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Abstract. Battle-Lemarie's wavelet has a nice generalization in a 
bivariate setting. This generalization is called bivariate box spline 
wavelets. The magnitude of the filters associated with the bivariate 
box spline wavelets is shown to converge to an ideal high-pass filter 
when the degree of the bivariate box spline functions increases to x. 

The passing and stopping bands of the ideal filter are dependent on 
the structure of the box spline function. Several possible ideal filters 
are shown. While these filters work for rectangularly sampled im­
ages, hexagonal box spline wavelets and filters are constructed to 
process hexagonally sampled images. The magnitude of the hex­
agonal filters converges to an ideal filter. Both convergences are 
shown to be exponentially fast. Finally, the computation and ap­
proximation of these filters are discussed. © 1997 SPIE and IS&T. 
1s1017-9909(97)00604-1 l 

1 Introduction 

In recent papers, J-, the asymptotic properties of the filters 
associated with Daubechies' and Battle-Lemare's wavelets 
have been studied. It was shown that the magnitude of the 
filters associated with Daubechies· wavelet and Battle­
Lemarie's wavelet converges to an ideal filter. The Battle­
Lemarie wavelet has a nice generalization in the bivariate 
setting, called the bivariate box spline wavelets (cf. 
Riemenschneider and Shen4

). It is interesting to see the 
asymptotic properties of the filter associated with these bi­
variate wavelets. Since a bivariate box spline wavelet is not 
a tensor product of Battle-Lemarie's wavelets, the study of 
the asymptotic properties of bivariate box spline wavelet is 
not a simple generalization of the study carried out in Al­
droubi and Unser. 2 

To be more precise about what we study in this paper, 
we have to introduce some necessary notation and defini­
tions. Let e 1 = ( 1,0) and e 2 = (0, I) be the standard unit vec­
tors in the Euclidean space R2 . A box spline over a three­
direction mesh can be defined as follows. Let 
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(x,y) E [0,1] 2 

otherwise, 

and inductively, assume that B(x,ylX111 ) is defined with di­
rection set X111 ={x 1 , ... ,x111}, where x, is one of three vec­
tors e1, e 2 . ande 1+e2 , i=l, ... ,m. ForX111 U{x,,, +1}, 

where x,,, + 1 is e1 or e 2 or e1+e2 . 

For convenience, we consider the following box spline 
function in this paper: 

81.m.n(x.y) 

.____., .____., -------
/ m 

Note that the Fourier transform of B ,.111 • 11 is 

• -rl-exp(-Jw1) ]'[ ' -exp(-Jw2)]
111 

B
11111

,(w1,w,)- . ---. ---
. . • )W1 )Wz 

x{l-exp[-j(w1+w2)J}" ( I) 
j(w1+w2) 

This expression resembles the Fourier transform of the 
well-known 8-spline function. (For this and the other prop­
erties of box spline functions, see, e.g., Refs. 5 and 6. For 
computation with box spline functions, see Refs. 7 and 8.) 

Furthermore, let M ,. 111 ,,,(x ,y) = B 1• 111 • 11 [ (x ,y) + c,.111 •11 ], 

with 

c,. 111 •11 = [ (/ + n )/2,(m + n )/2], 

where M ,.111 • 11 stands for the centered box spline function. 

The Fourier transform of M '·"'·" is 

M,. 111 •11(w 1 ,w2)=[sinc (w 1/2)]1[sinc (w2/2)]111 

X[sinc (w 1+w2)/2)]", 
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where sine is the sine function, defined by sine (x) 
= sin (x)lx. 

It is known that B n(x ,y) generates a multi resolution ap­
proximation of L 2( R2) (cf. Riemenschneider and Shen4

). 

The Fourier transform of the scaling function !/J<0.0J is 

:;,u.111.111( ) 
'1'(0,0) W1 ,W2 

Define a transfer function H:~.~';"1
, i.e., the Fourier trans­

form of a digital fi lter by 

(3) 

Then the wavelets if;f •111
•

11 >, with k= { ( 1,0) ,(0, I) ,( I, I)} as­
sociated with the scaling function 1/;:~·.;('i are given in 
terms of their Fourier transform by 

.,,u.m.nl( ) = H u.111.nJ( 12 12) J,U.m.nl( 12 12) 
'l'k W1 ,W2 k W1 , W 2 'f'(0.0) W1 ,W2 . 

(4) 

Here, Hf ·"'·"l is defined as follows: 

=exp [Jw· 77( k)] 

if c,.m.n is an integer 
{ 

H(/.m.nt(w w )+ 1rk] 
X (0.0) I• 2 

HU.m.nl[( ) + k] 
(0.0) W1 ,W2 7T if c,. 111 •11 is not an integer, 

where r, is a mapping from f 2 ={(0,0),( 1,0),(0,1) ,( 1,1)} 
to itself defined by 

r,[ ( 0,0)] = ( 0,0), r,[ ( 1,0)] = ( I , I) , r,[ ( 0, I )] 

=(0,1), r,[( 1,1)]=( 1,0), 

(see, Riemenschneider and Shen4 for details). 
Writing 

we are interested in the properties and computations with 
digital filter {hi'tf;1>,(k 1 ,k2)EZ2}. That is, we need to 

determine the passing and stopping bands of the digital 
filters for various choices of (/,m,n). We show that the 
magnitude of the digital filters associated with Hio:ot"·""1 

converges to an ideal low-pass filter as v_,. + oc. Since 

L IH~vl.vm.1,n)(w, ,w2)12= I 
k e r 2 
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(cf. Riemenschneider and Shen4
), we can conclude that the 

digital fi lters associated with H~vl.vm.vn), k Ef2\{(0,0)} 
converge to ideal high-pass filters as v_,. + x. 

Next, we note that those fi lters work only for rectangu­
larly sampled digital images. For hexagonally sampled 
digital signals/images, we must construct hexagonal wave­
lets and therefore obtain hexagonal digital fi lters for pro­
cessing these 2-D digital signals/images.9 Note that hex­
agonal sampling is the optimal sampling strategy for 
signals that are bandlimited over a circular region in the 
frequency domain (cf. Mersereau9) and is similar to what 
the human eyes are believed to do (cf. Watson and 
Ahumadal0

). See also Cohen and Schlenker' 1 for another 
advantage that hexagonal filters possess in analyzing the 
image orientation. Thus, it is important for practical pur­
poses to construct such hexagonal filters. It turns out that 
the construction can be adapted from that of box spline 
wavelets if;f •111

•
11 >'s and transfer functions Ht"'·"l. Also, 

the asymptotic properties of the hexagonal filters are simi­
lar to those of the filters associated with Hf ·111

•
11 >. We deal 

with these hexagonal wavelets and filters in Sec. 3. 
Finally, we discuss how to compute these filters numeri­

cally. We propose a matrix method to compute them. Al­
though these filters are not finite impulse response (FIR) 
filters, they are of exponential decay, i.e., 

for some positive constants C and a. Thus, we can truncate 
the fi lter to be a reasonable FIR fi lter {hu· 111 ·11

> lk 1-5::.N l..1,k2 , I~ , 

lk2 lc%N} for some positive integer N. Furthermore, the FIR 
filter can be approximated using the singular value decom­
position (SYD) method. That is, we can use the first few 
singular values and their singular vectors to approximate 
{hf;'.'1;11

, lk , lc%N, lk2lc%N}. Then the processing of any 

2-D signals/images with these singular values and vectors 
results a performance similar to that achieved when using 
tensor product of two 1-D digital filters. These are dis­
cussed in Sec. 4. 

2 Asymptotic Properties of the Filters 
Associated with Box Spline Wavelets 

We begin with the following lemmas. Let 

and 

Lemma 1. The set n,.111 • 11 has a measure 47T2 and its 
integer translates n,.111.11 + 2 7T(k I ,k2), (k I ,k2) E Z2 form an 
essential disjoint partition of R2, i.e., (I) D,.m.nn [ 0,.111 •11 

+27T(k 1 ,k2)]=0. (k 1 ,k2 ) E Z2\(0,0) and (2) the set 
R2\U 1k 1 

,k
2
)ez2[0,.111 •11 +27T(k 1 ,k2 )] has a measure zero. 
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See de Boor and H6llig 12 for a proof. Next we have 

Lemma 2. Function IH :J.7i'/>(w 1 ,w2)1 2 is a periodic 

function with period D,.111.11 . 

P f . h I Lf(/ Ill II) I' . . roo. It 1s easy to see t at 10 (O.O> ( w 1 • w2) - 1s a peri-
odic function with period [O,27T]2. Now by using Lemma 

I k h n . d f IH u.111.11> . we -now t at a ,.111•11 can serve as a peno or <0.0> 

(w 1 .w2)1 2
. This completes the proof. 

Note that fl ,,,.1111,.111,= fl ,.m. 11 for any v>O. Let 

We are now in a position to prove one of the main theorems 
in this paper. 

Theorem 1. The magnitude of the digital filters whose 
F . f H u''· 111 ''· 11

"
1 · 'd I ouner trans orms arc (0.0> converges to an I ea 

low-pass fil ter as 1,_.x_ That is. 

IH (/1•,/111',IIV)( )I { I , 
(0.()) W1 ,W2 -+ Q, 

( ) 
n ideal 

W1,W2 E J.Ll.m,n 

( ) 
r, \;'\ideal 

W l · W1 E ,l Lf.m.11 J.Lt.m.n · 

Proof. From the definition of the scaling function 
,1,U,111.11) . )'f 1,1,U m "ll' 
'l'co.o, , we can s1mp I y 'l'(ll.O> - to get 

1
,,,(1.111.11)( )12 
'l'CU.U) W1 ,W2 

= ------------------

-

I + 2, [ w
1 

]

2

' 

,1., .l.~)#(0.0) W1 +21Tk1 
(I. I ,l.1)ie ," 

· I + X.1 .111.11(w1 ,w2) · 

Thus, we have 

I +X.1.111_,,(w1 ,wz) 

I +X.1.m.11(2w1,2w2) · 

By Lemma 2, we consider only ( w I 'W2) E n,.m,n. For 
(w1 ,W2) E n;~~:_i,,' we have both x.,,,. 1111,. ,11,(w1 ,W2)-+O and 
x.,,,.1111,. 111,(2w 1,2w2) -> O as v-+x. Thus. 

I +X.,,,.m ,,.11,,(w1 ,w2) I 
--> . 

I + X. 1 ''·""'·" ,,( 2 w 1 ,2w2) 

F ( ) n \ 'l'deal have ·or any w 1• w2 e 1•111 .11 i u.111 .11 ,, we 
X.,,,. 1111,.,11,(w 1 ,w2)->O. However, we have 
X. 11,_ 1111,.,11,(2w 1.2w2) ..... +x as v ->x . Indeed. since 
( 2 w 1 .2w2) $ n ,.m.11 . there exists at least one integer 
(k 1 ,k2)*(O.O) such that 

It follows that 

IH
(/1,,111,,.11 ,,)( w )12 0 
(0,01 W1, 2 --> · 

Therefore. we have established the results of this theorem. 
. f I u,, 111,• ,,,., I . Certamly. the convergence O H,o.oi . (W1 ,W2) IS 

not uniform since the limit function is a discontinuous 
function. However, for each fixed ( w 1 , w 2) 

fl fl ideal · ( } e ,.111 .11\i/ ,.111 .11 , 11 converges to Xl!;d~;',, w 1 , w2 exponen-
. 11 h ;if'\ ,deal d h b . . d f f'\ ideal d t1a y. w ere ua1_111 _11 enotes l e oun ary o a 1_111 _

11 
an 

. h I . . f . f f'\ ideal F Xn•dca1 1s I e c 1aractenst1c unction o H l.m. 11 • or ex-
1.m.11 

ample. for any (w1 ,W2) E n ,.111.11,n;~~;'.1,,. there exists 
(k 1 ,k1 ) such that a,. 111 .11(2w 1.2w2)>a,.111 .11(2w 1 
+27Tk 1, 2w 2+27Tk2), or 

I 
W1 + 1Tk1 '1 w2+ 7Tk21111 1w1 +w2+ 1Tk1 + 1Tk1,, <I. 

W1 W2 W1+W2 , 

Note that we have 

IIH::)'.~i711
··n,·I( Wi ,W1 )I OI 

=(IH:~'.;l7"··"l'l( w1 ,w1) [2] 111 

<( 2w 1 )'''( 2w, )"'''[ 2w 1+2w, 1•• 
2w 1+21r/.. 1 2w1+;1ri.1 2w1+2w1+21r(: 1+/..1) 

= [ I + h1,.,m,·.n,,( w,.w1)] 111 

X ( w, +1ri.'l'(w1+ 1ri.1)"'(w,+(u1+ 1ri., +1ri.11• •·. 

w1 w1 w 1+w2 

f II f \ ( ) 0 h IH (/1,,1111•.111•) It O OWS rom "l,,.mv.,11 , W1 ,W2 -+ t al (0.0) 
(w 1 ,w1)1 converges to zero pointwise exponentially fast. 
S. ·1 f 'l'dcal h 1m1 arly, or any (w 1.w2)ei 1_111 _

11
• we ave 

II H
u,,.111,,.,,,.,( ll-, 1 
(0.0) WI ,W1 

,< 11 H(/ 1,.1111•.,11,)( ) 12 - 11 
~ (0.U) W1 ,W 1 

Since ( w I' W2) E n ,.111.11 and ( 2 w I ,2w2) E n,.111.11. there ex­
ists an integer N such that 
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-2 -2 

_, 

Fig. 1 Passing and stopping bands of some ideal low-pass filters for (1, 1, 1 ), (1, 1,9), and (1 ,9, 1 ). 

and 

for some positive constant C. Thus, we have 

-2 -2 

-3~_,--_-;-,-----c---~-~---!---:-' 

We have a similar estimate for Aiv.mv.nvC2w 1,2w2). Thus, 
IH(lv mv nv)( )I J • • (O.OJ · w 1 , w I converges to pomtw1se exponen-
tially fast. Therefore, we can conclude the following. 

Theorem 2. The magnitude of the filters associated with 
Hi~~o'i'"· 11"l converges to the ideal low-pass filter Xn•,.m,, 
pointwise exponentially fast. 

In Figs. I and 2, we show n;d;;1
11 

for some choices of 
(/,m ,n) over [-77,7T]X[-77,7T]·. The passing bands are 

-2 

-2 

Fig. 2 Passing and stopping bands of some ideal low-pass filters for (9, 1,9), (9, 1, 1 ), and (9,9, 1 ). 
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', ', ' . j ,I 
' 

I 

-- _ _j 
1 • • 

Fig. 3 Support of hexagonal box spline functions B~.1•1 , a;,2,2 , and B~.2.3 . 

of hexagonal shape with curve boundaries. For (/,m,n) 

= ( I, I, I ). the hexagonal shape of the passing bands has 
piecewise linear boundaries. 

3 Hexagonal Box Spline Wavelets and Filters 

In this section, we construct hexagonal box spline wavelets 
and derive the filters that can be applied for hexagonally 
sampled signals/images. We start with hexagonal box 
splines. i.e., the box splines over a hexagonal grid { Ak: k 
E Z2

} with 

as in Simoncell and Adclson. 13 

For a direction set X 11 ={x111 , ... ,x1111
}. where xu1 is one 

of Ae111
, Ae121

, A[e 111 - e121], i = I , ... ,II, we define a hex­
agonal box spline B#(.1,ylX 11 ) inductively as follows. Re­
arranging, if necessary, such that 

area( [ x1 1 1• x12 1]) 

we let 

= { I /area{ [ x1 1 1
• x' 2 1

]}. 

0. 

and for m = 3,4, .... 11. define 

if (.r.y) e [xi 11,x12 1]. 

othernise. 

- 1xlmll x'', ..... x 1111 ll] di. 

These box splines are of compact support. Let 

m 

For convenience, let sr111,n<x.y):= B#(1.yl A Y1,m,11>- Then 
the support of some B rm.II is shown as in Fig. 3. 

To understand these box spline functions better, we can 
quote the following basic result from de Boor et ul.,5 which 
contains many more properties of these spline functions. 

Lemma 3. For any continuous function f. 

= ( .r[± 1,x
1
'
1]d1 1 ... d1 11 • J [0. 1 I" 1 I 

These hexagonal box splines B~.
111

_
11 

are very much simi­
lar to box splines B 1_111 _11 • By letting j( x.y) 
= exp [ - j(.1w1 +y~)] in Lemma 3, we have. letting w 

=( w1 .w2 iT. 

={I-exp [ -je
111

A
1 w]}'{ I -exp [ -je

121
A

7 w]}111 

je11 lA7 w je11 1A7w 

x( I-exp {-j[e
11

~-e
121]Arw} )" 

j[ <'111 _ el-l]Ar w 

wi th R=[~ : l. 
we have. by Eq. (l). 

(5) 

Up to certain matrix transform. i.e., A and R. B~. 111 _11 
is the 

same as B "·"'·' . All the construction of box splines wave­
lets based on B 1 "' 11 can be easi ly adapted to the case of 
hexagonal box spli;1es 8~_111 ,11

• For a complete exposition of 
the role of transforms A and R. we give a detail description 
of the construction of these hexagonal wavelets. Let 
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,/1.m,11; = { L, ckB f,111,11[ (x,y )- Ak],{ c k} E /2( Z2
)} 

k E ,-

be the space of the hexagonal grid translates of a hexagonal 
box spline Bf.m.11 . Here, /2(Z2

) denotes the space of all 
square summable sequences {cd, i.e., Ike,21ckl 2<oo. 
Then for any given hexagonally sampled digital signal/ 
image {f( Ak), k E Z2} with a finite energy, there exists a 
unique spline interpol ant s 1 : = sr,.111 .11 ES t.m.n such that 

(6) 

Multiplying Eq. (6) by exp (-jwAk) and summing over k, 
we get 

L C\exp(-jwAk)L Bf,,,,,( Ak)exp(-jwAk) 
') ') .. 

ke z- kez-

= L /( Ak) exp (- jwAk). 
k e z2 

Then the existence and uniqueness of such spline interpo­
lant is guaranteed by the following lemma. 

Lemma 4. For each integer (/,m,11), 

L Bf,,,,,(Ak) exp (-jwAk)*O,Vw E R2
. , . . 

ke ,-

Proof. By Poisson 's summation formula (cf. Ref. 14, p. 
194), we have 

L Bf.
111

•
11
(Ak) exp (- jwAk) 

ke z2 

1 "' '# - T = det(A) k~2 B ,.111.11(w-21rA k) 

- I "' B'# (A - TR( O 2 R 1k)) - det(A) L., , l,m,11 - 1T 
ke z-

1 "' , = d ( A) L.,
1 

B 11 _111_1( 0-21rk )*O 
et k e ,-

by Theorem 2 in de Boor er al. 15 Here, we have used Eq. 
(3) and the fact that R- 1 is an integer matrix that is non­
singular. This completes the proof. 

In fact. we can further show that if an image is band 
limited in nf.111.11 to be defined later in this section, 
sf.tv,mv,11 v converges to/ in L2 norm as 11-+ 00 . We omit 
these details here. For similar results based on B ,.111 .11 in­
stead of Bf,111_11 , refer to de Boor er al. 16 

With this Lemma 4, we are able to prove the following. 

Lemma 5. There exist two constants C I and C 2 such 

C1 L, hl
2:s:;J 21 L, c kB f. 111.J(x,y)- Ak] l

2 

dx dy 
k E ,- R k E ,-

:s;C2 L, kkl 2
, 

ke z-

for any sequence { c k ,k E Z2} E /
2(Z2

). 

Proof We use Plancherel's theorem (cf. Ref. 14, p. 186) 
to get 

(21r)
2 t2lk~2 ckB f. 111 •11[(x,y)- Akf dx dy 

= ( 21 L, ck exp (-jwAk)sti,. 111 •11(w) l\w 
j R ke ,-

= f - r 21 L, C\ exp (- jwAk) l

2

1 L, IBf. 111 • 11( w 
A [0.21r] ke z- ke , -

-21rA Tk)l 2 dw 

=f _1 21 .L,ckexp(-jwAk)l

2

1 
A [0.2,r] ke z-

XL lsti2,.2m.211 (w+21rA- Tk)ldw. 
k E z2 

By Lemma 4, we have 

C 1 = min L sti2,.2111.211 (w+21rA-Tk)>0. 
we[0.21r]2 ke z

2 

Letting Mf.111 • 11 denote the centered hexagonal box spline as 
the centered box spline M ,.111 , 11 in Sec. I, we have, 

max L M;,_2111 _211 (Ak) exp ( - jwAk) 
we A- 7[0.21r]2 k e z

2 

,s:; _L M~12111211( Ak)= 1, , ' . 
ke , -

using Possion's summation formula, as in the proof of 
Lemma 4. This completes the proof. 

With the preceding preparation, we are now able to de­
fine a multiresolution approximation of L 2( R2 ) and con­
struct hexagonal box spline wavelets. Let 

that Then we have the following theorem. 
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heorem 3. The subspaces V,. k E Z form a multireso-
1tion approximation of L2(R2). That is. they satisfy the 
>llowing conditions: 

I. V,CVHI• 'vk EZ 

2. V/ EV,+ 1, /(x/2)EV, and Vk EV,, /(2x) 

EVHI· kEZ 

3. V/EV,,/(x-2-'Ai) EV,. Vi E Z2 

4. there exists a ,j;0 E V0 such that {,j;0(x-Ak), k EZ2
} 

forms an orthonormal basis for V 0 

5. u;= ,Y, is dense in L2(R2
) and n;= xV,={0}. 

The proof of Theorem 3 is similar to that in Riemen­
:hneider and Shen.4 We omit the details. Note that condi­
on 4 is equivalent to Lemma 5. 

We are now in a position to define the scaling function 
,i and wavelets 1/;1, i = 1,2,3 associated with the multi­
:solution approximation { V ,} . Let 

,i( w): = ,j;#0,(/,111.111( w) 

B",.,11 •11 ( w)[ldet(A)IJ 112 

(7) 

Then it is easy to check that ,j;0 , as defined, is in VO and 
llisfies the condition in the following lemma. 

emma 6. Suppose that </>EL 2c R 2). Then { </>[ (.r ,y) 
· Ak] , k E Z2} is an 01thonormal set if and only if 

~ 1¢(w+27TA r k)i2=1det( A)I, Vw E R2. 
s z'2. 

The proof of this lemma is similar to the argument in the 
ne-variable case. We again omit the details. Next we de­
nc the transfer functions 

(8) 

nd 

(9) 

1d 

hen the hexagonal box sp line wavelets I/;;, i = 1,2,3 can 
~ defined in term of Fourier transform as follows: 

# A 

·,(w)=H;(w/2),j;0(w/2), i= 1,2.3. ( I 0) 

To prove I/;; . i = 1,2,3 are orthonormal wavelets. we need 
to prove the following lemmas, which are of independent 
interest. 

Lemma 7. Functions H~. i = 0, 1,2,3 are a periodic func-
tion. That is, 

Proof. Note that the denominator of ~~ and the numera­

tor of B~ 111 11 are a periodic function. Observing that the 
denomina.to.r of B~ 

111 11 in the expression of ~i(2 w) is can­

celed by that in ~i( w) up to a factor of 2. We conclude that 
Hi is a such periodic function. Furthermore, since s1 

= Ae'll, s2=Ae<2l, s3=A[e 11 1-e< 21J. we know that H~, 
i = 1,2,3, are periodic functions: 

Lemma 8. For w E R2, 

L 1Hf(w+7TA- Tk)i2=1, i=0, 1,2,3. 
k E l'z 

Proof By Lemma 6, we have 

ldet(A)I = L l~~(w+27TA r k) l2 

k E z2 

= L 1Hi(w/2+7TA 7 k)~i(w/2+7TA r k)l 2 

k e z2 

= L L IH~(w/2+7TA r i)l2l~~(w/2 
kEl2 i e r2 

+?TA 7 i+27TA 7 k) l2 

= L 1Hi(w/2+7TA- r i)i2 ldet(A)I. 
i e r2 

Lemma 9. Forµ,, J/Er2 with µ,=t-v , 

L H:(w+?TA .,.k)H1(w+?TA .,.k) =0. 
k E r 2 

Proof. We can use Lemma 7 and the definition of H:, 
µ,Er 2 to directly verify these identities. We omit these 
details. 

We are now ready to show another main result in this 
paper. 

Theorem 4. The functions ,j;f, i = 1,2,3, as defined are 
wavelets. That is, the following collection of the dilations 
and translates of ,j;f 's 

( I I ) 

form an orthonormal basis of L 2( R2 ). 
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{s(k)} {s(k)} 

Fig. 4 Four-band analysis/synthesis filter bank. 

Proof. The proof of this theorem is the same as in Ri-
emenschneider and Shen.4 We omit the details. 

Next we apply the hexagonal filters associated with H~, 
i = 0, 1,2,3 to subband coding design. Consider a 2-D four­
band analysis synthesis filter bank (Fig. 4) as follows: 

By choosing subsampling matrix 

and filters 

We can use Lemmas 6 and 9 to show that the Fourier 

transfonn S of the output image { s( k)} is 

3 

S( w)= L G;(w)Y;(Kw) 
i ; Q 

3 3 

= L G;(w)L F;(w+tk)S(w+tk) 
i ; O k; O 

3 3 

= L S(w+tk)L G;(w)F;(w+tk) 
k=O i;O 

3 

=S(w) L IH #o( w+ tk)i2=S(w), 
k; O 

which is the Fourier transform of the input image { s( k), k 
e Z2

}, where Y ;( w) is the Fourier transform of digital filter 
{y;(k)} , which is equal to 

3 

Y;(w) = L F;(K-T w+tk)S(K- r w+tk), 
k;O 
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with 

_ -r[o] to - 7rA O , 

(cf. Simoncelli and Adelson 13). Therefore, we have ol 
tained the following. 

Theorem 5. The filters whose Fourier transform are H ; 
i = 0, 1,2,3, respectively, form a subband filter bank wi1 
exact reconstruction. 

Note that although the filters associated with H:'s a1 
not FIR filters, they are of exponential decay. That is, wri 
ing 

H f( w)= L h~] exp (-jwAk), 
k E , 2 

we know that 

for some positive constants C and a (cf. Corollary I). In t~ 
next section, we propose a computational method for the1 

filters {h~l , k E Z2}. 

Finally, we consider the asymptotic behavior of the1 
fil # - # ters. Recall that 1/10 - l/lo.u.m.n> and 

H# (w)= I/Jo,u.m,11/2w) 
O.U.m.11) ,t, ( ) 

'l'O.U,m.11) W 
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For simplicity. let u, consider H~1 , •• , • ,.1 • which is the most 
important and interesting case since they converge to an 
ideal low-pass filter with a hexagonal passing band. Let 

Since fl~ 11 is a hexagon with vertices 

{ ( 
1r 1T) ( 1r 21T) ( 27T 7T) ( 1r 1T) 
3·3· 3'3' 3·3• 3· 3' 

( 7T 27T)(27T 7T) 
3' 3 . 3 ' 3 . 

so is n ~II with vertice, 

We have the following. 

Theorem 6. The filters whose Fourier transform are 
Ht .. v= 1.2 ..... converge to an ideal low-pass filter as 
v-x. That is. 

Proof. We note that 

if wd1~11 
WE2fl~ 11 \fl~II. 

I # A TR(J 12 - 1 (1•.1',1') (J 12 H 0.1,,.,,.,,,( ) - H,0.01 ( ) · 

By Theorem I. we conclude the result of this theorem. 

4 Computation and Approximation of Box 
Spline Filters 

We first recall from Sec. I that 

=[ I +exp ;-Jw, )n I +exp ;-Jw2T' 

{ 
I + exp [ - j ( w 1 + w,) ]}" 

X 2 -

By Poisson's summation formula as in Sec. 3. we have 

L M 1.111.11[(tu1 ,w2)-t-21r(k1 .k2l] l2 

l.l.1 ,.l.2)e 12 

L M21.2111.2,,( k1 ,k2) exp [-j(w,k, +w2k2)J. 
tk I ,.l2IE / 

That is. we are interested in computing coefficients 
( ak) ke 12 and {/3khe 12 in the following expansions 

= L ak exp ( -Jk · w), 
k E , 2 

and 

=L /3kexp( - Jk·w). 
k E l

2 

Let 

? 21.2111.211( w, ,w2): = L M 21.2111.211( k ) exp (-)k· w). 
~ f , 2 

( 12) 

( 13) 

Note that P 21.2111 .211 is a trigonometric polynomial. To com­
pute the filter associated with HU;_;;';"'. we only need to 
compute the Fourier coefficients of ( ? 21.2111.211 ) 112 and 
l/(P21.2111.211l 112-

We now describe a matrix method to do these computa­
tions. First of all, we consider bivariatcly banded and 
Toeplit7 matrices C= (c;.jl;_jez2. That is. C is said to be 
bivariate banded if there exists a positive integer h such 
that c;.j=O whenever li- j l>h. where lil=l i,l +l i2I de­
notes the length of i = (i 1 . i 2). Now C is said to be a bi\'ari­
ate Toeplitz matrix if C;+k.j+k=c;.j for all i,j.k E Z2. De­
note b, F( C )(w) the symbol ofa bivariate Toeplit7 matrix 
C =(c;.jl;.j , 12. i.e .. 

F( C )(w)= L ck.io.01 exp (-Jw· k ). 
ke: l 2 

Thus. P 21.2111 .211 ( w) is the symbol of the Toeplill 
matrix M2,.2111 .211 = [ M 21 .2111 .2,,(j - i) ];,i 12. Similarly. 
[Ik~,2M 21 .2111.211(k) exp( - jkw)] 112 can be viewed as the 
symbol of another (unknown) Toepli11: matrix C21.2111 .211 . 

Then it is easy to sec that 

Also. it is easy to sec that the symbol of the bi-infinite 
matrix C 1

21,2111 .211 is the trigonometric function 
l/[Ik e ,2M21.2111 .211 (k) exp (-Jk· w)] 112. Thus, to compute 
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n 17 ·>.j Jj -
I I 

28 18 10 16 21 :11 

29 19 II :'j 9 15 :n 

:10 :w 12 6 2 I 8 l•I 

-n -7 -3 -I 0 1 :3 7 13 

-'22 -II -8 -•I -2 -Ii -12 -20 

-:n -2:3 -15 -9 - . ) -II -19 -29 

-:JI -24 -16 -10 - 18 -'lb 

I -35 -2.J :-17 -2i 

Fig. 5 Illustration of map L(i,J). 

a k' s and /3k • s in Eqs. ( 12) and ( 13). it is equivalent to solve 
the correspondent matrices problems, i.e., matrix factoriza­
tion and inversion. 

Apparently we can not solve those infinite matrix factor­
izations and inversions. Our numerical method is to find 
their approximations. Let L be a one-one map from 
z2- Z. For example. one of such maps of L can be defined 
as follows: writing i =(i 1.i2)EZ2 and n=li,l+li2I. we 
define 

( 

11(11- I )+i2 + I 
11(11 - l )+211-i,+ I , 

= -11(11- l )-2n-i2 - I. 
-11(11- l )+i1- l. 

0 

if i I "0,i2;;.0 

if i,<0h>0 
if i 1,;:.0.i 2<0 

if i I <0,i1""0 
if i 1 0,i1 =0 

but n'FO 

This map L can be best illustrated by Fig. 5. where we let 
L(O,O)=O. 

Then the bivariate bi-infinite matrix M21_2m_2,, can be or­
ganized as a usual bi-infinite matrix 

with h;1=M21.2111 .2JL 1(i)-L 1(j)] for i.jEZ. 
Let M,v=(h,1 ) ",c'·',c,v be a finite section of M2,.2,,.,2,,. 

Note that~ M,v is symmetric and positive definite. Thus we 
can find P ,_, such that 

by, e.g., SYD. Also. we can find the inverse P.., 1 of P,. 
We claim that Pr, converges to C2,.2,,._2,, and P._ 1 to 
C2/ 2m.2n' That is, to approximate a bi-infinite matrix, we 
may use its fi nite sections. 

To describe the convergence, we \ tart"- ith the following 
definition. 
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Definition 1. A matrix A =(a,1),.,ez is said to be of bi-
variately exponential decay off its diagonal if 

for some constant K and r E ( 0, I) . 

Theorem 7. Let P be the square root of a positive matrix 
A. Suppose that A is bivariately banded and IIA-tlli..;,. 
< I, where / is the identity operator from / 2( Z 2

) to 
/ 2(Z2). Then both P and P I are of bivariately exponen­
tial decay off its diagonal. 

Proof. It is easy to see that 

(2i-3)!! 
= .~, ( - I ) / ( 2 i) ! ! ( A -/) I. 

and 

p 1=(A ) 112=[/ +( A-I)] 112 

It is also easy to understand that if A-/ ha<, bivariate band­
width b, then ( A-/)( is also bivariately banded with band­
width kb. Write P =( P,1),.,.n and similarly for (A-l)t. 
We have. for [I L 1(i)I-I L 1(j)IJ/h>n>[I L 1Ull 
-I L 1(J)IJ/h - I. 

for some constant K. Therefore, P is of exponential decay. 
Similarly, we can show that P I is of exponential decay. 

Corollary 1. The digital filter {hi\-~l-;° .(/.. 1 ,k2) E Z2
} as­

sociated with the transfer function H\~_;',-"1 is of exponential 
decay. That is. 

for some positive constants a and C. 

Proof. Note that H:!;_;~;" 1(w) is the symbol of a bivariate 
bi-infinite matrix Hu.111 •111 , which is a product of three such 
matrices P. U( P 1). and J. where U( P 1

) denotes the 
resulting bi-infinite matrix after upsampling of P I by 2 
and J denotes the bi-infinite matrix whose symbol is 
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[ I +exp; - j w 1)] '[ I +exp; - j w2) l 111 

x{ I +exp [-~(w 1+w2)]r 
Also. it is easy to see that U( P 1

) is of exponential decay. 
In fact, J is a bivariately banded matrix and hence, of ex­
ponential decay. Since the family of bi-infinite matrices of 
exponential decay forms an algebra (cf. Ref. 17, p. 463), 
we conclude that Hu.m.n> is of exponential decay and so is 
the digital filter {//1

·"'·")}. 
/.. I ·•2 

Theorem 8. Suppose that A is a bivariately banded ma­
trix satisfying the condition in Theorem 7. Let P be the 
square root of A and p- 1 be the inverse of P. Let AN, PN 
P,v I be a finite section of A, P. and P 1

• respectively. Let 

PN be a square root matrix such that P~= AN and ON 
=(0, ... ,0,1,0, ... ,0)7' be a vector of 2N+ I with zero entries 
except for the middle entry, which is I. Then 

and 

for some TJ E (0, I ) and a positive constant K independent 
of N. 

Proof. By the expression of Pin the proof of Theorem 7, 
we have 

A ~ (2i-3)!! , 
ll( PN-PN)oNlb:,;;,~ (2 i)!l ll{[(A-l)'JN 

-( AN- IN)'}oNlli-

We claim that 

for some K> O and O<A:,;; I. Let us use induction. For i 
= 0 and i = I, it is clear that this estimate is true. Assume 
that this estimate is true for k. Consider 

= [(A- /)( A- / l']N-( A - /) N( A,v- / Nl 

= [ (A-/)(A-1)/.. ]N-(A - /) N[(A- I )']N 

+ ( A-f)N[( A - !)/..]N-( A - f) N( AN- / Nl'-

Note that 

II{ (A-f)N[( A-n·JN-( A- l)N( AN- 1 Nl}oNll2 

:,;; II A -%11{[ ( A-n·J" -( A - l)N<AN- 1 N)} oNlb. 

We can use the induction hypothesis to take care of this 
part. Next we write 

and 

3 N.k 

[(A - I l]N 

dN,I. 

Then we have 

Let us look closely al each component of the vector 
(B~aN)8N. That is, we look at the following terms, for i 
= -N, ... ,O, .... N, 

with BN=(h,
1

) and aN_,=(a;
1

). Recall that A-/ is band­
width -y. If ky=,;;N, we know that a /,o= O for all />N . We 

have (B~aN)8N=O. Similarly, we have (CNdN,1. 8N)=O. 
For k>Nly, we simply have 

II{[ <A - n( A - n·JN- < A - n N[ ( A - n·JN} 0Nll2 

:,;;211( A -n·1b:,;;,.•:,;;,.Niy= (rYt. 

Therefore, the claim is true for all k. Hence, we have 

In the same fashion , we can show 

We omit the details. This completes the proof. 
To apply the preceding theorem, we therefore only need 

to verify that M21,2111 _2,, is a positive matrix and satisfies 
II M21.2111.2,, - I ll 2 < I. Indeed, letting F(x) denote the Fourier 
transform of infinite vector x={x;iE Z 2

}, i.e., 

F(x)=L x;exp(-ji·w), 
i E Z:! 

we have, by Parseval's equality, 
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Fig. 6 Magnitude of low-pass filters J-11
,1.1 1 and log10 (JH~1

·
11 lj2 ). 

(w)F(x) dw 

;,. min F( M21.2111.2nHw) 
w1:[-1r,1r]" 

x~(2
1 

)- ( ,I F(x)(w )l 2 dw 
1r J (-rr.rrJ-

min F(M21.2111 .211l(wlll xllf 
we[ 1r.1r]2 

Since c= minwe[- 1r.1r]2F(M2,.2111_211 )(w) >O by Theorem 4 in 
de Boor et al., 15 we have M21_2m_211 ;,. cl. U~ing a similar 
method, we can show that II M21_2m_211 - lib< I. Indeed. 

1 2 

0.8 

0.6 

04 

-• --4 

ll(M21.2111.211- l)xll~= (2 ~)2 f[ "·"12 IF( M21.2111.211-/) 

(w)l 2IF(x)(w)l2 dw 

= (2~)2 I[ rr,1r] 2l l -F( M2/.2111.2n) 

(w) l2IF(x)(w)i2 dw 

:,;;; max I I -F( M21.2m.2n)(w)i2ll xll~ 
we[ rr,rr]" 

Thus, M21.2111 .211 satisfies all the conditions of Theorem 8. 
Therefore, our numerical method provides a good ap­

proximation that converges the exact solution exponentially 
fast. In general, we are able to find a reasonable approxi­
mate H~·111·"1:={h~m·"}•,I'' with N:s:;30. See Figs. 6. 7, 

1k.,I" \ 

and 8 for IH~1. 1.1,I. IHffZ:211. and IH\~·3·311. 

-5 

-10 

-15 

-20 
4 

-4 - 4 

Fig. 7 Magnitude of low-pass filters H;~·221 and log10 (1H;~ 22
li 2). 
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Fig. 8 Magnitude of low-pass filters H\}3
·
3

) and 10910 (IH\!·3•
3 '1 2

). 

For application purposes, the size of such filter matrices 
may still be too large. We now discuss how to approximate 
the filter matrix H~·"'·"' by using SYD method. Note that 

H~·111
·"' is a real matrix. Let 

be the singular value decomposition of H~·"'·"'. Here, U 
= (u 1 ... u2N+ 1) and V=( v 1 ... v2N+il are two orthonormal 
matrices and 1 = diag(CT1 , .... CT2N+ 1) is diagonal matrix with 
singular values CT, 's on its diagonal. Let 

I 

H(/.111,11) _"" T 
N.I - L, CT,u,v;. 

,= I 

Then 

IIH~'.·111
·")- H~:;·"'112= min IIH~· 111·"'-Gll2= CT;+ 1. 

rank( G )=/ 

(Cf. e.g., Golub and Van Loan,18 p. 73.) Thus, we can 
determine I from CT;'s such that the approximation is 
within the given tolerance. Table I shows the first few sin­
gular values of HU.m.nl for (l ,m,n)=( 1,1 , 1 ), (2,2,2 ), and 
(3 ,3,3). 

Furthem1ore, when processing any 2-D digital signal/ 
image S with this filter H~:?"', we immediately notice that 

Table 1 Some singular values of H (l,m,nJ_ 

s Values IT1 IT2 CT3 CT4 CT5 CT5 

H (l,1,1) 
6 

0.471 0.161 0.032 0.024 0.004 0 .004 

H (2.2.2) 
11 

0.466 0.158 0.068 0.043 0.022 0.016 

H (J,J.J) 
14 

0.461 0.161 0.080 0.052 0.032 0.024 

s Values IT7 CTe CTg CT10 CT11 CT 12 

H ( 1. 1.1) 
6 

0.003 0.002 0.001 0.000 0.000 0.000 

H (2,2.21 
11 

0.007 0.006 0.006 0.003 0.002 0.002 

H (J,J,Jl 
14 

0.014 0.012 0 .007 0.006 0.004 0.003 

where * denotes the 2-D convolution operator. Because u, 
and v, are 1-D vectors, each term in the preceding summa­
tion is just a tensor-product filtering. Thus, the processing 
time using such a filter H~)·"l is proportional to I times 
that of a tensor-product filter. Therefore , these filters may 
be useful in practice. 
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