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Abstract: 

The structure and integrity of telomeres are 
essential for genome stabi lity. Telomere deregulation can 
lead to cell death, cell senescence or abnormal cell 
proliferation. The maintenance oftelomere repeats in most 
eukaryotic organisms require telomerase, which consists 
of a reverse transcriptase (RT) and an RNA template that 
dictate the synthesis of the G-rich trand of telomere 
repeats. Structurally, telomerase reverse transcriptases 
(TERT) contain unique and variable N- and C- terminal 
extensions that flank a central RT- like domain. The level 
of telomerase activity is important in determining 
telomerase length in aging cells and tissues. Here, 
evidence on the importance of telomerase activity is 
reviewed with respect to aging rates, as well as the health 
and life span of individuals. 
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Introduction 

Telomeres are simple repeat elements located at 
each chromosome end of eukaryotic cells [J]. The main 
function of telomeres is to cap the ends of chromosomes 
thus preventing DNA open-end which can lead to 
activation of DNA-damage responses, chromosomal 
fusions , and chromosomal instability [2-4]. Due to the 
'end-replication problem' of DNA polymerase, telomeres 
shorten during each cell division by 50-100 base pairs 
(bp). Telomere length in human is 5-10 kb and the 
proliferative capacity of primary human cells in tissue 
cu lture is limited to 50-70 population doublings [5] , 
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before telomeres reach a critical length no longer ensuring 
telomere function. At this stage, cellular senescence, 
characterized by permanent growth arrest, is induced [6-
8]. Telomerase is an enzyme that adds DNA sequence 
repeats ("TTAGGG" in all vertebrates) to the 3' end of 
DNA strands in the telomere regions, which are found at 
the ends of eukaryotic chromosomes [9]. Activity of 
telomerase is required to prevent telomere shortening and 
thus to ensure cell and organism survival. Telomerase can 
synthesize telomeres de nova and consists of 2 essential 
components, an RNA component erving as a template for 
telomere sequence synthesis and a reverse transcriptase 
[10-14]. The telomerase holoenzyme often contains 
additional proteins that are not required for catalysis per 
se. These include the usual reverse transcriptase and RNA 
core components (Est2 and TLCJ respectively) and two 
accessory factors Estl and Est3. Although Estl and Est3 
are not required for in vitro telomerase activity, mutation 
in these genes lead to progressive telomere shortening, the 
so called ever shorter telomeres (est) phenotype [15]. In 
humans , telomerase expres ion is regulated very 
restrictively. It is only active during embryogenesis, 
whereas its postnatal activity is suppressed in most 
somatic tissues but remains active in a subset of cells, such 
as germ cells [16] , stem cells, progenitor cells [17] and 
activated lymphocytes [ 18-21]. Postnatal suppression of 
telomerase expression in most somatic tissues is thought 
to represent a potent anti-tumor barrier not allowing the 
immortal growth of transformed cells [22]. A flaw of 
telomerase suppression is the limited growth of primary 
human cells which might affect the regenerative capacity 
of organs and tissues during aging and chronic diseases. 

Regulation of telomerase 

The molecular mechanism for regulation of 
telomerase in humans is not well known and remains to be 
elucidated. Several lines of evidence suggest that the 
existence of repressors rather than the absence of 
activators might control the tight regulation of telomerase 
reverse transcriptase (TERT) expression in humans 
(known as hTERT) [23]. Therefore, it seems certain that 
identification and characterization of these will provide 
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additional info rmation on the molecular mechanism of 
te lornerase regulation poss ibly pointing to n ew 
therapeuti c targets for the treatment of regenerative 
di sorders during aging [24]. Exceptionally, limited 
telomerase activiti es is detected in some normal human 
cells such as germ cell s, bematopoietic stem ce ll s, 
intes tinal crypt cell s and basal layer cell s of the epidermis 
in human skin. Since a ll of these cells have highly 
regenerative capacities, the maintenance of telomerase 
acti vity in the e cell compartments seems to contribute to 
preservation of regenerati ve potenti als by slowing 
telornere shortening rates. 

Contrary to most nonnal tissues, over 80% of 
human cancers show expression and activ ity of telomerase 
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(Fig. I). Critically short telomeres due to successive cell 
di visions cause replicati ve senescence or apoptotic cell 
death [25-27]. For unlimited proliferation, telomerase 
activation might be a critical step for nonnal cells to be 
transform ed to cancer ce ll s . However, acti va ted 
telomerase itself does not appear to work as an oncogenic 
factor but rather erve only as a promoting factor in 
overcoming the barrier of critical telomere shortening 
caused by continuous proliferati on in already transformed 
cells. Among all components of the telomerase complex, 
expression level of TERT, the catalytic subunit, is most 
clo ely matched to the level of telomerase ac tivi ty [28-30) 
but not in all ca es [3 I]. Recent evidence also points that 
RecQ heli cases also contribute to the proper fun ctioning 
and maintenance of telomeres [32]. 

TELOMERE 

RNA 
TEMPLATE 

DNA STRAND 

INACTIVE OR ACTIVE 

ABSENT TELOMERASE 
TELOMERASE 

REPEATING 
DNA SEQUENCE 

IN TELOMERE 

Vo lwne l Issue I January-June, 201 I 

A- T 
A - T 
T - A 
C - G 
C - G 
C-G 

Fig. 1 Chromosome, Telomere and Telomerase 

6 1 

NUCLEOTIDES 

ctbcr@mmumullana.org 



Telomere shortening 

Aging is a multifactorial process that has been adjusted by 
nature to a wide spectrum of life spans, even in closely 
related species, therefore suggesting that aging is a 
flexible trait susceptible to the influence of a number of 
molecular pathways [33-35]. One such process is the 
progressive attrition of telomeres that occurs in 
association with organismal aging in humans [36] and in 
other mammals, such as mice [37]. Telomere length is now 
considered to be a biomarker of age [38]. Telomeres are 
specialized structures at the ends of chromosomes that 
have a role in protecting the chromosome ends from DNA 
repair and degrading activities. Mammalian telomeres 
consist of TTAGGG repeats bound by a multiprotein 
complex known as shelterin. A minimum length of 
TTAGGG repeats and the integrity of the shelterin 
complex are necessary for telomere protection [39, 40]. 
Telomerase is capable of compensating telomere attrition 
through de nova addition of TTAGGG repeats . onto the 
chromosome ends by using an associated RNA component 
as template (TERC, telomerase RNA component) [41]. 
Telomerase is expressed in most adult stem cell 
compartments; however, this is not sufficient to maintain 
telomere length, as evidenced by the fact that telomere 
shortening occurs with age in most human and mouse 
tissues [2, 36, 37]. Furthermore, some diseases 
characterized by premature loss of tissue renewal and 
premature death, such as dyskeratosis congenita, anernia, 
and idiopathic pulmonary fibrosis, are linked to germline 
mutations in TERT and TERC genes, which result in 
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decreased telomerase activity and accelerated telomere 
shortening [ 42-46]. A role for telomerase in tissue renewal 
and organismal life span i also supported by telomerase
deficient null mice. Longevity is progressively shortened 
upon succe sive intercrossing of telomerase-deficient 
mice [ 4 7] , an effect already noticeable at the first 
generation of TERC null mice where both the median and 
maximum life span are reduced [ 48]. Finally, telomerase 
overexpression is sufficient to extend the life span of most 
human cells in cultw-e [ 49]. Together, the evidence 
strongly suggests that telomerase activity and telomere 
length are rate limiting for mammalian life span and 
supports a model in which short telomeres actively 
contribute to aging by limiting tissue renewal. 

Telomere shortening during aging occw-s in a 
variety of human tissues and organs including dermal 
fibroblasts [50], mucosa! keratinocytes [51 ], peripheral 
blood cells [52 , 53] , gastrointestinal epithelial cells [54] , 
adrenocortical cells [55] , renal cortex [56] , liver [57, 58] 
and spleen. Most of these tissues and organs are 
mitotically active indicating an outcome of cell divisions 
on telomere shortening during aging. This finding is also 
supported by the observation that telomere length is stable 
in mitotically inactive organs such as brain and 
myocardium [59]. However, some of the tissues affected 
by telomere shortening during aging, like liver and renal 
cortex, show very little mitotic activity indicating that 
there must be factors other than cell divi ion modulating 
the attrition of telomeres during aging. In line with this 
hypothesis, the kinetics of telomere shortening during 
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aging is not linear. Telomere sho1tening is accelerated in 
peripheral blood cells in young infants, going plateau in 
older children , and slowly decreased in adults [60, 61]. 
Another explanation for telomere shortening in 
mitotically-inactive organs during aging is, that telomere 
shortening might predominantly affect a proliferative sub
population of cells within an organ ( e .g. endothelial cells, 
lymphocytes, connective tissue) without affecting 
differentiated organ-specific cell types (e.g. hepatocytes 
in liver or glomernli cells of the kidney) [58, 62]. 
Therefore, a cell-type specific measuring of telomere 
length is required in future studies to understand the role of 
telomere shortening in aging tissues and organs. 

Different mechanisms have been suggested as the 
cause of accelerated telomere shortening in chronic 
diseases (Fig. 2). These include (i) Elevated rates of cell 
turnover; (ii) Inhibition of telomerase activity by mutation 
of telomerase subunits; and (iii) Telomere shortening by 
increased levels of intracellular reactive oxygen species. 

Together, there is growing evidence that telomere 
shortening and senescence might affect the regenerative 
capacity of organs and tissues during aging and chronic 
disease. It is important to test this hypothesis by analyzing 
the effect of telomere shortening and telomere 
stabilization in animal models. Over the recent years the 
essential components of mouse telomerase, mTERC and 
mTERT, have been identified and cloned. Further, 
knockout and transgenic mouse models have been 
developed facilitating study on the effect of telomere 
shortening in vivo [63, 64] 

Telomere biology and telomerase activity as 
determinants of aging 

When compared with closely related primates, 
humans have relatively short telomeres [65] , and 
telomerase activity is very low in most cells, except for 
some types of stem cells, the gern1 line, and some somatic 
cells such as T- lymphocytes [66]. If telomere exhaustion 
were a major cause of aging one would expect humans to 
be relatively susceptible to thi s process and mice to be 
resi stant; obviously the much longer life span of humans 
would suggest that differences in telomere biology is not a 
major determinant of life span among mammals. 
However, this simple argument leaves open two related 
questions: first, are differences in tclomere biology 
important determinants of aging and life span among 
individuals withjn a species?; and second, even if 
telomerase and longevity are not positively correlated, is it 
possible that they could be negatively correlated: could 
high telomerase activity be a factor causing shorter life 
span? 

The question of whether differences in telomere 
biology are important detern1inants of aging and life span 
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among individuals within a species is only meaningful in 
species such as humans that have limited telomerase 
activity. Nevertheless, it is possible to address the question 
of the consequences of shortened telomeres in tissues by 
engineering mice to lack telomerase activity. Mice with 
defects in the TERC gene undergo generation-dependent 
telomere shortening. In later generation of telomerase
deficient mice, various organs exhibit impaired functions , 
demonstrating that sufficiently short telomeres do have an 
adverse impact on tissue function [67]. However, 
experiments in mice cannot answer the question of 
whether telomeres ever reach a "critical" length, i.e. a 
length that impairs proliferation (or conceivably some 
other cellular property), in any tissue in humans during a 
nonnal life span. There is little evidence that commonly 
observed changes in older individuals, such as anemia and 
impaired wound healing, result from impaired cellular 
proliferation, which would be the anticipated consequence 
of shortened telomeres. Despite the lack of clear evidence 
for impaired proliferation in aging there is, in fact, good 
evidence for progressive telomere shortening in many 
human cell types, including peripheral white blood cells, 
smooth muscle cells, endothelial cells, lens epithelial 
cells, muscle satellite cells, and adrenocortical cells, 
among others [68]. One example is of particular interest: 
proliferative capacity is closely related to telomere length 
in endothelial cells. Telomere lengths in endothelial cells 
decreased as a function of donor age, with a greater decline 
being observed in cells isolated from the iliac artery in 
comparison to cells from the thoracic artery [69]. The 
greater decline in telomere length was observed in the cells 
that had likely undergone more proliferation in vivo, 
because they resided in a part of the vascular system where 
blood flow might cause most chronic damage to the 
endothelium. However, it is difficult to test this hypothesis 
directly. 

Thus, telomere shortening does indeed occur in 
the human body during aging. The question, as stated 
above, is whether this telomere shortening is a determinant 
of differences in aging and life span among individuals. 
Two aspects to this question are: (i) whether telomere 
length, as measured in specific cell populations in the 
body, correlates with longevity or disease; and (ii) whether 
telomere shortening in any cell population causes 
functional impairment of that cell population. At the 
present time the only cell populations that have been 
subjected to the required depth of analysis are peripheral 
white blood cells and some white blood cell subsets. 

Several observational studies have attempted to 
gain insight into the question of whether age related 
telomere shortening in human peripheral white blood cells 
is associated by way of health and disease status. One 
study concluded that " in and of itself, SES [ socioeconomic 
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status] appears to have an impact on WBC [white blood 
cell] telomere dynamics" [70]. Another study of mothers 
of chronically ill children concluded that "psychological 
stress is associated with indicators of accelerated cellular 
aging [including] telomere length" [71]. Both of those 
studies suggest an influence of perceived psychological 
status on telomere length. Of course, psychological stress 
does not necessarily cause stress at the cellular/molecular 
level. One plausible link is the endocrine system [72]. 
Possibly, the explanation for the differences in telomere 
length in individuals of differing psychological status lies 
in the actions of hormones such as glucocorticoids on cell 
death and cell proliferation in the hematopoietic system. 

Conclusion and future perspective 

Telomere shortening resulting from the absence 
oftelomerase activity may be a factor in determining some 
age-related properties of organs in humans. Reactivation 
of tel om erase removes a barrier to the continued growth of 
developing cancers; lack oftelomerase activity provides a 
tumor suppressor function . There are at least three major 
questions that need to be answered . First, we need to know 
what telomere length in human tissues is associated with 
functional impairment, of specific organs, tissues or cell 
populations; second, because of the great heterogeneity in 
telomere lengths between cells and between different 
telomeres within cells, we need to know if there could be 
impairment of individual cells, even if there is no deficit 
in the cell population as a whole; and third, we do not know 
if telomere length in white blood cells, or T lymphocytes, 
correlates with telomere length in other tissues. Gaining 
access to appropriate tissue samples to test this is 
problematic. Is there a specific cell population in the body 
in which telomere length directly determines differences 
in health, disease or the actual rate of aging among 
individual humans? This is possible, but we have no 
evidence to support the existence of such a population of 
cells. Activation oftelomerase on one hand could prevent 
telomere shortening, chromosomal instability and cancer 
initiation, but on the other hand could allow cancer 
progression of nascent, transformed cells in the organism. 
Extensive research in the years to come should yield more 
convincing evidence on these issues. 
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