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Abstract. A novel and computationally efficient approach to an 
adaptive mammographic image feature enhancement using 
wavelet-based multiresolution analysis is presented. On wavelet de­
composition applied to a given mammographic image, we integrate 
the information of the tree-structured zero crossings of wavelet co­
efficients and the information of the low-pass-filtered subimage to 
enhance the desired image features. A discrete wavelet transform 
with pyramidal structure is employed to speedup the computation for 
wavelet decomposition and reconstruction. The spatiofrequency lo­
calization property of the wavelet transform is exploited based on 
the spatial coherence of image and the principle of human psycho­
visual mechanism. Preliminary results show that the proposed ap­
proach is able to adaptively enhance local edge features, suppress 
noise, and improve global visualization of mammographic image 
features. This wavelet-based multiresolution analysis is therefore 
promising for computerized mass screening of mammograms. 
© 1997 SPIE and IS&T. [S1017-9909(97)00704-6] 

1 Introduction 

Early diagnosis of cancers is an essential and important 
step to reduce mortality from these diseases. For breast 
cancer, one of leading causes of cancer deaths among 
women, screen/film mammography is currently considered 
to be the best and the most practical radiological technique 
for early detection of small breast tumors. 1 The presence of 
microcalcification in mammograms is of great clinical im­
portance for early radiological diagnosis. Radiologists use 
this type of signature to discriminate normal tissues from 
abnorma l or cancerous ones. However, even well-trained 
radiologists misdiagnose IO to 20% of mammograms.23 
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For a realistic mass screening of mammograms, 
computer-assisted diagnosis (CAD) is desired for a fast and 
operator-independent analysis of massive volumes of mam­
mographic images. It has also been shown that CAD has 
the potential to reduce the misdiagnosis rate.4 In general. 
three operations arc required in CAD. namely. feature en­
hancement. noise suppression, and feature extraction. There 
are many attempts on CAD with digital mammography.5 11 

However, adaptive and robust algorithms are still needed to 
integrate these operations. 

The wavelet transform has recently been applied to digi­
tal mammography for feature enhancement and extraction 
with promising potential. 12

-
16 The framework of current 

wavelet-based mammographic image feature enhancement 
and extraction follows a general pattern: image decomposi­
tion with the forward wavelet transform, linear or nonlinear 
processing over the wavelet coefficients, and image recon­
struction with the inverse wavelet transform. In general, 
edge-related information 11

-
20 is used to guide the linear or 

nonlinear processing. These edges are often obtained from 
the multiscale edge detectors by smoothing the signal at 
various scales and detecting sharp variation points from 
the extrema of their first-order derivatives and the zero 
crossings of their second-order derivatives. Several 

I p 14 IS I d . . d researc 1ers -· · · iave presente some mterestmg an en-
couraging results using wavelet transform in digital mam­
mography. Laine er a/. 12 used a 2-D dyadic wavelet trans­
form and performed edge-related analysis on the wavelet 
coefficients for feature enhancement. Strickland and Hahn 15 

applied the matched tilter concepts to combine with the 
wavelet transform for the detection of microcalcitications. 
Both approaches seek to process the high-pass-filtered sub­
images to extract information of maximum coefficients for 
enhancement purpose. These processings are executed with 
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full resolution of images at each level without downsam­
pling. In general. the information at different levels is pro­
cessed separately without exploiting the information across 
different levels as well as the information in low-pass­
filtered subimage. 

It is well known that wavelet-based image analysis has 
two distinct characteristics: multiresolution and spatiofre­
quency localization. 21

•
22 To take full advantage of the 

wavelet-based analysis, these two characteristics must be 
optimally integrated with the desired image processing 
tasks. Multiresolution refers to the characteristics of the 
image analysis such that a feature can appear at different 
levels of ubimages. In the case of mammographic image 
analysis. multiresolution analysis enables the feature en­
hancement and extraction to combine information from 
several channels at different resolution levels to obtain a 
robust estimate with efficient processing. With spatiofre­
quency localization, an abrupt change in image intensity 
can appear in high-pass-filtered subimages with accurate 
spatial location. This is quite different from the traditional 
Fourier analysis since the spatial information is lost after 
Fourier transform, and the windowed or short-time Fourier 
transform, which has a fixed resolution in the spatial and 
frequency domains. In wavelet-filtered subimages, an iso­
lated single-pixel intensity change can be considered as 
noise and should be suppressed, whereas abrupt intensity 
changes over extended regions can be considered as image 
irregularity or edge structures. These structures in mammo­
graphic images usually correspond to the microcalcification 
details that we would like to preserve. 

In this paper, the framework of image analysis also fol­
lows the general pattern, that is, the enhancement is per­
formed on the wavelet-filtered subimages. However, we in­
tegrate the information from several channels and different 
resolutions to maximize the potential of the multiresolution 
analysis and to exploit the human psychovisual mechanism. 
The cross-band integration is implemented by establishing 
a zero-crossing tree for the purpose of adaptive feature en­
hancement and noise suppression. Only these coefficients 
within the zero-crossing tree are considered related to 
mammographic features and are therefore enhanced. The 
low-pass-filtered subimage is used to guide the enhance­
ment process according to human perceptual dependence 
on local intensity. Furthermore. instead of full resolution 
processing, a discrete wavelet transform with a pyramid 
structure is employed to speedup the computation for fast 
wavelet decomposition and reconstruction. 

The concept of a zero-crossing tree is based on our ob­
servation that the filters for high-pass filtering with onho­
normal or biorthogonal bases in discrete wavelet decompo­
sitions are of Laplacian-like property. i.e., they resemble 
the second-order-derivative operations. Therefore, zero 
crossings in wavelet coefficient space describe the edges of 
the original image depicted in a multiresolution space. Be­
cause of the spatial coherence of image, the same image 
feature structure, in general. would appear at different level 
of subimages. A similar feature structure in a parent sub­
image can be found in its corresponding location of the 
child subimage so that they constitute a parent-child loca­
tion relation. Such parent-child location relation can be es­
tablished as zero-crossing trees to represent evolution of the 
multiresolution edges. The neighborhood configuration has 
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been introduced to obtain the adaptivity to the local inten­
sity variation. By following the evolutions of these zero 
crossings, we will be able to enhance the desired image 
features while, at the same time, suppress the undesired 
noise. 

To achieve the optimal visualization of the image struc­
tures. the enhancement of high-pass-filtered subimages 
based on a zero-crossing tree is then integrated with the 
enhancement of baseband subimage according to human 
psychovisual mechanism. Usually mammographic images 
have low contrast and sometimes low illumination. It is 
well known that human vision follows the famous Weber's 
law,23 that is, brightness discrimination is poor at the ex­
treme low or the extreme high levels of illumination, and it 
improves significantly as the brightness illumination in­
creases from the extreme low or decreases from the ex­
treme high. Therefore, the way we enhance a particular 
wavelet coefficient should also depend on the levels of il­
lumination within its neighborhood. For low levels of illu­
mination, a large amount of enhancement is desired. while 
for high levels of illumination, a moderate amount of en­
hancement may be sufficient. For this same reason, the 
baseband subimage may also be enhanced by increasing the 
overall level of illumination so that the brightness discrimi­
nation is maximized. 

Images used in our experiments are obtained from the 
Mammography Image Analysis Research Database at the 
University of South Florida. These 40 images were made 
available by the Department of Radiology. University Hos­
pital Nijmegen, the Netherlands. The preliminary results of 
enhancement on these images show that the technique is 
promising for computerized mass screening of mammo­
grams since the proposed algorithm is able to adaptively 
enhance local edge features, suppress noise, and greatly 
improve global visualization of mammographic image fea­
tures. 

Section 2 briefly discusses the discrete wavelet trans­
forms used in this research with a pyramid structure. Sec­
tion 3 introduces the adaptive feature enhancement algo­
rithm based on the proposed multiresolution analysis. We 
focus on the information integration aspect, which is the 
key to the success of the proposed approach. Section 4 
presents the experimental results and Sec. 5 concludes this 
paper with a summary and some discussion of future re­
search directions. 

2 Wavelet Analysis 

The wavelet transform of an image is computed by decom­
posing the given image using wavelet bases, and can be 
viewed as a decomposition using a set of frequency chan­
nels having a spatial orientation tuning. Unlike the tradi­
tional Fourier transform, which has no spatial resolution, 
and the windowed Fourier transform, which has a fixed 
resolution in the spatial and frequency domains, the resolu­
tion of wavelet transform varies with a scale factor. There­
fore, wavelet representations lie between the spatial and 
frequency domains and provide a simple and efficient hier­
archical framework for interpretation of image information 
from both the spatial and frequency domains. For mammo­
graphic images, generally, the structures such as microcal­
cifications that we want to recognize have different sizes 
and it is difficult to define in advance a moderate resolution 
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Fig. 1 Implementation of one-level 2-D discrete wavelet decomposition. 

for analyzing image structures. With wavelet decomposi­
tion. we can exploit the image information efficiently and 
regroup the image information into a set of details appear­
ing in subimages at different resolutions. At coarser reso­
lutions, these details correspond to larger structures, while 
at finer resolutions these details correspond to smaller 
structures. The following is a brief review of some relations 
in discrete wavelet analysis. 

For a discrete wavelet decomposition of a given 1-D 
signal J with a mother wavelet t/J and a scaling function </> 
and their dilated and translated versions, </>111 _,,(x) 
=2 m/2</>(2 mx-n) and t/lm_,,(x)=2 - "'12 t/1(2 - mx-n), m 
and n are integers, we have the following relations22

: 

f= L C111.11<f )t/Jm.n, 

( I ) 

where g1=(- 1)1h 1 1 and h,, = v'2f </>(x-n)</>(2-x) dr. 
For these orthonormal wavelet bases, the exact reconstruc­
tion. at position / and level m, can be written as 

am 1.1<f)=L [h2,, - 1am.11<f)+g2n 1Cm_11(f)]. (2) 
II 

Equation (2) is a recursive relation that facilitates a fast 
computation algorithm. In the case of biorthogonal wavelet 
bases, the reconstruction becomes24

·25 

am 1.1<f)=L ['1211 1a111_11<f)+i211 - /C111.11<f)], (3) 
II 

where the decomposition and reconstruction filters satisfy 

L h11h 11+2J. = 8,.0· 
II 

(4) 

According to Mallat's paper,22 2-D wavelet representa­
tions for images can be similarly constructed with a sepa­
rable 2-D wavelet transform, such as the scaling function 
</>(x)</>(y) and the three 2-D wavelets t/J(x)</>(y), 
</>(x)t/J(y). and t/f(x)t/f(y). The implementation of2-D dis­
crete wavelet decomposition (one level) is shown in Fig. I. 
Each level consists of four subimages denoted as HL, LH, 
HH, and LL. HL exhibits the horizontal components (ver­
tical edges), LH the vertical components (horizontal edges), 
and HH the components in both directions (comers). The 
LL corresponds the lowest frequencies and represents the 
local direct current (DC) components of the original image. 
Because of the bandwidth reduction after wavelet filtering, 
the resultant subimages can be downsampled to enable fast 
computation in the process of enhancement. Figure 2 shows 
the arrangement of subimages after discrete wavelet de­
composition and downsampling on three levels. 

The regularity and orthogonality of wavelet bases ensure 
the signal reconstruction with high quality. We choose 
short filters to enable fast computation. The shortest wave­
let filters are those corresponding to the Haar basis, i.e., 
h0 = h1 =v"J., g0 = - g 1 = v"J., and all other h11 , g 11 = 0. How­
ever, such filters result in less smoothness or regularity and 
lower efficiency in exploiting the spatial coherence of im­
age structures in contrast to the spatial randomness of 
noise. In many image processing applications, smooth 
wavelet filters are desired to obtain better localization prop­
erties in both spatial and frequency domains. Therefore, a 
trade-off between the computational speed and the charac­
terization of image features is usually needed for a specific 
application. In this research. we adopt the "Laplacian pyra­
mid filters ( 5/7)" (Ref. 25) for the discrete wavelet trans­
form because these filters are nearly orthonormal with mod­
erate lengths. 

3 Enhancement Algorithm 

Once a mammographic image is decomposed with the 
given wavelet filter, the baseband subimage is essentially 
the replica of the original image with lower spatial resolu­
tion. However, the high-pass-fi ltered subimages with differ-

Journal of Electronic Imaging I October 1997 / Vol. 6(4) 1469 



Chen, Chen, and Parker 

LL3 HL3 
HL2 

LH3 HH3 HLI 

LH2 HH2 

LHI HHI 

Fig. 2 Subimage arrangements of wavelet decomposition on three 
levels. 

ent directional filtering and al different resolution levels 
would exhibit various edges corresponding to the filter di­
rections and the resolution levels. A distinct feature of this 
approach different from existing ones is that we not only 
perform the enhancement on the individual high-pass­
filtered subimages but also integrate the information from 
corresponding subimages at different levels using the 
parent-child relation and the information from baseband 
subimages according to human psychovisual mechanism. 

In this section, we first summarize some characteristics 
of the wavelet-based multiresolution analysis. We then de­
scribe the proposed adaptive enhancement scheme designed 
to take full advantage of these characteristics to achieve 
optimal integration of information from different channels 
at different levels. 

3.1 Characteristics 

There are several distinct characteristics of the wavelet­
filtered subimages that can be exploited in the design of an 
integrated adaptive enhancement algorithm. In this re­
search, we explore three such characteristics: the baseband 
subimages, the zero crossings, and the parent-child location 
relations of the zero-crossing tree. Once these characteris­
tics are carefully explored and the information from differ­
ent channels are integrated, we expect to achieve belier 
performance in image enhancement. 

Unlike existing approaches in which the baseband sub­
image has not been used for feature enhancement, the pro­
posed enhancement algorithm incorporates the information 
from baseband subimages to maximize the visual effect of 
enhancement. The incorporation of baseband subimage in­
volves two types of operations: ( 1) global shift of baseband 
intensity value and (2) high-pass subimage enhancement 
weighted by the corresponding intensity value at baseband. 
Both operations are based on Weber's law of visual percep­
tion. An appropriate global shift of baseband intensity 
value ensures that the reconstructed images are bright 
enough to perceive the subtle brightness discriminations. 
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Since the wavelet-based enhancement can be implemented 
by scaling the wavelet coefficients in high-pass subimages, 
the weighting of the baseband intensity value on the scaling 
implies that the algorithm is adaptive to the local illumina­
tion levels. This is important since according to human psy­
chovisual mechanism, in particular Weber's law, brightness 
discrimination is poor at the extremely low levels of illu­
mination, and it obeys the well-known proportional relation 
in midlevel illuminations. At the extremely high levels of 
illumination, a greater variation rate is required to sense 
brightness discriminations, in other words, human vision is 
not as sensitive to variation in this level. Therefore, an in­
verse weighting is suitable, so that, for the same edge 
strength, large scaling is required when the baseband inten­
sity is low, and small scaling is adequate when the base­
band intensity is high. It is evident that both operations are 
subject to the dynamic range limitation of the display de­
vices. 

In their classical paper, Marr and Hildreth20 showed that 
the position of multiscale sharp variation points can be ob­
tained from the zero crossings of the signal convolved with 
the Laplacian of a Gaussian. In the case of mammographic 
images, image features such as microcalcifications actually 
correspond to the intensity discontinuities. We noticed that 
the filters for LH, HL, and HH, high-pass filtering with 
orthonormal or biorthogonal bases, except Haar bases, in 
discrete wavelet decompositions are of Laplacian-like prop­
erty, i.e., they resemble a second-order-derivative opera­
tion. The zero-crossing properties are still well preserved in 
these high-pass-filtered subimages even with downsam­
pling in the pyramidal structure. Figure 3 shows examples 
of the zero crossings of a given image using "Spline vari­
ant filters (9/7)" and "Laplacian pyramid filters (5/7)" 
(Ref. 25). Notice that these zero crossings correspond to 
potential edges of the original image at multiresolution lev­
els. Therefore, we assert that the zero crossings in the high­
pass-filtered subimages are equivalent to the multiresolu­
tion edges of the original image. The multiresolution 
position information of the edges can be obtained from pro­
cessing of the zero crossings of wavelet coefficients in the 
high-pass-filtered subimages. 

Because of the spatial coherence of the image, image 
feature structures, in general, appear at different subimage 
levels. If we define the parent-child relation of a subimage 
as the relationship between subimages at a specific resolu­
tion level and the corresponding subimages at a finer reso­
lution level , then an image feature structure in a parent 
subimage will have similar image features in its child sub­
image at corresponding locations. Such parent-child loca­
tion relations are shown in Fig. 4. This parent-child spatial 
coherence relation can be very useful in zero-crossing 
analysis, since, for medical images, an isolated single-pixel 
intensity change in wavelet-filtered subimages can be con­
sidered as noise and should be suppressed, while abrupt 
intensity changes over a relatively large connected region 
can be considered as clinically important structures. For 
mammographic images, these coherent features usually 
correspond to the microcalcification details and should be 
preserved and preferably visually enhanced. On the other 
hand, this parent-child relation can also be used to suppress 
mammographic ima~e noise because, as suggested by sev­
eral researchers, 17· 18· 6 the sharp variation points of image 
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Fig. 3 Examples of zero-crossing maps. The bottom is a given image. The left and right are zero 
crossings before and after neighborhood processing using "Laplacian pyramid filters" (upper) and 
"spline variant filters" (middle) in three level wavelet decompositions, respectively. Notice the parent­
child spatial coherence relation. 

intensity that do not propagate to coarser scales can be 
removed for noise suppression. 

3.2 Adaptive Enhancement Algorithm 

The proposed adaptive enhancement scheme is shown in 
Fig. 5. On completion of the wavelet filtering and down-

sampling to a desired decomposition level, the adaptive en­
hancement scheme can be applied to these decomposed 
subimages. There are three basic steps in the proposed en­
hancement algorithm: zero-crossing detection, zero­
crossing tree establishment. and integrated adaptive en­
hancement. With zero-crossing detection. we are able to 
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Fig. 4 Parent-child location relations. 

locate the accurate position of the image features within 
each subimages. Since not all edges are considered useful 
features for mammographic image enhancement, we estab­
lish the Lero-crossing tree according to the spatial coher­
ence of image features. Only these edges within this zero­
crossing tree arc enhanced to ensure that the 
mammographic image features, not image noises. are in­
deed enhanced. Furthem1ore, to achieve an optimal visual­
ization of the features governed by Weber's law, the base­
band information is also incorporated into the enhancement 
algorithm. 

As discussed, the zero crossings in subimages character­
ize the edge structure of the image. These edges correspond 
to potential microcalcifications and therefore must be en­
hanced. Among the zero crossings in the high-pass-filtered 
subimages, those with locally maximum variation rate of 
wavelet coefficients are important to represent the local 
edge features. To locate these Lero crossing, we introduce 
neighborhood configurations for the algorithm to achieve 
its adaptivity to the local intensity variation. Three types of 
neighborhood configurations are used in this research. 
namely, a 1-D horizontal neighborhood, a 1-D vertical 

neighborhood, and a 2-D diagonal neighborhood, as shown 
in Fig. 6. These configurations correspond to the high-pass 
filters used in wavelet decomposition: a horizontal filter for 
HL subimage, a vertical filter for LH subimages. and a 
diagonal for HH subimage. With these neighborhood 
masks, Lero crossings that pass through the local maximum 
variation rate test are assigned as "selected zero crossing" 
and are used in the next step of processing (also see Fig. 3). 

The next step of processing aims to recognize the spatial 
coherence of the image features from the selected zero 
crossings to establish a zero-crossing tree. A selected zero 
crossing is considered part of the zero-crossing tree if it 
passes the parent-child location relationship test. That is, a 
selected zero crossing is attached to the zero-crossing tree 
if its parent is also a selected zero crossing and descends 
from the root of the zero-crossing tree. With this spatial 
coherence test, the zero crossings in the zero-crossing trees 
will include those image structure with parent-child loca­
tion relationship rather than the noise, which would not 
have such a relationship due to its random nature. The es­
tablished Lero-crossing trees represent the evolution of 
edge structure from coarse resolution levels to fine resolu­
tion levels. In the case of adaptive enhancement of marn­
mographic images, only these wavelet coefficients corre­
sponding to Lero crossings within the zero-crossing tree are 
scaled to achieve the desired enhancement results. 

Once the Lero-crossing tree is established, the informa­
tion from baseband can be integrated with the enhancement 
in the high-pass-filtered subimages. In the case of global 
shift of baseband intensity value, if needed, an appropriate 
constant is added to every pixel in the baseband to increase 
the overall brightness so that subtle discrimination can be 
perceived after the shift. In the case of weighted enhance­
ment of high-pass subimages, the weighting function is in­

versely proportional to the illumination levels in the corre­
sponding neighborhood in baseband subimages. This 
operation enables radiologists to achieve a balanced bright­
ness discrimination across the whole dynamic range of the 
display device. 

If we denote £~'-" and £;,,_,, as the proposed operators 
for processing low-pass filtered (baseband) and high-pass 
filtered components. respectively, with the spatial position/ 
and at level m, in 1-D case, the reconstruction of the en­
hanced image can be written as 

r-----------------------------------------1 

Original 

image mptll - Discrete 

wavelet 

tramform 

I 

I 
I 
I 

I 
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I 
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I 
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I 
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Fig. 5 Wavelet-based adaptive feature enhancement approach. 
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(a) 

X 

(b) 

X 

(c) 

Fig. 6 Typical neighborhoods for (a) HL subimage processing, (b) 
LH subimage processing, and (c) HH subimage processing; xis the 
selected zero crossing 11 11 has maximum variation rate in the neigh­
borhood. 

am - 1.1U )= L {'12,, 1E;;,_,,[a,,,_,,(f )] 
II 

= am 1.lf) 

+ L ['1211 ,{£~1.Ja ,,,_ 11(/ )]-a,,,_11(/ )} 

fl 

which indicates that the enhanced image equals the original 
image plus a summation term that includes component dif­
ferences in baseband subimage and high-pass-filtered sub­
image. If no processing in baseband. the first term in the 
summation will be Lero. For baseband enhancement, the 
shift can be easi ly defined as 

E~1• 11[a 111 _11(f )]=a,,,_11(/ )+h. (6) 

where h is a shift constant. Such an overall shift can pre­
serve the relative gray-level distribution of the original im­
age. For the weighted scaling used in the enhancement of 
high-pass-filtered subimages. the weighting function can be 
written as 

P(x,,, _,,)rx( a L .1 111 _1 +/3) 
1 

.\ l NII 
(7) 

where a and f3 arc constant parameters. and N n represents a 
defined neighborhood for position 11. With such weighting 
function the enhancement operator can be expressed as 

£;,,_,,[ c,,,_,,(f ) ] = P[ a 111 _,,(f ) ]c,,,_11(.f ) 

if c,,,_11(/ ) is in the zero-crossing tree. 

4 Experimental Results 

(8) 

For the convenience of display, the original images from 
Nijmegen's database have heen clipped with the region of 
interest and subsampled, and resulted in 5 I 2X 512 images. 
In this experiment. "Laplacian pyramid filters (5/7)" (Ref. 
25) are selected to compute discrete wavelet transform be­
cause the filters are nearly orthonormal filters with moder­
ate lengths. The width or height of the neighborhood masJ... 
was chosen to be the same as the length of wavelet filters. 
since this has been shown to produce empirically better 
results. Prior information about microcalcification details in 
mammographic image is used to guide the choice of de­
sired decomposition levels. Some typical experimental re­
sults for the images from the database are shown in Figs. 7 
to I 0. Note that the microcalcifications appeared in each 
image. The upper left figures are original images and the 
upper right figures are images enhanced \.\-ith the proposed 
approach. the lower left and the lower right figures are 
images using unsharp masking and high-pass filtering. 

It is evident from Figs. 7 to l O that the shifting process­
ing for baseband subimage improves global visualization 
over the original images. Together with the weighted scal­
ing using the illumination level of the baseband subimage. 
the proposed enhancement scheme is able to make some 
unseen or barely seen features visible. The zero-crossing­
tree-based processing enables us to enhance those struc­
tures in which we arc interested while suppressing noise. 

5 Summary 

We have presented a novel and computationally efficient 
approach to adaptive mammographic image feature en­
hancement and noise suppression using wavelet-based mul­
tiresolution analysis. We integrate information of the tree­
structured Lero crossing of wavelet coefficients and 
information of the low-pass-fi ltered subimage to achieve 
robust and optimal enhancement. The spatiofrequency lo­
calization property of the wavelet transform is exploited 
based on the spatial coherence of the image and the prin­
ciple of the human psychovisual mechanism. Preliminary 
results show that the proposed approach is able to adap­
tively enhance local edge features. suppress noise. and im­
prove global visualization of mammographic image fea­
tures. This wavelet-based multiresolution analysis is 
therefore promising for computeriLed mass screening of 
mammograms. 

This multiresolution analysis scheme can be extended to 
feature extraction applications to extract microcalcifications 
from mammographic images. By incorporating the shape 
and size knowledge of the microcalcification. we will be 
able to develop a robust feature extraction algorithm suit­
able for computerized mass screening of mammograms as 
we ll as CAD with real-time implementation potential. 
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Fig. 7 Experimental results: the upper left is the original image and the upper right is the image 
enhanced with the proposed approach, the lower left and the lower right are images using unsharp 
masking and high-pass filtering, respectively. Microcalcifications appear at the location (421 ,245) with 
radius of 48. 

474 I Journal of Electronic Imaging I October 1997 / Vol. 6(4) 



Adaptive feature enhancement for mammographic images 

Fig. 8 Experimental results: the upper left is the original image and the upper right is the image 
enhanced with the proposed approach, the lower left and the lower right are images using unsharp 
masking and high-pass filtering, respectively. Microcalcifications appear at the location (298,165) with 
radius of 105. 
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Fig. 9 Experimental results: the upper left is the original image and the upper right is the image 
enhanced with the proposed approach, the lower left and the lower right are images using unsharp 
masking and high-pass filtering, respectively. Microcalcifications appear at the location (360,176) with 
radius of 79. 
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Fig. 10 Experimental results: the upper left is the original image and the upper right is the image 
enhanced with the proposed approach, the lower left and the lower right are images using unsharp 
masking and high-pass filtering, respectively. Microcalcifications appear at the location (274,30) with 
radius of 99. 
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