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Abstract. An often reoccurring problem in digital image processing 
is the application of operators from differential geometry to discrete 
representations of cuNes and surfaces. We propose the use of fea­
ture detectors to improve the estimation of differentials of discrete 
functions. To this end we replace a differential operator by a bank of 
feature detectors and difference operators. The purpose of the fea­
ture detectors is first to examine the local behavior of the function. 
Next, depending on the outcome, the feature detectors select the 
most appropriate difference operator. For example, if the function 
behaves locally as a linear function, they select a difference opera­
tor that is well suited for linear functions. We show that this tech­
nique can be put on a firm mathematical basis. In particular, when 
designing a bank of feature detectors, we use Groebner bases for 
the functional decomposition and combination of the detectors. We 
illustrate the mathematical results with several practical examples. 
© 1997 SP/E and IS&T. [S1017-9909(97)00304-8] 

1 Introduction 

An often reoccurring problem in digital image processing is 
the application of operators from differential geometry to 
digital representations of curves and surfaces. To detect 
edges in an image we look for the relative extrema in the 
first directional derivative of the image function. To ana­
lyze a digital representation of a curve or surface, e.g., the 
representation of a heart obtained by computer tomography, 
we look for tangent planes. points of maximal curvature, 
surface normals. geodesics. shape operators. and Gauss 
maps. For continuous surfaces these are all standard func­
tions that can be computed by well-defined differential 
operators. 1 3 Differential operators, however, cannot be ap­
plied directly to digitized surfaces or digitized curves. An 
obvious solution is to replace the differential operator by a 
discrete operator, i.e., a difference operator. For instance, in 
their work on edge detection, several authors proposed dif­
ference operators to mimic the operation of taking first or 
second order derivatives (see Ref. 4). 

In this paper, we propose to replace a differential opera­
tor not by a single difference operator but by a combination 
of feature detectors and difference operators. The purpose 
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of the feature detectors is lo examine the local behavior of 
the function. Next, depending on their outcome, the feature 
detectors select the most appropriate difference operator. 
For example, if the function behaves locally as a linear 
function, they select a difference operator that is well suited 
for linear functions. If it behaves like a quadratic function, 
they select an operator well suited for quadratic functions. 
The replacement of a differential operator by a bank of 
difference operators involves three important choices: ( 1) 
the kind of features, i.e., whether we should look for linear. 
quadratic, symmetric, or other behavior: (2) the size of the 
neighborhood in which we are looking for a feature; and (3) 
for each detected feature, the most appropriate difference 
operator. One of the main goals of this paper is to introduce 
formal results that enable us to make these choices. We 
show that features can be sought for in a systematic way, 
and that for each feature and size of the neighborhood there 
is a best choice for the difference operator. 

The most extensive work on the application of differen­
tial operations to digital images was done in edge detection 
and in image enhancement while preserving edges. As ar­
gued by Torre and Poggio differentiation of an image cor­
rupted by noise is an ill-posed problem in the sense of 
Hadamard.5 Therefore, assumptions must be made about 
the smoothness of the image. the distribution of the noise, 
and the most important criteria that an edge must satisfy. 
Under such assumptions, so-called optimal edge detectors 
were derived by Canny,6 Sarkar and Boyer,7 and more re­
cently by Mehrotra and Zhan.8 

One way to take into account the local smoothness of an 
image is by fitting a function to it, as was done by Haralick 
to estimate the second order derivatives of an image.9 As 
pointed out by Nalwa and Binford, one of the major prob­
lems of differentiation by using fitting functions, is the 
choice of an appropriate basis of fitting functions. 10 To 
solve this problem they proposed lo fit functions to the 
image that are not chosen from one but from several bases 
of fitting functions , and to accept the fitting function that is 
adequate in the least squares sense and that has the fewest 
parameters. Similarly, the choice of the neighborhood in 
which the fitting is done may greatly influence the perfor­
mance of an edge detector. After a close examination of 
some of the defects of commonly used edge detectors, 
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Fleck proposed an edge detector that uses not one but mul­
tiple widths to compute the first order differences of an 
image. 11

•
12 Recently, the use of multiscale approaches and 

adaptive techniques for edge detection and image smooth­
ing have become quite popular. 13

·
14 

The main points of difference or resemblance of our 
approach when compared with previous work are the fol­
lowing: 

• We explicitly assume that the image is digital, and that 
the main source of noise is quantization noise (unlike 
many "optimal" edge detectors that often assume 
Gaussian noise, which may not always be very realis­
tic for digital images). 

• To detect features we use multiple bases of fitting 
functions. 

• We consider fitting in neighborhoods of different 
sizes. 

• In our approach, feature detection is based on uniform 
fitting, which seems to be the most appropriate form 
of fitting for digitized curves and surfaces. 

• We use Groebner bases as a powerful mathematical 
technique to design the feature detectors. 

• We derive precise error bounds for the estimation of 
the differentials. 

The main contribution, however, is that we introduce a 
formal technique to replace a differential operator by a set 
of difference operators. This technique has been inspired by 
two different lines of research. On the one hand, a careful 
analysis of 2-D difference operators leads to the use of 
Groebner bases, which only relatively recently became 
available as a powerful technique to study the structure of 
polynomial ideals. 15 On the other hand, in digital geometry, 
digitized curves and surfaces can be characterized with in­
equalities instead of equations. To manipulate these in­
equalities we can use the method of legal linear depen­
dences, which was introduced by Fourier and Motzkin. 16•17 

This method generates all possible relations that follow 
from a given set of inequalities. It can tell us what infor­
mation can be derived from the approximation of a continu­
ous function by a discrete one, and in particular, it can tell 
us about the approximation of a differential by a difference. 

The emphasis of this paper is on the theoretical results, 
although we also provide some experimental results to il­
lustrate the approach. Since some of the mathematical tools 
may not be familiar to a computer vision oriented audience, 
we first introduce the general idea in Section 2. Next, in the 
sections that follow we gradually fill in more of the math­
ematical details. 

2 Digitizing Differential Operators 

We introduce the main ingredients that we will need to 
"digitize" a differential operator. 

2.1 Feature Detection 

In what follows f denotes a digitized function/: Z"'-+ Z. A 
typical graph of such a function is shown in Figure I. To 
determine the behavior of/ at a point x O, or in other words 
to determine its features, we shall consider the error of fit in 
a finite neighborhood DC Z"' of x O. To be precise, let G be 
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Fig. 1 Finding a tangent to a digitized curve. 

a given class of fitting functions g: R"'-+R. We write 
1/-il.;;E as a shorthand for 1/(x)-g(x)l.;;E for all x 
ED. We say that/ behaves locally as a G-like function, if 
there is a fitting function i in G such that I/-g].;; E for a 
given threshold E. If we know that the only noise present in 
an image is quantization noise, then we can set E= 1/2. 

2.2 Difference Operators 

We express difference operators in terms of shift operators. 
The shift operator</ is defined by a;g(x)=g(x+i), for 
x, i E Z"'. The functional composition of shift operators can 
be expressed as a multiplication of polynomials, i.e. , 
a;a1g=a'+1f. A difference operator P can be represented 
as a polynomial in a, that is, P=2-!=oP;a ;. Ifwe write that 
Pg=O, for some difference operator P="2:.p;a;, then this 
means that "2:-p ,ai'(x) = 0 for all x E Z"'. If we write that 
IPJ-Pg].;;E, this means that IPJ(x ) -Pg(x) l.;; E for all x 
for which P f(x) is well defined, in other words, we must 
have (x + i) ED for every non vanishing coefficient p; of 
the difference operator P. 

We often represent 2-D difference operators by tem­
plates. Suppose we have a 2-D difference operator P 
="2:-p;ai, iEZ2, or written out fully, P=I;,,;JJ;,;Y 

X a'.; a '.:'. This difference operator can be represented by its 
2-D template: 

00P10P20 

02 P12 P22 

Po3 · · · 

We use the convention that the box at the upper left 
corner corresponds to p00 . Boxes with vanishing coeffi­
cients are either not drawn, or drawn as empty boxes. 

2.3 Decision Trees 

There is no unique way to replace a differential by a dif­
ference operator. For example, we could replace the differ­
ential d/dx by the operator D. x =ax - I, since at least for 
linear functions of the form g(x)=ax+b, both operators 
yield the same result, that is, dg/dx=t. xi=a. However, 
also the difference operators ( a2 

- I )/2, and ( a 3 
- I )/3 

yield the first derivative when applied to a linear function. 
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Fig. 2 Decision tree used to estimate a differential. 

To complicate matters even more, for a quadratic function 
g(x) = ax2 +bx+ c. the operator ~ x does not yield the fir t 
derivative of g, instead we have, for example, dg/di: 

A 1 -= ( ~. - u~/2)g =2ax+ h. 
To remove the arbitrariness in the choice of an appro­

priate difference operator, we propose to use a bank of 
feature detectors and difference operators. This bank can be 
represented as decision tree, of which Figure 2 shows one 
example. The nonterminal nodes of the tree consist of fea­
ture detectors. At the top of the tree we first examine 
whether the function f is linear, or close to linear as defined 
by the threshold E, in a three-point neighborhood of x0 . If 
this is the case, we tighten the constraints a little bit, and we 
verify whether the function is sti ll linear in a five-point 
neighborhood of x0 . On the other hand, if the function is 
not linear at all, we verify whether it is parabolic in a five­
point neighborhood. Next, depending on the outcome of the 
feature detection nodes in the tree, we elect an appropriate 
difference operator. For example, if the function is linear in 
a five-point neighborhood, we choose the operator ( CT4 

- I )/4. If the function turns out to be parabolic rather than 
linear, we choose the operator (-CT;+4CT~ - 3)/4. If no 
interesting features are detected at all , we choose the sim­
plest possible operator CT, - I as a last resort. Note that to 
simplify the notation of the difference operators, we often 
choose a neighborhood that extends to the right ide of x 0 • 

e.g., the three-point neighborhood {x0 ,x0 + I ,x0 + 2}. 
The decision tree captures the main idea of our ap­

proach. In the remainder of the paper, we gradually fill in 
more details about the mathematical structure, contents and 
possible extensions of the tree. 

3 More Structure for the Decision Tree 

In this section, we explain why there is a decision tree in 
the first place, and why the detection of features may help 
us to choose the most appropriate difference operator. Our 
first goal is to establish a simple connection between the 
fitting error for f and the error that results when we replace 
a differential by a difference operator. 

3.1 Replacing Differentials by Difference Operators 

Let L be the differential operator that must be replaced by 
a difference operator. As mentioned previously, we can find 
such a replacement by selecting a class of fitting functions 
G and a difference operator Q that works well for this 

class. To be precise, we have a difference operator Q 
= "iq ,u' such that Qr(= Lg. for every if in the cla s G. 

Theorem 1. Let .i( be an approximation for/ such that 
IJ-g],s;E. Then we have IQJ-L,fl ,s; E"ilq,I. 

Proof Let 1/(x)-i(x)l,s;E, for x in Z111
• Then, clearly 

lq;CTj(x)-q,CT'i(x)l ,s; Elq,I, for x,i in Z111
• If we add all 

the left sides and all the right sides of the preceding in­
equality for all terms q,<T; of the difference operator Q , 
then we find IQJ(x)-Q_if(x)l=IQJ(x)-Li(x)l,s;E"ilq,I. 

Hence, the difference operator Q will be a good approxi­
mation for the differential operator L provided the class of 
fitting functions contains at least one function i that is a 
good approximation for/. 

3.2 More Structure for the Feature Detectors 

Theorem I still contains the uncertainty that the cla s of 
fitting function may or may not contain a good approxi­
mation for the digitized function/. We now try to elimi­
nate the explicit occurrence of a fitting function in Theorem 
I by imposing additional constraints on the class of fitting 
functions. To this end we demand that the fitting function~ 
i satisfy a (possibly infinite) system of difference 
equations, i.e., P ,i = 0, or in other words G = {ii P ,i 
= 0. for i = 1,2, ... }. We use the operators P, to eliminate 
g from the inequality If- ii ,s; E. However, the set of op­
erators that can be used to eliminate the fitting function is 
much larger. We also have P I P 2g = 0, ( P 1 + P 2)g = 0, and 
in fact, for arbitrary difference operators Q,ER[CT], we 
have ("iQ,P,)g=0. 

The set of all possible difference equations satisfied by i 
is best described as the polynomial ideal / generated by the 
set of difference operators P, . Such an ideal consists of all 
difference operators of the form "iA,P,. where the A; are 
arbitrary polynomials in CT. We write / = (P 1 ,P2 , ... ) , and 
we say that the polynomials P; form a basis for the ideal /. 
Thus, Pg=0 for any operator Pin the ideal (P 1 ,P2 , ... ) . 

The introduction of the difference equations P ,i = 0 has 
erious implications with regard to the u e of fitting func­

tions. First, it follows that the class of fitting functions will 
be shift invariant, that is, if g is a fitting function then 0'1 i 
is also a fitting function. As a second consequence, by 
eliminating the explicit occurrence of i, we can also elimi­
nate the computation of a fitting function for f. 

Theorem 2. There is a fitting function i E G such that 
If- 81 ,s; E if and only if IP JI ,s; E"ilP,I for every PE/. 

Proof. Assume that / satisfies the inequality IP/I 
,s; EL IP ,I for every polynomial in / . Then we must prove 
that the system 

( I ) 

where x ED and "ip,0'1 E {P 1 .... ,P 11 }. has a solution for 

Journal of Electronic Imaging / October 1997 I Vol. 6(4) I 417 



Veelaert 

,-----',/ \~ 
,-----, 

<( Ox-l )3> <( Ox-1/> 
'--~-"'""'<5~ d<5 /y~ / y~ 

lox-11 -0~+:0~-3 10~2-l l lo~-1 1 
error<? error < 2E error < E error.;; E/2 

Fig. 3 More details for the decision tree. 

the indeterminates g(x). This is a system of linear inequali­
ties that, according to the Kuhn-Fourier theorem (see Stoer 
and Witzgall 16

), is solvable if and only if each of its legal 
linear dependences leads to a zero relation that is always 
true. In fact, for this particular system, all legal linear de­
pendences lead to zero relations of the form IP fl 
:,;;; EL IP ;I, where P = Ip ;<T; is a polynomial of/, and con­
versely, every polynomial P of I leads to a relation of the 
above form. By assumption, these relations are true. 

As suggested by Theorem 2, from now on we can verify 
whether f has the right features without bothering about 
which fitting function would actually yield the closest fit. 
The following is an immediate corollary of the previous 
theorems. It involves all the elements on which our propo­
sition is based: the combined use of feature detectors and a 
difference operators. 

Corollary 1. Let P;, where i= l, ... ,n, be a finite set of 
difference operators. Let f be a function satisfying IP fl 
:s;;EIIP;I for all operators P in the operator ideal / 
=(P 1 , ... ,Pn). Let Q be an arbitrary difference operator. 
Then there exists a function i satisfying P ;8 = 0 such that 

With regard to the uncertainty as to applying an appro­
priate difference operator, this corollary is an important im­
provement over Theorem I. It is now sufficient to verify 
whether f has the right features so that we can apply the 
appropriate difference operator Q. To this end we must 
verify whether f satisfies IPfl :s;; EIIP;I, for Pin/, since in 
that case, there is a good approximation for which the op­
erator Q gives the correct result. The operator Q and the 
feature verifying operators P are linked to each other by the 
fitting functions g. The fitting functions satisfy Pi= 0, and 
Q must be chosen such that Qi= Lg. 

We have now already filled in some of the details for the 
feature detection nodes of the decision tree, which is illus­
trated in Figure 3. For example, the feature detection node 
at the root of the tree refers to all polynomials P in the 
ideal (Ccrx- 1 )2

) of degreed less than 3. If the function f 
satisfies IPfl :s;; Eilp,I for each polynomial in this ideal, 
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then f is linear or close to linear in a three-point neighbor­
hood of x0 , and as a result we can use a difference operator 
appropriate for linear functions. 

3.3 More Structure for the Difference Operators 

Adding structure to the feature detectors has direct conse­
quences for the contents of the terminal nodes of the deci­
sion tree where we select a difference operator. In fact, 
once the class of fitting functions G has been chosen, it 
remains to choose an appropriate difference operator Q that 
satisfies Qg=Lg. Since (Q+P)g=Qi for any Pin/, 
there seem to be many possible ways to choose Q. The 
following lemma states, however, that there are no other 
possibilities than those provided by the ideal /. A proof is 
given in the Appendix. 

Lemma 1. Let g:R"'-->R be an arbitrary real function 
and let / be the ideal of operators P for which Pi= 0. Let 
Q be an arbitrary difference operator. Then any operator R 
satisfying Rg=Qg can be written as R=Q+P, where P 
E /. 

This clearly specifies which difference operators are 
valid candidates to estimate Lg. In fact, we can look for the 
best possible candidate. For any operator P in / we have 

If we look in / for a difference operator P for which the 
right side of the preceding inequality becomes minimal, 
then P + Q will give the lowest error when used to approxi­
mate the differential L. In principle, since the polynomial 
ideal / also has the structure of a real vector space, the best 
operator can be found by solving a linear programming 
problem, provided we eliminate the absolute values by tak­
ing into account the signs of p 1 + q 1 . 

We illustrate Lemma I for the decision tree of Figure 3. 
We must replace the differential operator d/dx by a differ­
ence operator. Part of the feature detection process involves 
linear fitting functions of the form g(x )=ax+b. The sim­
plest idea is to replace d/dx by the difference operator 
(a, - I). However, if we know that f behaves like a linear 
function in a large neighborhood of x0 , we can obtain a 
better result. Here / = ( ( a., - I )2) is the ideal of templates 
P for which Pi= 0. According to Corollary I, for any op­
erator of the form 

Q = ( ax - I ) + R (a , - 1 )2, 

where R is an arbitrary difference operator, the following 
inequality 

(2) 

is satisfied. In particular, we have 

I 
k I I <Tx; f - dg/dx :,;;; 2 Elk , 
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for k any positive integer. If the approximation of/ by a 
linear fitting function is excellent in a large neighborhood. 
then we can choose k large to obtain a low value for the 
error bound 2 td k. As shown in Figure 3, if/ is close lo 
linear in a five-point neighborhood. we can choose ( CT; 

- I )/4. 
Second, al the left side of the tree we use fitting func­

tions of the form f( .\) = ax2 + hx + c to detect quadratic 
behavior. In this case, we have J =((CT,- 1)3). or in other 
words. any difference operator P for which Pi= 0 is a 
multiple of the third order difference operator ~; = ( CT, 

- I) 3. The inequality of Eq. (2) now holds for every op­
erator of the form 

In particular, we have a first operator 

but also a second operator 

( O' - I )- 2 ( u- - I )-

I 
,I , , I 
' 

4 
1 

J - dgldx ,;;2€. 

Again, if we have a good parabolic fit in a five-point neigh­
borhood, the second difference operator yields better re­
sults. Also note in Figure 3 that the difference operators for 
linear functions give belier results than the difference op­
erators for quadratic functions, since they do not have to 
compensate for the quadratic term ax2. In other words, if 
the digitized function behaves locally as a linear function, it 
is appropriate to use difference operators derived for linear 
fitting functions. If the digitized function locally has a qua­
dratic behavior, then we must fall back on difference op­
erators derived for the quadratic functions, which perform 
slightly less. 

With the preceding results we have now filled in some 
more details about the contents and structure of the deci­
sion tree, as illustrated in Figure 3. In particular, we have 
fi lied in the structure of the feature detectors and the most 
appropriate difference operators. Furthermore, for each dif­
ference operator. we have filled in the error bound. For 
example, the operator ( O'; - I )/4 has an error bound of €/2, 
which must be interpreted as follows: If/ is close to linear 
in a five-point neighborhood of x 0 , then if we app ly this 
operator to/, we find a result that differs not more than c/2 
from the first derivative of a linear function f that is close 
to /, that is, IJ- ll ,;; E. 

Note, however, that in its current form the decision tree 
cannot yet be used in a practical way. According to what 
we have up to now, to detect whether a function has a 
certain feature (linear or parabolic) we must verify whether 
I P/1,;; EL IP ;I for all polynomials P of degree less than d in 
a polynomial ideal I , of which there are an infinite number. 
The reduction to a finite number of polynomials is the sub­
ject of the next section. 

4 Polynomial Bases for Feature Detectors 

The difference operators P, were introduced to define a 
class of fitting functions to improve our knowledge about 
the quality of the digitization of the differential operator L. 
We now take a closer look at the structure of the ideal I 
=(P 1 ,P2 , ... ). First we note that a polynomial ideal al­
ways has a finite basis. 

Theorem 3. Let / =(P 1 ,P2 .... ) be an ideal of differ­
ence operators generated by a possibly infinite set of opera­
tors P;. Then I is finitely generated. 

Proof. This is a restatement of Hilbert's basis theorem 
for polynomial ideals, 15 which states that any ideal of poly­
nomials in the ring R[ CT,, u , .... ] can always be generated 
by a finite basis of polynomials. 

Hence any ideal of polynomials in the ring 
R[u, ,O', , ... ] can always be generated by a finite basis of 
operators (B 1 , .. . ,8,,). Or equivalently. even if a system 
has infinitely many difference equations, all these equations 
can be obtained by multiplying, adding and translating a 
finite set of basis equations. 

Moreover, if we impose an ordering on the shift opera­
tors u, .u, ..... then we can always find a so-called Groeb­
ner basis for the ideal / (Ref. 15). A basis of an ideal is 
called a Groebner basis for / if the leading term of any 
clement of I is divisible by one of the leading terms of the 
polynomials of the basis. For example, if the polynomials 
are ordered according to lexicographic order, with O', 

> u, , then ( ( O', - I )2, (er, - I ) ( O', - I ) , (CT, - I ) 2) forms a 
Groebner basis for a given polynomial ideal I. The leading 
term of any polynomial in the ideal is always divisible by 
one of the leading terms er; , O', u, , er~ of the ba is. There 
exist efficient algorithms to calcuiate Groebner bases, and 
in tum these bases lead to efficient algorithms that can de­
termine whether a given polynomial belongs to an ideal / 
(Ref. 15). In this paper, we make only limited use of 
Groebner ba. es, in particular to find a minimal system of 
difference equations for a given class of fitting functions. 

Our next goal now is to apply Theorem 2. According to 
this theorem if we want to know whether there exists a 
good continuous approximation f for/, we should verify 
whether IPJl,;;cLIP,I, for every difference operator in/. 
In some cases, i.e., when the solution space of the differ­
ence equations is a finite linear vector space. we can show 
that the feature can be detected without error by verifying 
only a finite number of inequalities. Assume therefore that 
the general solution of the partial difference equations 
P 1g=O, .... P,,g=O can be written as 

Thal is, the solution set of the difference equations is a 
linear vector space that has g 1, ... ,g I as a basis. Let K O be 
the set of all difference operators of the fonn 
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cr'1 

with x; e D. Thus the operators of KO can be written as 
determinantal expressions of the coefficients g,(x,) and the 
shift operators cr'1 • Furthermore, let / 0 denote the set of all 
the difference operators in / for which P J(x) is well de­
fined for at least one x in D, that is (x + i) ED for every 
nonvanishing coefficient p; of the difference operator P. 
The following theorem follows from an elimination theory 
for linear inequalities. 18 An outline of its proof is given in 
the Appendix. 

Theorem 4. The polynomials of K0 form a finite basis 
for the ideal generated by IO . Furthermore, if the function 
f satisfies the inequality IPJl..:;er, IP, I for every polyno­
mial P in KO , then / will satisfy this inequality for all 
polynomials of / 0 . 

Note that this theorem imposes a constraint on the size 
of the neighborhood D in which we use the fitting function, 
that is D must be large enough such that / 0 is equal to / . 
Or equivalently, / 0 must contain a basis for / . 

We illustrate these results for the decision tree of Figure 
3. At the left side of the tree we use a feature detector for 
fitting functions of the form g(x) = a 1x

2 + a 2x + a 3 . In this 
case, the polynomials of the set KO have the form 

x 1 x~ 

For example, for {x1 , ... ,x4}={x0 ,x0+ l,x0 +2,x0 +4}, 
the preceding determinant is equal to a ~0( 6 - 16a r + 12a; 

-2a;). After evaluating the determinants for all the four­
point subsets of the five-poin t neighborhood {x0 ,x0 + 1,x0 

+2,x0 +3,x0 +4}, we find that / behaves like a parabolic 
function provided f satisfies 

Likewise, at the root of the tree, we find that / behaves 
like a linear function provided f satisfies l/(x0)- 2 f( x0 

+ l )+/(x0 +2)l..:;4e. 
From now on we have a practical implementation of the 

decision tree. Each feature detector can be implemented as 
a finite set of inequalities that must be verified. For ex-
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Fig. 4 Result of applying a decision tree to a sine wave. 

ample, to detect whether a function has a quadratic behav­
ior in a five-point neighborhood, we must verify the pre­
ceding five inequalities. 

4.1 Some Experimental Results for a First Order 
Differential 

We briefly illustrate the application of the simple decision 
tree that we have designed in the previous sections. Figure 
4(a) shows a digitized sine wave. Figure 4(b) shows a co­
sine as the first order differential d/dx of a sine wave. Fur­
thermore, it shows the result of applying the difference op­
erator 6., to the digitized sine wave, and the result of 
applying the decision tree of Figure 3 to the digitized sine 
wave, which is closer to the exact result. 

Figure 5 shows the result of applying a decision tree that 
is the same as that of Figure 3 except for the fact that the 
neighborhoods were chosen to be symmetrical around 

0.1 

-0.S 

decision 
tree 

I S 

d/dx 

" IS 

Fig. 5 Decision tree with symmetrical operators applied to a sine 
wave. 



Selecting appropriate difference operators 

,, 

< A~, A~, Ax A y > I 
~ ;v 

I< A~- A~, AxAy, A$> I 
d<3.3 

N V 
./ 

error< 0 

ico~o;+ o~+ 0~ + 1-40x0y)/21 

error< 4E 

Fig. 6 Decision tree for the Laplacian. 

x0 , e.g., as a five-point neighborhood we use {x0 - 2.x 0 

- Lr0 ,x0 + l ,x0 +2}. Also shown is the result of applying 
the symmetrical difference operator ( a 1 - a~ 1 )/2 to the 
data. From all Lhe difference operators in the decision tree, 
this difference operator is by far the most suited for this 
particular sine wave, and therefore it was also selected most 
of the times by the feature detectors in the decision tree. 

5 Two-Dimensional Operators 

In this section, we discuss some of the peculiarities that 
arise for 2-D operators. This further illustrates the useful­
ness of Groebner bases. In particular. we design a decision 
tree for the Laplacian operator a2 I ax2 + ;12 I ay2. as shown 
in Figure 6. We use features derived from three different 
kinds of fitting functions: 

For all features, the chosen neighborhood is a 3 X 3 array 
centered around (x0 -Yol-

5.1 Template Bases in Two Dimensions 

First we must lind template bases fo r the feature detection 
nodes of the tree. We il lustrate this for the fitting functions 
of the form j(,1,y)= a 1(x2 + /)+ a 2x+ a3y+ a 4 . As ex­
plained in a previous section, the polynomials of the set K D 

have the form 

a'1<r'1 
I \ 

1 1 

X5 Ys x;+ Ys 

For example, for {(x 1 ,y 1), ... }={(0,0).(l, l),( 0,2) . 
( 1.3),(0.4)}. this determinant is equal to P0= -a~ 
- 2 a I a-'+ 2 a I a:+ l. which corresponds to the template · 

-2 

2 

Thus by choosing different five-point subsets we can gen­
erate in a systematic way the polynomials of K D that, ac­
cording to Theorem 4, form a basis of/ D. Or, equivalently, 
we can generate templates that can recognize functions of 
the required form. In addition, we can find a Groebner basis 
for the ideal that describes all possible templates related to 
this feature. In general, a small sample of polynomials K D 

suffices to calculate such a Groebner basis. In this case, we 
have generated a few subsets at random to find ( ( a 1 - 1 )2 

-(a,-1)2.(a,- l)(a,-l),(a,- 1) 3) as a basis. In 
other words. for quadratic functions with circular symme­
try, any difference operator P for which Pg=O. can be 
written in the form 

where the R, are arbitrary difference operators. Thus we 
have found a concise description of all possible difference 
equations satisfied by quadratic circular symmetric func­
tions, which is our first step in finding an appropriate dis­
crete replacement for the Laplacian. 

The Groebner basis that we have found corresponds to 
the templates 

~ 
~ 

-1 

3 

-3 

1 

Because of the fundamenta l property of Groebner bases, 
every template of the feature detector can be written as a 
formal combination of the above three templates. More pre­
cisely, by using a simple division algorithm, we can de­
compose any template of / D into combinations of the 
Groebner templates. 15 For example, the polynomial PO= 
-a~-2a,a, +2a,a~+ 1 has the following decomposi­
tion: 

This corresponds to the following decomposition of the 

Journal of Electronic Imaging / October 1997 I Vol. 6(4) 1421 



Veelaert 

Table 1 Functions and corresponding Groebner bases with lexico­
graphic ordering where ax> a y. 

Function 

a, 

a 1x +a2 

a 1(x+y)+a2 

a 1x+a2y+a3 

a 1xy+ a2X+ a3y+ a4 

a 1 (x+ y)2+ a2(x+ y) + a3 

a 1 (x2 + y2) + a 2x+ a3y+ a 4 

a 1 (x+ y) 2+ a2X+ a3y+ a4 

a 1x2+ a 2y2+ a3x+ a4y+ as 

a 1 x2 + a 2y2 + a3xy+ a 4X+ a5y+ as 

templates: 

1 

-2 2 -2 
-2 2 + 2 -2 

2 -2 2 
-1 

Groebner Basis 

(lix, .l y) 

(Li; ,liy) 

(Lix- li y ,Li;) 

(Li~ ,lix!iy ,Li;) 

(Li~ ,Li;) 

(Lix-liy,Li;) 

(Li;-Li;, Li xii y, Li;) 

(Li~ - Li; , Li y( Li x- li y), Li;) 

(.l; ,li xiiy ,Li;) 

(Li;, Li ~Li y, lixli;, Li;) 

1 

-3 1 

+ 3 + -3 

-1 3 

-1 

where the templates at the right side are combinations of 
the second and third templates of the Groebner basis . 

Similarly, we can find the Groebner bases for other 
classes of fitting function. Table I lists some classes of 
fitting functions and their corresponding bases. For each 
class, the corresponding Groebner base completely charac­
terizes the templates that will recognize the feature derived 
of the fitting functions. 

Hence, we can now fill in bases for the ideals for the 
feature detecting nodes, which is shown in Figure 6. Figure 
7 shows the same decision tree, but now with templates 
instead of polynomials. 

Fig. 7 Templates of the decision tree for the Laplacian. 
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5.2 Difference Operators in Two Dimensions 

As before, once we have found the template bases for the 
polynomial ideals, we can look for the best difference op­
erators. For example, for quadratic functions of the form 

we find that 

Therefore, for quadratic functions any differential operator 
Q(a,,ay) of the form 

Q( a_, ,ay) = t:,, ; + t:,, ;+ t:,, ~R 1 + t:,, ;R2+ t:,,;t:,, 1,R 3 + t:,, ,t:,, ;R4 , 

where the R; are arbitrary polynomials in the shift opera­
tors, yields the exact value for the Laplacian. In particular, 
the operator (a;a;+a;+a~+ 1-4axa)l2 is a symmet­
ric operator that has the preceding form, and for which 
2:lq;I is as small as small possible. In Figures 6 and 7, this 
is the difference operator that has been filled in for func­
tions that behave quadratically in a 3 X 3 neighborhood. 
Similarly, we have filled in the difference operators for the 
other features. 

The difference operators obtained in this way lead to 
some interesting conclusions. Without feature detection we 
would probably choose the classical discrete equivalent of 
the Laplacian whose template is shown at the lower left 
side of Figure 7. However, when we find that the digitized 
function is locally linear or close to linear, the best possible 
difference operator is the zero operator, which yields an 
error equal to zero. In fact, the Laplacian of a linear func­
tion vanishes, and this is known without uncertainty. For 
quadratic functions with circular symmetry (the next level 
in the decision tree), we find that it is sufficient to compute 
the second order difference in a diagonal direction. Finally, 
for quadratic functions we find that the best difference op­
erator has a template that is equal to the classical discrete 
Laplacian operator rotated over 45 deg and divided by 2. 

6 Incomplete Feature Detection 
Up to now we have explained the general method of digi­
tizing differential operators. The selection of an appropriate 
difference operator depends on the detection of features. 
According to Theorem 4, a feature can be detected by veri­
fying a finite set of inequalities. However, from a compu­
tational viewpoint this set may still be too large. However, 
Theorem 4 also has important consequences regarding the 
error characterizing parameters of smaller template bases. 
Suppose that instead of using the polynomials KO we use 
only a small subset K;. As expected, this may lead to a 
possible misclassification of features. In terms of the deci­
sion tree, it means that it will increase the error of the 
estimation of the differential. We show that this error can 
actually be measured by examining how the polynomials 
K 0 can be decomposed into polynomials of K;. 

We assume that K; contains a minimum number of nec­

essary polynomials. We assume that K; contains at least a 
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basis for the ideal / . and that if P, e K; and u-1 P e K O , 

then also P e K;. Let P 1 •.. . • P,, be a basis of K;. Thus, 
the polynomials P, generate the ideal / , which, as we have 
seen, has a subset K O of polynomials corresponding to tem­
plates that can detect the feature without errors. Since the 
polynomials P, form a bas is of the ideal / , every polyno­
mial P of K v can be written as 

Now we make the important assumption that there is a 
decomposition such that every term A,P; of this decompo­
sition belongs to / 0 . With this assumption the value of 
IA ,P JI is well defined, and it fo llows that 

IPJ l.;; IA 1P ifl + ... +IA/IP JI- (3) 

As a result the values of IA ;P J I impose an upper bound on 
the value of IP JI. In particular, if f sati sfies the inequalities 
corresponding to the polynomials of K; , then we have 

IA,P J l.;; E(I)a~l)(I1IP;I) . The right side of this inequal­
ity is a fi xed number depending on the coefficients of P , 

and P, but independent of f. 
This kind of error analysis can be done for every poly­

nomial P of KO . Consequently, there is a global parameter 
,- ;;;. Q such that if/ satisfies the inequalities of the original 
templates, then f also satisfies IPJI .;; ( ,- + I ) t:Ilp1I for ev­
ery Pin K 0 . 

Hence, in general. to detect whether there is good ap­
proximation for the function / , we do not have to verify all 
the conditions IPJI .;; ELIP,I for all polynomials P in the 
ideal K v. It suffices to use a small but well chosen set of 
polynomials P 1, .. . , P 11 , for which the error parameter r is 
small. If the digiti zed function f sati sfies the preceding in­
equality for the templates P;, then there will be a fitting 
function .f such that If - §1 .;; ( r + I ) E. 

6.1 Incomplete Feature Detection in Two 
Dimensions 

Also in the decision tree fo r the Laplac ian, we can reduce 
the number of inequalities that must be veri fied to detect a 
feature. As explained before, it is sufficient to verify only a 
small number of inequalities if we accept an additional in­
crease of the maximal error by a factor r . For example, 
suppose that to fi nd out whether f behaves like a quadratic 
function with circular symmetry, we verify only whether f 
satisfies the inequalities of the templates corresponding to 
the Groebner basis (at the second level of the tree): 

lu-',~( u ,- I )(a, - I )Jl .;; 4E, 

la'. ~(u-, - I )3J l.;; 4E. 

How will this increase the maximal error? From the previ­
ous decomposition of the polynomial P OE K O it follows 
that 

I p nf I .;; 4 I ( (J" \ - I ) ( u-, - I ) JI + 21 ( u-, - I ) 3/ I . 

This implies that 1P nfl .;; (4 X4 +2 X4 )t:=24E. Hence, al­
though f may not satisfy the inequality IP nfl.;; 6 E, which is 
necessary to guarantee errorless detection, it is ensured that 
it satisfies the weaker inequality IP nfl .;; 24E. Hence the 
maximal error will increase by at least a factor 4. 

6.2 Decompositions Inside Rectangular 
Neighborhoods 

We mention one final peculiarity that arises when we 
decompose 2-D templates. In Eq. (3) we assume that we 
are using a template basis P 1 , ... , P II such that every poly­
nomial P of KO can be decomposed as P =A I P 1 + · · · 
+ A 11P,,, where all terms A ,P; belong to / 0 . The polyno­
mials of a Groebner basis, and the determinantal expres­
sions of Theorem 2 often provide a useful starting point to 
find such template bases. 

We illustrate this for the detection of linear functions. 
We use the templates 

rn 
Lili] rn (4) 

to detect whether f is a linear function of x and y. Let the 
region D be an M X N rectangle. We denote K 0 as K M N 

and / 0 as I MN . The corresponding polynomials P 1 = ( u-, 
- 1)2 , P 2 =(u-,- l )( u-, - I ), and P 3 = (u-,.- 1)2 generate 
an ideal/ , and in fact, form a Groebner basis for / . Clearly, 
every polynomial P of K MN has a decomposi tion of the 
form P= A 1P 1+A 3P3+ R , where none of the terms A,P, 
has degree higher than M in u-, or higher than N in u-i-, and 
R has the fonn R= a+hu-, +ca,,+da,a, . Or equiva­
lently, it is easy to see that, by translating and subtracting 
the fi rst and the third template, an arbitrary template 

!Pao Pio P20 p3ol 

P11 P21 

IP02 P12 

can be reduced to a 2 X 2 square 

Pao P10 

Poi Pu 
(5) 

But, according to Theorem 4, the polynomials of K 22 form 
a basis for/ 22 . From the determinantal expression 
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X1 YI a xl(rl 
X y 

X2 Y2 
ax2cr2 

X y 

X3 Y3 
a x3cr3 

X y 

X4 Y4 
U X4 cr'4 

X )' 

for the polynomials of K M N , it follows that K 22 = { P 2} . 

Hence, R must be a multiple of P 2 , and therefore every 
polynomial P of KMN has a decomposition of the required 
form, i.e. with all terms A;P; in/ MN. In other words, given 
a M X N rectangular region, any template in KM N can be 
decomposed into the elementary templates [Eq. (4)] with­
out leaving the rectangle. This is not always possible. Sup­
pose we use the templates 

(6) 

to detect the linearity of /. These are 1-D templates; they 
verify the linearity off in the vertical, horizontal and one 
of the diagonal directions. The corresponding polynomials 
are Bi =Cax- 1)2, B2=(axay- l )2, and B3=(ay- 1)2. 
One can easily see that the polynomials P; and B; generate 
the same ideal / , hence their templates are recognizing the 
same kind of feature. It follows that we can use these three 
new 1-D templates to detect the same 2-D feature, but not 
without introducing additional errors. 

In fact, it is clear that the 2 X 2 square [Eq. (5)] cannot 
be reduced any further without traversing its boundaries. 
However, since both bases generate the same ideal / , we 
can decompose P 2 in terms of B 1 , B 2 and B 3 ; that is, 
2P2=( 1-2ay)B 1+ B2-a~B3 , or equivalently 

~~~H 
EtTI = □ + 7lJ ttrrf 

Hence, if we have a rectangular M X 2 region 

or a rectangular 2 X N region then there are templates in 
KMN that cannot be decomposed into a combination of the 
templates of Eq. (6) without leaving the rectangle. 

7 Concluding Remarks 

In this paper, we proposed a method to convert differential 
operators into difference operators that can be applied to 
digitized functions. The main idea is to replace a differen­
tial operator by a decision tree with feature detectors and 
difference operators. We gave formal results that guide the 
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design of such a tree. We discussed the choices that must 
be made, and we gave error bounds for the performance of 
the difference operators. Groebner bases turned out to be 
powerful tools to examine the mathematical structure of 
feature detectors and systems of difference equations. They 
can be used to reduce a system of difference equations into 
its simplest form, and to decompose the templates of the 
feature detectors into elementary templates. 

We have given a number of practical examples to illus­
trate the design aspects and the practical use of decision 
trees. According to these examples, the combined use of 
feature detection and difference operators based on firm 
theoretical results is possible and seems to be a promising 
technique. 

8 Appendix 

8.1 Proof of Lemma 1 

If Rg=Qi for all gEG, then (R-Q)g=O for all gEG. 
Furthermore, G is a linear subspace of the vector space of 
all real functions h: Rm--+ R. Every difference equation 
P ;i = 0 states that i must be orthogonal to some vectors 
pf, where the coordinates of the vector p7 are the coeffi­
cients of P; shifted over k places, k E Z. Conversely, every 
vector that is orthogonal to G can be written as a linear 
combination of the vectors p7. It follows that any operator 
(R -Q) can be written as (R -Q) = 2.A;P;. 

8.2 Proof of Theorem 4 

Since i= a 1g1 + · · · + a 1g1 , the system of Eq. (1) can be 
rewritten as 

( 

l[a1 i1(x)+ · · · a,i,(x) ]-f(x)I~ E 

~ P;[a1i1(x+i)+···+a1g1(x+i)]=O. 
(7) 

Because the functions ij are solutions of the difference 
equations P ;g = 0, the equalities of this system are trivially 
true. The legal linear dependences of this system that in­
volve precisely / +I of the inequalities correspond to the 
polynomials P of K0 . According to the elimination theory 
for linear inequalities, the validity of these dependences is 
sufficient for the system to be solvable.18 Therefore, the 
system of Eq. (7) has a solution if and only if IP fl 
~ ELIP;I for all P of K0 . Furthermore, every legal linear 
dependence for Eq. (I) generates a similar legal linear de­
pendence for Eq. (7), and vice versa. Hence, the polynomi­
als of KO form a basis for / 0 . 
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