where Z is a 3 X 2 matrix composed of any two vectors cr1 

and cr2 orthogonal to l·. and N is an arbitrary 2 X 3 matrix. 
Substituting Eqs. ( 14) and ( 15) into Eq. (7), we can 

solve for N by premultiplying by zr: then we have 

( 16) 

in terms of unknown N. This is precisely the same Euler 
equation as one arrives at starling from the minimization 
(6) with M in the special fonn of Eqs. (14) and (15). The 
matrix M is comprised of the diagonal D augmented by a 
rank-2 matrix that docs not affect the mapping of the con­
straint surface. 

Solving. we have 

( 17) 

where in the above we are inverting a 2 X 2 matrix. 
When the constraint surface equals a white reflectance 

we call the constrained least-squares regression white point 
preserving least-squares (or WPPLS). We expect that this 
WPPLS regression will not do as well as the LS method 
since we have constrained matrix M. This expectation is 
borne out in Table I, which shows that for our exemplar 
data set the WPPLS results are slightly worse than for LS. 
These figures could be improved for surfaces that best obey 
Eq. (9) by carrying out a robust regression instead of a 
I . 11 b h f' . east-squares regression, · ut at t e expense o 111creas111g 
errors for surfaces that obey Eq. (9) less well. However. 
independent of the measure of error we choose (simple 
least-squares or robust counterparts such as least median of 
squares) we arc always confident that the white point (or 
constrained surface in general) is mapped without error. 

Mapping the constraint surface without error amounts to 
allowing matrix N to account for a best least-squares fit in 
a plane orthogonal Lo pc. We could, ii' desi red, extend the 
constrained regression idea and fix two distinguished direc­
tions and thus preserve two different color points (and 
hence two constraint surfaces): then N would be restricted 
to accounting for the best least-squares fit in a single direc­
tion orthogonal to the plane spanned by those directions. 
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Preserving no color points (zero constraint surfaces) yields 
the simple least-squares regression. Correctly mapping 
three color points, where these are defined by the principal 
components of the reflectances under consideration, yields 
Yrhel's color correction method.8 

3.2 Constrained Regression for Higher Dimensions 

The above analysis can be extended to the case of more 
than three scanner sensors. In the case that there are p 
sensors the matrix M has dimensions p X 3, so that 

H= RM ( I 8) 

with an N X p ensemble of scanner measurements R and an 
NX3 ensemble H. 

In Section 3.1 we had broken M into a diagonal part D 
and additional part E, with D defined by 

( I 9) 

ln fact, D above is composed of two parts. The first part is 
simply the pseudoinverse of (pc)r operating on (xC)7: 

(20) 

The second part is constraint surface preserving; that is, its 
columns are orthogonal to (pc) 7 . Therefore, in the 
3 X 3 case we can use Eq. (20) for D instead of a diagonal 
matrix (since D defined in Eq. (20) will not in general be a 
diagonal matrix). This reformulation is especially useful in 
higher dimensions; in that case D is p X 3 because it is 
formed as the outer product of a p-vector with a three­
vector. 

Matrix E is the constraint-surface preserving part of ma­
trix M; it is composed of a p X (p- I ) factor premultiply­
ing a (p - I ) X 3 one. The first factor is a matrix whose 
columns span the subspace complementary to the one­
dimensional subspace spanned by pc. 

A simple way to find a basis for this subspace is to first 
form the projector P onto the one-dimensional subspace: 

(21) 

a p X p symmetric, idempotent matrix. 
One eigenvalue of P is I, and the rest are zero. Eigen­

vectors corresponding to the zero eigenvalues span the 
complementary subspace. In the case of p sensors, this sub­
matrix is p X (p- I). Denote by Z the p X (p- I) matrix 
orthogonal to pc. 

Thus the constraint-surface preserving part of M is E 
= ZN, with N an unknown (p - I ) X 3 matrix to be solved 
for by regression. The equation for the unknown N is again 
given by Eq. (I 7), but with higher dimension matrices. 

Below, in Section 4.2, we give results for an example 
using six sensors. 

3.3 Constrained Multiple Polynomial Regression 

Berns and Shyu7 and Yrhel 14 have shown that color correc­
tion performance can be improved using a polynomial ex­
pansion of the calibration data set. Importantly, we show 
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here that a similar polynomial expansion can also improve 
the colorimetric performance that is delivered by the con­
strained regression method. 

As before, let R denote an NX 3 matrix of RGB mea­
surements and H the corresponding matrix of XYZ tri­
stimuli. As a first toward presenting the polynomial 
method, it is useful to expand the matrices R and H so that 
their column vectors are made explicit: 

R=[rgb], H=[xyz]. (22) 

Here, r, g, and b are N X I vectors corresponding to the R, 
G, and B device measurements. Similarly, x, y, and z are 
N X I vectors of X. Y and Z tristimulus coordinates. 

The basic idea underpinning linear color correction is 
that each column of H can be written as a linear combina­
tion of the columns of R. For example, x= ar+ {3g+ -yb 
(where a, (3, and -y are scalars). In second-order polynomial 
color correction each column of H is represented as a linear 
combination of not just the columns of R, but also the 
columns of R squared (r2,g2,b2). Moreover, cross-column 
terms, for example, rg, and a translational term are also 
added into the mix. The N X 3 matrix R is expanded to the 
NX 10 matrix R': 

R' = [ r g b r2 g2 b2 rg rb gb l] (23) 

where 1 denotes the N X I vector with all N components 
equal lo I (and accounts for translations). The color correc­
tion problem ( 18) is then rewritten as 

H= R' M' (24) 

where M' is now a IOX3 matrix. 
In Section 3.2 we showed how a constrained regression 

could be carried out when p measurements were made of 
an ensemble set of refleclances. Specifically, we developed 
methods to deal with N X p response matrices. Clearly 
these methods are equally applicable to the polynomial ex­
pansion matrix R' constructed above. 

To evaluate the colorimetric performance of the polyno­
mial regression method, we repeated the simulation experi­
ment of Section 3.1. We generated the RGBs of 462 Mun­
sell reflectances and from these the corresponding 
polynomial expansion. We then found the best least­
squares mapping taking the expanded terms to correspond­
ing XYZs. A second, white-point preserving mapping was 
also calculated. In Table I (bouom), we denote by PLS the 
results for polynomial least-squares regression, and by PW­
PPLS the corresponding white-point preserving results. As 
shown in Table l , the mean CIELAB error of the least­
squares regression is reduced to 1.58 (reduced from 2.10 
for linear correction) and for the least-squares regression, 
when white is preserved, to 1.59 (from 2.37). It is apparent 
that the white-point preserving regression now delivers 
comparable correction performance. Notice, however, that 
the error in mapping white is still relatively large for the 
unconstrained regression: 1.39 CIELAB units (compared 
with 1.41 for linear correction). 
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Table 2 Scanner. Statistics for CIELAB .l E!b values comparing matrix transforms derived from 
maximum-ignorance LS and maximum-ignorance WPPLS for three data sets: the set of Munsells, the 
Macbeth ColorChecker, and the Object data set. For three-sensor LS, the white point moves 10.53 
units; for WPPLS the white point error Is zero. For six-sensor LS, the white point moves 3.97 units. 

Min 

Munsell MaxlgLS 2.70 

Munsell MaxlgWPPLS 0.16 

Macbeth MaxlgLS 2.84 

Macbeth MaxlgWPPLS 0.07 

Neutrals MaxlgLS 3.56 

Neutrals MaxlgWPPLS 0.07 

ObJect MaxlgLS 2.73 

Object MaxlgWPPLS 0.22 

Munsell 6-sensor MaxlgLS 1.02 

Munsell 6-sensor MaxlgWPPLS 0.04 

Since the improvement offered by the polynomial 
method is quite small we will not consider it further in this 
paper. 

4 Maximum Ignorance Calibration Set 

So far we have investigated a matrix transformation derived 
from a particular data set. However, we may not have 
knowledge of what colors are being scanned. Therefore it is 
of value to consider what can be determined by applying 
knowledge of M derived from the sensor curves in Fig. I 
without any reference to the data (cf. Ref. 15). If we simply 
assume that reflectance data is uniformly distributed in 
spectrum in the world-a .. maximum ignorance" 
assumption-then the equations derived above still apply 
except that instead of using data matrices R and H we 
substitute the sensor curves Q E and X,, thcmselves.9 

4.1 Maximum Ignorance Least-Squares Regression 

In this case the matrix derived from the sensor set Q E alone 
parallels the LS solution Eq. (8): 

(25) 

Table 2 shows how well this maximum ignorance least­
squares method performs when applied to our exemplar 
data set of Munsell reflectances: not as well as a data­
driven method. of course. Notice that the white point shifts 
by a t.E,;h of 10.5 units. 

4.2 Maximum Ignorance Constrained Regression 

The constrained-surface preserving solution Eq. ( 17) in this 
maximum ignorance case becomes 

(26) 

Table 2 shows that when applied to the Munsell data set, in 
terms of the CIELAB error when the constraint surface is 
white, the WPPLS (white point preserving least-squares) 
method outperforms the LS method. This shows that, for 
this particular data set. the solution embodied in Eq. (26) is 

Median Mean Max % Under 3 .l Eab 

7.92 8.08 17.36 0% 

4.26 5.49 30.12 35% 

7.77 8.46 18.30 4% 

6.08 7.08 23.95 33% 

7.28 6.77 10.17 0010 

0.21 0.31 0.99 100% 

7.68 7.91 23.50 0% 

4.32 6.02 40.13 28% 

2.91 2.86 6.31 53% 

1.80 2.52 15.97 71% 

closer to the best solution ( 17). The mean CIELAB error in 
this case is 5.49, in the range identified as acceptable by 
Meyer. 16 

We can picture these results by showing errors in a 
chromaticity diagram. 1 Three-dimensional points are 
shown in a plane by forming chromaticity coordinates 
x=Xl(X+Y+Z) and y=Y/(X+Y+Z). Figure 2 shows 
the 'horseshoe' shaped spectrum locus as well as the con­
vex set of chromaticitics for the set of Munsell colors. 
Lengths of errors arc not well indicated as such a 
diagram- the size of just-noticeable differences under hu­
man perception must be displayed using ellipses of sizes 
that vary throughout the chromaticity diagram. the Mac­
Adam ellipses.' The white point is shown as an ·o · in this 
figure. Errors are less for colors that are more desaturated 
("whiter' ') and the data set contains many such colors. 
This effect is just what is needed for producing an image 
that appears as it should for desaturated colors in terms of 
subjective color. 17 In particular. consider the commercially 
important case of· ·whites. ' · Consider the set of desaturated 
Munsell colors that arc within the first octile of distance on 

"' ci 

,.. ... 
ci 

N 
ci 

0 

ci~-- -
0 .0 

WPPLS: Munsell chromaticities 

0.2 0 .4 0.6 

Fig. 2 Scanner. WPPLS regression: errors plotted on chromaticity 
diagram. The white point is shown by ·o·. 
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Fig. 3 Extra filter for forming a six-sensor scanner. 

the chromaticity diagram from the white point. Hunt (Ref. 
17, p. 133) gives a measure of whiteness for colors that are 
"called white commercially." For the white point itself the 
index equals I 00, and for the desaturated Munsell colors 
the index is in the range - 13 to 123. For the LS fit, the 
error in whiteness is 35.6 whereas for the WPPLS fit the 
error is only 3.4. Therefore, as expected, the WPPLS 
method does much better in reproducing the important class 
of desaturated colors. 

Table 2 also shows how the WPPLS regression performs 
compared to a LS regression for two additional data sets. 
The first is the set of paint chips that form the 24 patches on 
the Macbeth ColorChecker chart; 18 there are six neutral 
paint chips in this set, drawn from the Munsell set, and the 
formulation of all patches is similar to that for Munsell 
chips. One can see that the WPPLS method substantially 
improves accuracy for the neutrals, as one would expect. 
Another data set examined in Table 2 is the set of 170 
natural objects measured by Yrhel et al. 19 

As well, Table 2 shows how error is affected by carrying 
out a WPPLS regression on XYZ estimates constructed 
from a six-sensor scanner. Here, we follow Ref. 20 and, 
after a first image is taken, we overlay our scanner with 
another filter and produce a second image, so as to effec­
tively produce a six-sensor output. The extra filter used is 
Wratten filter 38 (Ref. 21, p. 70), shown in Fig. 3. Overall , 
the error is substantially reduced by applying the WPPLS 
estimate instead of the LS one: the median error is 62~ of 
that for the LS regression, and there are many more colors 
with errors under the just-noticeable level. As well, while 
the WPPLS white point error is zero, that for the LS regres­
sion is 3.97 CIELAB units even for this six-sensor data. 

In general, we expect the pe1formance of a m~ximum 
ignorance assumption to be good when the data set 1s close 
to being uniform in expectation value of spectral power 
distribution, i.e., having covariance matrix equal to the 
identity. Below, we show how to exploit this relationship 
between covariance matrix and estimates of matrix trans­
forms. 

5 Non-Maximum Ignorance 

In Ref. 9, it was pointed out that the LS solution (8) can be 
written in terms of the non-mean subtracted covariance 
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matrix-the 31 X 31 matrix of products K-of the set of 
reflectance data. If S is an n X 31 matrix, where each row 
represents a given reflectance spectrum, then K is defined 
as srs. It is straightforward to show that a least-squares 
regression between scanner responses and tristimulus val­
ues depends only on K. To see this let us rewrite Eq. (8) 
making the role of the reflectances S and the effective sen­
sors OE and XE explicit: 

(27) 

Substituting K for srs we see that 

(28) 

The importance of the above is that one need only know 
the matrix K in order to determine the best LS transform. 
Turning this idea around, we can say that for any particular 
LS transform M, any data set will share this same M pro­
vided it has the same product matrix K. 

The validity of this idea turns out to persist in the WP­
PLS calculation as well. For rewriting Eq. ( 17), we have 

Using this equation, suppose that we did not wish to simply 
use the information contained in the sensor sets 0£ and XE 
alone, but wanted to add additional information about the 
type of reflectance sets likely to arise in imaging situations. 
Then substituting the matrix K for such a guiding or train­
ing set of reflectances, we arrive at a matrix transform M 
that can be applied to the particular image at hand. If the 
training set is like the actual image, then the matrix trans­
form derived from Eq. (29) should perform well. 

Consider the standard set of 24 reflectances that make up 
the Macbeth ColorChecker chart. 18 The six neutral patches 
in this chart are drawn from the Munsell Book of Color; the 
other patches are new paints. Therefore we expect matrix K 
to be similar to but not identical with that for our exemplar 
data set. This turns out to be the case, as evidenced by the 
results in Table 3. Here, results of applying the matrix M 
derived from the ColorChecker chart to all 462 Munsell 
cases gives excellent results. 

Figure 4 shows why this should be the case: here the 
product matrix K for the Munsell set is plotted in Fig. 4(a), 
while Fig. 4(b) shows that for the ColorChecker chart. 
Since matrix K appears in both matrices in Eq. (29), the 
absolute numbers in K are not important: just the shape of 
the plot changes the results. In contrast, the maximum­
ignorance approach amounts to using a matrix K equal to a 
diagonal matrix plus a uniform plane. . . 

As a more stringent test of the non-maximal ignorance 
training set idea, consider the plot of Fig. 4(c). Her~ we 
show the product matrix K for the set of 170 natural objects 
measured by Vrhel er al.; 19 these objects were skins, rocks, 
plants, man-made objects, etc., and should be quite unre-
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Table 3 Scanner. Statistics for CIELAB .:i.E;b values for 462 Munsell samples derived from a non­
maximal ignorance WPPLS for two different training sets: the Macbeth ColorChecker and the Object 
data set. 

Wt.Pt..:i.E;b Min Median Mean Max % Under 3 .:i. E;b 

Munsell from 0 0.12 1.74 2.57 12.66 68% 
Macbeth WPPLS 

Munsell from 0 0.13 2.42 3.02 13.95 61 % 
Object WPPLS 

Munsell : Crossproduct 

(a) 

Macbeth: Cr_'.?.~s_product 

(b) 

Object: Crossproduct 
··············-· ··--

( C) 

Fig. 4 (a) Crossproduct matrix for 426 Munsell patch reflectances. (b) Crossproduct matrix for 24 
Macbeth ColorChecker patches. (c) Crossproduct matrix for 170 object reflectances. 
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Fig. 5 Camera sensors. Sony DXC151 sensors are shown (solid 
lines), along with infrared filter (dashed line), and standard illuminant 
D100 (dotted line). 

lated to the Munsell data set. Nevertheless it is surprising 
how closely Fig. 4(c) resembles Fig. 4(a). The results in 
Table 3 show that even in this case the non-maximally 
ignorant WPPLS method performs quite well. 

6 Color Camera Experimental Results 

In this section, we repeat the calculations above, but apply 
the WPPLS method not to a scanner but to the case of a 
color camera, in order to demonstrate that results apply 
across devices. 

For concreteness, let us take a particular camera; we use 
the sensor curves for a Sony DXC 151 camera, shown in 
Fig. 5. We also multiply by an infrared filter, and take as 
illuminant the standard daylight 0100, simply as a typical 
example and also so as to not equal 065, in order to test the 
method. Figure 5 shows the infrared filter and the illumi­
nant as well as the camera sensor curves. 

The scanner experiments with results shown in Tables 1, 
2, and 3 are repeated in Tables 4, 5. and 6. 

As can be seen, the success of the WPPLS method when 
applied to a color scanner carries over to the case of a color 
camera. As well as improved color correction, the salient 
feature of the results is that neutrals are very much better 
corrected using the WPPLS method than the LS method. 

Table 4 Camera. Statistics for CIELAB J.E!b values comparing LS 
and WPPLS methods for 462 Munsell samples. 

Wt.Pt. % Under 
ti.Eab* Min Median Mean Max 3 J. E!b 

Munsell LS 1.16 0.04 1.15 1.78 10.72 82% 

Munsell 0 0.07 1.40 2.00 10.87 80% 
WPPLS 
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Table 5 Camera. Statistics for CIELAB !iE!b values comparing ma­
trix transforms derived from maximum-ignorance LS and maximum­
ignorance WPPLS for three data sets: the set of Munsells, the Mac­
beth ColorChecker, and the Object data set. For LS, the white point 
moves 2.92 units; for WPPLS the white point error is zero. 

% Under 
Min Median Mean Max 3 ti E;b 

Munsell MaxlgLS 0.44 3.40 

Munsell 0.15 1.99 
MaxlgWPPLS 

Macbeth MaxlgLS 2.74 1.03 

Macbeth 0.17 3.10 
MaxlgWPPLS 

Neutrals MaxlgLS 1.14 1.83 

Neutrals 0.12 0.35 
MaxlgWPPLS 

Object MaxlgLS 2.45 3.74 

Object MaxlgWPPLS 0.10 3.08 

7 Conclusions 

3.92 13.18 

2.65 12.35 

4.29 12.90 

3.45 12.27 

1.99 3.32 

0.43 1.08 

40% 

50% 

42% 

46% 

83% 

100% 

4.37 16.78 33.53% 

3.53 16.71 49% 

This paper examines the problem of mapping scanner (or 
other device) RGBs to corresponding XYZ tristimulus val­
ues. In particular a new constrained least-squares regression 
method is formulated. The constrained least-squares regres­
sion represents a compromise between simple least-squares 
and Yrhel's principal component method. In particular the 
constrained least-squares regression allows the specifica­
tion of k surfaces (k = 0, 1,2,3) for which the mapping from 
RGB to XYZ must be exact. Particular attention was paid 
to the case where a single surface (k = 1) must be mapped 
without error. Because of the importance of white in color 
reproduction a white-point preserving least-squares (WP­
PLS) regression was examined. We showed that a WPPLS 
transform works well when the statistics of likely surfaces 
are known in advance (almost as well as least-squares) and 
performs reasonably even when they are not known. In the 
latter case performance is superior to simple least-squares. 
Additional information from the covariance for a known 
reflectance set can be applied to further improve results. 
The constrained regressions when k = 0 and k = 3 are 
equivalent to simple least-squares regression and Yrhel's 
principal component method, respectively . Thus, the cur­
rent theory subsumes these two color correction methods. 

Here, we have emphasized transformations from RGB to 
XYZ values, with an eye to providing device-independent 
color descriptors. Nevertheless, the method can also be 

Table 6 Camera. Statistics for CIELAB !iE! b values for 462 Mun­
sell samples derived from a non-maximal ignorance WPPLS for two 
different training sets: the Macbeth ColorChecker and the Object 
data set. 

Munsell from 
Macbeth WPPLS 

Munsell from 
Object WPPLS 

Wt.Pt. 
t.Eab* Min Median Mean Max 

0 

0 

0.08 1.53 2.17 11.68 77% 

0.10 2.00 2.60 12.78 70% 
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used to transform, in a white-point preserving fashion. be­
tween color values imaged under different illuminants.22 

Thus the problem of color appearance can be addressed via 
the present method. 

Future work involves incorporating the idea of spectral 
sharpening23·24 into the present methodology. ln Ref. 15 it 
was shown how matrix transforms that 'sharpen'-make 
more narrow-band-the sets of sensor curves can lead to 
improved results in a white-point preserving transform. We 
shall pursue the idea of including spectral sharpening trans­
forms into the present method in order to simplify methods 
of color appearance correction. 
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