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ABSTRACT 

Sediment load estimation is one of the challenges of river engineering. More researches have been con­
ducted to develop a perfect model to sediment transport simulation. Analytical and data-driven models 
are two main groups of models. In this paper, one dimensional fully coupled model and artificial neural 
network models performance is compared in sediment rating curve simulation in Ahwaz station, 
Karoonriver, Iran. 1D fully coupled model has calibrated and validated using ash-Sutcliffe coefficient. 
The magnitude of 0.15 and 0.19 of NS coefficient for calibration and validation periods of coupled model 
represent good agreement of the model with average condition of river. According to calculation, derived 
sediment rating curve using ANN with FFBP algorithm, has good agreement with measured rating curve. 
In high flows, both two models have difference with measured data. In general ANN model has more 
accuracy than coupled model. 
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Introduction 

Surface erosion and sediment transport have been 
research issues for more decades due to their eco­
nomic and cultural developing importance. Erosion 
and sedimentation are two phenomena which occur 
in river such as flow condition variation lead s to 
change in their effective parameters and vice versa. 
On the other words, stream flow and sediment 
transport are simultaneous phenomena. Theoretical 
analysis of sediment transport is conducted in 
simple condition due to its highly complex nature 
(Wu, 2007). 

Performance and reliability of models for sedi­
ment transport estimation are depending to modal­
ity of simulation. Sediment transport models are 
categorized in two groups: (1) models based on dy-
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namic and fluid mechanics rules, (2) data-driven 
models. Time and dimension are two important cri­
teria for the first group classification. For more engi­
neering applications, cross sectional properties of 
sediment and flow is important. lD model requires 
the least amount of field data and numerical 
schemes u sed for solving the water and sediment 
governing equations are more stable and offer order 
of magnitude gains in computational time over 20 
and 30 models. 10 models simulate the flow and 
sediment transport in the stream wise direction of a 
channel without solving the details over the cross 
section (see for example Kassem and Chaudhry, 
1998; Cao et al., 2002) . A model was developed by 
Wu et al. (2006) for unsteady flow condition in canal 
network. They showed that the model can predict 
flow and sediment characteristics accurately. Zhi et 
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al. (2006) developed fully coupled model for sedi­
ment transport based on mixing length theory. 
There was good agreement between laboratory and 
field data. Conroy et al., (2006) used 1D model for 
sediment transport rate in forest catchment. 
Huybrechte (2008) developed a 1D fully coupled 
model to study sediment rate in Yellow River. The 
model has acceptable results with measured data. 
Because of unknown effective factors in sediment 
transport simulation, the application of the second 
group of models has been developed. The simplest 
example of a data-driven model is provided by a lin­
ear regression where a single input variable (e.g. 
wave height) is used to provide an estimate of the 
predicted variable (e.g. sediment transport rate) . 
Many different (and more complicated) data-driven 
algorithms have been developed and Artificial Neu­
ral Networks (ANNs) are an excellent example of 
such algorithms (Maanen et al., 2010) . ANNs algo­
rithm was applied for the first time by French (1992) 
for water resource issues (French et al., 2003). Basics 
and principles of ANNs wasdescribed in hydrology 
and hydrogeology studies through a paper by 
ASCE. In recent years, the successfully application 
of ANNs in sediment transport simulation has been 
reported through various researches: Nagy et al. , 
2002; Merritt et al., 2003;Cigizoglu, 2004, Kisi, 2004; 
Agarwal et al. , 2005; Rai and Mathur, 2008; Wang 
and Traore, 2009; Rajaee, 2011;Wang et al., 2012; 
Adid and Jahanbakhahan, 2013; Fuladipanah and 
Sangi, 2013). 

As it shown, in recent years 1D model have wide 
application in sediment transport simulation. The 
most 1D models have been derived based on 
Navier-Stocks equation which has complex numeri­
cal solution. It is worthwhile to develop a model 
using control volume concept which will have the 
least complexity. Fuladipanah et al. (2010) devel­
oped 1D fully coupled one. Their model has the fol­
lowing four main factors. First, many scientific prob­
lems can't be solved by neglecting flow dynamic, i.e. 
assuming the balance existence between exerted 
forces to flow, which are leaded to the normal flow). 
But their model is a fully dynamics one. Second, 
flow and sediment transport are time dependent 
processes. Empirical relationship often do not satisfy 
this dependence. Hence, calculation of flow and 
sediment properties at arbitrary time, is the model's 
grant. Third, as mentioned foreside, the complexity 
of interaction between flow and sediment transport 
make it difficult to describe this coupled phenom-
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ena. In this model based on conservation rules, this 
phenomenon has been modeled explicitly. Forth, in 
many early models, it is assumed that the actual 
sediment transport rate is equal to the capacity of 
flow sediment at equilibrium condition at each cross 
section. However, alluvial river systems always 
change in time and space due to many reasons; 
therefore, absolute equilibrium state rarely exists in 
natural condition. The local equilibrium assumption 
is not realistic, particularly in case of strong erosion 
and deposition. According to successful application 
of ANNs in sediment transport prediction, a com­
parison between 1 D fully coupled and ANN capa­
bility has been done in this paper. For actual com­
parison, simulated rating curve from these two 
models was compared with measured one in 
Karoon River, Ahwaz station, Iran (Fig. 1). 

Fig. 1. Karoon River, Ahwaz and Mollasani Stations 

Materials and Method 

1D Fully Coupled Model 

Model equations are derived based on following 
assumptions: (1) the main part of sediment load is 
suspended; (2) there is no abrupt contraction or ex­
pansion in undertaken reach; (3) pressure has hy­
drostatics distribution; (4) suspended load routing 
can be simulated using diffusion model. Based on 
these assumptions, continuity and momentum con­
servation lows were derived using control volume 
concept and Reynolds transport theorem as follow­
ing, respectively: 

0:-\ +( S- 1 )' :A) -, ~-\ -( S-1) . ·:CU) =O .. (1) 
ct "' C1i. ox 

~ "' -{s-!) ii(U~ l_ ,>;~ -(S-1 )~": -gA ~ -g(S-!)CA~ =gA(S,-S,)(1 - (S-l)CJ 

(2) 
Where x and t are space and time variables, re­

spectively, A is cross section area, Sis specific grav-
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ity of sediment particle, U is mean velocity, C is 
sediment concentration by weight, g is gravity accel­
eration, y is flow ~epth, S1 is energy line slope, S

0 
is 

bed slope. Accordmg to the fourth assumption, dif­
fusion equation was used to sediment concentration 
routing: 

.. (3) 

Where Dx is diffusion coefficient. Flow depth, y, 
flow velocity, U, and sediment concentration, C, are 
three variables which should be determined in each 
time step. Manning roughness coefficient, n, and 
diffusion coefficient, Dx, are two constants, which 
should be determined during calibration period. 

Equations (1) to (3) are partial differential equa­
tions with non-analytical solution. Implicit finite dif­
ference scheme was used to discretize numerical 
solution. 

ANNs Model 

The concept of using Artificial neural network is not 
new, but its application began from about 1946 by a 
person named Hu, who used it to predict the 
weather. ANN is one of the artificial intelligence 
vari~ties which act generally as man brain. The sys­
tem 1s composed of a large number of processing 
elements called neurons. ANN provides a random 
mapping in between an input and an output vector 
by mimicking the biological cognition process of our 
brain . Each typical ANN contains three layers of 
neuron including: input layer, hidden layer, and 
output layer(referring to Fig. 2). 

These neurons are interconnected, but indepen­
dent computational unit which works as the follow­
ing equation: 

Input euron w Vector Input 

r--'\( ' 

PR 
\..__) \, __ 1 ___ __,J 

a=f(wp+b) 

Fig. 2. Working of a neuron 

435 

.. (4) 

Which P; is input values, w
1

_; is connection 
weights that determines the strength of connection, 
b is bias value which increases the net input to the 
activation function and therefore accelerate the error 
convergence, f is threshold function. The threshold 
functions usually have a sigmoid shape 
(Rezaeianzadeh et al. (2010), Jalalkamali and 
Jalalkamali (2011), chang and Liao (2012), Dorofki et 
al. (2012), Moharampour et al. (2012)) with the fol­
lowing definition: 

f 

X-Jtrr.in z=-­
x -l¼:.il 

.. (5) 

.. (6) 

where z is normalized input data. In ANN the 
models are mostly prepared in two stages: training 
and validating. Usually 70 to 80 percent of mea­
sured data are used in training stage. Therefore, 20 
to 30 percent of data will be applied in validating 
stage. Network training using available data is the 
first step to provide ANN. Training comprises pre­
sentation of input and output pairs to the network 
and fixing the values of connection weights, bias or 
centers. The training may require many epochs (pre­
sentation of complete data sets once to the network). 
Generally, the network is presented with the input 
and output pairs until the training sum-square error 
reach the error goal in order to give the desired net­
work performance. Error back propagation is one 
type of training which has more application in engi­
neering problems. This network is trained for feed 
forward back propagation (FFBP) Figure 3 shows 
the architecture of network. 

After each training process, predicted values 
have been compared with real or observed ones. 
Statistical indicators such as, correlation coefficient 
(R), root mean square error (RMSE), mean absolute 
error (MAE),average absolute relative error (AARE). 
These four statistical indicators are used to evaluate 
effecti~eness of the proposed method considering 
followmg measured data using following equations: 

R= I f= -r~;J 

''f.~ Jtcb.X>Ji:i) (x.._.r~ -
.. (4) 

.. (5) 
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Fig. 3. Architecture of ANN 

.. (6) 

.. (7) 

In the above equations, xabs is the observed 
parameter,xestused for predicted parameter and n is 
the numberof available data. 

Results and Discussion 

1D Fully Coupled Model Performance 

As mentioned, Ahwaz station in Karoonriver has 
been selected for the case study. For model running, 
Mollasani station was selected as upstream bound­
ary condition. Flow and sediment transport rate was 
simulated for 365 days from 22 September 2003 to 21 
September 2004. This time has complete data re­
cording. Doing calibration period for the first 120 
days, Manining roughness coefficient was deter­
mined 0.028 (Fig. 4). 
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;oo 

120 240 360 

Fig. 4. Simulated and measured flow rate in calibration 
and validation periods 
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The Nash-Sutcliffe coefficient (NS) of model effi­
ciency was used as a statistical criterion for evaluat­
ing hydrodynamic goodness of fit between mea­
sured and calculated values for each variable, which 
is recommended by American Society of Civil Engi­
neers Watershed Management Committee for evalu­
ating the performance of models that 
simulatecontinues hydrograph. It defines as follow­
ing: 

~ ( . ~ 
·s=l- . ,,i,, •7 

~i (Qo;-Qj• .. (8) 

Where Q
0
is measured discharge value, Q est is 

simulated values of flow discharge and n is the 
number of data pairs. The perfect fit between mea­
sured and simulated values would plot as 1:1. A 
value of zero suggests that the fit is as good as aver­
age value of all the measured data for each event, 
indicating a poor model fit . Negative NS values 
(having no lower limit), generally considered mean­
ingless, indicate poor predictive value of model, 
with negative values indicating a poorer model fit. 
Table 1 shows some statistical properties of sedi­
ment load during calibration and validation periods. 
Measured versus simulated values of sediment con­
centration is plotted in Fig. 5. 
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ANN performance 

Out of the 365 data, 80% selected for training pro­
cess, and the rest were applied for model 
validation.Normalized data were used for ANN 
model in the range (0,1). Logsigmoid and 
Tansigmoid activation function were selected for 
hidden and output layer of FFBP model, respec­
tively. Tansigmoid and Purline activation function 
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were selected for hidden and output layer of CFBP 
model. Logsigmoid, Tansigmoid, and Purline acti­
vation functions have the following expression: 

1 
a= - -

1 e·lt .. (10) 

.. (11) 

Table 2 shows the model architecture selection 
criteria. Results of ANN performance are presented 
in Table 3. 

Simulation of sediment rating curve 

As mentioned, the result of coupled model and 
ANN model has been compared in simulated sedi­
ment rating curve. Figure 6 shows measured sedi­
ment rating curve in Ahwaz station. In this figure, 
three trend-line of power type have been drown. 
The coefficients of power type trend-line are pre­
sented in Table 4. 

As it clear, 10 fully coupled model has good 
agreement in low flow, but there is more difference 
in high flow. In high flow, the amounts of bed resis­
tance and dispersion coefficient are different from 
normal flow condition. Also, the prismatic assump-
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Fig. 6. Simulated VS. Measured sediment rating curve in 
Ahwaz station 

tion of channel section (no abrupt contraction and 
expansion) may insert errors in numerical output of 
model. The difference between ANN output and 
measured data is very low, although in high flows 
this is significance. According to Fig. 6, fitness in 
average condition is reasonable for two models. 

Table 1. Measured and calculated values of suspended load concentration on Ahwaz station 

Number of values 
Average(ton/ day) 
Maximum 
Minimum 
Sum 
Standard deviation 
NS coefficient 

Calibration Run 

Measured Calculated 

93 
35486 45583 

1170556 1127771 
1260 204 

3300187 4239198 
150676.7 181781.4 

0.15 0.19 

Table 2. Statistical criteria to select acceptable architecture 

Number of hidden Number of R RMSE 
layers nodes 

1 3 0.3875 125.3 
1 5 0.5548 98.4 
1 7 0.7369 25.1 
1 10 0.9233 4.6 

Table 3. etwork configuration 

Algorithm Network configuration 

Input nodes Hidden nodes 

FFBP 4 10 

Validation Run 

Measured Calculated 

20 
34083 35752 
140588 126529 

1054 1581 
681656 715041 
40966.5 42245.85 

MAE AARE 

89.6 0.72 
63.1 0.57 
11 .4 0.29 
2.1 0.1 

Epochs 

Output nodes 

1 89 
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Table 4. The coefficients of trend-line equation (Q,=aQh) 

10 Fully coupled Measured ANN rating 
model rating curve rating curve curve 

a 
b 

0.106 
2.123 

Conclusion 

0.0537 
1.9788 

0.0407 
1.986 

Sediment load estimation is a complex phenomenon 
which has been investigated several decades. In this 
paper, two methods were applied to simulate sedi­
ment rating curve in Ahwaz station, KaroonRiver, 
Iran; as following: (1) one dimensional fully coupled 
model, (2) artificial neural network. The first model 
was calibrated and validated during 23 September 
2003 to 22 September 2004. The NS coefficient was 
used to determine the best performance of the 
model. According to Table 2, the amount of NS co­
efficient was calculated for calibration and valida­
tion period 0.15 and 0.19, respectively. On the other 
words, this model simulates the average condition 
of river. In high flows, the accuracy of model de­
creases (Fig. 6). The ANN model was applied in two 
algorithms: FFBP and CFBP. With trial and error 
process, 10 nodes were selected for hidden layer. 
The correlation of coefficient between measured and 
calculated data is 0.9233. According to Fig. 6, the 
ANN has very good agreement with measured data. 
Although in high flows its accuracy decreases. In 
general it can be said that 1D fully coupled model 
and ANN model can simulate average condition of 
sediment load estimation. But, in high flows, the 
ANN model has high accuracy. 
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