
A Rigorous Computational Comparison of
Alternative Solution Methods for the

Generalized Assignment Problem

Mohammad M. Amini • Michael Racer
Department of Management Information Systems and Decision Sciences , Th e Fogelman College of Business

and Economics, Th e University of Memphis, Memphis, Tennessee 38152
Department of Civil Engineering, Th e Herff College of Engineering, Th e University of Memphis,

Memphis, Tennessee 38152

S tatistical experimental design and analysis is a cornerstone for scientific inquiry that is rarely
applied in reporting computational testing. This approach is employed to study the relative

performance characteristics of the four leading algorithmic and heuristic alternatives to solve
the Linear Cost Generalized Assignment Problem (LCGAP) against a newly developed heuristic,
Variable-Depth Search Heuristic (VDSH) . In assessing the relative effectiveness of the prominent
solution methodologies and VDSH under the effects of various problem characteristics, we
devise a carefully designed experimentation of state-of-th e-art implementations; through a
rigorous statistical analysis we identify the most efficient method(s) for commonly studied
LCGAPs, and determine the effect on solution time and quality of problem class and size.
(Combinatorial Optimization; Generalized Assignment Problem; Variable-depth Search; Experimental
Design and Analysis)

1. Introduction

One of the fundamental bases for validation of scientific
inquiries is a rigorous standard of experimental proto
col-including the use of statistical experimental de
signs-which allows for drawing inferences from the
observed data . Unfortunately, this is not a norm in the
mathematical programming literature, which often
present unclear designs and unreplicated point estimates
when reporting empirical testing of software . The ab
sence of a statistically valid, systematic approach can
result in the drawing of insupportable conclusions re
garding the relative performance of alternative algo
rithms' and/ or heuristics' implementations. The lack
of an a priori experimental design is believed to be one
of the main sources of such shortcomings (see Crowder,
Dembo, and Mulvey (1978), McGeoch (1986) , Amini

868 MA AGEMENT SCIENCE/Vol. 40, No. 7, July 1994

(1989), Greenberg (1990), Jackson et al. (1990), Amini
and Barr (1992)).

This paper first presents a new heuristic, Variable
Depth-Search Heuristic (VDSH), to solve the Linear Cost
Generalized Assignment Problem (LCGAP) . Next, it il
lustrates the application of basic principles of statistical
design and analysis of experiments to compare four
leading LCGAP alternative solution methodologies with
VDSH. The purposes of our carefully designed exper
iment are to study the relative efficiency of the promi
nent solution approaches with respect to the problem
characteristics and to provide answers to the following
questions regarding the alternative solution approaches:

• ls there a best overall method for solving LCGAP?
• What are the effects of type and degree of para

metric change on the performance of each solution
methodology?

0025 -1909 / 94 / 4007 / 0868$01 .25
Copyright 1994, The Institute of Management Sciences

AMINI AND RACER
Computat ional Comparison of Alternative Solution Methods for the Generalized Assignment Problem

• What are the effects of problem set and size on the
performance of each method?

• What are the interaction effects on the solution
techniques when the above factors are changed singly
or in combination?

To fully explore the interaction between LCGAP so
lution methodologies and salient problem characteris
tics, we (1) design and implement a new heuristic,
VDSH; (2) devise a statistical experimental design to
evaluate the relative efficiencies of the leading solution
methods; (3) create a portable testing system to generate
all necessary data points; and (4) implement a rigorous
statistical analysis of the performance of the methods
under different experimental combinations.

The remainder of the paper is organized as follows:
In §2 we present a background on LCGAP and a dis
cussion on the alternative solution approaches. Our new
heuristic VDSH along with an example to illustrate the
steps involved in the heuristic are also discussed. The
computer implementation and the complexity of the
leading methods and VDSH are discussed in §3. A sys
tematic test procedure is presented in §4. The experi
mental design for computational comparison of the
VDSH with the four leading solution methods is the
topic of §5, followed by discussions on the design, im
plementation, and analysis of results in §6. Finally, the
summary and conclusions are presented in §7.

2. Background
In this section, we first state the generalized assignment
problem. Next, we review previous methodologies, and
introduce in detail the new heuristic, VDSH .

2.1. Problem Statement
An important class of network models is the lin ear cost
assignment problem (LCAP). The assignment problem
constitutes a linear programming problem in which a
set of 11 assignees (e.g . employees, objects, machines, or
sales districts) is to be assigned uniquely to n particular
assignments (e .g . tasks, persons, jobs, or salesmen) . Each
assignee i associates a cost C;i with each assignment j.
The objective for the assignment problem is to assign
one assignee to each assignment in such a way as to
minimize the sum of the costs. In the last forty years,
a variety of algorithms have been devised and imple
mented on the traditional as well as novel computers

MANAGEMENT S CIE CE/Vol. 40, No. 7, July 1994

(vector and parallel), which efficiently provide optimal
solution to the LCAP .

A challenging variation of LCAP which has found
merit in real-world applications is the linear cost gen
eralized assignment problem (LCGAP) . The LCGAP may
be posed as follows: assign a set of m assignees (e.g.
vehicles, employees, etc.), each with a limited capacity
(e.g . capacity, speed, etc.), uniquely to a set of n par
ticular assignments (e.g. packages, loads, jobs, etc.) ,
each consuming some amount of the assignee's capacity.
Each assignee i has a capacity b; and associates a cost
c;1 with each assignment j. Also, each assignment j re
quires an amount r;1 of assignee i's capacity to be com
pleted. The LCGAP attempts to determine a set of unique
assignments without violating any of the assignees'
limited capacity.

To present a precise mathematical statement of the
LCGAP we use the following notation:

Constants:
m : number of assignees,
11: number of assignments,
b;: capacity of assignee i ,
r;i: assignment j's requirement of assignee i's capacity,
C;i: cost of assigning assignee i to assignment j.
Variables:
. {1, if assignee i is assigned to assignment j

Xij·
0, othenuise .

We may formulate the LCGAP as follows:

m "

Minimize L L C;ixij,
i~ l j= l

Subject to:

L r;ixii s; b;, i E I ,
j= I

Ill

LX;j = 1, jE] ,
i-= 1

(1)

(2)

(3)

x;i = 0orl , iEI , and jE] . (4)

Many applications of LCGAP have been reported in
the open literature (see Balachandran (1972), Grigo
riadis et al. (197 4) , Ross and Soland (1975) , Fisher and
Jaikumar (1981) , and Racer (1990)) . Applications in
clude computer job assignments in computer networks;
design of communication networks; some special facility

869

AMINI AND RACER
Comp11tatio11a/ Compa rison of Altem ative So /11tio11 Met/1 ods fo r th e Ge11eralized Assig11111 e11 t Problem

location problems converted to LCGAP; vehicle routing,
in which the vehicle fleet delivers products stored at a
central warehouse to satisfy the orders placed by scat
tered customers; and software engineering manage
ment. A recent study by Gavish and Pirkul (1991) ex
tends the LCGAP application to address the Multi
Resource LCGAP (MRLCGAP) , in which assignees have
a limited availability of a set of resources . MRLCGAP
has important application in the trucking industry.

2.2. Methodologies to Compare
Although the LCGAP is known to be NP-hard , the ma
jority of studies has concentrated on optimization
methodologies, applying branch-and-bound method. In
this paper, the performance of VDSH is compared to
that of three optimization methods-Ross and Soland
(1975), Fisher, Jaikumar, and van Wassenhove (1986) ,
and Martello and Toth (1987)-and the heuristic of
Martello and Toth (1987) . We briefly describe each
below.

Ross and Soland develop a depth-first branch-and
bound method for the GAP . Bounding is achieved in
two steps. First, the capacity constraints are relaxed,
and assignments are created. Secondly, the bounds are
tightened by considering all reassignments within re
sources with violated capacities. The optimization
method of Fisher, Jaikumar, and van Wassenhove is
also a depth-first method. Their multiplier adjustment
method is a Lagrangian technique relaxing the require
ment that each resource be assigned exactly once.
Tighter bounds are achieved by intelligently modifying
the multipliers.

Martello and Toth 's heuristic is a two-pass method.
The first pass makes assignments based on minimizing
a regret function . This regret may take one of several
forms: task cost; task cost/ unit weight; task size; task
size relative to resource capacity. The second pass of
the heuristic identifies any feasible cost-reducing reas
signments. The optimization scheme of Martello and
Toth utilizes the heuristic as a rough bound. This bound
is improved upon by a pair of reduction methods.

2.3. The Variable-Depth-Search Heuristic
In this section, we introduce a new heuristic approach
for solving LCGAP and to compare its performance with
the leading optimization algorithms and heuristics. The

870

present technique relies on the idea of local search (see
Papadimitriou and Steiglitz (1982)) . Local search
methods have been used to provide quality solutions
for a variety of problems, including TSP, job sequencing
problem, etc. (Clarke and Wright (1964) , Casco et al.
(1988) , Hall (1989)) . In the case of the LCGAP , the
capacity constraints were found to hinder the applica
tion of the typical search methods. Lin and Kernighan
(1973) developed a procedure called variable-depth
search (V DS) , to overcome the roadblock in local search
methods. Their concept has been successfully applied
to both the uniform graph partitioning and traveling
salesman problems (Kernighan and Lin (1970) , and Lin
and Kernighan (1973)) . The heuristic presented in this
s tudy for solving LCGAP , the variable-depth-search heu
ristic (V DSH) , is motivated by the Lin and Kernighan
(1973) traveling salesman heuristic.

The method employed for the GAP is similar to one
used by Kernighan and Lin (1970) in solving the uni
form graph partitioning problem. The essence of such
a method is to begin with some initial, usually feasible,
assignment of resources to tasks. From this point, the
solution is improved in a step-wise fashion . Heuristics
of this sort may be called local search methods. At each
step, we seek to find an improvement. If no improve
ment is possible, then the solution is locally optimal,
with respect to the definition of a step.

It is a matter of algorithmic design what is considered
to be a step. Possible steps for the GAP may be:

i . reassign a task from one resource to another, or
ii. swap the assignments of two tasks, or
iii. permute the assignments of s tasks, s :;; N
The implications of these possibilities are important.

First, any method that allows only type i steps is less
flexible than an algorithm that allows type iii steps.
However, the other prominent factor is the amount of
work needed to find an allowable improvement.

Two possible improvement rules are " first improve
ment" and " best improvement. " At each iteration, a
first improvement algorithm will scan the set of allow
able options until an option is found that will decrease
costs. A best improvement rule selects the option that
will produce the largest decrease in cost among all op
tions that produce savings. On the average, the best
improvement strategy will require more work per iter
ation than the first improvement type.

M A AGEMENT SCIENCE/ V o l. 40, N o . 7, July 1994

AMINI AND RACER
Computa tional Co 111 pariso 11 of A lternative Solution Methods fo r th e Generalized Assignment Problem

All of this is brought back to bear on the three possible
steps suggested earlier . The w ork required to find a typ e
i improvem ent, either first or best, is linear in the number
o f resources and the number of tasks. Moving from step
definition i to s tep definiti on iii , work increases expo
nentially in s.

The structure of the Variable Depth Search H euris tic
is a two-phase algorithm. The firs t phase develops an
initial solution and lower bound. Phase two con sists of
a doubly-n ested iterative refinem ent process. Within
each major iteration an action set of potential task moves
and swaps is crea ted. Subsequently, the heuris tic pro
ceeds through a set of minor iterations , to crea te a se
quence of action s, in an effort to redu ce to tal costs. The
m ajor itera tion concludes by identifying the subsequence
of actions tha t produces the greatest savings in cost.
Thus, a step within VDSH is an ordered set of moves
and swaps, observing capacity constraints, that results
in a reduction of costs . If such a sequen ce is found , the
task assignments are revised , and another m ajor itera
tion is performed . When no such sequence is found ,
VDSH terminates .

2.3.1. Structure of the Variable-Depth Search
Heuristic. We define the followin g variables, func
tions, and sets:

k = minor iteration counter,
I (j) = resource assignment of task j at start of major

iteration ,

f; ,i = c,(i),i - c;,i ,

C; ',i",i",i' = C;' ,j" + C;",i ',
f (i) = sum of sizes of tasks assigned to resource i a t

s ta rt of m ajor itera tion ,
e (i , k) = sum of sizes of tasks assign ed to resource i

th rough minor iteration k,
p (k) = accumula ted savings through mi nor itera

tion k ,
T ; = set o f tasks assigned to resource i at s tart of major

itera tio n ,

0 ;,k = set o f tasks assign ed to resource i a t minor it
era tion k ,

µ, = set of (resou rce, task) reassignment pairs (i , j)
for w hich task j is not assigned to resource i a t start of
the m a jor itera tion ,

a = se t of swap p airs [(i ', j ") , (i ", j')] for w hich tasks
j' and j " h ave different resource assignments- i ' and i"
respectively-a t s ta rt of the ma jor itera tion ,

M A ACEM E T SCIENCE/ Vol. 40, 0. 7, Jul y 1994

argmax (•) = determines the index of the maximum
value in a set.

v = the value of adding the best m ove at the current
minor iteration, given all previous actions are also taken

w = the valu e of adding the best swap at the current
minor iteration, given all previous actions are also taken.

We will now describe the GAP Variable-Depth
Search Heuris tic (VDSH) , summarized by the flowchart
in Figure 1:

Variable Depth Search Heuristic (VDSH)

IP'IHIA§IE O:

Step 0: IN ITIALIZATION

Determine an initial pa rtition of the tasks into T1 , T2 ,

I = I +{ m+l };
Set b,,,+1 = oo ;

Set f (i) , for Vi EI;

Determine lower bound, using LP relaxation;

set g = L L C;i
iE / jE T,

IP'IHIA§IE 00 :

Step 1: MAJOR ITERATION INITIALIZATIO N

Set 0 ;0 = T;, e(i ,0) = f (i) , and fo r each task } E T; , /(j)
= i for Vi E I;
p (O) = O;
u =];
Set k = O;

Step 2: a. ACTION SET DETERMINATION

Determine µ, = { (i , j) : iE J, j EJ , j ff. T;} ;

Set C;i = cl(i>-i - C; ,j , for each (i , j) E µ, ;

Determine a = {((i ', j") , (i ",j ')] : i '= l(j')=l l(j")
= i"};
Set c1Ci',n .<i",i'>l = c;' ,i" + c;",i' for each [(i ', j ") , (i",j')]
E a;

871

AMINI AND RACER
Co111putatio11al Co111pariso 11 of A lt ema tive Solution Methods for t/1 e Generalized Assignment Problem

Figure 1

b. BEST ACTION SET CREATION

VDSH Flowchart

jsTARTI

no

ALGNENT ACTION
SEQLENCE

v = max { C;,((i , j)Eµ; j EU ; e(i,k) + r;i ::::; b; } ;

µ* = {(i ,j): C; ,i = v; (i,j)Eµ;j EU ; e(i,k) + Y;j 5 b; };
w = max { C; ',i",i"f [(i ', j") , (i",j')]E<J; j 'EU;j"EU;

e(i ' ,k) + r;' ,i" - r;',i' ::::; b;,; e(i ",k) - r;",i" + r ;",i'

::::; b;" }
*-{ [('' '")('" '') · - ~ ·[('' '")('" '')]E. <J - I,] , I,] .W-C;',j",i",j' , I ,] , I,] <J,
j'EU; j"EU; e(i',k) + r;',i" - r;' ,i ' ::::; b;,; e(i" ,k)

- r;",i" + r;",i' ~ b;"};
k = k + l;
Ifµ* = </J and <J* = </J, go to Step 3;

c. SEQUENCE CREATION

k ' = k - l;
If v > w then

872

Choose (i *,j*) E µ;
u = u - {j*};
p (k) = p (k- 1) + v ;

For V iEJ

IDENTIFY
BEST

SU3SEOLENCE

ACCEPT
SU3SEQLENCE

If i = i*: 0 ;,k = 0; ,k' + {j*};
e(i ,k) = e(i,k ') + r;•.r;

If i = l(j *) : 0 ;,k = 0; ,k' - {j*};
e(i ,k) = e(i ,k') - r ;,; •;

Otherwise: 0 ;,k = 0 i.k,;

e(i,k) = e(i,k') ;

Otherwise [w ~ v]
Choose [(i '*, j "*),(i"*,j'*)] E <J* ;
u = u - {j'*,j"*};
p(k) = p(k-1) + w;
For v'iEJ

If i = i '*: 0 ;,k = 0 i ,k' - {j'*} + {j"*};
e(i ,k) = e(i,k ') + r; ,;,,. - r; ,; •·;

If i = i"*: 0; ,k = 0 ;,k' + {j '*} - { j"*};
e(i,k) = e(i,k') - r; ,i"" + r ;r•;

Otherwise: 0 ;,k = e i,k' ;

e(i ,k) = e(i ,k ') ;

Go to Step 2b .

M ANAGEMENT SCIE CE/Vol. 40, No. 7, Jul y 1994

AMINI AND RACER
Computational Comparison of Altemative Solution Methods fo r t/1 e Generalized Assignment Prob lem

Step 3: SOLUTION REFINEMENT

p* = max {p(0) ,p(l), ... , p (k) };
s* = argmax { p(O),p(l) , ... ,p(k) };
If s*> 0

g = g - p*;
T ; = 0;,5 •, and f (i) = e(i,s *) for ViEl;
Go to Step l ;

Otherwise
g is cost of current solution;
{ T ; ,T2 , ... T,,, } is final pa rtition;
If T ,,, + 1 -:/= ¢, then final solution is infeasible;
Termina te!

Init ialization. The initial assignment of tasks to re
sou rces proceeds as follows . A random permutation of

th e tasks, {i,,c i), J,,c 2 J, j,,(3) , . . . , J,,c,I)}, is gen erated . A
dummy resource, i = m + 1, i introduced, where the
cost of such an assignment is infinite. Task j,,(I > is as
sign ed to the first assignee with available capaci ty. If
non e are available, the task is assigned to the " dummy"
assignee, m + 1. Subsequent tasks are assigned in a
cyclic fashion. That is, suppose J,,c,> has been initialized
to resource h . Then , the assignment of J,,c,+i) would firs t
be sought with resource h + l , or resource 1 if h = m ,
or h = m + 1. We will discuss the rationale for this
initializa tion in de tail, after describing the heuristic. Also
during th e initialization, a lower bound is calculated
(by lin ear progra mming relaxation) , and the cost of the
initia l solutio n is d e termined .

Major Iteration Initializa tion. The m ajor iteration p ro
ceeds b y setting th e temporary loads, 0 , for the re
sou rces, and initializing the task assignm ent vector, 1.
The set U consis ts of all unlabeled tasks-those tasks
w hich h ave not been used during the iteration . Initially,
U includes the total task set, J.

Action Set Determination . In performing a search for
an improved solution, the heuris tic a llows two types of
actions-movement of a task to a n ew resource, and
swapping the resource assignments of two tasks . Cal
culations are made for each task / assign ee pair, (j, i) ,
i-:/= 1 (j) . C;,; indicates the savings accrued by moving task
j from l(j) to i . Similarly, for each pair of potential
reassignments, [(i ' , j") , (i ", j')] , we calculate c.
c1Ci' ,i").(i",i'l l refl ects the accrued savings achieved as a
result of swapping the assignments of tasks j ' and j". At
this point, the algorithm proceeds to the first minor it
eration wi thin the major iteration .

M A AGEM E T SCIE CE/Vol. 40, 0 . 7, July 1994

Within the major iteration, a sequence of moves and
swaps is generated . A task is unlabeled until it has been
involved in some action-either a move or a swap
w ithin the m ajor iteration . A move of j to i is feasibl e
a t minor itera tion k if the task j is unl abeled , and the
reassignment of j to i does not exceed the resource limit
of i . Likewise, a swap of j ' and j" is feasible if j ' and j"
are unlabeled , and the swa p does not force either re
source limit to be exceeded.

Best Action Set Creation . The best move at minor it
eration k is a pair (i , j) th at maximizes C;,; over all feasible
moves. The setµ,* contains a ll such (i , j) pairs . The best
swap is [(i ', j") , (i", j ')] th at maximizes c1c, ',i"J .<i",i'll over
all feasible swaps. The set u* contains all such [(i ' ,j") ,
(i", j')] . ote that the best move and / or swap at iter
ation k may actuall y increase costs, i. e. C; ,; < 0 for (i , j)
E µ, *, and cl<i' ,i"l .Ci".J'>I < 0 for [(i ' ,j") , (i ", j ')] Eu*. It
is this relaxation of strict de cent that enha nces the per

fo rmance of VDS H . An action that increases cos ts may
simultaneously m ake ava ilable enough space so that
some other significant cost saving action can follow it
in the sequence. The example to be discussed later

highlights this aspect . If it is not possible to extend the
sequence, i.e . µ,* = ¢ and u* = ¢, then the m ajor iteration

is concluded by identifying the best subsequence, and
refining the solution.

Sequence Crea tion. If v > w, then cos ts can be bes t
reduced by making a m ove. A pair (i*, j *) E µ,* is ac
cepted as the next action i the equ ence, v is added to

p(k - l) to determine p(k) , resource usages are updated ,
and j * is labeled . If on th e o ther hand, the swap is more

profitable, then a swap [(i '*, j"*), (i"*, j'*)] E u* is
accepted, w is added to p (k - 1) , resource usages are

updated, and j '*, j"* are labeled . The next minor iter
ation is begun .

Solution Refin ement . The major iteration ends wh en
no furth er feasible moves or swaps exis t. The variable
p(k) indicates the reduction in costs achieved by per

forming all accepted moves and swaps up to itera tion
k. Th e variable p* identifies the maximum value that

p(·) takes on within th e current major iteration, and s *
indica tes the value of k for w hich p* is maximized . If
s* = 0, i.e. no cost-reducing sequ ence was identified,
the algori thm h alts . If s* is not zero, then all m oves and

swaps in the subsequence are m ade p erman ent. The
next maj or iteration will begin with each resource i

873

AMINI AND RACER
Co111 pu tatio11al Comparison of Alternat ive So lutio11 Methods for the Genera lized Assignment Problem

carrying a ll tasks in 0 ;,5 • • The remaining moves and
swaps are ign ored .

We return now to a discussion of the initializa tion .
Developing a randomized initia lization allows the al
gorithm to address two issues- feasibility and opti
mality . The task of identifying a feasible solution to
LCGAP is itself an NP-Hard problem . In some in
stances, a single execution of VDSH will not produce a
feasible set of assignments-there will be some tasks
that are assigned to resource m + 1. By re-solving the
problem w ith a different initializa tion, we ca n develop
some confidence of whether the origin al problem is fea
sible. Empirical evidence indica tes tha t a feasible so
lution to a feasible problem will be generated wi th in a
very small number of itera tions. In most cases, the first
a ttempt will in fact genera te a feasible solution .

In terms of optimality, the initia lization is also a very
p owerful tool. Because VDSH is a heuristic, optimality
is not guaranteed. By generating q distinct initializations

(a) Table 1 Data Initial ization

Assignee (i) 2

A 20 20
B 10 10
C 28 20
Requirement (ri) 2

and solving th e LCGAP q times, a deeper understanding
of the algorithm's performance may be rea lized . This
concept of multiple initializa tions was employed by Lin
(1973) , in motiva ting the use of the 3-cha nge h euristic
for th e Traveling Salesman Problem. Being an integer
problem, a duality gap will likely exist between the LP
lower bound, and the optimum LCGAP solution. By
examining the resul ts of the q trials, some confidence
can be developed in terms of the size of the duality gap .
At the same time, of course, confidence in the solution
genera ted by VDSH is also gained .

For any instance of the LCGAP, there are three pos
sible outcomes for a single execution of VDSH. First,
VDSH may be able to identify a solution improvem ent.
Secondly, as discussed earlier, the h euristic may b e un
able to produce a feasible solution . This is a rare oc
currence, overcom e by repea ting from a new initializa
tion . The third possibility is that there may be a degen
eracy, in that a series of tasks can be reassigned with

Task (i)

3 4 5 Capacity (b,)

25 7 5 3
10 10 10 3
10 15 15 3
2 1

(b) 10

A 1

B
2

O 3

C

874 M A AGEMENT S CIE CE/Vol. 40, No. 7, Jul y 1994

AMINI AND RACER
Comp11tatio11a/ Comparison of Alternative Solution Methods for the Generalized Assignment Problem

no accompanying reduction in cost. In this case, the
possibility of non-termination exists. VDSH has been
written to allow for degenerate improvements, permit
ting the changes . In this way, VDSH allows for the pos
sibility that the change may lead to an actual improve
ment in the next major iteration . If no improvement is
made after a preset number of iterations-currently
two-the algorithm terminates. Degeneracy has not
proven to be an issue in most instances.

2.3.2. An Example Problem. For simplicity, assume
r;i = ri for this example. Such a situation may, for in
stance, occur when the tasks are loads to be delivered,
and the resources are vehicles . The data is as follows.
There are three resources, A-C, each wi th a capacity of
three. The resource requirement vector r is (2, 1, 2,
1, 1) . The cost matrix is shown in Table l(a) .

The initial assignments are shown in the Table 1 (b).
For each task j, and resource i, the value on arc (i, j)
indicates ci.i • Table 2(a) identifies the action set. The
top left table identifies the action set. All potential moves
and swaps for the major iteration are shown in the left
column. A ' / ' indicates that such an action is invalid;
the capacity of at least one resource would be violated.
A '-' indicates that at least one of the tasks involved in
the action has already been reassigned in the major it
eration. The complete action sequence is depicted in
Table 2(b) , and the algorithm progress is summarized
in Table 2(c) .

Had strict monotonicity been forced on the algorithm,
the last two operations would not have been performed.
The swap of 3 and 4 at the second iteration provided
resource B with enough capacity to serve task 1. Also,
had the move at the third iteration been one such that
savings was negative, then the algorithm would still
have retained enough information to know that the only
profitable operation was at iteration 1 (p * = 5) . The first
major itera tion is completed. An improvement has been
found . The algorithm proceeds to the second major it
eration, with the assignment of task 5 to A, tasks 1 and
4 to B, and tasks 2 and 3 to C.

Table 3 indicates the activity of major iteration 2. After
the fifth minor iteration, no actions are possible . The
moves of 4 to A , and 2 to B are finalized . The new
assignments are tasks 4 and 5 to A, tasks 1 and 2 to B,
and task 3 to C .

M A AGEME T SCIENCE/ V o l. 40, No. 7, Jul y 1994

The algorithm continues with iteration 3, summarized
in Table 4. A sequence of four moves is identified . The
subsequence, moving task 2 to resource B, is accepted,
producing a savings of 10. This is the final cost saving
iteration . Iteration four will terminate VDSH with the
global optimum solution.

3. Computer Implementation of
Methods

3.1. Previous Methods
Since computer codes were unavailable for two of the
methodologies under comparison-Fisher et al and Ross
and Soland-we focus our discussion on the codes of
Martello and Toth . In Martello and Toth 's optimization
method, MTG, a total of 67 arrays are defined. Of these,
19 are of length O(m) , 29 are of length O(n) , and 7
are of order O (mn). In addition, a number of arrays are
defined for use in the branch-and-bound structure .
Martello and Toth define the value jnlev to characterize
the number of levels in the tree. Given this, there are
6 additional arrays of O(jnlev), five of length
O(jnlev*m) , and one of length O(jnlev*n) . Total
memory usage is O(mn + jnlev*n + jnlev*m) .

Martello and Toth's heuristic, HGAP , is a much sim
pler procedure, and hence requires much less memory.
Total memory for the two-pass method uses sixteen ar
rays requiring a total of 6m + 7n + 3mn in storage.

3.2. VDSH Implementation
In considering implementation, it is apparent that the
most computationally intensive operations are the cre
ation of the action set within each major iteration, and
the best action set creation within each minor iteration .
The action set is actually constructed as two arrays
one for moves, and another for swaps. For each task,
all potential reassignments are evaluated and stored.
This produces an array of length O(mn). Subsequently,
a similarly styled swap array is created, evaluating all
potential swaps . The result is an array of length O (n 2)

elements.
Identifying the best move and swap at each minor

iteration requires a scan of each of the above arrays.
Two alternatives were considered. The two arrays could
be sorted, nondecreasing, requiring time O (m n In nm) ,

875

AMINI AND RACER
Co111p11tatio11al Co111pariso11 of Alternative Solutio11 Methods fo r the Ge11eralized Assig11111 e11t Problem

Table 2 Major Iteration # 1

(a) Action Set (b) - - - - - - - - - - - - -
1-1 - - 2- I - - - - -,

A I 3 I B
K

I ____ I L ____

- - - - 7

Moves 2 3 I 1 4 5 C L ____
I_ - - - - - ------ - - - - -

IB I I 10
1C I I I ------- - - - - - - - - -
2B 10 I - - - - 7 - - - - ,

A 1 5 I 3 B 2C 0 I I L ___ - L ____
3A I I
3C I I I - - - - I

4 2 C I ____ I 4A I I
4B - 5 - 5

I_ - - - - - - - - - - - - - - - -
SA I
SB - 5 ------- ------- - -

- - - - 1 - - - - ,
Swaps A I 1 5 I 4 B t ____ I

L - - - _I
I

13 - 5 - 5 r - - - -
C I S 2 I

14 - 5 - 5 I_
L ____

- - - - - -------- - - -15 - 3
23 I
24 3
25 5 I - - - - I ,--:,- 4-,
34 - 5 - 5 A 6 B I ____ I

L - - I 35 - 5
r - 3 - -2 - ,
I_ - - - _, C

(c) Algorithm Progress

Minor
Iteration Best Best

(k) Move Swap

1 2C 25
2 4B 34
3 1B

and O(n 2 In n) , respectively. Alternatively, the data
could remain unsorted. This was the chosen approach.
Both arrays are maintained as linked lists . When a task
is involved in a move or swap, link pointers are modified
so that no further scan is made of actions involving that
task. Our motivation for choosing the second requires
consideration of the tradeoff between sorting and scan-

876

Chosen
Action Save Pk p·

Swap 5 5 5
Swap - 5 0 5
Move 10 10 10

ning. Although sorting would place all large savings
actions at the top, a large portion of the list might still
have to be scanned, searching for a capacity-feasible
action . By employing the linked list, the number of ele
ments scanned decreases significantly with each minor
iteration.

The VDSH heuristic requires two input m X n arrays,

MANAGEMENT Sc1E CE/Vol. 40, No. 7, July 1994

AMINI AND RACER
Computational Comparison of Alternative Solution Methods for the Generalized Assignment Problem

Table 3

(a)

Moves

1A
1C
2A
2B
3A
3B
4A
4C
5B
5C

Swaps

12
13
15
24
25
34
35
45

(c)

Minor
Iteration

(k)

1
2
3
4
5

Major Iteration # 2

Action Set

K

2 3

- 10 I I
I I I

0 0

I 10
- 15 I I
I I I

3

I
- 5 - 5 I

- 10 I - 10

I I
- 18 - 18 - 18
- 15 - 15 - 15

2
- 10 - 10
I

- 25 - 25 - 25
- 2

Algorithm Progress

Best Best Chosen
Move Swap Action

4A 24 Move
2B 25 Move
5C 15 Move
1A 13 Move
3B Move

4

- 10

I

- 15

I

- 18

Save

2
- 10
- 10
- 10

0

p,

2
12
2

- 8
-8

5

I
0

p·

2
12
12
12
12

storing demand and cost information. Three m-vectors
are utilized, indicating resource utilization-current and
intermediate-and capacity. Two n-vectors indicate la
bel status and resource assignment for each task. The
move set is maintained in an mn X 3 matrix, accom
panied by an mn-vector, for the linked list. Similarly,

MANAGEMENT SCIENCE/Vol. 40, No. 7, July 1994

I_ - -

r - - r - - - - 1 - - - 1 - - - - ,- - - ,

i A i _4_ - s_ J L 1 i B i
I

I
L

,----,
3 2

1
C

L - - - -

,----,
A 4 6 1 L ___ _

,----,
1 2

1
B

L - - - -

L_

r - -
3

L - -

r--
1 2 I L ___ _

- - l
s 1 C

A 1 -4 - - 1 ~ 1 - - - 2- 1
L____) ____ I

,_ - - - - -

I
L_

I - - - - l
3 5 1 C L ___ _

r - - - -
3 2 I L ___ _.

r - - - - I s C , ____ J

B

B

B

the swap set is contained in an 11
2 X 3 matrix, with

corresponding n 2 linked list. The selected action se
quence is s tored in an n X 3 matrix.

Phase I, Initialization, requires O(max (11 In n, n111))
time. The initialization time is dominated by the per
mutation time, and the amount of time required to make

877

AMINI AND RACER
Compu tational Comparison of Alternative Solu tion Meth ods for the Generalized Assignment Problem

Table 4 Major Iteration #3

(a) Action Set (b) r - - - - - - - - - - - - - - - - - - -
r - - - - r - - - - 1 A I_ 4 s I 1 B

K I - - - - L - - - - J

r - - - - I I ,_3 2 C
Moves 2 3 4 5 L - - - J

- - - - - - - - - - - - - - - - - - - J

1A I I - 10 r - - - - r - - - - 1 A 4 5 I 1 2 B 1C I I I ,_ - - - L - - - - I
2A 0 r - - - - 1
28 10

L
3

I C
3A I I - 15 I - - - -
38 I I I 0
48 3 I r - - - - - - - - - - - - - - - - - -

r - - - - I r - - - - 1
4C I - 8 A L 5 1 2 B - - - L - - - - I
58 - 5 I I - 5 I r - - - - I
SC I - 10 I I - 10 I _3 4 C - - - J

- - - - - - - - - - - - - - - - - J

Swaps
r - - - - - - - - - - - - - - - - - - -

A
r - - - - r - - - -

12 I L
, s I 2 I B - - - - ,_ - - - -

13 - 18 - 18 - 18 r - - - -
I

14 - 13 - 13 ,_ 3 4 C - - - .J

15 - 15 - 15 - 15 - - - - - - - - - - - - - - - - - J

24 8
I - - - - - - - - - - - - - - - - - - - ,

25 - 10 r - - - - r - - - 2-1
34 - 23 - 23 I A ,_ , s I ,_a B - - - - - - - J

35 - 25 - 25 - 25 - 25 r - - - - I I ,_ 4 C
L - - - J

- - - - - - - - - - - - - - - - -
r-------------------,
I A r 1 - - - 1 1 3 - - 2- 1 B
I I ____ J L ____ J

I r 5 - -.. - , C
L ______ I ____ J __

(c) Algorithm Progress

Minor
Iteration Best Best Chosen

(k) Move Swap Action Save Pk p·

1 28 24 Move 10 10 10
2 4C 14 Move - 8 2 10
3 1A 15 Move - 10 - 8 10
4 38 35 Move 0 - 8 10
5 SC Move - 10 - 18 10

878 M ANAGEMENT SCIENCE/Vol. 40, No. 7, Ju ly 1994

AMINI AND RACER
Computational Comparison of Alternative Solution Methods for the Generalized Assignment Problem

assignments obeying capacity restrictions. Computation
time for major iteration initialization is O(n). As dis
cussed earlier, the action set determination is the most
critical.

Time complexity in the action set determination step
is O(n 2

) , dominated by the swap set creation. Identi
fying the best move and swap in each minor iteration
requires 0(n 2) time. Sequence creation is negligible, in
dependent of m and 11 . Step 3, solution refinement, re
quires O (s *) work, to finalize the set of moves and
swaps accepted. The values* is certainly no more than
n. Because the total number of minor iterations is
bounded by n, the total work per major iteration is O(n 3

).

Empirical evidence indicates that the number of major
iterations is weakly dependent on m and n, and is, in
general, no more than ten. An upper bound on the
number of major iterations, given a feasible initial so
lution, is n(cmax - cmin), where cmax is the maximum
value of C;j , and cmin the minimum value.

To compare space utilization then, VDSH's memory
usage is 50% to 20% less than that of MTG, decreasing
as the problem size increases. The additional space re
quired by the optimization routine is a consequence of
the branch-and-bound nature of the algorithm. The ra
tio of HGAP usage to that of VDSH is 30%. Because
VDSH is a variable-depth technique, additional memory
is required to maintain information carried from one
minor iteration to the next.

4. Construction of a Testing System
To simplify and structure the generation and analysis
of the experimental data points, a portable LC GAP test
ing system (LCGAPTS) is developed . LCGAPTS is or
ganized into three components: (1) a random LC GAP
generator; (2) a user-supplied suite of codes to solve
randomly generated GAP instances (here we utilize
MTG , HGAP , and VDSH) ; and (3) the data analysis
module that collects the solution data and performs a
statistical analysis to identify the relative efficiencies of
the codes.

In summary, given a random seed number, a set of
problem characteristics (levels of the experimental fac
tors) (1) LCGAPTS creates a random GAP; (2) the GAP
is solved by each of the GAP codes; and (3) solution

MANAGEMENT SCI ENCE/Vol. 40, No. 7, July 1994

data is collected in a convenient form for subsequent
analysis .

5. The Experimental Design
In this section, we first review some of the major works
in which rigorous statistical experimental design and
<:1nalysis are applied to compare performance charac
teristics of heuristic and/ or algorithmic alternatives.
Next, we detail our experiment, design, and implemen
tation .

5.1. Previous Work
The vital role of a sound statistical experimental design,
along with some general guidelines for computational
comparison of solution alternatives, has been discussed
by Hoaglin and Andrews (1975) , Crowder, Dembo, and
Mulvey (1978) , McGeoch (1986), Amini (1989) ,
Greenberg (1990) , Jackson et al (1990) , Amini and Barr
(1992). There are a number of sources with detailed
discussions on the theoretical concepts, principles, and
phases of experimental design, including the most recent
books by Ostle and Malone (1988) and Mason, Gunst,
and Hess (1989) .

A survey by Jackson and Mulvey (1977) of published
papers shows that a lack of understanding of careful
experimental planning and reporting of experiments
exists. A later study by Dembo and Mulvey (1978) sug
gests that a carefully-considered a priori experimental
design is rarely applied, and offers a checklist of im
portant factors in designing, implementing, and re
porting a computational study. Later, revised guidelines
to report empirical results are provided b y Crowder,
Dembo, and Mulvey (1978) , Greenberg (1990) , and
Jackson et al (1990). Regardless of all these efforts,
McGeoch (1986) , Amini (1989) , and Amini and Barr
(1992) report that, while there is motivation for applying
statistically experimental design in algorithmic perfor
mance analysis, it appears that not much progress has
been made .

The most common method to analyze performance
characteristics of algorithmic and/ or heuristic alter
natives has been the use of tables (graphs) of average
measurement for each sample point, followed by an
informal discussion of the results . There are a few in
stances in which application of statistical methods are

879

AMINI AND RACER
Computational Comparison of Alternative Solution Methods for the Generalized Assignment Problem

formally considered. A discussion of these studies, in
corporating different degrees of sophistication in their
statistical analyses, is in order.

Comparing a new convex hull algorithm against two
others, Eddy (1977) estimates standard deviations as
sociated with the number of operations. Hart (1984)
establishes 90% confidence intervals and conducts h y
pothesis testing in studying a binary search tree algo
rithm. Studying some hypothetical alternative heuristics
on a sample of 15 traveling salesman problems, Golden
and Stewart (1985) use two nonparametric tests, the
Wilcoxon Signed Rank and Freidman tests . Also, they
apply an Expected Utility Approach to identify the best
heuristic as the one that performs well on average and
that very rarely performs poorly. Analysis of variance
(ANOVA) is applied by Moore and Whinston (1966)
to measure the significance of quadratic programming
algorithm parameters and problem attributes against
computational time and iterations. The absence of a
comprehensive a priori experimental design is a com
mon factor among all the aforementioned works.

In a few instances an a priori statistical experimental
design has appeared. Lin and Rardin (1980) present
controlled statistical experimental design techniques for
a comparison of integer programming algorithms. After
a theoretical discussion on possible factorial designs to
control seven nuisance problem parameters in the ex
periment, they offer a " blocking on problem" design
along with ANOVA to compare two !LP algorithms on
a set of 512 randomly generated problems. They con
clude that there is room for much more research on the
use of experimental design in mathematical program

ming. Hoaglin, Klema, and Peters (1982) investigate
the performance of five nonlinear optimization routines

in solving one test problem, starting from each of twenty
randomly chosen starting points. Applying exploratory

data analysis techniques and statistical models, the
variability of performance across optimizers is described,

and the effect of starting points is exposed. With the
use of an a priori " split-plot" design and ANOV A,

Amini and Barr (1992a, 19926) conduct a rigorous
computational study on the performance characteristics

of the network reoptimization techniques under the im
pact of seven interacting experimental factors .

Although, the above studies apply common principles

880

of statistical experimental designs, the related experi
mental designs are situation-specific and highly inter
related with the types of questions to be answered. In
Golden and Stewart (1985), Lin and Rardin (1982) ,
and Hoaglin, Klema, and Peters (1982) the quests are
to identify an algorithm or heuristic alternative that un
der all circumstances has a better average performance
than the others. What about the cases in which average
performances of algorithmic/ heuristic alternatives sig
nificantly changes from one factorial combination to an
other one? Or, what about the cases in which a re
searcher is interested in studying the heuristic / algo
rithmic behavior under a specific factorial combination,
rather than the overall behavior? Amini and Barr (1992a
and 1992b) address this issue by selecting a more flexible
design, split-plot, to prepare a menu of network reop
timization algorithms for different factorial combina
tions. The same flexibility is required to provide answers
for the questions raised in §1; hence, we apply a similar
experimental design in this study.

5.2. The Experimental Environment
Following the principles suggested in the aforemen
tioned studies, we present a carefully devised experi
mental design for computational comparison of the four
prominent LCGAP optimization and heuristic method
ologies with the VDSH. In designing the experiments
for comparative analysis, the goal is to study the relative
efficiency of the leading solution methods under the
effects of the problem characteristics, singly and in
combination. Hence, answers are provided to the fol
lowing questions: (1) Is there a best overall method for
solving LCGAP? (2) What are the effects of type and
degree of parametric change on the performance of each
solution methodology? (3) What are the effects of prob
lem set and size on the performance of each method?
(4) What are the interaction effects on the solution
techniques when the above factors are changed singly
or in combination?

The factors considered to be essential in the compu
tational comparison are: problem class (capacities, load
requirements, assignment costs) ; problem size (number
of assignees, number of assignments); and solution
methods. The fa ctor levels are as follows: class (A, B,
C , D) ; problem size (small and large); and five solution
methods.

MANAGEMENT SCIENCE/Vol. 40, No. 7, July 1994

AMIN I AND RACER
Computational Comparison of Alternative Solution Methods for the Generalized Assignment Problem

The experiment consists of four classes of test prob
lems, accepted as the standard LCGAP library (Ross and
Soland (1975), Fisher et al (1986) , Martello and Toth
(1987)) . These classes are defined as follows:

Set A: r;i selected from a uniform distribution between
5 and 25; C;i selected from a uniform distribution between
l and 40;

b; = .6 (!:) 15 + .4 max L r;1;

m ' jE/;

where J,- = {j : C;i = max (ckj) } .
k

Set B: same as A, except b; is set to 70 % of the value
given in A.

Set C: same as A, except b; = .8 I i r;if m .
Set D: r;i selected from a uniform distribution between

1 and 100; C;i = 111 - r;i + e, where e is uniform between
-10 and 10;

In developing problem set characteristics, two items
are of concern. One is degree of solvability. A problem
set that admits few feasible solutions is able to test the
performance characteristics of a method more so than
a set that admits many. Second, a problem set should
attempt to characterize real-world conditions. In these
regards, set A represents a class admi tting many solu
tions, with a fairly simplistic assumption about cost/
load relationships. Sets B and C provide tighter solution
environments, again with little atten tion to reflecting
the real world. Class D attempts to do both, by corre
lating cost and load size.

Within each class, problems are categorized as "small"
(n = 10, 20, m = 3, 5) or " large" (n = 50, 100, 200,
and m = 5, 10, 20) . Since the GAP is NP-Complete, the
performance of optimization methods degrades severely
with increased problem size. As a result, these "small"
test problems were applied in studies involving opti
mization techniques. To more adequately reflect real
world conditions, the " large" problems are included in
this study. This is also of particular importance in com
paring heuristic alternatives.

The solution Central Processing Unit (CPU) time is
chosen to be the dependent (response) variable, for the

MA AGEMENT SCIE CE/Vol. 40 , No. 7, July 1994

Table 5

Problem
Class

A

B

C

D

Split-plot Design

Problem Size

n

10

20

10

20

10

20

10

20

• 10 observations per cell.

Heuristic

m HGAP VDSH

3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5

fo llowing reasons. CPU time has long been a well
accepted standard of comparison in the mathematical
programming community . In a practical setting, memory
is commonly available, and solution quality and speed
are of major concern. Moreover, the time to derive a
solution is more sensitive to the factors discussed above
than is the memory requirement.

The experiment's characteristics lend themselves to
a split-plot design . Table 5 depicts the experimental de
sign. This design is nested in the sense that within each
treatment combination there are several treatment sub
combinations. The underlying principle of the design is
th is: whole plots or main plots to which levels of one or
more factors are applied, are divided into subplots to
which one or more additional factors are applied. In
this type of design, we are concerned with ranked
precision of information on factors , with the main plots
having higher precision than the split plots.

Achieving the main goal of the study and answering
the questions in §4 necessitate comparisons of the so
lution methodologies under the different treatment
combinations as defined by the experimental design .

881

AMINI AND RACER
Computational Compa rison of Alternat ive Solution Methods fo r the Generalized Assignment Prob lem

This includes a comprehensive analysis of the effects
of the factors-singly and jointly- on the performance
of each method. In particular, the objective is to identify
the importance of the factors and their interactions, in
terms of the magnitude of their effects on the solution
CPU times generated by the codes.

We decide on ten replications (observations per cell)
per split-plot design cell in order to generate an adequate
number of degrees of freedom for the subsequent sta
tistical analyses. Another related issue is the fashion in
which factorial combinations (cells) are generated, en
suring randomness. As Gilsinn et al (1977) report, CPU
time is affected by both time of day and job mix in a
multi-tasking environment. In order to avoid biasing
the results in this study, we randomly select combina
tions of the experimental factors (cells) and create the
ten replications.

The statistical model used to relate the CPU times to
the factors and sources of error encapsulated by the
split-plot design is:

T;ikl = µ + P; +Si + Uk(ij) + M, + P;Si

+ P;M, + SiM, + P;SiM, + Eiikl, (5)

µ = the mean CPU times,
P; = the effect of problem set i , i = 1, 2,

3, 4,
Si = the effect of problem size j, j = 1,

2, 3, 4,
Uk(ii> = the effect of problem k of set i and

sizej, k = 1, 2, 3, 4,
M, = the effect of solution method I, I

= 1, 2
P;Si , P;M1, SiM, ,

and P; SiM, = the subplots effects, and
E;ikl = the error term.

This model includes four subplot-factor interaction
terms of two- and three-factor combinations, each of
which may affect the response variable.

6. Design Implementation
The only implementations available to us were the op
timization code, MTG , and the heuristic code, HGAP,
developed by Martello and Toth (1987) . This made it
possible to collect data on the performance character-

882

istics of both MTG and HGAP and conduct a rigorous
statistical comparison with VDSH. To conduct the ex
perimentation, two issues are addressed. (1) Lack of
access to the computer codes of the optimization meth
ods devised by Ross and Soland (1975) , and Fisher et
al (1986) made it impossible to generate the necessary
data for an in-depth statistical comparison; (2) fur
thermore, it is known that creating an efficient GAP
optimization method cannot exist unless P = NP . Thus,
our experimentation with the three optimization meth
ods under study and VDSH focuses on the " small" test
problems along with an average performance compar
ison, while studying performance characteristics of the
two heuristics incorporates a rigorous statistical evalu
ation of both the " small" and " large" test problems.

Hence, three experiments are conducted as follows.
The first experiment is devoted to the performance
comparison of the three leading optimization methods
and VDSH on "small" test problems. In the second ex
periment, we provide a rigorous statistical comparison
of MTG and VDSH on the same " small" set of test prob
lems. In the third experiment, we compare VDSH and
HGAP on the set of " large" test problems.

In the following experiments, all the test problem sets
are generated and solved on the VAX 6420 computer
under the VAX/VMS 5.4-2 operating system. The VAX
Fortran compiler with optimization level 3 is utilized.
A discussion of the three experiments along with the
statistical methods, and analyses of the computational
results are provided in the following sections.

6.1. First Experiment and Analysis
This experiment is concerned with the performance
characteristics of the three GAP optimization methods
and V DSH on the four classes of "small" test problems.
First, we present the details of experiment and then our
analysis.

The data points required for the three leading opti
mization methods and the HGAP in the first experiment
are generated as follows: (1) we randomly ordered the
problem classes and sets; (2) given each ordered set
LCGAP Testing System is used to generate ten random
replications; and (3) solve the replicates by MTG (Mar
tello and Toth (1990)) and VDSH codes in a random
order. This process is not applied with the Ross and

MANAGEM ENT S CIENCE/V o l. 40, No. 7, July 1994

AMINI AND RACER
Computational Comparison of Alternative Solution Methods for the Generalized Assignment Problem

Soland (1975) and Fisher et al (1986) methods, due to
the lack of the access to their computer codes. Hence,
we converted the average solution times of the same
set of problems solved by the two other methods from
the CDC 6600 to DEC 10, using a conversion factor of
fi ve (Martello and Toth (1987)) . Then applying a con
version factor of 1 / 7, provided by the Digital Equip
ment Company, the DEC 10 CPU times were converted
to the VAX 6420. Although the va lidity of the conver
sion process when different hardware, operating sys
tems, and computational environment involved is
questionable, under the circumstances where computer
codes for some of the solution methods under study are
not available it becomes the only way for comparative
study.

Hence, implementation of the split-plot design and
detailed statistical analysis become infeasible; with two
of the four methods, generation of the CPU times for
individual problem instances-and the subsequent de
tection of significant variations and interactions between
the experimental factors-is impossible. Consequently,
a simple average CPU time comparison is applied.

The average CPU times and the relative error of the
VDSH are shown in Table 6. Lower bounds are calcu
lated by relaxing the capacity constraints; hence, errors
are conservatively estimated. On problem classes A and
C the solutions obtained by the VDSH are optimal. On
class B problems, an average error of 7% is detected,
w hile an average error of 240% is found for problems
of class D, by far the most difficult problem set. For
these " small" problems, VDSH exhibits very little sen
sitivi ty with respect to the problem class; the three op
timiza tion algorithms, however, did vary greatly in av
erage solution time, and in fact there is no single al
gorithm tha t is dominant. In all classes, VDSH performs
favorably compared to the leading algorithm. In the
computationally intensive classes, Band D, VDSH's so
lution times were much lower.

6.2. Second Experiment and Analysis
The second experiment's objective is to compare per
formance characteristics of one of the optimization
methods, MTG , with VDSH . Since both computer codes
are available, the aforementioned split-plot design is

Table 6 Performance Comparison-CPU-seconds and Relative Error

Problem Size Ross-Soland Fisher et al. MTG VDSH
Problem

Class n m Ave. Time Ave . Time Ave. Time Ave. Time Re l. Error

A 10 3 0.01 0.02 0.01 0.01 0.00
5 0.02 0.04 0.03 0.01 0.00

20 3 0.02 0.04 0.03 0.02 0.00
5 0.06 0.09 0.01 0.03 0.00

B 10 3 0.16 0.22 0.11 0.01 0.00
5 0.16 0.28 O.Dl 0.01 0.12

20 3 23.47 0.73 149.32 0.05 0.06
5 ETL 2.13 4.92 0.03 0.10

C 10 3 0.23 0.24 0.18 0.01 0.00
5 0.26 0.36 0.07 0.01 0.00

20 3 43.70 0.80 3.61 0.06 0.01
5 ETL 1.96 5.90 0.04 0.00

D 10 3 0.57 0.26 0.29 0.00 1.81
5 0.97 0.56 0.55 0.01 3.89

20 3 ETL 2.77 11 .72 0.02 1.47
5 ETL 9.66 72.60 0.01 2.43

• VAX 6420 CPU seconds.

• ETL: Exceeded time limit imposed by Martello and Toth (1987).

M A AGEMENT SCIENCE/Vol. 40, No. 7, July 1994 883

AMINI AND RACER
Co111putatio11al Co111pariso11 of Altemative Solutio11 Methods fo r the Generalized Assig11111e11t Problem

applied, and a rigorous statistical analysis is conducted
on all four classes of the "small" test problems.

Applying the LCGAP Testing System, the data gen
eration for the second experiment includes: (1) ran
domly ordering the 32 experimental factor combinations
(split-plot cells); (2) generating ten random "small"
test problems for each ordered factorial combinations;
and (3) solving in random order the ten random test
problems by each of the two codes and recording the
solution CPU times. Hence, a total of 160 random test
problems are generated and solved by both codes.

The statistical method required is analysis of variance
(ANOVA). This method provides information for testing
simultaneously the significance of the difference be-

Table 7 ANOVA Table for CPU-Times-Small Problems

(a) includes test problems not found feasible

Source OF ss MS F P-Value

p 3 21501.139 7167046 3.86 0.0109
s 3 20999.961 6999.987 3.77 0.0122
P x S 9 60961.497 6773.500 3.64 0.0004
U X (P X S) 144 267658.418 1858.739 1.00 0.5002
M 1 8406.230 8406.230 4.52 0.0352
P x M 3 21485.526 7161 .842 3.85 0.0109
S XM 3 20947.889 6982.630 3.76 0.0124
P x S x M 9 60932.121 6770.236 3.64 0.004

(b) excludes test problems not found feasible

Source OF ss MS F P-Value

p 3 334.666 111 .555 2.60 0.0546
s 3 278.998 92 .999 2.17 0.0945
P X S 9 577.964 64 .218 1.50 0.1547
U X (P X S) 141 6254.917 44.361 1.04 0.4207
M 1 186.063 186.063 4.34 0.0391
P x M 3 302.196 100.732 2.35 0.0753
S x M 3 202.863 67.621 1.58 0.1977
P x S x M 9 750.156 83.351 1.95 0.0508

Source: Source of problem variation-single and interaction terms.

OF: Degrees of freedom.

SS: Sum of squares.

MS: Mean squared.

F: F-value.

P-value : P-value.

884

tween mean solution times of the methods under single
or multiple factor treatment combinations. Given the
experimental design, the significance of the difference
between treatment-combination mean times could be
tested by analyzing the variance within and between
the samples.

The analysis of variance is initiated by a translation
of the objectives of the study into statistical hypotheses.
The hypotheses were categorized into two main groups:
hypotheses to detect significant difference between sin
gle factor means, and hypotheses to study the significant
differences between the multiple-factor interaction
means. For example, the null hypotheses with regard
to the problem size factor can be stated as: µ P(i l = 0, for
all i. The associated alternative hypothesis is: µ P(il 'F 0,
for at least two is. Hypotheses can be stated similarly
for each of the other single and multiple-factor inter
actions. The significance level selected prior to the anal
ysis was 5%.

Two ANOV A are conducted. In the first analysis, the
solution times associated with the test problems not
found feasible are included. Table 7(a) summarizes this
information . The null hypotheses associated with the
problem class, size, heuristics, and interactions of these
three factors were rejected even at much smaller sig
nificance levels. Thus, at least two of the mean solution
times stated in each null hypotheses are significantly
different. In terms of relative performance, this does
not permit ranking of the heuristics under different fac
tor combinations.

When comparing more than two means, an ANOV A
procedure indicates whether the means are significantly
different from each other, but it does not show which
means actually differ . The significance shown by our
ANOV A makes it desirable to conduct further analyses
to determine which pairs or groups of solution average
CPU times are significantly different. Such comparisons
between means are sometimes referred to as mean com
parisons. Rejection of the null hypotheses necessitates
mean comparisons to provide detailed information
about the observed differences in means.

Tukey 's Significance Test is applied to compare and
rank the performance of the heuristics under the effect
of different single-factor levels as well as various treat
ment combinations. Tukey's test controls the experi-

MANAGEM ENT SCIENCE/Vol. 40, No. 7, July 1994

AMINI AND RACER
Computational Compariso n of Alternative Solution Methods for the Generalized Assignment Problem

Table 8(a) Ave. Solution CPU Time For MTG and VDSH-Small
Problems

Problem Size Solution Method
Probl em

Class

A

B

C

D

n

10

20

10

20

10

20

10

20

• VAX 6420 CPU seconds.

m

3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5

• Includes test problems not found feasible.

MTG VDSH

0.01 0.01
0.03 0.01
0.08 0.02
0.01 0.03
0.12 0.01
0.08 0.01

149.33 0.05
4.92 0.03
0.19 0.01
0.07 0.01
3.61 0.06
5.90 0.04
0.29 0.00
0.55 0.01

11.72 0.02
72.60 0.01

mentwise error rate (EER) for multiple comparisons, de
fined as the probability of rejecting one or more of the
null hypotheses when making statistica l tests of two or
more null hypotheses . In this study, having multiple
mean comparisons requires more control on EER, and
consequently th e use of Tukey 's test.

Applying Tukey's test, we conclude the following
major result on the "small" test problems: regardless of
problem class, size, or both, VDSH, with an overall av
erage solution time of 0.022 CPU seconds, significantly
outperforms MTG , with an overall average solution time
of 10.273 CPU seconds. A comparison of average so
lution times based on the problem class or problem size
indicates that V DSH dominates MTG. Table 8(a) shows
the detailed average solution times.

ln the second ANOV A, solution times on the infea
sible test problems are excluded and treated as " missing"
data points. Table 7(b) depicts the information provided
by the second ANOVA procedure . It is found that the
null hypo theses associated with the problem class,
problem size, algorithm, and the three-factor interaction

MA AGEME T SCIENCE/Vol. 40 , No. 7, July 1994

are rejected. Again to identify the significant differences
among the solution times, Tukey's tes t is applied and
the fo llowing result is obtained on the "small" test
problems: the V DSH (overall average solu tion time of
.0199 CPU seconds) significantly outperforms MTG

(overall average solution time of 1.8499 CPU seconds)
in solving all problem classes and sizes. Table 8 (b) pre
sents the detailed average solution times.

6.3. Third Experiment and Analysis
To compare the relative performances of the HGAP and
the VDSH on the " large" size problems, the third ex
perimental design is developed. In this design, the same
fac tors and levels included in the second design are
considered, except that the problem size levels increases
from four to nine (as in Martello and Toth (1987)). As
a resul t, the number of factoria l combinations increased
from 32 to 72 and th e number of test problems gener
ated and solved is increased from 320 to 720. The nine

Table 8 (b)

Problem
Class

A

B

C

D

Ave. Solution CPU Time for MTG and VDSH-Small
Problems

Solution Method

Problem MTG VDSH
Size

Ave.
n m # Exclusions Time # Exclusions

10 3 0 0.01 0
5 o 0.03 0

20 3 o 0.08 0
5 o 0.01 0

10 3 3 0.06 2
5 o 0.08 0

20 3 3 18.72 1
5 o 4.92 0

10 3 3 0.07 1
5 o 0.07 0

20 3 o 3.61 2
5 o 5.90 o

10 3 o 0.01 0
5 0 0.01 o

20 3 0 0.00 0
5 0 0.01 0

• VAX 6420 CPU seconds.

• Excludes test problems not found feasible.

Ave.
Time

0.01
0.01
0.02
0.03
0.01
0.01
0.05
0.03
0.01
0.01
0.04
0.04
0.01
0.01
0.02
0.03

885

AMINI AND RACER
Computational Co mparison of Alternat ive Solution Methods for the Generalized Assignment Problem

Table 9 (a) Ave. Solution CPU Time for HGAP and VDSH-Large
Problems

Problem Size Solution Method
Problem

Class n m HGAP VDSH

A 50 5 0.02 0.19
10 0.03 0.18
20 0.06 0.25

100 5 0.05 1.07
10 0.06 1.12
20 0.09 1.57

200 5 0.14 9 08
10 0.19 11 .00
20 0.25 11 .78

B 50 5 0.02 0.82
10 0.04 0.52
20 0.06 0.34

100 5 0.06 11 .59
10 0.08 5.25
20 0.13 3.84

200 5 0.17 131.91
10 0.23 54.89
20 0.36 45.69

C 50 5 0.02 0.90
10 0.04 1.10
20 0.08 1.10

100 5 0.06 12.13
10 0.08 5.59
20 0.16 9.20

200 5 0.17 131 .54
10 0.24 47.76
20 040 7942

D 50 5 0.01 0.12
10 0.01 0.52
20 0.01 0.24

100 5 0.01 0.98
10 0.01 1.51
20 0.01 1.64

200 5 0.03 9.71
10 0.03 11 .03
20 0.05 13.27

• VAX 6420 CPU seconds.
• Includes test problems not found feasible .

configurations evaluated are generated with three values
of n(S0, 100, 200), and three values of m(S, 10, 20) .
LCGAP Testing System applies the same random process
as described in the second experiment to generate and

886

solve " large" test problems within the four problem
classes .

The statistical model associated with the third exper
imental design is the same as the second one, except
that the problem set is " large," the number of problem
sizes increased to nine, and HGAP is substituted for
MTG . As in case one: (1) the same set of h ypotheses
regarding the relative performances of the HGAP and
VDSH are established; and (2) tested by two ANOV A
procedures. Tables 9(a) and 9(b) show the average so
lution times of HGAP and VDSH . Also, a summary of
the two ANOVA results are depicted in Table 10 at 5%
significance level.

Table lO(a) presents the results of ANOVA of the
CPU times including the solution times associated with
the problems not found feasible . Except in one case, all
the null h ypotheses are rejected at even a lower signif
icance rate (p-value = .0001). As a result, Tukey's test
is applied and we find that HGAP , with an average
solution time of .0963, significantly outperforms the
VDSH, with an average solution time of 17.1896 CPU
seconds. Excluding the solution times of the problems
that are not found feasible from the data set and ap
plying ANOV A resulted in the information that is de
picted in Table 10 (b) . As in the previous case, all the
null hypotheses are rejected. And again, regardless of
the problem class or size, Tukey's test indicates that
HGAP (overall average solution time= 0.0990) domi
nates VDSH (overall average solution time = 10 .6338)
on the " large" test problem sets. However, the signifi
cance of the difference is weaker than in the previous
scenario.

Although the experimentation with the " large" test
problems strongly suggests the superior performance of
the HGAP, it should be noted that the solution quality
provided by this method is inferior to the VDSH. The
VDSH paid a price of 10 to 17 CPU seconds to achieve
an average of 20% improvement in solution quality over
HGAP , where relative errors are calculated with respect
to the lower bound. Hence, from this point of view the
superior performance of the VDSH can be verified. Table
11 shows the improvement of solution quality for each
class and size of the " large" test problems.

It should be noted that "statistical significance" does
not imply practical importance in all cases (see Snedecor

MANAGEMENT SCIENCE/V o l. 40, N o . 7 , July 1994

AMINI AND RACER
Computational Comparison of Alternative Solution Methods for the Generalized Assignment Problem

Table 9 (b) Ave. Solution CPU Time for HGAP and VDSH-Large Problems

Problem Size
Problem

Class n m # Exclusions

A 50 5 0
10 0
20 0

100 5 0
10 0
20 0

200 5 0
10 0
20 0

B 50 5 0
10 0
20 0

100 5 0
10 0
20 0

200 5 0
10 0
20 0

C 50 5 0
10 0
20 0

100 5 0
10 0
20 0

200 5 0
10 0
20 0

D 50 5 0
10 0
20 0

100 5 0
10 0
20 0

200 5 0
10 0
20 0

• VAX 6420 CPU seconds.

• Excludes test problems not found feasible .

and Cochran (1976)) . First, in terms of computational
resource availability, paying 10 to 17 CPU seconds to
gain 20% improvement in the solution quality of an

MANAGEMENT SCIENCE/Vol. 40, No. 7, July 1994

Solution Method

HGAP VDSH

Ave. Time # Exclusions Ave. Time

0.02 0 0.19
0.03 0 0.18
0.06 0 0.25
0.05 0 1.07
0.06 0 1.12
0.09 0 1.57
0.14 0 9.08
0.19 0 11 .00
0.25 0 11 .78
0.02 1 0.69
0.04 0 0.52
0.06 0 0.34
0.06 2 11.00
0.08 0 5.25
0.13 0 3.84
0.17 9 63.72
0.23 0 54.89
0.36 0 45.69
0.02 2 0.69
0.04 0 1.10
0.08 0 1.10
0.06 5 11 .51
0.08 0 5.59
0.16 0 9.20
0.17 10
0.24 0 47.76
0.40 0 79.42
0.01 0 0.12
0.01 0 0.52
0.01 0 0.24
0.01 0 0.98
0.01 0 1.51
0.01 0 1.64
0.03 0 9.71
0.03 0 11 .03
0.05 0 13.27

NP-Hard problem may be considered " insignificant. "
Secondly, there is the issue of data integrity. In some
instances, errors may arise in the estimation of problem

887

AMINI AND RACER
Computational Comparison of Alternative Solution Methods for the Generalized Assignment Problem

Table 10 ANOVA Table for CPU-Times-Large Problems VDSH against the four leading GAP heuristics and op-

(a) includes test problems not found feasible timization algorithms. In-depth statistical analyses
(analysis of variance and Tukey's test) are followed to

Source DF ss MS F P-Value

p 3 30960.619 10320.206 235.17 0.0001
Table 11 Solution Quality-Large Problems Relative Error

s 8 95828.830 11978.604 272.97 0.0001
((result-lower.bound)/(lower.bound))

P x s 24 68632.705 2859.696 65.17 0.0001
Solution Method

U X (P X S) 4 14210.678 43.860 1.00 0.5019
M 1 52592.597 52592.597 1198.47 0.0001

Problem P x M 3 30605.974 10201.991 323.48 0.0001
Size HGAP VDSH S x M 8 94990 047 11873.756 270.58 0.0001

P x S x M 24 68422.739 2850 .947 64.97 0.0001
Problem

Class n m # Exclusions Error # Exclusions Error

(b) excludes test problems not found feasible
A 50 5 0 0.021 0 0.014

Source DF ss MS F P-Value
10 0 0.027 0 0.026
20 0 0.045 0 0.043

p 3 7114.828 2371 .609 87.73 0.0001
100 5 0 0.004 0 0.004

s 8 31698.678 3962.335 146.57 0.0001
10 0 0.007 0 0.007

P x s 24 17754.544 739.773 27.36 0.0001
20 0 0.006 0 0.006

U x (P X SJ 324 9781.949 30.191 1.12 0.1665
200 5 0 0.003 0 0.002

10 0 0.003 0 0.002 M 1 18376.070 18376 070 679.75 0.0001
20 0 0.002 0 0.002 Px M 3 8502.468 2834.156 104.84 0.0001

B 50 5 0 0.463 1 0.334 S x M 8 31126.885 3890.861 143.93 0.0001
10 0 0.399 0 0.258 P x S x M 23 16923.476 735.803 27.22 0.0001
20 0 0.354 0 0.275

Source: Source of problem variation-single and interaction terms.
100 5 0 0.329 2 0.201

10 0 0.434 0 0.205
DF: Degrees of freedom. 20 0 0.205 0 0.111
SS: Sum of squares. 200 5 0 0.388 9 0.112
MS: Mean squared. 10 0 0.498 0 0.216

F: F-value . 20 0 0.273 0 0.100

P-value : P-value. C 50 5 0 0.473 2 0.349
10 0 0.708 0 0.448
20 0 1.341 0 0.924

100 5 0 0.312 5 0.186
parameters. In such a case, the importance of being close 10 0 0.647 0 0.362
to the mathematical optimum is diminished.1

20 0 1.038 0 0.506
200 5 0 0.347 10

7. Summary and Conclusions
10 0 0.546 0 0.294
20 0 0.705 0 0.280

In this paper first we present a new heuristic, Variable- D 50 5 0 1.568 1.511

Depth-Search (VDSH) , to solve the Linear Cost Gen- 10 0 3.747 1 2.598

eralized Assignment Problem (LCGAP) . Next, we re- 20 0 3.758 5 3.615
100 5 0 1.591 0 1.518

view application of statistical experimental design in
10 0 2.813 0 2.661

comparing performance characteristics of algorithmic 20 0 3.834 0 3.834
and heuristic alternatives. Applying a rigorous statistical 200 5 0 1.539 0 1.406

design of experiment, split-plot design, we compare 10 0 2.691 0 2.517
20 0 4.040 0 3.815

1 As noted by one of the anonymous referees. * Excludes test problems not found feasible.

888 M ANAGEMENT SCIENCE/Vol. 40, N o . 7, July 1994

AMINI AND RACER
Computationa l Comparison of Alternative Solution Me thods fo r the Generalized Assign ment Problem

evaluate the relative efficiencies of VDSH and the lead
ing GAP solution methods under different factorial
combinations.

We show that on " small" test problems, VDSH pro
duces solutions of comparable quality and its average
solution time is "significantly" smaller than the leading
algorithms. On the set of "large" test problems, although
VDSH performance is inferior to the leading heuristic,
HGAP, however, it improves the solution quality by
20% over HGAP , given the correct problem parameters.
A major trade-off between VDSH and HGAP becomes
the solution quality versus solution time.2

2 We thank the anonymous area editor a nd three referees for their

careful review of the original manuscript and comments and sugges
tions tha t enhance the presentation and content of this paper.

References

Amini, M. M., " Network Reoptimiza tion : A Computation al Compar

ison o f Algorithmic Alternatives," University Microfilms, Inter

national, Ann Arbor, Ml (disserta tion, Department of Opera tions
Research, Southern Methodist University, Dallas, TX, December
1989) .

-- and R. S. Barr, " Network Reoptimization Algorithms: A Statistical
Designed Comparison," ORSA/. Computing, 5, 4 (1993) , 395-
408 .

-- and R. S. Barr, " Network Reoptirniza tion: A Computational Study

of the Relaxa tion Method," Working Paper 0 55-10-92, MIS / DS
Department, The Fogelman College of Business and Economics,

Memphis Sta te University, Memphis, T 38152, 1992b.

Balachandran, V. , " An Integer Genera lized Transporta tion Model fo r

Optimal job Assignment in Computer etworks," Working Paper

34-72-3, Graduate School of Industrial Administra tion, Carnegie
Mell on Uni ver ity, Pittsburgh, PA, ovem ber 1972 .

Casco, D. 0. , B. L. Golden, and E. A. Wasil, " Vehicle Routing with

Backhauls: Models, Algorithms, and Case Studies," Velzicle Rout
i11g: Methods and Studies, Elsevier Science Publish ers, 1988.

C larke, G . and J. W. Wright, " Schedu ling of Vehicles from a Centra l
Depot to a Number of Deli very Points, " Oper. Res., 12 (1964),

568-58 1.

Crowder, H. P. , R. S. Dembo, a nd J. M. Mulvey, " Reporting Com

putational Experiments in Ma thematical Progra mming," Math .
Programming, 15 (1978) , 316-329.

Dembo, R. S. and J. M . Mulvey, " O n the Ana lysis and Comparison
of Mathematica l Programming Techniques," in W. W. Whi te,

(Ed .), Computers and Math ematical Programming , Nationa l Bureau

of Standards Specia l Publication 502, 1978 .

Eddy, W . F. , " A New Convex Hull Algorithm for Planar Sets," ACM
Transactions 011 Math ematical Software, 3, 4 (1977), 398-403.

Fisher, M. L. and R. Jaikumar, " A General ized Assignmen t Heuristic
fo r Vehicle Routing," Ne tworks, 11 (198 1) , 109- 124 .

MA AGEMENT SCIENCE/ Vol. 40, N o. 7, Jul y 1994

- - , -- and L. . Van Wassenhove, " A Multiplier Adjustment

Method fo r the Generalized Assignment Problem," Ma11age111e 11t
Sci ., 32, 9 (1986) , 1095-1103.

Gavish, B. and H. Pirkul , " Algorithms for the Multi -Resource Gen

eralized Assignment Problem," Management Sci., 37, 6 (1991),

695-713.
Gilsinn, J., K. Hoffman, R. H. F. Jackson, E. Leyendecker, P. Saunders,

and D. Shier, " Methodology and Analysis for Comparing Discrete
Linear L, Approximation Codes," Co111m1micatio 11s Stat istics ,
Sim11lat io11, and Computatio 11 s, 86.4 (1977) , 399-413 .

Golden, B. L. and W. R. Stewart, " Empirical Analysis of Heuristi cs,"

in E. L. Lawler et a l. (Eds.), Th e Travel i11g Salesman Problem , John

Wiley and Sons, New York, 1985 .

Greenberg, H. J., "Computational Testing: Why, How and How

Much," ORSA/. Computing, 2 (1990) , 94-97.

Grigoriadis, M. D., D. T. Tang and L. S. Woo, " Considerations in the

Optimal Synthesis of Some Communication Networks, " Pre

sented at the Joint ational Meeting of ORSA / TIMS, Boston,

MA, April 1974.

Hall , R. W. , " Route Choice on Networks with Concave Costs and

Exclusive Arcs," Tra11sportatio11 Res., 23b (1989), 103-121.

Hart, R. R., "The Average Height of Binary Search Trees," Master'

Thesis, Department of Computer Sciences, University of Cali
fo rnia a t Irvine, 1984 .

Hoaglin, D. C. and D. F. Andrews, "The Reporting of Computation
Based Results in Statistics," The A111erica11 Statisticia11 , 29, 3 (1975) ,

122- 126.

--, V. C. Klema and S. C. Peters, " Explora tory Data Analysis in a

Study of the Perfo rmance of Nonlinear Optimization Routines,"
ACM Tra11 sactio11 s 011 Math ematical Software, 8, 2 (1982) , 145-

162.

Jackson, R. H . F., P. T. Boggs, S. G . Nash, and S. Powell, " Report of

Ad Hoc Committee to Revise the Guidelines fo r Reporting Com

putational Experiments in Mathematica l Programming," ORSA /
CSTS Newsletter, 10, 1 (1989) , 7- 14.

-- and J. M. Mulvey," A C ritical Review of Methods fo r Comparing

Ma thematica l Progra mming Algori thms and Software (1953-

1977) ," Technical Paper, Department of Civi l Engineering,

Princeton University, Princeton, J, 1977.

Kernighan, B. and S. Lin, " An Efficient Heuristic Procedure for Par

titioning Graphs," BSTJ , 49 (1970) , 291 - 307.

Lin, S., "Computer Solutions of the Traveling Sa lesman Problem,"

BSTJ , 44 (1965) , 2245- 2269 .

-- and B. Kernighan, " An Effective Heuristic Algorithm for the
Traveling Salesman Problem," Oper. Res., 21 (1973) , 498-5 16.

Lin, B. W. and R. L. Rardin , "Contro lled Experimental Design for

Statistical Comparison of Integer Programming Algorithms, "

Ma11ageme11t Sci ., 25, 12 (1980) , 1258- 1271.

Macgeoch, C. C., " Experimen tal Analysis of Algorithms," Universi ty

Microfi lms, Inte rnational, Ann Arbor, Ml (dissertation Computer

Science Department, Carnegie Mellon University, Pittsburgh, PA,

August 1986) .

889

AMINI AND RACER
Computational Comparison of Alternative Solution Methods for the Generalized Assignment Problem

Martello, S. and P. Toth, Knapsack Problems: Algorithms and Computer
Impl emen tations , John Wiley and Sons, 1990.

-- and --, " Linear Assignment Problems," Annals of Discrete
Math ., 31 (1987) , 259-282.

Mason, R. L. , R. F. Gunst, and J. L. Hess, Statistical Analysis of Ex
periments, John Wiley and Sons, 1989.

Moore, J. H. and A. B. Whinston, "Experimental Methods in Quadratic
Programming," Management Sci. , 13, 1 (Series A) (1966), 58-

76 .
Ostel, B. and L. C. Malone, Statistics in Research , The Iowa State

University Press, Ames, IA, 1988.

Papadimitriou, C.H. and K. Steiglitz, Combinatorial Optimization: Al-

gorithms and Complexity , Prentice Hall , Englewood Cliffs, NJ,
1982.

Racer, M., " Coordinating Inbound and Outbound Vehicle Routes
Within a Decentralized Decision Environment," University Mi
crofilms, International , Ann Arbor, MI (dissertation, Industrial
Engineering and Operations Research Department, University of
California at Berkeley, December 1990).

Ross, G. T. and R. M. Soland, " A Branch and Bound Algorithm for
the Generalized Assignment Problem," Math . Programming , 8

(1975) , 92-103.

Snedecor, G . W. and W. G. Cochran, Statistical Methods, The Iowa
State University Press, Ames, IA, 1976.

Accepted by Thomas M. Liebling; received February 3, 1992. This paper has been with the authors 5 months for 1 revision.

890 MANAGEMENT SCIENCE/Vol. 40, No. 7, July 1994

