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G iven an acyclic network and a preference-order relation on paths, when and how can 
Bellman's principle of optimality be combined with interactive programming to efficiently 

locate an optimal path? We show that if preferences are defined via a collection of attributes, 
then, under common conditions, the principle of optimality is valid if and only if the preferences 
can be represented by a linear (value) function over the attributes. Consequently, an interactive 
programming method is suggested which assesses the value function while using the principle 
of optimality to efficiently search for an optimal path . 
(Multiple Criteria Decision Analysis; Multiple Criteria Dynamic Programming; Multiattribute Utility) 

1. Introduction 
In the shortest-path problem-a cornerstone of the op­
erations research literature-each arc connecting two 
nodes on a network is associated with a known length, 
and the objective pursued is to minimize the total length 
between two prescribed nodes: the source and the sink. 
The standard algorithm ( Dreyfus 1969) for finding a 
shortest path in such a network amounts to solving a 
functional equation, based on Bellman's ( 1957) prin­
ciple of optimality. 

The importance of this problem lies in the fact that 
it appears in many applications ( Deo and Pang 1984) , 
in many cases as a subproblem. Moreover, the problem 
encompasses all finite and deterministic dynamic pro­
gramming models (Denardo 1982), and its solution 's 
algorithm is simple and efficient. 

As to the input data of the problem, we can distin­
guish between the structure of the network, which con­
stitutes the alternatives available to the decision maker 
(OM) , and the length of the arcs, which constitute the 
objective function . As length is a known attribute for 
each arc, the problem is well -defined, in the sense that 
the DM does not have to become involved in the op­
timization procedure . 

The trouble is that such a clear attribute does not 
always exist or it does not fully express the preferences 
of the OM. In many applications, attractiveness of paths 

0025- 1909/ 94 / 4007/ 089 1$01.25 
Copyright © 1994 , The Institute of Management Sciences 

can be captured only by a collection of attributes which, 
a priori, cannot be aggregated. The attributes can be 
cardinal-like travel cost, travel time and probability of 
an accident-or ordinal-like comfort and landscape. 
In such cases, the OM must take an active role in locating 
an optimal path, by revealing his/her preferences. We 
call this involvement " interactive programming", a 
procedure whereby the DM reveals the preferences 
concerning the paths or the attributes. 

Generally speaking, however, the preferences ex­
pressed by the OM may violate the assumptions un­
derlying the principle of optimality, in which case 
" Bellman's equations" do not necessarily h old; hence, 
locating the optimal path ma y require an exhaustive 
search over all paths. 

The problem we address in this paper is: Given an 
acyclic network and a preference-order relation defined 
through a given collection of a ttributes, when and how 
can the principle of optimality be combined with inter­
active programming to efficiently locate an optimal path . 
We claim that under common conditions the principle 
of optimality is valid if and only if the preferences can 
be represented by a linear (value) function over the 
attributes. We also suggest an interactive programming 
method which assesses the va lue function and uses the 
principle of optimality to efficiently search for an optimal 
path. 
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Applications of the principle of optimality to general 
preference relations have been suggested by Brown and 
Strauch ( 1965 ), Mitten ( 1974) , Sobel ( 1975) and Henig 
( 1985). Mitten even describes how to handle his al ­
gorithm interactively, noting that the preferences can 
be expressed with respect to attributes like cost, return 
and risk . However, no attempt is made by the above­
mentioned references to verify whether the preference 
order underlying their algorithms implies the existence 
of any value function. Here, we show that if Mitten 
and Sobel's preferences are defined on a given set of 
attributes then the preference order can be presented 
by a linear value function over the attributes. 

Fishburn ( 1970) and Keeney and Raiffa ( 1976) are 
but two examples of the vast literature associating a 
value function to an ordered set; the latter study suggests 
a number of methods to assess a value function over 
the attributes before starting optimization. 

The method suggested here combines the assessment 
of a linear function while generating the tree of shortest 
paths, as is done in solving the standard shortest-path 
problem. The resulting algorithm has the same com­
plexity as the standard algorithm, and interaction is kept 
to the required minimum. 

The main thrust of the literature on interactive pro­
gramming is the design of methods which converge to 
an "optimal" solution. Assessing a value function is 
usually secondary in importance ( for references on this 
subject, see Chankong and Haimes ( 1983), Sawaragi 
et al. ( 1985), and Yu ( 1985)) . The shortest-path prob­
lem with an implicit linear value function can be solved 
by any interactive method in linear programming, such 
as those suggested by Zion ts and Wallenius ( 1976) or 
Steuer ( 1986) . However, their algorithms may generate 
many nondominated paths before converging to an op­
timal one. 

A comparison between algorithms which generate 
Pareto paths was conducted by Brumbaugh-Smith and 
Shier (1989) . Recently, two interactive algorithms to 
find a shortest path have been suggested in the litera­
ture . In both cases, however, a nonlinear value function 
is assumed. Current et al. ( 1990) suggest using a method 
based on Handler and Zang ( 1980) and Henig ( 1986) 
to locate the optimal path interactively, a possible re­
duction in computing time being attained by using re­
vealed tradeoffs among the attributes. Carraway et al. 
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( 1990) use heuristics to generate a subset of the non­
dominated paths to minimize a known nonlinear value 
function. 

The present paper is organized as follows : In the next 
section, the network, the preference order and Bellman's 
equations to find nondominated or optimal paths are 
introduced. In §3 we prove that under common con­
ditions there exists a linear value function that represents 
the preferences. A method to assess the function while 
constructing an optimal path is suggested in §4. The 
bicriteria case, with an example, is given in §5, followed 
by a summary in the final section . 

2. Solving Bellman's Equations 
with Multiattributes 

Let G = (N , A) be a network with a finite set of nodes 
N and arcs A C N X N. For the sake of simplicity, the 
network is assumed to be acyclic so that (i, j) EA only 
if i > j , the source is node n = IN I and the sink is node 
1. A path is a sequence 

{ (i1, i2) , (i 2, i3),, ,,, (i,,, _1, i,,, ) } 

of arcs where ik > ik+ 1 . 

Denote by P(i) the set of all paths from node i to the 
sink. In particular, we are interested in the set P(n) , 

from which an optimal path is sought. Denote P 
aaaLJP(i) . 

Each arc ( i, j) is associated with a vector of m attri­
butes 

x(i, j) = (x1(i, j) , . . . , x,,,(i, j)) . 

We assume that the attributes are additive so that the 
value of a path p is the componentwise sum 

x(p)== L (x1(i,j), ... ,x,,,(i,j)) . 
(i,j )Ep 

When m = 1, an optimal path from node i to the sink 
is p(i) = (i , p(j(i))), where j(i) is found by recursively 
solving Bellman's equations 

f(i) = x(i,j(i)) + f(j(i)) 
=opt {x(i,j)+f(j): j<i }, i>l , f(l)=0 . 

With rn > 1 the equations are still operational (f and x 
being vectors), provided there exists a well-defined op-
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timization operator which represents the preference or­
der among vectors of attributes. 

Let S be a rectangle in R III such that [ x(p): p E P] 
C S. We assume that the preference among paths is 
induced by an asymmetric binary relation in S . We use 
>- to denote the binary order relations in both P and S, 
since the distinction is apparent from the context. Thus 
for p, q E P(i)p >- q if x(p) >- x(q). 

A path p E P(i) is said to be nondominated if q ':{ p 
for all q E P( i) . Brown and Strauch ( 1965) have ex­
tended Bellman's equations to find the set of nondom­
inated paths. Sufficient conditions for the equations to 
generate the required set are: 

Transitivity : for all p, q, r E P(i) , if p >- q >- r then 
p >- r . 

Strict persistence: for every j EN and p, q E P(j) , p 
>- q implies that (i, p) >- (i, q) for every (i, j) EA . 

An example of an order with these properties is the 
Pareto order: x >- y if and only if x < y (x; :,:; y; for all i 
and x if:. y). The nondominated paths with this order 
are the Pareto paths. 

The main deficiency of any algorithm that solves the 
equations is its complexity, which is bounded only by 
the number of paths. The obvious reason for this is that 
the concept of nondominance is much coarser than that 
of optimality . 

A property which allows a definition of an optimal 
( in the usual sense) path is negative transitivity: for all 
p, q, r E P ( i), if r ':f q ':f p then r ':f p . An order which 
is asymmetric and negatively transitive is called a weak 
order . 

Denote p ~ q when q ':f p and p ':f q, and p ► q 
when p >- q or p ~ q. When the order is weak it can 
be shown that ~ is an equivalence relation so that if p 
► r ► q then p ► q. A path p E P( i) is said to be 
optimal if p ► q for all q E P(i) . 

An extension ( or rather an interpretation) of Bell­
man's equations was suggested by Mitten ( 1974) and 
Sobel ( 1975) for the case of a weak order. They show 
that every solution of Bellman's equations is an optimal 
path under the following condition . Weak persistence: 
for every j EN and p, q E P(j) , q ► p implies that 
(i, q) ► ( i, p) for every ( i, j) E A . 

We apply the term Bellman-Mitten's algorithm ( or 
BMA for short) to the algorithm which solves Bellman 's 
equations to find the optimal path with multiattributes. 
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Thus, in the multiattributes-path problem, if the order 
in S is weak then an optimal path can be found using 
the BMA if the following condition is sa tisfied. Persis­
tence (in attributes): for every x, y ES and z ER"', x 
>- y implies x + z >- y + z whenever x + z, y + z E S. 

Notice that x ~ y implies that x + z ~ y + z, otherwise 
x + z >- y + z and by the persistence condition x = x 
+ z - z >- y + z - z = y, which is a contradiction. Thus 
the persistence condition here is both strict and weak. 

The main deficiency of the BMA is that contrary to 
the standard shortest-path algorithm, Bellman's equa­
tions can be solved only by interaction with the DM, 
who selects an optimal path ( or vector of attributes) 
from a set of available paths ( or vectors). When the 
number of nodes is large, this is quite burdensome. 

3. The Existence of a Linear Value 
Function 

We show that if a value function captures the order in 
S then this function must be linear. More precisely, we 
show that if the order in S is weak, monotone, contin­
uous and persistent then there exists a linear value 
function over S which expresses this order. 

An order is monotone if for every x, y E S, x >- y 
when x < y . 

An order is continuous if for every x, y E S, x >- y 
implies that x + B1 >- y + B2 for some neighborhoods 
B1 of x and B2 of y . 

We use Theorem 3.3 of Fishburn (1970), which states 
that if >- on S is weak, monotone and continuous then 
there exists a monotone and continuous function u on 
S such that u(x) < u(y) if and only if x >- y , x , y ES . 
Consequently, for every p , q E P(i) , p >- q if and only 
if u(x(p)) < u(x(q)). 

THEOREM. If >- is weak , monotone , continuous and 
persistent in S (and the attributes are additive) then there 
exis ts a linear function v on S such that v (x) < v (y) if and 
on ly if x >- y. 

PROOF . Without loss of generality, Sis the unit cube 
in R 111

, u ( 1, .. . , 1) = 1 and u ( 0, .. . , 0) = 0. By the 
monotonicity and continuity of u, for every x ES there 
exists a unique point ( r, . . . , r) on the line connecting 
(0, ... , 0) and (1 , .. . , 1) such that u(x) = u(r, ... , 
r) . Accordingly, let v(x) = r . Clearly, vis equivalent to 
u, i.e ., v (x ) < v(y) if and only if x >- y. 
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To show that 

V ( X + y) = V ( X) + V ( y) for X, y , X + y E 5 , 

let v(x) = r1 and v (y) = r2 . Hence, 

x ~ (r 1 , •• . , ri) and y ~ (r2 , ... , r2 ) 

and by the persistence condition 

so that 

v (x + y ) = r1 + r2 = v(x) + v (y) . 

Notice that for every natural number k, v (x ) = kv (x / 
k), hence v( ax) = av(x) for every rational number a, 
and by the continuity condition, 

v ( ax + ( 1 - a ) y) = av ( x) + ( 1 - a ) v ( y) 

for every O ,s; a ,s; 1, and hence vis a linear function . □ 

The Theorem actually states that the BMA is useless 
if a linear value function v does not exist, since only 
the persistence condition assures its convergence to an 
optimal path . On the other hand, if such a linear func­
tion exists then the standard shortest-path algorithm 
can be applied after the coefficient of v has been as­
sessed . 

The results are proved here for the additive case . 
However, they are also true if one or more attributes 
are separable with respect to the product operator by 
taking the logarithm of the attribute. For example, con­
sider the case when C is cost and Q is the probability 
of not having an accident. The persistence condition 
means that for every three pairs of cost and probability 
(C;, Q;), i = 1, 2, 3, (C1, Q1) >- (C2, Q2) implies that 
(C1 + C3 , Q 1Q 3 ) >- (C2 + C3 , Q 2Q3 ). If a value function 
exists and this persistence condition is valid then there 
exists a real number b such that for every ( C1 , Qi) and 
(C2, Q2), (C1, Qi)>- (C2, Q2) if and only if 

C1 + b log Q1 < C2 + b log Q2. 

4. Verification and Assessment 
Of all the conditions required in the Theorem, the one 
most pertinent to the model discussed here is the per­
sistence condition. We can think of three approaches to 
verify it in an interaction with the DM. 
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(a) Asking the DM directly whether it is acceptable . 
For example, if the attributes are travel cost and travel 
time, an appropriate question would be " being in some 
node, can accumulated cost and time make a difference 
in the selection of the remaining path to the sink?". If 
the answer is negative then the persistence condition is 
satisfied, at least hypothetically. It can be statistically 
checked by the next two approaches. 

(b) Presenting the DM with several pairs of x, y ES 
and verifying that whenever x >- y then x + z >- y + z 
for every x + z , y + z E S . 

( c) As in the previous approach, but the pairs are 
actual values of paths, preferably Pareto, in the network. 
A verification step can be introduced into the BMA by 
letting the DM order values x + z and y + z, given that 
x and y have already been ordered . 

Suppose now that a linear value function is valid. 
Three similar approaches can be applied to assess its 
coefficients . 

(a) Asking the DM about the tradeoffs. In the cost­
time case, this means asking for the dollar value of time. 

(b) Presenting the DM with pairs of x, y ES and 
letting him/her order them according to the preferences. 

( c) As in the previous approach, but the pairs are 
actual attribute values of paths, preferably Pareto, in 
the network. 

Methods to assess a value function , according to the 
second approach, are common in the utility theory lit­
erature ( e.g., Keeney and Raiffa 1976) . Since assessment 
is done before starting optimization, its accuracy is de­
termined independently of the problem and may be 
less than actually required or more, and thus wasteful. 

Methods which follow the third approach are com­
mon in the MCDM literature ( e.g., Steuer 1986, Zion ts 
and Wallenius 1976) . Many of these methods are spe­
cially tailored to optimize an implicit linear value func­
tion over a polyhedron, which is the case here. These 
methods, however, do not utilize the structure of the 
network, as the BMA does. Furthermore, the methods 
are not efficient, since the number of comparisons be­
tween paths is bounded only by the number of the Par­
eto paths, which can be extremely large. Some features 
of these algorithms, however, do appear in the algorithm 
which follows Kornbluth ( 1985), and which is incor­
porated into the BMA. 

In each iteration of the BMA an " uncertainty interval" 
of the coefficients is given so that it is certain that the 
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" true" coefficients are in the interval, if the OM has not, 
meanwhile, changed his/ her preference order. The al­
gorithm starts out by assuming only that the function 
is monotone, that is, the coefficients are in the positive 
orthantH = [bER "' : b 2'=:. 0, Lb;= 1] . 

Using the recursive scheme of the BMA at each node 
i an optimal path p *( i) is calculated by solving 

f(i) = opt {x(i,j) + f(j) : j < i } . 

f ( i) can be calculated by pairwise comparisons of the 
vectors [x{i , j) + f( j) : j < i] , as follows . 

Given two vectors x and y in R 111
, if by < bx for all b 

E H then y >-- x; if bx < by for all b E H then x >- y . 
Otherwise, let the OM reveal if x >- y, in which case H 
is replaced by H n [b E R 111

: b(x - y) ::;; OJ , or y >- x , 
in which case His replaced by H n [b E R 111

: b(x - y) 
2':: o l. 

The problem of whether there exists b E H such that 
bx = by can be formulated as the linear programming 
problem: 

LP ( x , y, H) : z = min { I b ( x - y) I : b E H } 

= min {w1 + W2: w 1 - w2 - b(x - y) 

= 0, b EH, w 1 2':: 0, W 2 2':: 0 } . 

Let b* solve LP{x, y , H) . If z = 0 then b* x = b*y . If 
b *( x - y) > 0 then y >- x and if b *( x - y) < 0 then x 
>-- y . 

5. The Bicriteria Case, with an 
Example 

The algorithm is simple when m = 2, because the coef­
ficients are b = b1 and b2 = 1 - b, and the uncertainty 
interval of bis [e, f ], 0 5 e < f 5 1. Initially e = 0 and 
f = 1. The programming problem is reduced to verifying 
that bx < by for both b = e and b = f, in which case x 
>- y or bx > by for both b = e and b = f , and hence y 
>- x . Otherwise, according to the OM's preference, ei ­
ther e or f is replaced by b*, where b*(x - y) = 0. 

The following procedure finds the optimal path si­
multaneously with the uncertainty interval for an acyclic 
network, after an appropriate labeling of the nodes. 

Input: ( c;j, l;i ) for each arc {i , j) , j < i = 2, . . . , n. 
Output: ( C; , l ; ) the value of the optimal path, and 

m(i) the first node from ion that path, i = 1, 2, .. . , n ; 

(e, f) the uncertainty interval. 
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Procedure BM: 
1: ( c1, t1) = 0. i = 2, e = 0, f = 1. 
2: If i = n + 1 terminate. Otherwise, k = I = 1. 

For nodes j < i: C(j) = cii + ci , T(j) = l;i + ti . 
3: u1 = eC(k) + (1 - e)T(k), V1 = fC(k) + (1 - f)T(k). 
4: / = / + 1. 

If I= i then (c;, t; ) = (C(k) , T(k)) , m(i) = k, i = i 
+ 1, goto 2. 
Otherwise, u2 = eC(/) + ( 1 - e)T(I), v2 = fC(l) 
+ (1 - f)T(l) . 

5: If u1 5 u2 and v 1 5 v 2 then goto 4. 
If u1 2'=:. u2 and v1 2'=:. v2 then k = 1, m(i) = k, goto 3 . 

6: Let b solve bC(k) + (1 - b)T(k) = bC(l) + (1 
- b)T(I) 

7: Interaction with OM: 
If (C(k) , T(k)) >- (C(l) , T(I)) then, 

if u1 > u2 and v 1 < v2 then e = b, 

if u1 < u2 and v1 > v2 then f = b. 
If ( C(/), T(l)) >- ( C(k) , T(k)) then k = 1, 

if u 1 < u2 and v 1 < v2 then f = b, 
if u1 < u2 and v 1 > v2 then e = b. 

Goto 3 . 

Since this procedure follows the steps of the BMA, 
o(n 2

) comparisons are performed, some of them via 
interaction with the OM. In any case, the uncertainty 
interval is not larger than it needs to be for determining 
the optimal path . The actual number of comparisons 
will be relatively small, as the polyhedron His reduced 
after each comparison. 

Further reduction in interaction is possible by first 
calculating and sorting the intersection points of the 
lines [bx(i , j) : j < i } , e 5 b 5 f and using a binary 
search to reduce the uncertainty interval, as suggested 
by Megiddo (1979) . Then at most o(n log n) compar­
isons are required by the OM. 

Suppose that at each iteration b * is randomly picked 
in the interval (e, f) and b E (e, b*) with probability 
proportional to (e, b* ) . Then it is simple to show that 
the expected length of the new interval is i of the pre­
vious one. Thus the size of the interval is approximately 
(2/3)x after x updates of the interval. 

We now demonstrate Procedure BM for the acyclic 
network presented in Henig ( 1986) with six nodes and 
nine arcs ( see Figure 1) . Each arc is associated with two 
attributes. There are 3 Pareto paths from node 6 to node 
1 with values (12, 6), (14, 3) , (11 , 8) . 
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Figure 1 Example Network 

We tried the BM procedure with preferences ex­
pressed first by b = 0.5, then by b = 0.65 and finally 
with b = 0.8 . 

With b = 0 .5 we got 
(c2 , t2 ) = (5, 1) , m(2) = 1; (c3 , t3 ) = (4, 2), m(3) = 1. 
(c4 , t4 ) = (C(2) , T(2)) = (9, 2) >- (7, 5) = (C(3 ), T(3 )), 
m(4) = 2, (e, f) = (0, 0.6) 
(cs, ts)= (7, 6), m(5) = 2. 
(c6, t6) = (14, 3) , m(6) = 4. 

With b = 0 .65 as for b = 0.5 except 
(c4 , t4 ) = (C(3) , T(3)) = (7, 5) >- (9, 2) = (C(2), T(2)) , 
m(4) = 3, (e,f) = (0.6, 1) 
(c6 , t6 ) = (C(4), T(4)) = (12, 6) >- (11 , 8) = (C(5) , 
T(5)), m(6) = 4 , (e, f) = (0 .6, 0.66667) . 

With b = 0 .8 as for b = 0.65 except 
(c6 , t6 ) = (C(5), T(5)) = (11, 8) >- (12, 6) = (C(4), 
T(4)), m(6) = 5, (e , f) = (0.66667, 1) . 

We applied the BMA to 455 independent acyclic and 
complete networks, each containing up to 1,000 nodes. 
All the arcs ( i, j) with i > j exist, each having two at­
tributes C;i = x(i - j) and f ;i = y(i - j) where x and y 
are independent uniform numbers on [ 0, 1]. In 339 net­
works a linear value function with b = 0.5 was assumed 
to simulate the DM's preferences. In the remaining 116 
networks other values of b: 0 .1, 0.2, 0.3 and 0.4 were 
assumed. 

The number of interactions necessary to find an op­
timal path was related to the number of nodes in the 
network. A log function with no intercept was found 
to be a good (least square) predictor: 

number of interactions 

= 6.7 * log10 (nodes) = 1 + 3.4 * log10 (arcs) , 

with standard deviation = 1.82 * log10 (nodes) . 

896 

There were no significant differences between the 
various values of b . Thus, on average, when the number 
of nodes in the network is doubled, only 2 additional 
comparisons have to be accomplished by the OM. We 
also found that the length of the uncertainty interval 
(which is 1 at the beginning) is 3 .71 * (nodes) - 1.63 at 
the end of the procedure. 

6. Conclusions 
The main issue in d ynamic programming is usually not 
one of formulation but of application. As Mitten and 
Sobel have shown, an ordinal functional equation can 
be formulated under common conditions. As argued 
here, such a formulation is not helpful in real cases . 
However, if the common conditions can be projected 
into R "' , by introducing m additive attributes, then pref­
erences can be expressed by a linear value function . 
The result is an algorithm which is essentially the stan­
dard efficient shortest-path algorithm. The number of 
interactions with the DM is kept to the minimum. As 
the simulation with two attributes shows, the number 
of interactions increases as a log function of the network 
size, suggesting a relatively small number of interac­
tions. Further investigation is required to relate the 
number of interactions to the network size for networks 
with more than two attributes. 1 

1 The work originated as an Ms.c. thesis (in Hebrew ) by Tamar Sol­
omon, The Faculty of Management, Tel Aviv University, 1990. 
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