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Abstract 

We study monopolistic pricing, with a capacity constraint, of a good that loses its 
value after three periods. In each period a continuum of buyers, each of whom 
might be one of two types, enter. Each of the buyers chooses either to make a 
purchase as soon as they enter, or to wait for a lower price. The price path is 
found to be strictly non-decreasing, u-shaped or horizontal for different 
proportions of buyers with a higher willingness to pay. Any strategy involving 
'final sales' is non-optimal. The predictions are empirically tested. 

Keywords: Dynamic pricing, capacity constraints, time-sensitive goods, 
subgame perfection 

JEL Classifications: L 10, L93, C72. 

1. Introduction 

It is a well-known fact that passengers on the same flight, traveling in the same class, 
often end up paying different prices for their tickets. This is because the prices of such tickets 
vary over time, often within the span of a few hours. While buyers have the option of purchasing 
tickets months prior to the date of departure, casual observation suggests that the prices offered 
by an airline are high if a purchase is attempted too early, drop after a period of time and then 
prior to departure they rise again. An empirical study by Stavins (2001) indicates that five weeks 
prior to departure, prices start rising . Instead of monotonically reducing prices, selling every 
available seat and waiting for takeoff, the airline instead, chooses to save a certain number of 
seats for future buyers, who would be willing to pay a high price for the same seats. This shows, 
that in order to solve for the optimal price path of such goods, we need a model with a finite time 
horizon, where one or many sellers while facing a capacity constraint, offer(s) a finite measure of 
units for sale. In each period, a continuum of buyers, each of whom might be one of two types, 
enters the market. The seller chooses, without precommitment, price and measure of units to 
offer in each period, while each of the buyers choose either to make a purchase as soon as they 
enter, or to wait for a lower price which might be made available in the future. 

The operations research literature identifies airline ticket pricing as dynamic pricing (also 
known as yield management), where the product ceases to exist at a certain point in time and 
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capacity can only be added at a very high marginal cost. The product being discussed here is 
non-durable, non-storable and cannot be resold . We could consider an airline ticket to be a 
futures contract on a service to be provided by the airline in the future. As the airline attempts to 
sell tickets over time, it is in effect signing contracts with different customers on different terms. 
As the seller is unable to precommit to the terms of the contract in the future and is in effect 
competing against future versions of himself (herself), he (she) faces the same intertemporal and 
time-consistency problems as a durable-goods monopolist. Other examples of such products 
include hotel rooms, generated electricity or other "sell before" goods where transactions occur 
through a futures contract (McAfee and Velde 2004 ). Given the similarities in the problems facing 
an agent signing multiple futures contracts (airline) and a durable goods monopolist, we can refer 
to the vast literature on time-consistency issues in a durable-goods monopoly. 

In this paper, we use a model which extends that of a durable-goods monopoly model by 
Conlisk, Gerstner and Sobel (CGS, 1984). In their infinite time horizon model, a new cohort of 
consumers enters the market in each period. The consumers in each group differ amongst 
themselves in terms of the valuation for the good. Some of these buyers choose to make a 
purchase in the same period, while others decide to wait for a lower price. Usually the single 
seller, who does not face any capacity constraint, prefers to sell the product at a price just low 
enough to sell immediately to consumers with a high willingness to pay, as long as revenue 
earned from selling to high type buyers exceeds revenue earned from selling to low type buyers. 
However, as sufficient number of consumers with a lower willingness to pay accumulates in the 
market, the seller holds a ·sale' by dropping the price low enough, so that buyers with lower 
willingness to pay can buy the product. This leads to an equilibrium where periodic ·sales' are 
held and the corresponding price path is cyclic;. We extend this model, by introducing a capacity 
constraint for the single seller and by solving for the equilibrium for a finite time horizon. 

The main predictions of the theoretical model are as follows. First, a sufficiently patient 
seller never offers any ·sale' in the last period. This is because the seller chooses to reserve 
some units for sale in the last period and offer them at high prices to high valuation buyers who 
enter the market in that period. Second, the measure of units offered for sale in any period where 
the seller chooses to offer the good to both types of buyers is a decreasing function of the 
proportion of high type buyers in the market. Third , the shape of the price path is horizontal, u­
shaped or strictly non-decreasing for various ranges of parameter values. For example, for routes 
with the highest proportion of high type buyers, sellers had no incentive to offer a sale and the 
price path is horizontal. Routes with lower proportions of high type buyers have price paths which 
are strictly non-decreasing or u-shaped. 

We collected data on prices over 15 weeks for 30 routes in the US. While the first 
prediction was found to be empirically valid, we find little evidence to support the hypothesis that 
the price path should be horizontal for routes with the highest proportion of buyers with a higher 
willingness to pay. We classified the routes into low, medium and high proportion of high type 
buyers and find that prices increase as the date of departure grows closer for all three types of 
routes. The rate of increase was highest for routes with the highest fraction of high type buyers. 
We did find some evidence for a u-shaped price path for routes with low or medium proportion of 
high type buyers when we looked at the last 10 weeks of observations. 
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2. Review of Literature 

As mentioned in the previous section, even though airline tickets are not durable, the 
intertemporal problems facing a seller of airline tickets are identical to those facing a durable 
goods monopolist. We thus begin the review of literature section by referring to the literature on 
durable goods monopoly. The problem of intertemporal price discrimination as faced by a 
durable-goods monopolist has been the focus of several papers over the years. In his seminal 
paper, Coase (1972) conjectured that a durable-goods monopolist would be unable to exert any 
monopoly power. This is because rational buyers would anticipate correctly that in the absence of 
precommitment to future prices, the monopolist would reduce prices in an attempt to cater to 
residual demand and would refuse to buy the product as long as prices remained above the 
competitive level. 

There are two assumptions, which are crucial to our model. The first is that the seller 
faces a capacity constraint, while the second is the constant influx of new buyers. It has been 
found that the Coase conjecture fails to hold under these assumptions. McAfee and Wiseman 
(2003) show that capacity costs of arbitrarily small degree can eliminate the zero profit 
conclusion. Capacity costs borne by the seller serve as a strong commitment device, as the 
choice of capacity enables the seller to slow the sales, reduce the fall in prices and thus permits 
the seller to set initial prices above marginal costs. Papers by Sobel (1984), Conlisk, Gerstner 
and Sobel (1984) show that the equilibrium in a model with a continual influx of new buyers 
involves price cycles where each seller produces a homogeneous good and sells it to consumers 
with different willingness to pay. A cyclic price path is also obtained in a paper by Narasimhan 
(1989), who uses a framework similar to that of CGS, but assumes that the entry of new 
consumers is governed by a diffusion process. In his model , t~e number of buyers who enter the 
market in each period is a function of cumulative sales and is time variant. Unlike Conlisk et al. 
the market size in his model is fixed, such that after some time saturation effects set in. 

An alternate outlook is presented in papers by Brumelle and McGill (1993) and Wollmer 
(1992), who solve for an optimum airline seat booking policy, where lower fare class customers 
book tickets before higher fare class passengers. In these papers, airlines solve for a critical 
number of seats in each fare class, which are reserved for potential future passengers who are 
willing to pay a higher price. Booking requests for a particular fare class are accepted if and only 
if the number of empty seats is strictly greater than its critical level and rejected otherwise. 
Wollmer shows that this critical value is a decreasing function of the fare price and is equal to 
zero for the highest fare {class). However, these papers lack the flavor of durable goods, as 
buyers do not have the option of staying in the market to wait for a lower price, while sellers do 
not compete with future incarnations of themselves. 

Stavins (2001) addresses the issue of how airline prices move over time in a paper in 
which she examines how price discrimination changes with market concentration in the airline 
market. Price discrimination is found to increase as the markets become more competitive. The 
data set included fares offered 35 days prior to departure, followed by 21 days prior to departure, 
14 days prior to departure and finally 2 days prior to departure. The data thus allowed for 
examination of how prices change as the departure date drew closer. From the OLS regression it 
was discovered that cheaper fares disappear, leaving only more expensive tickets for sale. 
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McAfee and Velde (2004) provide an extensive survey of yield management research in 
operations research journals and then test the predictions of these models with airline pricing 
data collected from 1,260 flights. They test the following five propositions. First, prices fall as the 
date of departure approaches. Second, prices rise initially. Third, competition reduces the 
variance in prices. Fourth, prices change as the number of empty seats remaining change and 
finally fifth , prices of flights leaving from substitute airports or departing at substitute times are 
correlated. They find that prices increased $50 in the week before takeoff on top of a rise of 
$28.20 the previous week. Thus the first proposition was empirically false and theories that 
assume that customers arriving in the market at different points in time are identical are invalid. 
Overall, there was scant empirical evidence in favor of the major theoretical predictions.2 

However, the routes considered by them had multiple airlines serving them, such that their results 
are inapplicable for models with a single seller. 

Etzioni et al (2003) devise an algorithm called Hamlet, which when trained on a data set 
comprising of over 12,000 observations over a 41 day period, was able to generate a predictive 
model which enabled 607 simulated passengers an average savings of 27%. Flights were found 
to have discernible price tiers and the number of such tiers varied from two to four, depending on 
the airline and the particular flight. They find that pricing policies tend to be similar for airlines 
belonging to the same category and that the prices fluctuate more and are more expensive for 
bigger airlines. Finally, they observe that prices increase two weeks prior to departure, which 
corroborates the empirical finding of Stavins. 

The main contribution of this paper is to provide insights into the relationship between the 
proportion of buyers with a higher willingness to pay and the corresponding shape of the price 
path, from a model which incorporates some essential features of an airline pricing problem. The 
paper proceeds as follows. In the following section a basic three-period model is developed and 
strategies for both players outlined. Section 4 identifies possible candidates for Subgame perfect 
outcomes and describes conditions under which we get the different price paths. Section 5 
describes the data, 6 the empirical model while section 7 presents the results. Section 8 contains 
the conclusions. 

3. Model 

Setting. Time is discrete. We can consider a finite horizon model of T periods. The good 
has a lifetime of T periods, after which it is assumed to be lost forever. In order to consider a 
simple version, we assume that T = 3. 

Supply side. There is a single seller of the product. The monopolist faces constant 
marginal cost, assumed without loss of generality to be zero. The total measure of units of the 
product (seats) available to the monopolist is 3 . The seller chooses to offer a continuum of units 

of measure qi e [0,3) for i = 1,2,3 in period i. The seller also chooses price Pi for period i , so as 

to maximize sum of discounted revenue earned, calculated at discount factor p, with O < p < 1. 

The monopolist cannot rent the product; at any given date, the monopolist cannot make binding 
commitments about future prices and measure of units to be offered for sale. 

2 They do not specify as to whether the second proposition was found to be empirically valid. 
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Demand side. A continuum of buyers of measure 2 enters the market in each period, 
with each buyer having unit demand. Buyers in each cohort can be one of two types. A continuum 
of buyers of measure 2o. (with O < a < 1) enter the market in each period and have valuation for 

the product given by V1 , while a continuum of buyers of measure 2(1 - a ) enter the market in 

each period and value the good at V2 , where V1 > V2 > 0. Buyers with valuation V1 are said to 

be of ' high' type, while buyers with valuation at V2 are said to be of 'low' type. We assume that 

the majority of buyers entering the market in each period are of low type and hence a E (0, 1 / 2). 

Buyers are rational. Each buyer on entering the market decides either to purchase the 
product in the current period or to wait for a lower price, except for buyers in the last period, who 
either decide to buy or not to buy the product in the last period. In the event that the buyer is 
indifferent between buying in the current period and waiting (or not to buy), the buyer is assumed 
to make the purchase immediately. Buyers assume that their own decision as to when to buy the 
product has no bearing on other buyer's decision as to whether and when to buy the same 
product. This is a consequence of the assumption that we have a continuum of buyers in the 
market. The probability that the buyer will get the product in period i is given by <l>i which is 

determined endogenously. _Once a consumer buys the product, he or she leaves the market 
forever. A consumer who has not bought the product stays in the market till period 3 , regardless 
of when he or she first entered the market. Finally, no resales are allowed . All consumers are 
price takers , and they have no bargaining power. This, once again, is a consequence of the 
assumption that we have a continuum of buyers in the market. 

Timing of events. At the beginning of period 1, the seller announces the price for the first 
period, p1 and the measure of units available for purchase, q1. A continuum of buyers of 

measure 2 enter the market in the first period, of which buyers of measure 2o. are of 'high' type 

and buyers of measure 2(1- a ) are of 'low' type. Each buyer decides whether to buy the 

product in the first period , or to wait for a lower price, which might be made available in the future. 
Based on p1 and q1 , the seller knows the measure of units that were actually sold in the first 

period. At the beginning of the second period, the seller announces price for period 2 , p2 and 

the measure of units available for sale in the second period, q2 . A new cohort of buyers (of 

measure 2 ) enter the market in the second period. These buyers along with the buyers who 
decided not to buy the product in period 1 and hence chose to remain in the market then 
constitute the total measure of buyers in the market in the second period. Each of these buyers in 
turn decides either to purchase the product at price p2 or to wait for a lower price in period 3 . A 

similar sequence of events follow in period 3 , except for the fact that buyers of both types in 

period 3 , choose either to purchase or not to purchase the good in the last period . 

We assume that the type of each buyer is publicly observable, such that we have a 
complete information model. We further assume that, even though the seller knows the type of 
each and every 'active' buyer in the market at any point of time, he or she is unable to price 
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discriminate and must charge (or announce) a single price in every period.3 We solve for the 
Subgame perfect outcomes of the game described above for various combinations of parameter 
values. Conversely, we could have assumed that the buyers' types are not observable. In that 
case, Perfect Bayesian equilibrium would have been the appropriate equilibrium concept, where 
we would have to explicitly specify how agents form beliefs for information sets on and off the 
equilibrium path. 

Notation. The following notation is introduced in order to describe the total measure of 
'high' and 'low' type buyers in the market at each point of time, as well as the measure of units left 
with the seller at the beginning of each period. 

b~ = Total measure of 'high' type buyers in the market including ones entering the 

market in period i . 

b~ = Total measure of 'low' type buyers in the market including ones entering the market 

in period i . 

s; = Measure of units left with the seller at the beginning of period which is a function of 

P;_1,q_1,bt1,b~1 and s;_1, where P;_1,q_1 are control variables and bt1,b~1,s;_1 are state variables 

for period i -1 . 

Transition Equations. If d; denotes demand for the product in period i, while m; 

represents measure of units actually sold in period i then m; = min{q;,d;} where 

3 

d = {b~ if V2 _< P; ~ p~ 
' bH bl·f v · i + i I P; ~ 2 

2a + b~ if P; > p~ , V q 

2a + (b~ - m;) if V2 < P; :,; p~, q; < b~ such that m; = q 

2a if V2 < P; :,; p~, q ~ b~ 

2a + b~ ( 1- H q L) if P; :,; V2,q; < b~ + b~ 
b; +b; 

2a if P; :,; V2 ,q ~ b~ +b~ 

By 'active' buyers we mean buyers who have chosen not to purchase the product in previous periods 
and have instead chosen to remain in the market for lower prices. 'Active' buyers in a particular period 
also include buyers who entered the market in the same period and are about to decide either to 
purchase the product or to wait for a lower price in periods 1 and 2, and either to purchase or not to 
purchase the product in period 3. 
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2(1- a ) if Pi ~ V2 , qi ~ b~ + b~ 

2(1 -a} + b~(1- Hqi LJ ifpi~ V2,q < b~ + b~ 
bi +bi 

2(1 - a} + b~ ifpi > V2 ,Vqi 

where p~ is the price in period i which makes 'high' type buyers indifferent between buying the 

product in period i and waiting for a lower price in period i + 1. 

A strategy for the monopolist specifies for each period, price and measure of units to be 
offered to the buyers as a function of the history of the game. A strategy for the buyer of each 
type on the other hand, specifies at each time and after each history (in which he or she has not 
previously purchased or in case he or she has just entered the market) whether to accept or to 
reject the monopolist's offered price. 

Optimal Decision Rules. The optimal decision rule for the seller and for the buyers in 
period 3 is described as follows. The ' high' type buyer chooses according as 

In penod 3, chosen action = 3 1 . . { Buy in period 3 if p ~ V 

. Not buy otherwise 

The 'low' type buyer chooses according as, 

In period 3, chosen action= { Buy in period 3 if P3 ~ Vz 
Not buy otherwise 

The seller chooses p3 , q3 in order to 

max p3 .min{q3 ,d3 (p3 )} subject to q3 ~ s3 
P, ,q, 

where d3 is defined as follows: 

In period 2 , the 'high' type buyer chooses according as 

In penod 2, chosen action= 2 2 . . {Buy in period 2 if p ~ pH 

Wait otherwise 

The · low' type buyer chooses according as, 

In period 2, chosen action = {Buy in period 2 if P2 ~ Vz 
Wait otherwise 

where p~ is defined by the following equation 

.. . (1) 

... (2) 

... (3) 

... (4) 

... (5) 
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.. . (6) 

Here, we use a fixed-point argument. In period 2, the 'high' type buyers know b~,b~. For 

the time being they fix the p~ of all other 'high' type buyers and calculate the corresponding b~ 

and b~. Given b~ ,b~ these buyers can calculate the price and measure of units the seller will 

offer in period 3, p; and q; . Using p;, q; and equation (6) these buyers are able to recover 

a p~ which should be equal to the one originally assumed. p~ is thus the price the seller can 

charge in order to make the 'high' type buyers indifferent between buying in period 2 and waiting 

for a lower price in period 3. At the beginning of period 2, the seller announces p2 and q2 in 

order to 

max p2 .min{q2 ,d2 (p2 )} + pW(b~ ,b~ ,s3 ) subject to q2 ~ s2 ... (7) 
P2 ,q2 

where W is the continuation payoff earned by the seller in period 3 and d2 is defined as 

Finally, we describe the optimal decision rules for the seller and the buyers for period 1. 
The 'high' type buyer chooses according as 

In period 1, chosen action = 1 1 . . {Buy in period 1 if p ~ pH 

Wait otherwise 
. .. (8) 

The 'low' type buyer chooses according as, 

I . d 1 h . { Buy in period 1 if p, ~ V2 n peno , c osen action = 
Wait otherwise 

.. . (9) 

where p~ is defined by the following equation 

.. . (10) 

At the beginning of period 1, the seller announces p1 and q1 in order to 

... (11) 
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where W is the continuation payoff earned by the seller in period 2 and d1 is defined as 

A Subgame perfect Nash Equilibrium (SPNE) of this game will thus consist of a strategy 
profile, cr = (S,B) where S specifies a strategy on the part of the seller which satisfies equations 

(3), (7) and (11) whileB specifies strategies on the part of each buyer who decides either to buy 
or to wait for a lower price in periods 1 and 2, and either to buy or not to buy in period 3, which 
satisfies equations (1), (4), (8) for 'high' type buyers and equations (2), (5) and (9) for 'low' type 
buyers. The equilibrium is a symmetric equilibrium in the sense that in equilibrium all buyers of 
the same type choose the same action in each period. With non-atomic buyers, unilateral 
deviations made by them affect neither the actions of other buyers or those of the monopolist. 
Thus, in order to check for Subgame perfection, only unilateral deviations by the seller are 
considered. If the seller deviates, the players keep following the optimal rules described above 
from that point of time onwards. This means if a player discovers a history of the game at any 
stage, which is not consistent with the one expected in equilibrium, the player continues to follow 
his or her optimal decision rule from that time onwards. 

As the seller announces Pi and qi at the beginning of each period i, we define a pricing 

policy (p1,p2 ,p3 ,q1,q2 ,q3 ), which describes the prices charged, and the units offered for sale in 

each period. It is possible to derive eight such possible price paths, where in each period, the 
seller decides either to sell only to 'high' type buyers or to sell to both 'high' and 'low' types. 

4. Candidates for Subgame Perfect Outcome 

In this section, we examine the different possible pricing policies and the associated price 
paths from which the seller might choose, under different combinations of the parameters 
V1, V2 ,a and p. Since we are interested in decisions made by a patient seller, we further 

assume that p ➔ 1 . 

4.1. No 'Sale' in Any Period and 'Sale' in Every Period 

The first pricing policy we consider is one where the seller chooses to sell only to 'high' 
type buyers in every period. The price charged in each period is V1, while the measure of units 

offered for sale in each period is 2a. 

The second pricing policy (V2 , V2 , V2 ,2, 1,0) also yields a horizontal price path, but this 

time, the seller chooses to sell to both 'high' and 'low' type buyers in every period. 

4.2. 'Sale' in the First Period Only 

The seller could choose to hold a 'sale' in the first period only, where he or she offers to 
charge p1 = V2 and p2 = p3 = V1. Given the price path and the measure of units offered in the 
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first period, q1, the measure of units to be offered in periods 2 and 3 should be q2 = b~ and 

q3 = S3 (if S3 < b~ ) or b~ (if b~ < S3 ). 

Lemma 1 With p1 = V2 and p2 = p3 = V1 if a e [ ¾, ~: ] , then with p ➔ 1 the seller offers 

3-6a 
q1=--, 

1-a 

offers 

b
H a+2a2 

q2 = 2 =-1--a-

Proof. Available upon request. 

and q3 = s3 = b~ = 2a and if a < .! ~ V2 , then he or she 
4 V1 

If 
V 

a> -1.. v· 1 

then with the seller offers 

From the above lemma we find that with a~ V2 , the seller chooses to offer measure q1 
V1 

units in the first period in a way that ensures that s3 = b~, such that the seller will have no 

incentive to hold a 'sale' in the last period. 

4.3. 'Sale' in the First Two Periods 

Another strategy for the seller could be to offer a measure of units at price V2 in the first 

two periods, and to sell to 'high' valuation buyers in the last period. Given the price path and the 
measure of units offered in the first and second periods (q1 and q2 respectively), the seller 

should offer q3 = S3 (if S3 < b~ ) or b~ (if b~ < S3 ). 

then with p ➔ 1 the seller offers 

0 d 
H 3a· . 1 V2 #. 

2 q2 = an q3 = s3 = b3 = -- and if a < - ~ - then he or she 011ers q1 = , 
1-a 4 V1 

1-4a H 3a V 
q2 = 

1 
_ a and q3 = S3 = b3 = 

1 
_ a . If a > V2 

, then with p ➔ 1 the seller offers q 1 = 0, 
1 

q2 = 0 and q3 = 6a. 

Proof. Available upon request. 

1 V2 Proposition · 1 If a < 4 ~ V, p ➔ 1 then (V2 , V1, V1, 2, 2a, 2a) cannot be a Subgame perfect 
1 

outcome. 

Proof. Available upon request. 
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Proposition 2 /f a e -,-2 ,p ➔ 1 then (V2 ,V2 ,V1,--,0,--) cannot be a Subgame perfect 
[ 

1 V ] 3 - 6a 3a 
4 V1 1- a 1-a 

outcome. 

Proof. Available upon request. 

Proposition 3 If a ~ V2 
, p ➔ 1 then (V2 , V2 , V2 , 2, 1, 0) cannot be Subgame perfect. v, 

Proof. Available upon request. 

4.4. 'Sale' in the First and Last Period 

In case the seller chooses to hold a 'sale' in the first and last period, the corresponding 

price path is inverted u-shaped. The seller charges p1 = p3 = V2 and p2 = p~ > V2 . Given the 

price path and the measure of units offered for sale in period 1, q1, the seller offers q2 = b~ and 

q3 = S3 . 

Lemma 3 With p ➔ 1, p1 = p3 = V2 and p2 = p~ the seller offers q1 = 0, q2 = b~ = 4a and 

q3 = s3 = 3 - 4a V V1 > V2 . 

Proof. Available upon request. 

In order to rule out profitable deviations in period 3, the seller must have no incentive to 
charge p3 = V1. The required condition to ensure this is (3 - 4a)V2 > 2V1a 

⇒ a < 
3

V2 . Similarly, we also have to rule out profitable deviations in period 2, 
2(V1 + 2V2 ) 

given the history of the game p1 = V2 and q1 = 0. 

Proposition 4 With p ➔ 1, (v2 , V1{1-
3 

-
4
a) + 

3
-

40 
V2 , V2 ,0,4a, 3 -4a) is never Subgame 

6 - 4a 6-4a 

perfect. 

Proof. Available upon request. 

4.5. 'Sale' in the Second Period Only 

For the strategy involving a 'sale' in the second period only, the price path generated is u­

shaped. Since the seller holds a sale in the second period only, he or she charges p1 = p~ (to 

make 'high' type buyers indifferent between waiting and purchasing in period 1 ), p2 = V2 and 

p3 = V1. Given the price path and the measure of units offered in periods 1 and 2 as q1 and 

q2 respectively, the seller offers q3 = s3 (if s3 < b~ ) or b~ (if b~ < s3 ) . 
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Lemma 4 With p1 = p~,p2 = V2 and p3 = V1 if a. ~ . 
2

V2 , then with p ➔ 1 the seller offers 
V1 +V2 

q, = 2a., 
6a. 2 - 1 Sa. + 6 d H Sa. - 2a. 2 

q - ----- an q - s - b - --- On the other hand, if 2 - 2(1- a.) 3 - 3 - 3 - 2(1 - a.) . 

then with p ➔ 1 the seller offers q1 = 2a., q2 = 0 and q3 = 4a.. 

Proof. Available upon request. 

As was the case with strategies involving 'sales' in the first period only or the first two 
periods, the seller offers measure q1 and q2 units in the first and second period in a way which 

ensures that if a. ~ 2
V2 and p ➔ 1, s3 = b~ such that there is no incentive for the seller to 

V1 +V2 

hold a 'sale' in the last period. With 

for ·sale' in the second period. 

2V2 a. > -~- the seller chooses to offer measure zero units 

Proposition 5 If 

V1 +V2 

then with 
[
V1(1- 6a.2 -15a.+6 ) 

2(1- a.)(4 - 2a.) 

6a2 -15a+6 6a.2 -15a.+6 5a - 2a2] 
2(1 ) 

V2, V2, V1,2a,-----,--- cannot be Subgame perfect. 
- a (4-2a) 2(1-a) 2(1-a) 

Proof. A vai/able upon request. 

4.6. 'Sale' in the Last Two Periods 

+ 

For strategies involving ·sales' in the last two periods, the seller charges 

P1 = p~ , p2 = p3 = V2 and offers q1 = 2a, q2 = 3 - 2a., q3 = 0. These are the only qs which are time 

consistent. 

P 
. . V2 2V2 ropos1t1on 6 If a. ~ - < --- and p ➔ 1 

V1 V1 + V2 

4
3 

-
2

a. V2 , V2 , V2 , 2a, 3 - 2a, o] cannot be Subgame perfect. 
- 2a 

Proof. Available upon request. 

4.7. 'Sale' in the last period only 

then 

For 'sale' in the last period only, the seller sets p1 = p~, p2 = p~ to ensure that 'high' type 

buyers are indifferent between buying the good and waiting for the price V2 in the last period. 

The seller offers q1 = q2 = 2a and q3 = s3 = 3 - 4a. In this case, these are the only qs which are 
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time consistent. Given that p1 = p~, p2 = p~ and that q1 = q2 = 2a, the seller will choose to offer 

q3 = S3. 

V 
Proposition 7 If a ~ 2 

V1 
and then [

V (1 _ 3 - 4a) + 3 - 4a V V (1 _ 
1 6 - 4a 6 - 4a 2

' 
1 

--)+--V2 , V2 ,2a,2a,3-4a 3-4a 3-4a ] 
6-4a 6-4a 

cannot be Subgame perfect. 

Proof. Available upon request. 

Proposition 8 If a ~ V2 and p ➔ 1 then (V1, V1, V1, 2a, 2a, 2a) cannot be Subgame perfect. 
V1 

Proof. Available upon request. 

So far, for a particular range of parameter values (a~ V2 ,p ➔ 1) we have shown which 
V1 

pricing policies cannot be subgame perfect. Now we turn our attention to policies that are 
subgame perfect for the same range of parameter values. 

Proposition 9 If a e [.!., V2 ] and p ➔ 1 then 
. 4 V1 

perfect. 

Proof. Available upon request. 

1 
Proposition 10 If a < 4 ( for 

3-6cx cx+2cx2 

(V2 , V1, V1,--,---,2a) 
1-cx 1-cx 

is subgame 

and 
V 

a ~-2 
( for 

V1 
and 

6a 
2 

- 7 a + 4 V1 ( "th ----<-WI 
a(4a+2) V2 

p ➔ 1) then the pricing policy involving a ·sale' in the second period 

only is subgame perfect. 

Proof. Available upon request. 

· 1 V2 6a2 
- 7cx + 4 V1 Proposition 11 If a < - (for V1 ~ 4 V2 ) and a ~ - (for V1 > 4 V2 ) and ----- > -

4 V1 a(4cx + 2) V2 

. 1-4a 3a 
(with p ➔ 1) then (V2 , V2 , V1,2,--,--) is subgame perfect. 

1-a 1-a 

Proof. Available upon request. 

Proposition 12 /fa. e (V2 , 
2

V2 ],p ➔ 1 and a~ 
3

V2 , then (V2 ,V1,V1, 0,4a,2cx) is 
V1 V1 + V2 2(V1 + 2V2 ) 

subgame perfect. 

Proof. Available upon request. 
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Since the seller offers q1 = 0, any price in period 1 can be supported as a subgame 

perfect outcome. Thus, if ae ( v2, 
2

V2 ] , p ➔ 1 and a~ 
3

V2 , then (p1,V1,v1,0,4a,2a) 
V1 V1 + V2 2(V1 + 2V2) 

is subgame perfect. 

Proposition (
V 2V ] CI.E -..l., 2 , p ➔ 1 
V1 V1 + V2 

13 If and 
3V2 . 

Cl.<---=--, 
2(V1 +2V2) 

then 

[
V(1- 6a

2
-15a+6 )+ 6a

2
- 15o. + 6 V V V 2a 6a

2
-15a+6 

1 2(1 - a)(4 - 2a) 2(1-a)(4-2a) 2' 2' 1' ' 2(1-a) ' 

5a-2a
2

] . ,s subgame perfect. 
2(1 - a) 

Proof. A vai/ab/e upon request. 

Proposition 14 If a> 
2

V2 ,p ➔ 1 then (V1, V1, V1,2a,2a,2a) will be subgame perfect. 
V1+ V2 

Proof. Available upon request. 

4.8. Main Results and Intuition 

Figure 1 shows the pricing policies that are subgame perfect for the different . 
combinations of parameter values. For higher values of V1 combined with high values for a, the 

seller chooses not to hold a 'sale' in any period, such that only 'high' valuation buyers get to 

purchase the good. For a e ( 
3

V2 , 
2

V2 ] the seller chooses to offer 
2(V1 + 2V2) V1 + V2 

q1 = O,q2 = 4a,q3 = 2a and to charge any price p1, p2 = p3 = V1 which is equivalent to not 

offering to hold a 'sale' in any period. For the same range of parameter values, the seller cannot 
choose the pricing policy (V1, V1, V1,2a,2a, 2a) since there exists a profitable deviation for the 

seller by holding a 'sale' in the second period and to sell to 'high' valuation buyers in the last 
period. Had the seller been able to credibly precommit, he or she would have chosen the pricing 
policy (V1, V1, V1,2a,2a,2a). For lower values of a, the seller chooses to hold a 'sale' in at least 

one period , and being patient, chooses to hold a 'sale' in the second period. The corresponding 
price path was u-shaped (shaded zone in figure 1 ). Finally, for the lowest values of V1 and a , the 

seller chooses to have a 'sale' in two periods and thus charges price V2 for the first two periods.4 

Thus the main results of the theoretical model are as follows: 

4 Had we considered cases where p is much smaller than 1, we would have found combinations of V1 

and a which make (V2, V2, V2,2, 1,0) subgame perfect. 
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(1) Any strategy involving a 'sale' in the last period is not subgame perfect. In case the 
seller chooses to offer a 'sale' in one or both of the first two periods, the measure of units offered 
for 'sale' is chosen in way to ensure that the measure of units remaining with the seller at the 
beginning of the third period is equal to the measure of high type buyers who remain 'active' in 
the last period. Since p3 E {V1, V2 }, revenue maximization in the last period requires the seller to 

cater only to high valuation buyers. 

(2) The total measure of units offered in any period(s) in which a 'sale' is announced is a 
decreasing function of a. This means that as the proportion of high valuation buyers increases, 
the seller chooses to offer a smaller measure of units at price V2 . For example, in case the 

seller wants to offer p1 = p2 = V2 and p3 = V1, then with a E [~ , Vz ] and p ➔ 1, the seller 
4 v, 

3 - 6a 1 V2 1 - 4a 
offers q1 = --,q2 = 0 and with a< - ~ - , he (she) offers q1 = 2 and q3 = --, such 

1-a 4 V1 1- a 

that (q1 + q2 ) was a decreasing function of a . Similarly, for the case where the seller chooses 

to offer a ' sale' in the second period only, then with and p ➔ 1, the seller offers 

6a
2 

-15a + 6 h' h. I d . . q2 = ----- w 1c 1s a so ecreasing in a. 
2(1 - a) 

(3) The price path is horizontal, u-shaped or strictly non-decreasing for various ranges of 
parameter values (see figure 1 ). 

We collected data in order to test these predictions empirically. In the event the empirical 
results failed to match the theoretical predictions, we attempt to provide an intuitive explanation 
behind such a failure(s) . 

5. Data 

While the theoretical model was highly stylized in the sense that it allowed us to capture 
certain features of the airline ticket pricing, it diverged from the airline ticket market in the 
following ways. First, we often observe last minute deals being offered by some airlines on online 
travel sites like Priceline. Such discounts are never made available directly from the airlines 
themselves. In this case, airlines wait till the last few days before the flight departs and offer these 
seats at a discount through some online travel agents, since selling them at a lower price is 
preferred to flying with empty seats. Our theoretical model did not allow for such strategies. 
Second, airline tickets usually come with various sorts of restrictions. Travel restrictions are 
placed on certain tickets being offered at cheaper rates to make them unattractive to price 
inelastic buyers (for example, Saturday-night stay-over). Consumers end up self-selecting the 
type of ticket and its price which they find most attractive. However, the theoretical model 
constructed, did not allow for such purchase restrictions and had no quality differentiation for the 
product being sold. 
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We collected price data for economy class tickets for one-way, non-stop flights in the US. 
We thus consider tickets with the least number of restrictions. Further, these routes were hand­
selected such that only a single carrier offered services on each of them. This was done to 
ensure that the airline was a monopoly on that particular route, since the theoretical predictions 
are valid only for a single seller framework and we were unsure of how the predictions would 
change for a multiple seller setup. Even though the theoretical model made predictions about the 
shape of the price path and the measure of units made available for sale in each period for 
different range of parameter values, we could only empirically test the predictions about the 
shape of the price path since the number of seats made available for sale by an airline over any 
period of time was not observable. 

The data set consists of two main components. The first component contains airline­
pricing data on selected routes while the second describes the proportion of high type buyers on 
each of these routes. 

5.1. Airline Price Data 

We collected pricing data for 28 one-way, non-stop flights and for 2 two-way non-stop 
flights from Expedia and Orbitz. The data was collected twice a day, at 8AM and 8PM, for 14-15 
weeks (except for one flight for which we have 11 weeks of observations), which led to a total of 
6136 observations. A total of 14 airlines operated on these routes which consisted of 44 distinct 
cities, of which some were major players like American and Delta, while others were smaller 
carriers like Midwest Airlines and Frontier Airlines. 

The routes and flights selected had the following features: (1) Each route had a single 
airline operating on it. (2) Routes with a single airline but with more than two flights operating on a 
single day were excluded. Routes that had two flights that departed within a few hours of each 
other were also omitted. The selected routes had a maximum of two flights operating on them on 
any given day and in the event there was more than one flight, the flights departed at least 3 
hours apart.5 Thus, the selected flights had little or no competition . 

The selected routes, the carriers serving them and the dates of departure, are listed in 
table 7. All flights departed in early June 2005. The flights to Kahului and Honolulu were two-way, 
both having return dates on June 17, 2005. We purposely chose these dates following an 
observation by Etzioni at al, that prices bounce around more for flights leaving around holidays 
than others. 

5.2. Data on Proportion of "High" Type Buyers 

We use the American Travel Survey (ATS, 1995) as the source for data on the proportion 
of buyers with a higher willingness to pay. The survey contains data at the state and metropolitan 
area (MA) levels and describes trip characteristics for both households and individuals. Given a 
MA, trip characteristics for an individual person are arranged in the following sequence. First, the 
survey reports "person trip characteristics" given the MA as destination and the different census 
divisions (CD) as origin. Second, it displays the same characteristics for the same metropolitan 

Of the 30 routes, only 5 had two flights operating on them on any given day. 
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area as origin and the various CDs as destination. Next, taking the MA as destination, the survey 
presents trip characteristics for the most frequent state origins. These states are the ones with the 
1 O largest volumes of travel to that particular MA. Fourth, taking the MA as origin, the 
corresponding numbers are listed for the states that are the top 10 destinations. Finally, the same 
order is followed for the cities that are the most frequent origins and destinations for travel to and 
from that particular MA. 

Trip characteristics amongst others included "main purpose of trip", which was further 
categorized into business, pleasure and others. Ideally, we would want the percentage of 
travelers who traveled by plane for business purposes from one MA to another. However, these 
numbers were not available. 

The survey also, did not report data for any of the routes on which both MAs were 
represented as origin and destination. Thus, while we had data for both San Francisco and 
Kansas City MAs individually, the proportion of business travelers traveling from San Francisco to 
Kansas City was unavailable. This is because on one hand San Francisco was not amongst the 
top 10 cities having the most travel volume going to Kansas City and on the other, Kansas City 
was not amongst the top 10 cities having the most travel volume coming from San Francisco. 

While we could have avoided this problem by looking at routes like New York-Boston and 
San Francisco-Phoenix for which we would have the corresponding percentages of travelers 
traveling for business purposes, these routes had a number of airline carriers flying on them, 
which made these markets oligopolies instead of monopolies, and unsuitable for consideration. 
We chose to fix the destination city and looked at the percentages of travelers traveling for 
business purposes (includes all forms of transportation), from the CD to which the city of origin 
belonged. For example, for the flight from New Orleans to Boston, we fixed the destination city 
(Boston) and looked at the proportion of business travelers traveling from the West South Central 
CD to which Louisiana belongs. This meant that we could use only 19 of the original 30 routes 
selected for data collection. The proportions of business travelers traveling on the different routes 
are reported in table 8. 

6. Empirical Model 

Since the main purpose of this section is to test the theoretical predictions outlined in 
section 4 , we set up a number of empirical models which when estimated, delineates the 
relationship between the proportion of "high" type buyers on a route and the slope of the 
corresponding price path. We begin by estimating a model that assumes that the prices on any 
route depend on the number of observations left for departure and the proportion of "high" type 
buyers on that route. We will refer to this as model 1. 

... (12) 

where Pm, is the price for route m at time t, 8m is a route specific intercept term (dummy) 

wh ich remains constant over time, am denotes the proportion of business travelers on route m 

and Dm, is the number of observations left for departure on route m at time t. If a route has 
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15 weeks of observations collected twice a day, the variable Omt takes values from 210 to 1. 

Thus, as Om1 decreases, we move closer to departure. From equation (14) we get, 

.. . (13) 

which implies that if the coefficient ~1 is not significant, am has no effect on the slope of the 

price path. 

Next, we construct a model where we categorize the routes into ones with 'high', 
'medium' and 'low' proportion of business travelers and assign dummies to them as follows. 
Assuming that a m represents the proportion of business travelers on route m, we define for that 

route a m = a H = 1 if a m > 0.45 and O otherwise, a m = a M = 1 if 0 .25 ~ a m ~ 0.45 and 0 

otherwise and finally a m = a l = 1 if a m < 0.25 and 0 otherwise. Thus, in addition to the route 

specific dummy variables, we construct a model with dummies which equal 1 or 0 depending on 
whether the route contains 'high', 'medium' or 'low' proportion of business travelers. We will refer 
to this as model 2. 

. .. (14) 

The estimates from this model will give us some idea about the slope of the price path for 
the three categories of routes. However, in order to obtain the shape of the price path we need to 
check how prices change over time. In the next step, we construct another model where we 
introduce dummies for number of weeks before departure. While the theoretical model had three 
periods, it is not apparent how we should define periods in the empirical counterpart. The 
theoretical model assumes that the measure of high type buyers entering the mark~t in each 
period remains the same over the three periods. Typically, travelers with a higher willingness to 
pay for tickets enter the market in larger numbers in the weeks just prior to departure than earlier 

on. Thus, we introduce the dummies for number of weeks prior to departure as follows: 0 1 = 1 for 

one week before departure, 0 otherwise, 0 2 = 1 for 1 to 3 weeks before departure and 0 

otherwise and 0 3 = 1 for rest and 0 otherwise. The corresponding model (model 3) assumes the 
following form . 

pm! = om + 131(a l01) + ~2 (a l02) + ~3(0.LD3) + Y1(a M01) + 

y2(a M02) + y3 (aM03) + 01(a H01) + 02(a H02) + 03(aH03) + Emt 
. . . (15) 

Finally, we perform a Chow Breakpoint test to confirm whether there were structural 
changes in the price path before and after pre-determined cutoff points. To do this , we proceed 
using the following steps. 

Step (1) We split the data set into two parts, such that with Om, ~ c ( c being the pre­

determined break point), the data is said to belong to group 1 and with Om, > c data is said to 

belong to group 2. 



A MODEL OF AIRLINE PRICING: CAPACITY CONSTRAINTS AND DEADLINES 59 

Step (2) We take c = 105. We then create a dummy variable which takes value 1 for 

Dmt ~ 105 and O otherwise and create another dummy variable (time_ dummy2) which takes 

value 1 for Dmt < 105 and O otherwise. 

Step (3) Get estimates for the coefficients of the following model. 

Pmt = K+ 8m + ~1(amDmt) + y1(Dmt) + ~2 (amDmt x time_ dummy2) 

+y2 (Dmt x time _ dummy2) + 02 time_dummy2 + Emt 
... (16) 

Since theory predicts a horizontal price path for routes with the highest a, we run the 

above regression only for those routes with aH = 1 and test for ~2 = 0 , y2 = 0 and 02 = 0. If 

the null hypothesis cannot be rejected, then there is no structural change in the model before and 
after the breakpoint. 

7. Results 

Table 1 reports the descriptive statistics for the data sets for the following two cases. 
(1) Includes all 30 routes for which different criteria are used for the proportion of business 
travelers on the different routes. For example, for the Austin-Washington DC route, we used the 
proportion of business travelers who traveled from Texas (state as origin) to DC and for the 
Seattle-Tucson route, we used the proportion of business travelers who flew from Austin. (2) 
Considers only 19 of the 30 routes, for which we fix the destination city and use the proportion of 
travelers traveling for business purposes from the CD to which to city of origin belongs, to the 
destination city. 

Table 1. Descriptive Statistics 

No. of Obs Mean St. Devn Min Max 
All 30 Routes Price 6136 331 .98 225.63 86 2441 
Proportion of Business Travelers 0.336 0.173 0.03 0.74 
19 Routes Price 3842 308.18 172.14 86 816 
Proportion of Business Travelers 0.375 0.187 0.03 0.74 

All the equations were estimated using OLS. Route dummies were used to take into 
account route-specific characteristics, which remain unchanged over time. Since the use of 
miscellaneous criteria for the proportion of business travelers is unintuitive, we ran all the 
regressions for the 19 routes using the criteria as described in the second case above. Table 2 
contains the estimates of the coefficients for equation (12). 

Since both the coefficients are negative and significant, we can conclude from equation 
(13) that the slope of the price path is negative. However, since an increase in Dmt signifies 

movement away from departure, the r.egative slope obtained implies that prices increase as we 
move closer to departure. This result corroborates earlier findings of Stavins (2001 ), McAfee and 
Velde (2004) and Etzioni et al (2003) . 
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The coefficients of model 2 could be interpreted as follows. Each route can only have 
high, medium or low proportion of travelers with a high valuation . 

Table 2. Regression Results for Model 1 for 19 Routes 

Coeff. St. Error t - stat p - Value 

aM x Omt -0.323 0.089 -3.63 0.000 

om, -0.197 0.026 -7.63 0.000 

The coefficient for Om, represents the base case and denotes the slope of the price path 

for routes that has a.m = a.L (second and third terms drop out). The sum of the coefficients of 

aM x Om, and Om, refers to the slope of the price path for routes with am = a M , while the sum of 

the coefficients of a.H x Om, and o m, represents the slope of the price path for routes with 

a =aH m 

Table 3. Regression Results for Model 2 for 19 Routes 

Coeff. St. Error t- stat p - Value 

a.H X 0ml -0.215 0.056 -3.85 0.000 

a.M X 0ml 0.06 0.033 1.81 0.071 

om, -0.277 0.021 -13.30 0.000 

Thus, the slopes of the price path for routes with low, medium and high proportion of 
travelers with a high valuation are - 0.277,-0.217 and -0.492 respectively. Prices are found to 

increase most quickly in routes with the highest proportion of business travelers. 

The coefficients of model 3 allows us to demonstrate the relationship between the shape 
of the price path and the corresponding a.m . The price path is found to be rising for all three 

categories of routes (table 4). Routes with am = a.H show the sharpest increase in prices. The 

theoretical prediction that the price path for routes with high a is horizontal is thus found to be 
empirically invalid. 

Finally, we report the results for the Chow Breakpoint test. For routes with a.= a.H ; theory 

predicts that there will be no change in the slope or the intercept before and after the break point. 
This implies that all three coefficients 132 , -y2 and 02 need to be not significant for equation (16). 

Table 5 reports the coefficients for the Chow Breakpoint test for different pre-determined cutoff 
values (c). The F-statistic is based on the null hypothesis which involves the restrictions, 
132 = 0, -y2 = 0 and 02 = 0. The low p-values led us to conclude that the null hypothesis can be 

rejected for all three pre-determined cutoff points and that there is structural change in the model 
before and after these cutoff points. 
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Table 4. Regression Results for Model 3 for 19 Routes 

Coeff St. Error t - stat JJ - Value 

cl x 0 1 163.56 4.613 35.46 0.000 

cl x02 118.733 1.702 69.75 0.000 

al x 0 3 108.909 1.154 94.39 0.000 

UM x01 200.877 8.482 23.68 0.000 

UM x 0 2 145.935 2.944 49.58 0.000 

UM x 0 3 132.333 1.908 69.35 0.000 

aH x 0 1 267.456 16.272 16.44 0.000 

UH x 0 2 156.654 5.159 30.36 0.000 

UH x 0 3 128.0702 2.319 55.22 0.000 

Table 5. Coefficients for Chow Breakpoint Test for Routes with a= aH 

C ~1 Y1 ~2 Y2 02 F stat p value 

105 0.413 -0.549 0.167 -1.043 55.908 33.99 0.000 
70 0 .562 -0.544 0.882 -2.774 105.632 35.66 0.000 
42 0.109 -0.219 -3.148 -2.547 152.719 31 .77 0.000 

Next, we collect empirical evidence which establishes that the shape of the price path for 

routes with am = al is u-shaped, if we discard the oldest five weeks of observations. We ran the 

following regression, where we introduced route-specific dummies and dummies for weeks as 
follows 

.. . (17) 

where, 0 1 = dummy for the last two weeks before departure, 0 2 = dummy for 3 to 4 weeks 

before departure, 0 3 = dummy for 5 to 6 weeks before departure and so on. Results for this 
regression equation are displayed in table 6. 

Table 6. Regression Result for Equation 6 for Routes with a = a l 

Coeff. St.Error t - stat JJ - value 
01 65.679 6.352 10.34 0.000 
02 29.089 5.810 5.01 0.000 
03 28.918 6.344 4.56 0.000 
04 42.968 6.718 6.40 0.000 
os 45.904 6.522 7.04 0.000 
De 19.993 6.765 2.96 0.003 
01 -6.134 6.670 -0.92 0.358 
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Table 7: Routes, Carriers and Dates of Departure 

City of Origin Destination City Airline Carrier Date of Departure 

Detroit.Ml Orange County, CA Northwest June 6 

Spokane, WA Las Vegas, NV America West June 6 

Austin, TX Washington DC (IAD)3 United June 6 

Orlando, FL Rochester, NY Air Trans June 6 

Burbank, CA Atlanta, GA Delta June 6 

Detroit, Ml San Diego, CA Northwest June 6 

Portland, OR Santa Barbara, CA Alaska June 7 

Wrangell , AK Petersburg, AK Alaska June 7 

Reno.NV Orange County, CA Aloha June 7 

Kansas City, MO San Antonio, TX Midwest June 7 

Akron, OH Tampa, FL Air Trans June 7 

Providence, RI Fort Myers, FL Spirit June 7 

Denver, CO Little Rock, AK Frontier June 8 

San Francisco, CA Austin, TX United June 8 

Santa Barbara, CA Dallas, TX American June 8 

Akron , OH Orlando, FL Air Trans June 8 

Cincinnati, OH Orange County, CA Delta June 8 

Birmingham, AL Washington DC (DCA)b Delta June 8 

Indianapolis, IN Miami, FL American June 2 

New Orleans, LA Boston, MA American June 2 

Pittsburgh, PA Los Angeles, CA US Airways June 2 

Cleveland, OH San Antonio, TX Continental June 2 

Seattle, WA Tucson, AZ. Alaska June 2 

Miami, FL Phoenix, AZ. America West June 10 

Memphis, TN Las Vegas, NV Northwest June 10 

San Francisco, CA Kansas City, MO Midwest June 10 

Dallas/Fort Worth Providence, RI American June 10 

Portland, ME Charlotte, NC US Airways June 10 

Phoenix, AZ.* Kahului, HI ATA June 10/17 

Newark, NJ* Honolulu, HI Continental June 10/17 

(a) There were no direct flights to Ronald Reagan Washington National Airport (DCA) from Austin . 
(b) There were no direct flights to Dulles International Airport {IAD) from Birmingham. 

· * Two-way flights, with June 17, 2005 as return date. 
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Table 8. Proportion of "High" Type Buyers on Different Routes 

City of Origin Destination City 
Criteria Origin/Destn: 
(Misc.*) CD/City 

Detroit.Ml Orange County; CA 0.46 0.46 
Spokane, WA Las Vegas, NV 0.17 
Austin, TX Washington DC (DCA) 0.7 0.62 
Orlando, FL Rochester, NY 0.03 0.03 
Burbank, CA Atlanta, GA 0.74 0.74 
Detroit, Ml San Diego.CA 0.40 0.40 
Portland, OR Santa Barbara, CA 0.43 
Wrangell, AK Petersburg, AK 0.29 
Reno, NV Orange County, CA 0.15 0.11 
Kansas City, MO San Antonio, TX 0.52 0.41 
Akron, OH Tampa, FL 0.15 0.15 
Providence, RI Fort Myers, FL 0.17 
Denver, CO Little Rock, AK 0.33 
San Francisco, CA Austin, TX 0.41 
Santa Barbara, CA Dallas, TX 0.55 0.52 
Akron, OH Orlando, FL 0.23 0.23 
Cincinnati, OH Orange County, CA 0.42 0.46 
Birmingham, AL Washington DC (DCA) 0.43 0.43 
Indianapolis, IN Miami, FL 0.06 0.45 
New Orleans, LA Boston, MA 0.55 0.55 
Pittsburgh, PA Los Angeles, CA 0.27 0.37 
Cleveland, OH San Antonio, TX 0.48 0.38 
Seattle, WA Tucson, AZ. 0.25 
Miami, FL Phoenix, AZ. 0.10 0.35 
Memphis, TN Las Vegas, NV 0.15 
San Francisco, CA Kansas City, MO 0.49 0.41 
Dallas/Fort Worth Providence, RI 0.29 
Portland, ME Charlotte, NC 0.35 0.07 
Phoenix, AZ. Kahului , HI 0.17 
Newark, NJ Honolulu, HI 0.24 

* We use the proportion of travelers who traveled for business purposes (includes all forms of transportation) . 
from or to the particular MA, with the CD or state or city as origin or destination. 

The coefficients for dummies 0 1 to 0 5 show that prices fall and then rise as the date of 
departure draws closer. Thus, a u-shaped pattern emerges once we choose to concentrate only 
on the last 10 weeks before take-off. We ran similar regressions for routes with medium and high 
proportion of business travelers, and found evidence of a u-shape for routes with medium 
proportion of business travelers when we looked at the last 10 weeks before departure, while no 
such pattern emerged for routes with high proportion of business travelers where the price path 
was found to be rising . 
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8. Conclusion 

We construct a three-period model in which a single seller facing a capacity constraint 
offers a finite measure of units of a non-durable good to a continuum of buyers, each of whom 
might be one of two possible types. The seller chooses without precommitment, prices and 
measure of units to offer for sale over the three periods in order to maximize discounted sum of 
revenue earned. We determine possible shapes of the corresponding price path for different 
values of the parameters and find that for certain combinations of the parameter values, the 
optimal price path is u-shaped. For other combinations, we find that the optimal price path is 
either strictly non-decreasing (which is consistent with a result in a paper by Stavins) or 
horizontal. 

While the theoretical prediction that prices never fall before departure was corroborated, 
the prediction that the price path for routes with the highest proportion of "high" type buyers is 
horizontal was found to be empirically invalid. Instead, routes with high proportions of business 
travelers witnessed the steepest increase in prices. The price path for the routes with low and 
medium proportions of business travelers was also found to be increasing. 

In our theoretical model we assumed that the proportion of buyers with a higher valuation 
for the good, who enters the market in each period, remains constant over the three periods. In 
reality, this is clearly not the case. It is our conjecture that a theoretical model which allows for 
variation in the proportion of high valuation buyers over the three periods, where the proportion 
increases from the first to the third period, will perform better in terms of providing an explanation 
for the empirical results. However, even if we do solve for the price paths for various parameter 
values for such a model , it will be difficult to access data which describe how the proportion of 
travelers traveling for business purposes on different routes change as the date of departure 
draws closer. 

The theoretical model also predicted a small range of parameter values for which the 
price path would be u-shaped. While we did find some empirical evidence for a u-shaped price 
path for routes with low or medium proportion of high valuation buyers, we did so only after 
truncating the data and considering the last 10 weeks of observations. 
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