
viewpoints 

DOI: 10.1145/3386908 Adam Shostack and Mary Ellen Zurko 

► Carl Landwehr, Column Editor 

Privacy and Security 
Secure Development Tools 
and Techniques Need 
More Research That Will 
Increase Their Impact and 
Effectiveness in Practice 
Secure development is an important and pressing problem. 

W 
RITING CODE THAT is 
secure, and provides 
security without 
vulnerabilities, is a 
critical challenge to 

cybersecurity. Writing code without 
vulnerabilities has long been at least as 
difficult as writing code without bugs. 
While there are many other potential 
sources of security exposures in soft­
ware, developing code without known 
classes of vulnerabilities has always 
seemed like a tractable goal. It relies 
on human developers using tools, 
techniques, and processes to produce 
software that does not have particular 
known types of defects. 

One of the most effective approach­
es-research into programming 
languages and tools-has yielded 
technologies that are shown to resist 
categories of vulnerabilities, largely 
by not allowing for them. Memory safe 
languages that manage memory al­
location and deallocation, instead of 
requiring the programmer to do so, 
make it impossible for developers to 
create buffer overflow vulnerabilities 
and some other types of exposures, 
from missing array bounds checks, 

null pointer use, and data leakage via 
memory reuse. Thread-safe languages 
can address exposures where race 
conditions can be used to subvert se­
curity-related checks in the program. 

Within the software development 
community, groups and organiza­
tions with a mission to develop soft­
ware securely have incorporated tools 
and techniques into their software 

MAY 2020 I VOL. 63 I NO. 5 COMMUNICATIONS OF THE ACM 39 



viewpoints 

development life cycles to include a 
secure development life cycle. Early 
high-assurance software adopted for­
mal methods to specify the security 
properties of the system, and code re­
view to use humans to find such flaws 
at the coding level. 2 Microsoft created 
its Security Development Lifecycle 
adding root cause analysis, security 
education, threat modeling, specific 
secure coding requirements, and se­
curity testing that included penetra­
tion and fuzz testing. Practices tend to 
be adopted based on business need, 
perceived security impact, and fit with 
established or evolving development 
practices. 

Research that impacts what works 
and what could work for secure devel­
opment is needed. Current research 
seems to play an unfortunately lim­
ited role in creating, proposing, evalu­
ating, and proving tools , techniques, 
and processes that are used in prac­
tice for secure development. In partic­
ular, research is rarely brought to bear 
directly on tools and techniques as 
they are used, in the context they are 
used. We need more research into the 
effectiveness and results of secure de­
velopment tools, techniques, and pro­
cesses. That research can be judged 
on its impact on how software devel­
opment works in practice. Properties 
of research influence how likely it is to 
have that impact. 

Rigor in research scientific experi­
mentation calls for a number of pro­
cess requirements, including a state­
ment of the hypothesis being tested, 
controlling the variables of the experi­
ment to ensure the experiment actu­
ally tests the hypothesis, and analyz­
ing experimental data and outcomes 
to mathematically prove the hypoth­
esis (or disprove the null hypothesis). 
While these processes can form the 
basis of important foundational re­
search in secure development, they of­
ten avoid the messy realities involved 
in bringing a technique into practice, 
precisely because those messy reali­
ties complicate experimental design. 

Negative research results that fail 
to prove a secure development tech­
nique increases security, while im­
portant to the research field, are not 
likely to impact secure development 
in practice. An early lesson as a secu­
rity developer in a large technology 

company was that telling developers 
not to do something was almost al­
ways ineffectual, if it was not paired 
with the alternative that they could 
use to achieve the goal of the depre­
cated practice. "Don't roll your own 
crypto" has to come with the crypto 
library that should be used. Addition­
ally, finding a tool or technique ex­
perimentally ineffective in producing 
security does not prove it is ineffective 
outside of the controlled experiment, 
in the larger, messier, more diverse 
context of software development. 

What are some of the things being 
done in research that are hopeful for 
practical transfer into secure develop­
ment? Two current trends in security 
research provide some hope for se­
cure development. One is that secure 
development has emerged as a topic 
in security research conferences, cov­
ering topics such as evaluating devel­
opers' ability to use crypto securely 
and appropriately, evaluating tools to 
help developers avoid introducing vul­
nerabilities, and measuring develop­
ers' ability to code security-relevant 
functionality. 

The other hopeful trend is artifact 
evaluation. A lot of software develop­
ment builds on existing software, us­
ing frameworks, libraries, and open 
source. Offering an artifact used to 
establish and validate a research idea 
reduces the barriers to transfer of 
that idea into software development. 
Making code available through open 
source, with license terms friendly 
to reuse, can increase its potential 
for use. Some research incentives are 
shifting to encourage artifact submis­
sion as part of the research paper sub­
mission and publication process, at 

We need more 
research into 
the effectiveness 
and results of secure 
development tools, 
techniques, 
and processes. 

40 COMMUNICATIONS OF THE ACM MAY 2020 VOL . 63 NO. 5 

security conferences such as USENIX 
Security and ACSAC. 

Generalizing secure development 
research beyond the experiment is 
a challenge. A challenge of experi­
mental research studies on secure 
development is the extent to which 
the results can generalize beyond the 
participants and context of the study. 
The challenges with increasing the 
similarities between an experimental 
study and secure development con­
texts may argue for an experimental 
approach closer to observational as­
tronomy, medical case studies, or 
even public health than controlled 
laboratory physics experiments. 

One of the aspects that complicates 
the design of a study evaluating a se­
cure development process is the place 
of security in development tasks. As 
early usable security research called 
out, security is often not the primary 
goal of the user. Many of the human­
centered empirical evaluation meth­
ods in use by research fit best for evalu­
ating tools and methods in the context 
of explicit primary goals. In the secure 
development area, one of the aspects 
studied is avoiding the creation of vul­
nerabilities while coding, which is an 
implicit secondary goal. Prompting a 
coder to explicitly consider security 
has been so.own to impact their behav­
ior while writing code for the research 
study. Thus, studies that prompt the 
developer that way may not transfer 
to development contexts where cod­
ers are not told every hour to consider 
security for the code they are about to 
write, and we might guess that in the 
real-world developers would quickly 
tune out such messaging. However, 
remaining silent on the need for secu­
rity provides less security prompting 
than occurs in organizations with a 
secure development process. 

One exciting type of study balanc­
ing these concerns is the use of "Build 
It, Break It, Fix It" (BIBIFI) competi­
tions3 as a different type of research 
context to study secure development. 
In BIBIFI, teams compete over several 
weeks to build software according to 
a spec, gaining points for functional­
ity and performance. Then they com­
pete to break each other's software, 
causing the vulnerable teams to lose 
points. The context provides more 
control than a research field study, 



but more ecological validity than a 
smaller-scope lab study. The resulting 
performance of each team, in terms 
of points, coding, and testing, can be 
analyzed for insights into vulnerabili­
ties in a context that considers vulner­
ability-free code as only one part of 
the overall task. The contest may be be 
part of curriculum requirements. Both 
that assignment and competition can 
act as motivators to keep participants 
engaged better and longer than most 
research studies. 

Another complexity of research 
studies of secure development pro­
cesses is effective recruitment of 
appropriate demographics. The ex­
pertise and skills of the participants 
potentially impact everything from 
what can be studied to what the limita­
tions are on transferring the resulting 
findings to other contexts. Develop­
ment expertise can be approximated 
by aspects such as years of experience 
in development, languages used, 
types of products, and types of orga­
nizations worked in . How to contex­
tualize or measure security expertise 
of any particular developers, and in 
the general population of developers, 
remains an open question. Some re­
search is emerging comparing the im­
pact of demographic variables on the 
results of security task studies. 

What more should be done? On the 
research side, there should be an explicit 
acknowledgment of the topic ofresearch 
into the security results of secure devel­
opment processes. The security research 
community should explicitly recognize 
that part of our responsibility as security 
researchers is to foster the full spectrum 
of research into better security: founda­
tional research, practical research, and 
the transition of research into use (both 
successful and unsuccessful). A work­
shop venue for papers on security re­
search and the challenges of tech trans­
fer would be a solid step in identifying 
community and early work in the area. 

Perhaps the largest barrier to such 
research is researcher access to secure 
development processes and their re­
sults. This requires cooperation with 
developers and development organi­
zations. While each individual organi­
zation would profit from knowledge 
that would enable them to get the best 
results from their secure development 
process expenditure, getting there 

Cross-community 
collaboration 
between researchers 
and development 
organizations is key 
to making progress. 

would require a range of developers 
and organizations to cooperate with re­
search, with no clear short-term upside. 
For inspiration on overcoming that, we 
look to near miss programs in aviation, 
which contribute to the safety of general 
aviation. One of these systems, the Avia­
tion Safety Reporting System (ASRS) is 
comprised of confidential reporting, 
expert analysis by former pilots and air 
traffic controllers, publication of ano­
nymized data, and rewards for those 
submitting reports. The rewards are 
that regulators are required to treat sub­
mission as "evidence of constructive 
engagement," and will reduce penalties 
on that basis. The ASRS is operated by 
NASA, a respected scientific agency, so 
reports are not sent to a regulator, such 
as the FAA. 

There are proposals' for a near 
miss database for cyber. Mirroring the 
structure of ASRS, a scientific agency 
or FFRDC would collect confidential 
reports, analyze them, and publish 
lessons. Regulatory agencies would 
commit to giving consideration to 
companies who have programs that 
candidly report near misses. A near 
miss in cyber is a place where some 
controls function and others do not. 
So a spam filter might not stop an 
email message containing a phishing 
URL, and the click on the URL might 
be caught by a safe-browsing list or 
firewall. Being able to quantify the 
"misses" experienced in the field is in 
some ways analogous to public health 
data, and could make a case for vari­
ous types of investigations in SDP. Vol­
untary and rewarded near miss report­
ing should encounter far less industry 
opposition (after all, it is voluntary). 
Questions of scope could be examined 
over time by looking at the variance 

viewpoints 

between the voluntary responses . Be­
cause near misses give us data about 
both successes and failures, they rep­
resent a rich vein that we do not yet 
mine. 

With such a capability, research­
ers could delve into the causes of near 
misses, and consider if the compo­
nents of a SDP relate to important root 
causes. Root causes might be impor­
tant for many reasons. They might be 
the most common problems, might 
be problems for which compensating 
controls are expensive, difficult, or 
ineffective. Researchers might argue, 
and have evidence for, other criteria. 

Conclusion 
Getting at the ability for researchers to 
evaluate secure development practices 
in context is a difficult problem, but 
critical for evaluating the ecological va­
lidity of practices in the wide variety of 
software development contexts that ex­
ist. Cross-community collaboration be­
tween researchers and development or­
ganizations is key to making progress. 

The quality of software, including 
but not limited to security, is impor­
tant to society as we become increas­
ingly dependent on those qualities . 
How software development processes 
influence the qualities of software is 
thus an important societal question, 
worthy of study. As we improve the 
empirical evaluation of secure devel­
opment processes as a result of these 
collaborations, we will benefit from a 
broad and deep approach to expand­
ing our scientific inquiries. l!I 

References 
1. Bair, J. et al. That was close: Reward reporting 

of cybersecurity near misses. Colo. Tech. LJ 
16 (2017), 327; http://ctlj .colorado.edu/?page_ 
id= 7961/tabs-796-0 -5 

2. Lipner, S .. Jaeger, T., and Zurko, M.E. Lessons from 
VAX/ SVS for high-assurance VM systems. IEEE 
Security and Privacy 10, 6 (June 2012), 26-35: 
https://dl.acm.org/citation.cfm?id=2420631.2420857 

3. Votipka, 0 . et al. Understanding security mistakes 
developers make: Qualitative analysis from Build It, 
Break It. Fix It. To appear in Proceedings of the 29'" 
USENIX Security Symposium (USENIX) Security 
20, 2020. 

Adam Shostack (adam@shostack.org) is President of 
Shostack & Associates. a consultancy in Seattle, WA. USA. 

Mary Ellen Zurko (mez@alum.mit.edu) is a member of 
the Technical Staff, MIT Lincoln Laboratory, Lexington, 
MA. USA. 

The authors' views expressed here are not necessarily 
those of their employers. 

Copyright held by authors. 

MAY 2020 I VOL . 63 I NO. 5 COMMUNICATIONS OF THE ACM 41 


