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Abstract 

In this paper we consider the series estimator for the partial linear regression 
model proposed in Li (2000) to allow for heteroskedastictiy with unknown form. 
We propose an alternative estimator and prove that it achieves Chamberlain 's 
(1992) semi-parametric efficiency bound. The proposed estimator shares the 
same first-order asymptotic properties as Li (2000) . The Monte Carlo experiment 
shows that our estimator behaves in a way that is quite similar to Li (2000) 
estimator. To overcome the problem of picking smoothing parameters in series 
estimation, we propose minimizing the bootstrapping approximate mean square 
error to choose the smoothing parameters. By using the true mean square error 
as the benchmark, the bootstrap method works well and provides us with the 
criteria to choose two smoothing parameters simultaneously. 
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1. Introduction 

Nonparametric methods have become quite popular in economics in recent decades. 
While nonparametric regression is flexible in recovering the true shape of the regression curve 
without specifying a parametric family for the data, it has some disadvantages. The most 
fundamental problem is the well known "curse of dimensionality". To overcome this problem, a 
useful approach is to keep certain variables nonparametric but to adopt a parametric form for the 
variables of interest. A popular method for doing this is to specify the regression model as: 

.. . ( 1) 

where g(-) is an unknown nonparametric function and is usually highly dimensional. This model 

is referred to as a partial linear or semilinear regression model. Engle, Granger, Rice and Weiss 
(1986) apply this model to study the effect of weather on electricity demand. The partial linear 
specification also appears in various sample selection models such as Newey, Powell and Walker 
(1990) , and Lee, Rosenzweig and Pitt (1992). 

Previous studies on the estimation of partial linear models include Engle, Granger, Rice 
and Weiss (1986) , Heckman (1986), Rice (1986), Chen (1988) , Speckman (1988) , Robinson 
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(1988) , Linton (1995) , Donald and Newey (1994), Hong and Cheng (1999), Li (2000), and many 
others. Engle, Granger, Rice and Weiss (1986) propose the partial spline smoothing approach. 
This method was further studied by Rice (1986) and Heckman (1986). Rice (1986) obtains the 
asymptotic bias of a partial spline smoothing estimator of p and shows that this approach cannot 

attain the Berry-Esseen rate ✓n for the estimator of p unless x and z are uncorrelated or 

the unknown nonparametric component g(-) is undersmoothed. 2 Chen (1988) proposes a kind 

of piecewise polynomial approximation to g(·), and the convergence rate of p is shown to be 

✓n consistent with the smallest possible variance even when x and z are dependent. 

Speckman (1988) considers kernel smoothing and proves that the parametric rate of p is 

attainable for the usual "optimal" bandwidth choice under the optimal nonparametric convergence 

rate for the estimation of g(-) . Robinson (1988) constructs a feasible least squares estimator of 

P using Nadaraya-Watson kernel estimators of E [y I z] and E [ x I z]. He proves that p is ✓n 

consistent and asymptotically normal. Linton (1995) proposes the local polynomial regression 

method to estimate E [y I z] and E [ x I z]. 3 He establishes the ✓n consistent estimator of p 

and finds that it is second-order optimal using a second-order approximation of ✓n(P-P) . 

Donald and Newey (1994) use a series approximation for the unknown.function g(•). They show 

that the estimator is a ✓n consistent estimator and asymptotically normal under weak 
conditions. 4 Hong and Cheng (1999) revisit the kernel smoothing method and show that the 

normal approximation rate of p is achieved only when bandwidth h is at a rate n-114 instead of 

the usual "optimal" bandwidth rate n-115 
• Li (2000) considers the additive partial linear model 

using the series estimation method and proves that the estimator of finite dimensional parameter 
P reaches the semiparametric efficiency bound under homoskedasticity.5 Another approach to 

the partial linear model is to avoid the nonparametric estimation procedure. Yatchew (1997) 

proposes a differencing estimator to remove the effect of the unknown function g(·) . The 

differencing estimator is in general not efficient but Yatchew also illustrates the generalized 
method of differencing to achieve the same asymptotic efficiency bound obtained by Robinson 
(1988). 

2 
This means that the ✓n parametric rate for the estimation of p and the optimal nonparametric rate for 

3 

the estimation of g(•) could not be attained simultaneously in the partial spline smoothing approach. 

Linton (1995) adopts a local polynomial regression estimator instead of Robinson's (1988) 
Nadaraya-Watson kernel estimator due to the nice properties of the local polynomial regression 
estimator which is design adaptive and is able to correct the boundary bias problem. 

4 
The condition is weaker than in previous studies in that the modulus of continuity of g ( z) and E [ x I z] 

is higher than 1/4 of the dimension of z and the number of terms is chosen appropriately. In addition, 
the covariates z may not only be multidimensional but also discrete. 

5 Li's result is based on homoskedastic errors. However, Chamberlain's (1992) semiparametric efficiency 
bound can allow for conditional heteroskedasticity. 
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In this paper we will focus on Li's (2000) estimator under heteroskedasticity with unknown 
form and show that it attains Chamberlain's (1992) semiparametric efficiency bound. In addition, 
we contribute to the literature on partially linear models by proposing an alternative estimator 
which has the same first-order asymptotics as Li's estimator. Both Li's estimator and our 

estimator involve dealing with not only the unknown function g(•) but also an unknown variance 

function which is allowed to depend on all of the regressors. Since picking two smoothing 
parameters may be difficult in practice, we propose bootstrapping the approximate mean square 
errors to choose the two smoothing parameters. 

The remainder of this paper is organized as follows. In Section 2 we describe the model 
and estimation techniques adopted in this paper. The first-order asymptotic results for Li's 
estimator and our estimator are provided in Section 3. In Section 4 we conduct a small-scale 
Monte Carlo experiment. Section 5 concludes this paper. 

2. The Model 

Consider a partial linear regression model as in (1 .1 ): 

Yi = x;13+g(zd+ui , ... (2.1) 

where the covariates xi and zi are of dimension r and q, respectively, 13 = (131, ... ,13r )' is a 

r x 1 vector of an unknown parameter, and g(-) is an unknown function. Of course, we can 

extend (2.1) to the additive partially linear regression model by setting: 

g(zd = 91 (2 1d + 92 (2 2d + ··· + 9L (zu), 

where g1 (z,d is a scalar, and z1i is of dimension q1 ( q1 ~ 1,1 = 1,2, ... ,L ). For simplicity, 

we assume L = 1, and q1 = q in this paper. In matrix form, we can write (2.1) as 

y = xl3+g(z)+u. . .. (2.2) 

The identification condition for 13 in (2.2) is stated below. 

Assumption 2.1. (Identification) To identify the partial linear regression model in (2.2), 

we need E[( x - E [ x I z ])' ( x - E [ x I z ]}] to be positive definite. 

Put literally, we need the random variable x to not be fully contained in z . To 
understand the identification condition , taking the expectation of (2.2) conditional on z gives: 

E [y I z] = E [ x I z] 13 + g ( z) + E [ u I z] . 

Substracting (2.3) from (2.2) gives: 

y - E [y I z] = [ x - E [ x I z]] 13 + u - E [ u I z] . 

. .. (2.3) 

. .. (2.4) 
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From (2.4 }, it is obvious that the identification of p requires the full rank of x - E [ x I z) . 

In the context of a sample selection model where z would represent the variables that affect 
selection, we can have a situation where z is a linear function of some variable that appears in 
x provided that there is also a variable that predicts selection but does not appear in x (see 
Newey, Powell and Walker (1990)) . 

We now describe the estimation methods that are to be used in this paper. The 

estimation strategy of model (2 .2) recommended in Robinson (1988) involves estimating E[y I z) 

and E[xlz) nonparametrically (e.g., using the Nadaraya-Watson or local linear kernel 

smoothing method) and regressing y - E [y I z] on x - E [ x I z] to yield the estimate of P . 
Alternatively , we can use the sieve method (e.g., power series or spline) to estimate the 

conditional mean functions of E [y I z] and E [ x I z] . 6 We define the series basis functions as 

follows: 

Here PK denotes the n x K matrix with the i th row PK; = PK ( Z; ). The projection matrix 

is defined by Q = PK (P~PK r p~ . Then the estimator of p using the partialled out series based 

method, as first suggested in Donald and Newey (1994) , is given by: 

p = [(x-Ox)' (x-Ox) r1

(x-Qx)(Y -Oy) 

= [ x'(I-Q)x rx'(I-Q)y. 

Now, the unknown function g(-) can be estimated by g = PK (z)ir, where ir is given 

by: 

Li (2000) verifies that, under the homoskedasticity assumption, p will be 

semiparametrically efficient in the sense that the inverse of the asymptotic variance of ✓n(P-P) 

achieves Chamberlain's semiparametric efficiency bound. He also establishes ✓n -consistency of 

p under conditional homoskedasticity. However, if the disturbances are heteroskedastic, p will 

in general not be semi parametrically efficient. 7 Therefore, Li (2000) suggests using a GLS-type 

6 Li (2000) discusses the advantages of using the series approach to estimate the partial linear model as 
compared with the kernel based approach. 

7 According to Li (2000) , the estimator p is said to be "local efficient" since its efficiency is attained when 

some restrictions are satisfied. Here, it means that the assumption of homoskedasticity is satisfied. 
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estimator by regressing Y/ CT; on X/ CT; and PK (z;) ICT;, where CTt = E(ut I X;, z;). We let pGLs 

denote the corresponding estimator of 13 and note that it has the form: 

... (2.5) 

where x·= (X,ICT, , ... ,x/crn)', a·=p~ [p~'p~ r p~· . and P~=(PK/CT1 ,···,PKn/crn)' . Without 

providing the proof, Li (2000) asserts that the method should produce a semiparametric efficient 
estimator of 13. We will prove this fact in Theorem 3.1. To implement this estimator, we use an 

estimate of the variance function CTt which can then be plugged into the projection matrix a· . 

This task can be performed by using a preliminary consistent estimator of the model, such as 

PoLs' and then regressing the squared OLS residuals ( u; = Y; - x; POLs -g(z;)) on x and z 

using some nonparametric regression methods . Carrol (1982) proposes the kernel estimation 

method. Robinson (1987) suggests using the k -nearest neighbor method to estimate crt . 

Alternatively, we can utilize a series-based method. To sum up, the GLS approach proposed by 
Li (2000) is essentially to obtain the weighted least square in the first stage, and then to partial 

out the unknown g function in the second stage to obtain the efficient estimatorpGLs .8 

An alternative estimator proposed in this paper differs from Li (2000) in that we 
implement a weighted least square by regressing y- E(y Ix) on x - E(x I z) using weights 

that are the inverse of the variance. All conditional expectations are estimated via a series 
regression so that if the variances were known we would have the following GLS estimator: 

... (2.6) 

Although the estimators in (2.5) and (2.6) look different, we can prove that our estimator 
shares the same first-order asymptotic result as the Li's estimator. The reason why weighting 
after removing the mean works is that essentially we are estimating the model: 

... (2.7) 

by weighted least squares with weights that are the inverse of the variances . The 
regression in (2. 7) is then equivalent to performing the following regression: 

Y; -E [Y; lz; ] [ x; -E [x;lz;]] u. 
----- = -----13 + __!_ . . .. (2.8) 

CT; CT; CT; 

The error term in (2.8) is clearly conditionally homoskedastic. This means that our 
estimator inherits the semiparametric efficiency. 

8 Of course, we need to use a preliminary estimator of 13 to estimate the variance function before 

implementing the weighted least square. 
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A difficulty with the feasible GLS approach for Li (2000) and the alternative estimators is 
that it is necessary to know how the estimator depends on the smoothing parameters and in this 
case there will be two. One smoothing parameter relates to the number of functions used to 

approximate g(-) (say, K) as well as the number of functions used to approximate the variance 

function (say, H ). We will discuss the issue of picking the smoothing parameters in Section 3. 

3. First-Order Asymptotics 

The following assumptions are needed to establish our main results. 

Assumption 3.1. (i) (Yi,xi,z;), i = 1, ... ,n are i.i.d. (independent and identically distributed); the 

support of (x,z) is a compact subset of Rq+r ; (ii) E[ ui I xi, zi] = 0 , E[ut I xi,zd = at and ui has 

bounded fourth moments; (iii) Let xi= E(xi 1z;)+Ei =h(zi) +Ei , E(Ei l z;)= 0 , and E(E~ l zi) is 
\ 

bounded away from oo ; (iv) All of h(zi) and at are bounded functions on the support of (x,z) . 

Assumption 3.1 (i) is quite standard in a regression model. Assumption 3.1 (ii) allows for 
conditional heteroskedasticity. Assumption 3.1 (iii) assumes that xi is a function of zi plus a 

random element that has a finite variance. These conditions plus Assumptions 3.2 and 3.3 
discussed below will make it possible to estimate the various unknown functions. 

Assumption 3.2. For every K there is a nonsingular constant matrix B such that for 

pK (z) = BpK (z) : (i) the smallest eigenvalue of E[pK (zd pK (z;)'] is bounded away from zero 

uniformly in K and; (ii) there is a sequence of constants l;: (K) satisfying supzez jjPK (z)jj ~ l;: (K) 

and K = K ( n) such that l;:(K)¼n ➔ 0 as n ➔ oo, where Z is the support of z . 

Assumption 3.2 is usually imposed on series estimators. See Newey (1997) for a further 
discussion. This assumption normalizes the approximating function. Part (i) bounds the second 
moment matrix away from singularity. Part (ii) controls the convergence rate of the series 
estimator. 

Assumption 3.3. (i) For f = g or f = h , there exist some 1,1 and a1 (> 0) such that 

SUPzeZ lf(z)-PK (z)' 1t,I = o [K-a, ) as K ➔ 00 ; also, JnK-a, ➔ 0 as n ➔ 00. (ii) For a 2
' there 

exist some 7t(J and a(J (> 0) such that SUP(x,z)eXxzla2 (x,z)-PH(x,z)'1t(Jl = o (w 0
•) as 

H ➔ oo; also, JnH-a· ➔ 0 as n ➔ oo. 

Assumption 3.3 specifies the bound of the approximation error when we approximate 
unknown functions g or h as well as the variance function as will be required in order to 

implement a feasible GLS estimator of the partially linear model. Note that there are two 
smoothing parameters K and H that are required for estimation. Assumptions 2.1-3.3 make it 
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possible to approximate the unknown functions and in turn estimate the parameter of interest, p. 

The following theorem gives the first-order asymptotic distribution of ~GLS' which is the GLS 

estimator of Li in (2.5) . All the proofs in this section are included in the Appendix. 

· Theorem 3.1. Define X; = h(z; )+E; and assume that E[E;E;/crf] is positive definite, then under 

Assumptions 2.1-3.3, we have 

where J0 = is Chamberlain's 

semi-parametric efficiency bound. 

Proof The proof is given in the Appendix. 

The next theorem states that our estimator pGLs in (2.6) is semiparametric efficient. 

Theorem 3.2. Define X; = h(z; ) + E; and assume that E[E;E;i crf] is positive definite, then under 

Assumptions 2.1-3.3, we have 

d 

✓n(pGLS -P)➔N(0, J;;1 ) , 

where J0 = E{[ X; - h(z;)][ var (u; I X;,z;)][ X; - h (z;)]) = E[E;E:/crf] is Chamberlain's semi-parametric 

efficiency bound. 

Proof The proof is given in the Appendix. 

From Theorems 3.1 and 3.2, we can see that the Li (2000) and the proposed estimators 
under heteroskedasticity are the same in terms of the first-order asymptotics. They are both 
asymptotically normally distributed with the same asymptotic variance covariance matrix, which 
achieves the semi-parametric efficiency bound. However, it would be interesting to compare the 
finite sample properties of the two efficient estimators. One way to compare the two estimators is 
through the higher-order stochastic expansion. For more details see Ullah (2004). We now write 
the feasible version of the Li (2000) estimators as follows:9 

... (3.1) 

where the "· " represents a variable that is multiplied by a projection matrix which is formed using 
the weighted version of the approximating functions. As we expand equation (3.1 ), we have to 

expand not only the term M in the general denominator, but also the implicit M in the 

9 For illustration purposes, we assume that the variables are scalars. 
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weighted approximating function (e.g., x1 and g~ ). This will complicate the expansions. As for 

the proposed estimator: 

... (3.2) 

The projection matrix in forming x does not involve the weighted random factor, 

and should be more amenable to higher-order expansion. 

. 2 
CTi , 

4. Monte Carlo Experiment 

4.1. Simulation Design 

We design the data generating process for the Monte Carlo experiment in this section as 
follows: 

xi = d -zi +vi, zi = ~ . i = 1, ... ,n 
n 

ui - N(0, 1) , vi - N(0, 1) 

d = 10, ~ = 1 

The setting for the skedastic function crt is given by:. 

... (4.1) 

We consider 1,000 replications for sample sizes of n = 100 , 200 and 400 . The mean 
absolute bias (BIAS) and mean square error (MSE) are computed for four possible estimators, 
which include the preliminary estimator10

, the Li (2000) estimator, our estimator, and the kernel 
estimator. The procedures for computing different estimators are described below. 

4.2. Estimators of ~ 

4.2.1 LI (2000) estimator 

1. Regress Yi on PK (zd and xi on PK (zd and obtain the residuals Yi -yi and 

xi - Xi, where 

10 The preliminary estimator represents the series estimator of the partial linear model without taking 
heteroskedasticity into consideration. 
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Y; -y; = Y; - PK (z; )(PK (z)' PK (z)(PK (z)' Y 

X; -x; = X; -PK (z;) (PK (z)' PK (z)(PK (z)' X. 

2. Regress y1 -y; on X; - x; and obtain the preliminary estimator of 13, say b0 • 

27 

5. Estimate er~ by a} = PH ( z;) ( PH ( z )' PH ( z) rPH ( z )' u"2, where u"2 is a column vector 

of M. 

6. Regress Y/ cr; on x/cr;, and PK (z;) l cr; to yield the Li (2000) semiparametric 

efficient estimator of 13. 

4.2.2 Alternative estimator 

1. Regress Y; on PK (z;) and X; on PK (z;) and obtain the residuals Y; -Y; and 

X; -x;, where 

y i - y i = y i - PK ( z;) ( PK ( z )' PK ( z) rPK ( z )' y 

X; -x; = X; -PK (z;) (PK (z)' PK (z)f PK (z)' x. 

2. Regress Y; -Y; on X; - x; and obtain the preliminary estimator of 13, say b0 • 

5. Estimate er~ by a} = PH ( z;) ( PH ( z )' PH ( z) r~H ( z )' u"i. where u"2 is a column vector 

of M. 

6. Regress (Y; -Y ;) l cr; on ( X; - x;) l cr; to obtain the proposed semiparametric efficient 

estimator of 13. 

It can be seen that our estimator ctiffers from the Li (2000) estimator in the final stage of 
the estimation procedure, which is detailed in Section 2. To compare the series approximation of 
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the unknown function with the kernel smoothing, we also consider the Nadaraya-Watson kernel 

type method in estimating g and crt . 
4.2.3 Kernel estimator 

1. Compute the kernel estimators of E ( y I z) and E ( x I z) by 

1 "' n K ( Z;-Zi ) 
• - Xi - nii" L.. j=1 x i - h -Xi __ _ 

f i _j_ "' n K ( Z;-Zi ) ' 
nh L..j=1 h 

where K(·) is the kernel function and h is the bandwidth. 11 

3. Obtain the residuals by u = (y-y)- (x-x)b0 . 

4. Form the kernel regression (or local linear regression) of M using M .12 

5. Regress (Yi-Yi)lcri on (xi- xi) /cri toobtainanefficientestimatorof 13. 

4.3. Simulation Results 

· We know that the series estimator for the variance function is not necessarily positive. To 
guarantee the positive variance estimate, trimming will be needed. The choice of the trimming 
parameters may affect the performance of the various estimators. We do not explore this issue in 
this paper. Instead, we arbitrarily set three possible trimming points ( TP ), TP = .1, .01 and .001 . 

The estimators for comparison include the proposed estimator ( bun ), the Li (2000) 

estimator (bu), the preliminary estimator ( b
0 

) , and the kernel estimator ( bK ). The simulation 

results are summarized in Table 1. We expect that b
0

, which ignores the heteroskedasticity, will 

perform the worst. Table 1 confirms the expectation in terms of the bias and mean square error. 
The Li (2000) estimator has the minimum bias and MSE in almost all cases. Our estimator only 
dominates in the case where n = 400 . However, it is worth noting that the alternative estimator 
performs in a way that is pretty much similar to the Li (2000) estimator. As the sample size 
increases to 400, the behavior of the two estimators is just about equivalent. This finding also 
confirms the equivalent first-order asymptotics for the two estimators as derived in Section 3. As 
for the kernel estimator, it is dominated by both the Li (2000) estimator and our estimator. 

11 Here we utilize the Gaussian kernel and pick the bandwidth by 
12 Here we still utilize the Gaussian kernel and pick the bandwidth in the same way as in Step 1. 
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To see the impact of a different setup of the unknown g function on the simulation 

results, we then change the setting by letting g(z) = (1 + z)3. The results are presented in Table 

2. One can see that in this setting the Li (2000) estimator still dominates although our estimator is 
quite close to Li's. It should be noted that the kernel estimator performs badly and even worse 
than the preliminary estimator in this particular setting. 

Note that throughout the simulation we arbitrarily pick the approximating functions for 

g ( z) and cr2 ( z) as ( 1, z, z2) and ( 1, z, z2), respectively. The issue of how to pick the optimal 

smoothing parameters will be discussed in the next subsection. 

4.4. Picking Smoothing Parameters 

Even though the series estimator we propose in this paper is quite easy to implement, we 
still need to pick the number of approximating functions. We need to pick a smoothing parameter 

K for the approximation of g and H for the approximation of the variance function cr( . The 

method we consider here is the use of the bootstrap to approximate the MSE and to pick 
smoothing parameters to minimize the estimated MSE. The use of the bootstrap-based 
procedure tor selecting the moment condition has been discussed in Inoue (2006). 

Of course, the bootstrapping method we suggest in this section can be easily applied to 
Li's estimator as well. In this experiment, we consider three possible sets which serve as the 

functions for approximating g( z) and (;2 ( z). The DGP follows the same setup in (4.1 ). The 

numbers of Monte Carlo and bootstrapping replications are set to 1,000 and 399 for all cases. 
The resampling scheme involves bootstrapping the {xj ,zj ,yJ triple. The potential instrument 

sets for approximating g( z) and cr2 ( z) are: 

z1 = (1,z) 

z2 = (1,z,22) 

z3=( 1,z,z2 ,z3} 

Conducting the series estimation allows for 9 combinations of the instruments. We use 
the following notation to record each combination : 

K11 = ( z1,z1), K21 = ( z2, z 1) , K31 = ( zJ , z1), 

K,2 = ( z1,z2), K22 = ( z2,z2) , K32 = (23 ,22 ), 

K13 = (z1, z3), K23 = (z2 ,z3 ) , K33 = (23 , 23 ), 

where K32 stands for using ( 1, z, z2, z3
) and ( 1, z, z2) as the instruments for approximating 

g(z) and cr2 (z), respectively. That is to say, we employ 4 and 3 instruments respectively, in 

forming the approximating functions. Note that we restrict our attention to the case of TP = .001. 
' 



30 JOURNAL OF QUANTITATIVE ECONOMICS 

The results are shown in Table 3. It can be observed that it is not the best strategy to 
choose as many functions such as picking K33 • Most of the situations (such as K21 or K31 ) 

tend to choose more (say, three or four) instruments for g( z) and just two instruments for 

cr2 (z) .13 Because we know the DGP, the true MSE can be precisely calculated for different 

combinations of instruments. We compare the true MSE with the bootstrapping method and find 
that the optimal smooth ing parameters chosen by the two methods are quite similar. For instance, 
as n = 100 , the true MSE and bootstrapping MSE pick K21 and K31, respectively. 

5. Concluding Remarks 

In this paper we explicitly prove that the series· estimator considered in Li (2000) is 
semiparametric efficient under heteroskedasticity with unknown form. In addition , we propose an 
alternative estimator for the partial linear regression model and show that it shares the same 
first-order asymptotics as Li's (2000) estimator. 

In the Monte Carlo experiment, we compare our estimator with the Li (2000) and kernel 
estimators in terms of the mean absolute bias and mean squared error. The simulation results 
show that our estimator behaves in a way that is quite similar to Li 's (2000) estimator. In addition, 
the performance of the series type esitmators seems more robust to the setting of the unknown 
g function than the kernel estimator. It is necessary to determine two smoothing parameters in 

estimating the unknown g and crt . The usual way of doing this is to derive the approximate 

MSE through the higher-order stochastic expansion. The alternative estimator seems easier to 
apply when performing a higher-order expansion than the Li's estimator. This research direction 
is still ongoing. In this paper, we propose bootstrapping the approximate mean square error in 
order to choose the smoothing parameters. By using the true MSE as the benchmark, the 
bootstrapping method works very well and provides us with the criteria for choosing the two 
smoothing parameters simultaneously. 
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Appendix A: Proofs 

Let C denote the generic constants throughout this Appendix. The Euclidean norm IHI 

for a matrix A is defined as IIAII = [tr(A'A)]1'
2

. Let C.S. denote the Cauchy-Schwartz inequality. 

According to the notation by Robinson (1988), for the scalar or column vector sequences A; and 

B;, we define SA,B = n-,L:, A;B[ and SA = SA,A· The following lemmc;1 of Li (2000) are useful 

in the proof of our theorems. The proofs are referred to in Li (2000: p.1089-1090). 14 

Lemma1. Q-l=Op(s{K)✓K!✓n), where O=(P'P/n) . 

Lemma 2. llii:t -n1II = op (K-a ), where ftt = (P'Pr P'f, and f = g or f = h. 

Lemma 3. {O'ri!n) = OP ( s{K) !✓n) = op (1) . 

Lemma 4. S - = 0 (K-2a) = o (n-1
'
2

) where f = g or f = h. f-f p p ' 

Lemma 5. (i) Sii = OP {Kin), (ii) S0 = OP {Kin), (iii) s~ = oP ( 1) . 

Corollary 1. If we replace the approximating function PK by the normalized version 

(sayp~ = (PK/cr1,PK2 /cr2 , ... ,pKn/crn)' ), Lemmas 1-5 still hold. 

Corollary 2. If we replace the random variables by the normalized version (e.g., 
f = (f,Jcr,, f2 /cr2 , . .. , f/crn)' ), Lemmas 1-5 still hold. 

Proof of Theorem 3.1 

We can write ✓n(~GLs -13) as 

= s-! -·• ✓ns . _,, . _,, . _,,. . .. (A-1) 
X -X X -X ,g -g +U -U 

What we want to do is to prove that the first term in (A-1) converges in probability based on the 
Law of Large Number and the second term converges in distribution by the Lindberg-Levi Central 
Limit Theorem. We use the following propositions to prove the results: 

Proposition 1. x.,(1-a·)x·/n=Sx·-x" = E[t;t!lcr~]+op(1). 

Proof Let xi= p~{p~'p~ rp~'x. Using the definition of X; and xi gives 

14 Note that we adopt the notation from Li (2000). In our paper, since we do not consider the additive 
structure of the partial linear model, there is no need to decompose E as v + Tl· However, the order 

related to E in our proof is similar to the order of v in Li's paper. For instance, it is trivial to see that 

s. = op {Kin). 



EFFICIENT ESTIMATION OF A PARTIAL LINEAR MODEL ... 33 

2 n E1[(hi -hn-e1J 
+-L 2 

n i=1 cri 

= s , + s (h· -fi•• )-i'" + s i ··.(h· -ii'" )-i ·· . . .. (A-2) 

Note that the variables with a single ·•· represent normalization by cri and the variables with a 

double "**" stand for normalized variables which are premultiplied by the normalized projection 

matrix a· . By LLN, the first term in (A-2) will converge to E[ E1E;ia}J + op (1) . We also have the 

inequality S(h• - ii- )- .·· ~ 2 [ Sh•-fi•• +Si .. ] = oP (1) by Corollary 1, Corollary 2, Lemma 4, and Lemma 

5 (i) and (iii) . Applying CS to the last term in (A-2) gives 

[ )

112 
1/2 

s i ··.(h"-ii'" )-i·· ~ s .-.s(h•-fi- )-i ·· = (op (1)op (1)) = op (1). 

Proposition 2. S . ... . . .. = op (n-112
) 

X - X ,g - g 

Proof. Using definition of x· and x .. gives 

S . ... . __ = 5 . . ... + Sh"-h .... __ - 5 _ .... . 
X -X ,g - g t ,g -g ,g -g i ,g -g 

1. s .. __ :s; (s .S . ... )
112 

= OP (K-a ) by C.S., Proposition 1 and Lemma 4. 
t ,g -g £ g - g 

2. sh• -ii••,g· - g- :s; ( sh'-li-Sg· -1r-r2 

= op (K-2a) by C.S., and Lemma 4. 

3. s .··,g· - ii·· :s; ( s •.. Sg. - if. f 2 

= op (1)OP (K-a) by C.S., Lemma 5 (i) and Lemma 4. □ 

Proposition 3. S . . .. ... = op (n-112
). 

X -X ,U 

Proof. Using the definitions of x· and x .. gives 
s . ·•· . ... =S . ... + Sh. h. ____ 5 __ ___ _ 

X - X ,g - g £ ,U - ,U £ ,U 

1. E[lls, ,u- r I 2] = n-2tr[ a·E·E· ·a·E[ u·u· 'I 2 ]] :s; cn-2tr[ E .. E .. ,] 

= cn-1tr ( s •.. ) = OP ( K/n2
) by C.S. and Lemma 5 (i). 

D 

2. sh•-ii•• ,u .. :s; ( sh•-ii••su .. r2 

= op (K-a ) op ( .JK;Jn) by c .s ., Lemma 4 and Lemma 5 (ii) . 
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3. S, ... u·· ~ ( S, .. Su .. r2 
= OP (Kin) by C.S., Lemma 5 (i) and Lemma 5 (ii) . □ 
d 

Proposition 4. ✓nsx.-"x .. u· ➔N(O, E[E;E;fcr~]). 

Proof Using the definitions of x· and x .. gives 

s . -•• . = s . . + sh. h-.. . - s_.. . . 
X - X ,U E ,U - ,U E ,U 

2. E[jjsh•-fi••,u· f I Z] = n-2tr[(h· -h .. ){h· _ fi .. )' E{ u"u" 'I z)] ~ cn-1tr[sh•-fi••] = oP ( n-
1

) by 

C.S. and Lemma 4. 

3. E[11s •... u• r I z] = n-2 tr[ a·e·E· 'a·E( u·u· 'I z)] ~ cn-1tr [ s •.. ] = op ( n-1
) by C.S. and Lemma 

5 (i) . □ 

Combining Propositions 1-4 proves Theorem 3.1 . 

Proof of Theorem 3.2 

Our new estimator could be written as 

Jn (liocs -P) ~ [ x(I-Q),:~'(1-Q)x r✓n[x(I-Q)L-'(~-O)(g+ u) l 
= s-.1 

__ ✓ns • -• . -· . -· . 
X -X X -X ,g -g +u -U 

.. .(A-3) 

What we want is to prove that the first term in (A-3) coverges in probability by Law of 
Large Number and the second term converges in distribution by Central Limit Theorem. We use 
the following propositions to prove the results. 

Proposition 5. x• '(1 - Q) x· /n = S x· -x· = E[ E;E;/cr~] + op ( 1) . 

Proof Let x; = PKi(Pk PK f Pk x. Using the definitions of X; and x; gives 

!x.,(1-Q) x• 
n 
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= S • + S(h· -ti•)-,· + S • ,(h• -ti•)-,·· . .. (A-4) 

Note that here we only have the variables with single "*" representing normalization by 
cri. And the projection matrix Q is not normalized by cri . By LLN, the first term in (A-4) will 

converge to E[EiE1lcrFJ+oP(1). We also have the inequality S(h·-,;·)-.· 52[Sh•-ti• +s.-]=op(1) 

based on Corollary 2, Lemma 4, and Lemma 5 (i) and (iii). Applying CS to the last term in (A-:4) 
gives 

Proposition 6. S . -· . _. = oP (n-112
) 

X -X ,g -g 

Proof. Using the definitions of x· and if gives 

S . -• . -· = S . . -· + Sh. h-. . -• - S . . -· . 
X -X ,g - g £ ,g -g - ,g -g i: ,g -g 

1. S . . -· 5 (s . S . _. )
112 

= OP (K-a ) by C.S., Proposition 1 and Lemma 4. 
£ ,g -g • g -g 

Proposition 7. S . -• -• = oP (n-112
) . 

X -X ,U 

Proof. Using the definitions of x· and x• gives 

s . -· . -· = s . -• + sh h-. -· - s _. -·. X -X ,g -g £ ,U - ,U t ,U 

1. E[jjs,,0• 112 I Z] = n-2 tr[ 0EE'OE[ u·u· 'I Z ]] 5 cn-2 tr[EE'] = cn- 1tr(S.) = OP {Kln2
) by 

C.S. and Lemma 5 (i). 

2. sh-ti• ,u· $ (sh-ti"s(j. )1'2 
= op (K-a )op ( $1✓n ) by C.S., Lemma 4 and Lemma 5 (ii). 

( )

1/2 
3. s •.. 

0
.- 5 s .-s

0
• = OP (Kin) by C.S., Lemma 5 (i) and Lemma 5 (ii). 
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d 
Proposition 8 . .Jns __ ➔N(O, E[E,·E,'./cr,2 1). 

x-x ,u 

Proof. Using the definitions of x and x· gives 

s . __ . = s .. + sh. h-.. - s _ .. . 
X -X ,U E ,U - ,U E ,U 

d 

1. ✓ns.- .u· = z::1 [EiU/crt) !✓n ➔N (o , E [EiE;1crf ]) by Lindberg-Levi Central Limit 

Theorem. 

2. E[llsh:-fi• .u· !1
2

1 Z] = n-2 tr[(h" -ti• ){h" - ti•)' E( u"u" 'I Z)] ~ cn-1tr[ Sh• -fi•] = oP ( n-1
) by 

C.S. and Lemma 4. 

3. E[lls.·.u·ll21z]=n-2 tr[aE·E·
1

aE(u·u·'1z)]~cn-1tr[se]= op (n- 1
) by c .s . and 

Lemma 5 (i). 

Combining Propositions 5-8 proves Theorem 3.2. 
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Appendix B: Tables 

Table 1. Simulation Results of the Partial Linear Regression Model Assuming g(z) = exp(z) 

TP =.1 TP = .01 TP = .001 

Estimators a BIAS b MSE BIAS MSE BIAS MSE 

n = 100 

bun 0.2410 0.0921 0.1714 0 .0471 0.1922 0.0601 

bu 0.2409 0.0921 0.1713 0.0469 0.1899 0.0584 

bo 0.2704 0.1180 0.2704 0 .1180 0.2704 0.1180 

bK 0.2584 0.1057 0.2259 0 .0754 0.2360 0.0814 

n = 200 

bun 0.1683 0.0443 0.1124 0.0201 0.1244 0.0253 

bu 0.1682 0.0442 0.1123 0.0201 0.1240 0.0251 

bo 0.1902 0.0573 0.1902 0.0573 0.1902 0 .0573 

bK 0.1796 0.0503 0.1554 0.0351 0.1703 0 .0407 

n = 400 

bun 0.1202 0.0223 0.0824 0.0109 0.0929 0.0135 

bu 0.1202 0.0223 0.0825 0.0109 0.0929 0.0134 

bo 0.1369 0.0286 0.1369 0.0286 0.1369 0 .0286 

bK 0.1306 0.0256 0.1080 0.0174 0.1245 0 .0221 

8 bun , bu , b0 and bK represent my estimator, Li's (2000) estimator, the prel iminary estimator and the 

kernel estimator, respectively. 

b Note that the numbers in boldface represent the minimum of the corresponding BIAS or MSE. 
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Table 2. Simulation Results of the Partial Linear Regression Model Assuming 

g(z) = (1+z)3 

TP = .1 TP = .01 TP = .001 

Estimators a B/ASb MSE BIAS MSE BIAS 

n = 100 

bun 0.2416 0.0923 0.1731 0.0479 0.1944 

bu 0.2415 0.0922 0 .1719 0.0472 0.1889 

bo 0.2712 0.1182 0 .2712 0.1182 0.2712 

bK 0.4668 0 .2866 0.4753 0.2836 0.4753 

n =200 

bun 0.1687 0.0444 0.1135 0.0205 0.1277 

bu 0.1686 0.0444 0.1128 0.0203 0.1234 

bo 0.1909 0.0575 0.1909 0.0575 0.1909 

bK 0.3080 0.1287 0.3141 0.1226 0.3141 

n = 400 

bun 0.1203 0.0223 0.0829 0.0110 0.0934 

bu 0.1203 0.0223 0.0827 0.0109 0.0921 

bo 0.1371 0.0285 0 .1371 0.0285 0.1371 

bK 0.2142 0.0617 0.2140 0.0570 0.2140 

MSE 

0.0615 

0.0578 

0.1182 

0.2836 

0.0267 

0.0248 

0.0575 

0.1226 

0.0138 

0.0133 

0.0285 

0.0570 

8 bun , bu , b0 and bK represent my estimator, Li 's (2000) estimator, the preliminary estimator and the 

kernel estimator, respectively. 

b Note that the numbers in boldface represent the minimum of the corresponding BIAS or MSE. 
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Table 3. Choosing smoothing parameters assuming g(z) = exp{z) 

n = 100 n = 200 n = 400 
Estimators True Bootstrap True Bootstrap True Bootstrap 

MSE 8 MSE MSE MSE MSE MSE 

K,, 0 .1062 0.1439 0.0519 0.0624 0 .0227 0.0265 

K2, 0.0559 0.1354 0.0297 0.0569 0 .0140 0.0244 

K31 0.0569 0.1326 0.0296 0.0539 0.0141 0.0238 

K12 0 .0949 0.1617 0.0413 0.0712 0.0172 0.0316 

K22 0.0560 0 .1578 0.0288 0.0675 0 .0121 0 .0288 

K32 0.0561 0.1515 0.0284 0.0637 0 .0123 0.0278 

K,3 0.1043 0.2009 0.0481 0.0874 0 .0208 0.0392 

K23 0.0639 0.1778 0.0313 0.0745 0 .0142 0.0319 

K33 0.0643 0 .1 761 0.0313 0.0715 0 .0143 0 .0314 

a Note that the numbers in boldface represent the minimum of the corresponding MSE . 

••• 


