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Αbstract: State estimation (SE) is an algorithmic function of an energy management system 

(EMS). SE provides an actual-time monitoring and control of modern electrical power grids. 

State Estimation can be worked with sufficiency using Phasor Measurement Units optimally 

placed within a power grid. This paper concerns the implementation of proper algorithms 

embedded in optimization solvers to the optimal PMU localization problem solving 

globally.The optimization model is formulated as a nonlinear minimization problem.

The problem is transformed to a polyhedron using linearization methods and B&B tree. In this 

model, we use a linear cost function under polynomial constraints and binary restrictions on the 

design variables in a symbolic format. This mathematical model is programmed in the 

YALMIP environment which is fully compatible with MATLAB. The Nonlinear 

Programming (NLP) model is suitable for getting concisely global optimal solutions. The 

optimal solution is given by a wrapped optimization engine including a local optimizer routine 

performing together with a mixed-Integer-Linear Programming routine. The solution is 

achieved within a zero-gap precisely encountered during the iterative process. This tolerance 

criterion is a necessity for a successful implementation of the B&B tree because it ensures 

global optimality with an acceptance relative gap. The minimization model is implemented in a

YALMIP code fully compatible with MATLAB in two stages. Initially, an objective function 

with one term is minimized to discover a number of sensors for wide-area monitoring, control 

and state estimator applications. Then, an extra product is considered in the objective to suffice 

maximum reliability for observing the network buses. The numerical minimization models are 

applied to standard power networks in the direction to be solved globally. 

1. Introduction
The essential modifications in the electric power industry demand changes in the operational security 

and reliability for the purpose of continuous power supply to the customers. This happens due to 

increasingly gradual demand for electricity. Knowing exactly the state estimator vector, the power 

control center is able to accomplish this demand using Remote Terminal Units (RTUs) [1]-[3].  

Currently, the traditional power grids are transformed into Smart Grids using Phasor Measurement 

Units (PMUs) to accomplish the appropriate measurements to deliver an optimal input for state 
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estimation, control and power stability applications. Phasor Measurement Unit is a synchrophasor 

device that is utilized by the utility industry to obtain measurements related to voltage magnitude and 

phase angle [1]-[3]. This measurement device is able to achieve such a kind of measurement with the 

aid of Global Positioning System (GPS). A GPS enables time-stamping and the data collected by 

PMUs are used for monitoring and control activities in a wide-area measuring framework [1]-[3].  

Basically, a PMU device is a real-time measuring tool purposefully located in a Smart Grid to catch 

power network phasors using a frequent time origin to achieve synchronization in collecting the 

measurements for wide-area monitoring applications [1]-[3]. Recently PMUs are extensively posed in 

power grids that are transformed this way into Smart Grids. The installation of PMUs makes it able to 

monitor and suffice the power grid topological or numerical observability [1]-[3], [5]-[7].  

Due to the high cost to purchase each PMU device depending on the number of channel capacity 

for every bus, a least possible PMUs number must be installed in a power system to suffice an 

adequate power system monitoring [5]-[7]. Observability outcome is an essential tool in analyzing 

state estimation in real-time. For real time state estimation analysis, there are two main algorithmic 

approaches, that is, topological analysis and numerical analysis [1]-[3]. The topological model is based 

on power network connectivity to build the binary matrix and hence, obtainable measurements on 

zero-injection and power flow measurements are considered [5]-[7].  

Therefore, the optimal PMU localization problem is solved by mathematical and heuristic 

algorithms [17]-[22]. These algorithms find out the proper PMUs number for EMS purposes [1]-[3]. 

 EMS are used to observe with precision the power network state variables that are the voltage 

phasor of each bus in real time. For that reason, a least PMUs number is suitable for distribution in a 

smart-grid needed to carry out its State Estimation [1]-[3].  

When these measurements are obtainable, the power network is considered completely observable 

[1]-[3]. In addition, PMU being in work makes various significant utilizations for instance state 

estimation, power monitoring system, keeping protection methods, power control system and stability 

applications. The least selection of PMUs in number required for full condition of observability is 

from of the power network nodes numbers [1]-[7].  

The goal is principally to discover the appropriate PMU numbers and their positioning sites to 

render the condition of the power network fully observable. The PMU localization problem secures 

power system observability whereas a least PMUs number are posed at selected buses in a power 

transmission grid [5]-[7]. Hence, it is extremely important for utility industries to implement a 

practically efficient process optimization to detect a restricted PMUs number being available at 

Optimal PMU Arrangement  sites around the power grid [1]-[3].  

The Optimal PMU Arrangement  problem belongs is a combinatorial optimization problem where 

the decision variables take two decision values, namely -[11]. The aim is the localization 

of a PMU at a network bus or not [9]-[11]. With this binary logic, this optimization problem is solved 

by mathematical or metaheuristic algorithms compatible with its nature [9]-[11].   

Therefore, a minimum PMUs number are installed in appropriate sites so as to ensure each network 

bus to be monitored by at least one time. Various optimization methods have been adopted to give an 

optimal solution related to the optimal PMU localization problem [5]-[7].  

These optimization algorithmic schemes are ranked into two categories, that is, mathematical-based 

algorithms and heuristic algorithms which properly handle the observability constraints in the 

direction of optimality [5]-[7]. Several mathematical techniques have been addressed for the solution 

of a large number of similar technical challeges [71]-[77]. The optimal PMU problem is an 

intellectually demanding task [5]-[6].  

It includes integer linear programming models as well as nonlinear programming approaches 

with continuous decision variables [17]-[22], [27]-[31]. The first one model gives a global solution 

whereas the second one discovers local optimality characterized as a global best possible solution [14]. 

Each algorithm being implemented for the OPP problem solving comes across iteratively an optimal 

solution which covers the target of complete observation of the power system.  

Such an algorithm starts with one estimated point for initialization and finally meets optimality and 

feasibility within predefined tolerances in unison [16]. The principal programming model is the                

integer constraint optimization problem using a branch-and-bound algorithm for globally 
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solving [17]-[22]. The pioneering work belongs to Ali Abur's topological observability model [3]. The 

authors use set theory to eliminate expressions in a binary program [15]-[16].  

The optimal PMU localization problem is stated as a constraint binary integer linear program. The 

optimal localization of PMUs is declared in 0-1 ILP and NLP models [5]-[7]. The ILP model's 

algorithmic solutions are branch-and-bound algorithms [17]-[22].  

In [23], an optimal PMU formulation is presented based on the maximum observability indicator 

whereas the optimal solutions are satisfied by the state estimator tool [2]-[3]. A branch-and-bound 

algorithm completed in two phases is utilized to attack the widely recognized and used integer 

constraint programming model with binary variables [21]-[22]. Many optimization solvers such as 

intlinprog [62], SCIP [63]-[66], Gurobi [67] are being implemented for the solution of the  ILP 

model in the direction of optimality [14]-[16]. A binary semi-definite programming model is studied 

in [26] to solve the optimal PMU localization problem based on a numerical observability 

consideration. Nonlinear algorithms [24] such as interior-point methods [27] and sequential quadratic 

programming [28]-[30] are suitable to solve the NLP problem [8].  
Those algorithms ensure global convergence to a local solution point meaning convergence to a 

point that satisfies the Karush-Kuhn-Tucker optimality conditions starting from any initial point [8], 

[24]-[25]. Nonlinear programming models have a feasible set with non-convex structure, leading in 

many local minimum points if the case study is the minimization [24]-[25].  

Using clustering techniques, the nonlinear algorithms are able to encounter a global solution with a 

high leverage amount of possibility [24]-[25], [44]. Another approach to find a solution for the optimal 

PMU localization problem is to utilize direct search algorithms [31]. A mathematical Groebner 

algorithm is suggested to obtain a solution for the WLS optimization problem in [32]. Also, a number 

of heuristic algorithms are adopted to solve the binary (Boolean) optimization model [8].  

Genetic Algorithms [33], Binary Particle Swarm Optimization [34]-[37], Binary Cuckoo 

Optimization Algorithm [38], Tabu Search [39], Recursive Tabu Search [40], binary gravitational 

search algorithm [41] and a fuzzy-based modified whale optimization algorithm [42] are adopted to 

hold with the ILP model's constraints for the purpose of getting optimality [8].  

These algorithms give an optimal solution being acceptable for the optimal localization problem 

solving. Meanwhile, a MILP methodology is adopted in conjunction with a stochastic-based 

population algorithm in solving the optimal PMU localization problem in [43]. All previous studies 

define the maximum indicator as a desired-effective optimal solution without showing appropriate 

solutions. This paper continues a series of newly published articles in this domain to show that this 

topic is able to be solved with an objective with two criterions (minimize/maximize) [31], [44]-[45].  

Generalized Pattern Search Methodology is probably to reach the best possible solutions covering 

one criterion objective function. This direct search algorithm is proved to be convergent to those 

optimum points [31]. Τhis study examines the scalability and the ability to reach a goal such as to 

minimize the PMU numbers delivering a global solution at a single algorithm's run.  

Then the objective function is extended with the aim to satisfy two terms, that is, to minimize the 

PMU cost installation while the reliability is satisfactorily in maximum amount for state estimation 

purposes  [2]-[3]. The optimization terminates within a stopping criterion to find an optimum point. 

 

2. Optimal Sensor Arrangement using a YALMIP branch-and-bound algorithm 
The motivation of this study is to minimize the entire programming model with binary products 

related to the nature of the decision variables. Α (MI) Non-Convex LP is proposed, along with 

perfectly suited branch-and-bound algorithms embedded in standard ILP solvers to build the 

enumeration tree wrapped together with a local solver, both used to calculate the upper and lower 

bounds giving a zero-gap tolerance [70]. With this structure, a nonlinear program is studied and 

finally optimized to deliver the true PMU numbers to suffice system observability [17]-[23]. 

The minimization model is stated as a  nonlinear programming format in which the decision 

variables are presented in a strictly binary restriction, minimizing a linear cost function under a 

polynomial constraint function. Such optimization models don't always guarantee global optimality.  
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Τhis paper will analyze the probable process optimization in getting global optimal solutions 

produced by a binary (Boolean) polynomial optimization model [11]. We propose the solution of the 

nonlinear program in a binary framework using the YALMIP program [59]. For simulation purposes, 

two optimization solvers included in appropriate optimization libraries such as MATLAB library and  

YALMIP is a widespread optimization library needed to implement and optimize mathematical 

models jointly with the utilization of MATLAB. YALMIP toolbox holds up Bi-level programs, second 

order cone programs, linear programs, quadratic programs, integer programs, nonlinear models and 

global optimization studies to come across optimality [59], [62]-[70].  

We have highlighted the participation of two optimizer routines for revisiting the optimal 

localization problems of PMUs for installation in a futuristic power system. The minimization model 

is able to highlight explicit global optimal solutions produced by the collaboration of a local NLP 

solver with an ILP optimizer function [70]. To implement and solve such kinds of optimization 

models, YALMIP interfaces commercial or open-source optimization MATLAB codes [59], [62]-[70].  

It consists of a linear cost function that is optimized under a polynomial constraint function 

whereas the design variables are declared as binary using YALMIP [59], [69]-[70]. For that reason, we 

present some standard numerical experiments and their corresponding numerical results to analyze the 

impact of this mathematical model related to the determination of a global solution.  

This consists of an innovation given that these optimization models don't always ensure global 

optimal solutions [24]-[25]. To point out our study, this optimal localization problem of PMUs relies 

on the following two factors to attain an optimal output under guarantee [18], [44]-[45]. 

 

A. Minimizing the PMUs number satisfying a number of topological restrictions 

based on Ohm's and Kirchhoff's mathematical laws that are adequately defined 

to fulfill a wanted level of power network grid observability. 

B. Maximizing the time of monitoring each power network bus directly or 

indirectly observed by PMUs monitoring devices optimally installed in the 

power grid.   

 
Remark A is significant to be achieved for the purpose of satisfying the topological observability as 

defined in previous studies, by a desired PMUs number, put them in appropriate sites around the 

power grid. Remark B indicates the significance of the achievement of maximum power network 

observability by using synchronized phasor measurements.  

To accomplish that, two product terms involved in the objective function are declared to retain the 

network observability. Hence, the smallest PMUs in amount are counted. At the same time, the 

maximum reliability of monitoring the network buses is fulfilled around the modern grid equipped 

with PMU devices in a least number and optimally at the same time [2]-[3].  

The goal of this paper is to improve the reliability of wide area monitoring by making it possible to 

do and improve the power system protection, power control schemes by using PMUs [2]-[3].  

The aim is to decrease the economic load of the utilization of PMUs by industry utilities in 

installation within the power grid [44]-[45]. Therefore, we attack with efficiency the optimal PMU 

localization problem under fully observable conditions. Compared with the existing technology that is 

RTUs, PMUs can improve the degree of correctness of state estimation procedures [1]-[7].  

PMU has the capability to calculate voltage phasor magnitude and angles which are state 

estimation variables to be computed to proceed and calculate power system observability [1]-[3].  

A vast PMUs number have already been installed and much more will be installed in power grids 

around the world in the near future [5]. Thus, the existing power grids are transformed into modern 

power grids satisfying the continuous demand for energy to the customers of industry utilities with an 

increased amount of reliability [5].  

Given that the PMUs are able to compute the phasor magnitude and angle of a network bus as well 

as branch current in a straightforward way, a linear state estimation model is able to deliver the power 

system state with a degree of correctness. This can be achieved due to high statistics rate and PMU 

measurements collected accurately by an optimal number of these devices around the power grid.  



IC-MSQUARE-2023
Journal of Physics: Conference Series 2701 (2024) 012001

IOP Publishing
doi:10.1088/1742-6596/2701/1/012001

5

For mathematical programming purposes, we revisit our previous study that introduces a non-

convex mathematical model fulfilling the power grid level wanted to an accurate state estimation 

model [27]-[31]. In this mathematical model, the maximum level of observability is achieved by using 

clustering techniques in getting global optimality with high leverage [44]-[45].  

To attain a compromise in optimization of an objective with two statements at odds, a two-term 

objective is stated in a linear framework. This statement can be formed in a zero-one polynomial 

programming framework and it can be optimized by the sum of two terms towards optimality.  

Hence to succeed in optimality, we desire to optimize two parameters (minimize/maximize) at the 

same time by using appropriate optimization software packages. This can be solved by transforming 

the maximization to an objective term with a negative sign to go to the optimization with a successful 

run. The objective linear function is optimized subject to a polynomial constraint within binary 

decision variables trying to compromise conflicting trends with accuracy. We introduce a process via 

which a non-convex optimization problem with binary decision variables is convexified and 

transformed into a polyhedron model formulation. The polynomial model is approximated by using a 

convex polyhedral [8]-[16]. 

This transformation is able to be solved with the branch-and-bound algorithm embedded in a ILP 

solver jointly with an NLP solver. For those implementation purposes, a local nonlinear solver and an 

integer programming solver are used to construct the B&B tree in getting the best possible solution at 

a root-node which is feasible and optimal in unison. The fulfillment of two optimization solvers is 

used jointly in a proper optimization software [59], [62]-[70].  

The proposed optimization packages gives global optimality after a predefined relative gap to be 

satisfied within a zero-gap tolerance at the same time. The proposed model is studied and proved by 

the numerical results being achieved by appropriate algorithms embedded in optimization solvers.  

The local nonlinear as well as the integer linear solvers are optional in the  routine included 

in the YALMIP program [59], [69]-[70]. They are essential to attaining a global optimal solution 

without spending a considerable amount of calculation time in MATLAB environment [62].  

These solvers are jointly used to compute the upper and lower bounds, the difference of them and 

finally the global solution within an accepted relative gap and a zero absolute gap criteria [8]-[14].  

This numerical process optimization is an intellectually demanding topic regarding the complexity                       

of getting it in a global combinatorial optimization framework these days. The methodology is an 

efficient approach given that a global solution is delivered under assurance without to be necessary 

any comparison study with other algorithms outcomes published already for the PMU placement.  

The main factor leading to success is its capability to reach an optimal global solution spending a 

relatively small amount of time [63]-[66]. Experimental simulations tested on IEEE power systems 

illustrate the greater ability, as well as the improved testing, of the proposed binary polynomial model 

related to standard nonlinear programs used so far in PMU process optimization.  

The numerical outcome is delivered by appropriate optimization functions and the YALMIP library 

for power systems [59], [71]. This study gives remarks being a necessity summarizing in four stages.  

 

1. It is a first pioneering effort to solve nonlinear programming with binary decision 

variable values with a systematic, an easy and a compact algorithmic scheme towards 

global optimality.  

2. The  polynomial problem is transformed into a polyhedral approximation; it 

delivers a notable solution for a polynomial programming model with binary decisions. 

3.  Two optimization solvers are concurrently used in MATLAB jointly with YALMIP 

programs trying to solve the optimization model globally. 

4. Its solution can be found using NLP and ILP solvers to count the upper and lower levels 

of a B&B tree, enumerate the difference of them which finally goes to zero. This 

optimality and standard tolerance's metric ensure that the current solution is globally. 

 

Considering the new and interesting aspect presented in this study, it is most important to indicate that 

the optimal PMU arrangement can be solved globally by spending an affordable amount of time 

considering the optimization model’s complexity [15].  
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This novel proposal is based on using polynomial models with binary decision variables [57]. The 

complete programming model is stated in a binary polynomial optimization framework [52]. A 

branch-and-bound algorithm solves the  polynomial model towards ε-global optimality [8]-[15]. 

Our proposal relies on building polyhedral outer approximations of nonconvexities, giving a global 

optimal solution by solving a number of linear programming relaxations at a given number of explored 

nodes in the resulting branch-and-bound tree [8]-[14]. More details about b&b algorithm can be found 

in [7]-[14]. The Branch-and-Bound algorithm is summarized in the following sub-paragrapth [7]-[14]. 

The output is a desired outcome because the optimization functions being used together evaluate 

and encounter the cost function at a global minimum objective value [70]. 

 

Theory of Branch-and-Bound Algorithm 
In this method, the optimization problem is minimized with continuous variables, and the integer 

variables are relaxed. If a solution point is found to be integer, the BBA is fulfilled as it shows the 

return output of the integer program. If one of the integer variables is continuous, then one must be 

solved with two supplementary with the upper bound restriction [8]-[15]: 

 

                                                                                                                                        (1) 

and lower bound constraint: 

 

                                                                                                                      (2) 

 
This optimization procedure of the branching strategy suffices that none of the integer solutions are 

not being rid of the process. The optimization procedure continues until an integer optimum point has 

been found. For further branching, if any of the branches present a value of the cost function larger 

than this upper bound price then the root-node is eliminated [8]-[15].  

If a lower value of the cost function is reached than the upper bound value, afterwards  the upper 

bound is replaced. The iterative process goes up to branching until all the root-nodes have been found 

a value or fathomed. The objective function has the lowest price and corresponds to the integer 

feasible solution. Hence, the upper bound gives the objective function value [8]-[15]. 
The optimization process continues to branching procedure until the BBA tree nodes to be 

evaluated or fathomed [8]-[15]. This solution is considered to be the upper bound of the cost function 

for the minimization problem [8]-[15].  
 

3. Statement in the Direction of Smart Grids 
The major concern of industrial utilities is to learn about the proper PMUs number to be posed in an 

existing power grid and try to transform it into a Smart Grid based on synchronized measurements.  

The principal target is to minimize the PMU in numbers and to achieve a considerable number of 

times for which a power network node is observed for power network observability and reliability 

concurrently. Therefore, mathematical programming models are necessary to be solved for the optimal 

PMU localization problem in the direction of the determination of a global optimal solution.  
This study overly solves a novel polynomial model giving the exact PMUs in number which 

satisfies the linear state estimator for complete observability and maximum network reliability for 

futuristic power grids. The proposed nonlinear model is easy and straightforward to learn about the 

optimum point, and thus a global optimality certificate is accomplished.  

The proposed mathematical programming approach is adopted to solve a polynomial model with 

binary variables within an optimizing package fully compatible with MATLAB [62]. With a 

considerable maximum observability indicator being achieved, each network bus is observed directly 

or indirectly with the maximum number of times by synchronized measurements. The entire 

optimization process is terminated with a successful output, where a global solution is given during the 

Β&B tree implementation on the output of the YALMIP model in MATLAB [59], [62].  

The programming model is considered to be easy and straightforward in the implementation using 

a suitable YALMIP programming code completely compatible with the MATLAB environment. Two 
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optimizer tools have been implemented for the proposed polynomial program with the non-

convex structure. Hence, the entire procedure in optimization allows us to use the algorithmic scheme 

to escape local optimality, and it can succeed convergence to a global optimal point even though the 

minimization model involves more than decision variables [15].  

The entire process is executed by the two optimization solvers put in the same optimization 

package. The algorithmic scheme being solved by a suitable optimizer routine ends up when the 

optimality gap goes to zero and a relative gap is satisfied within a predefined tolerance [66]-[70]. This 

fact means that the two optimizer functions wrapped in the same optimization package perform 

excellently related to convergence speed, elapsed time and exploring a reasonable number  of nodes in 

the binary tree to reach a global optimal solution within acceptable gap's tolerances [16].  

 

4. Statement of the Optimization Problem 
The optimal PMU localization process optimization is to decide the least PMUs number, their 

corresponding locations and to set in advance the maximum number of times by which a power 

network bus is monitored either directly or indirectly by the resulting arrangement [39], [44]-[45].  

The first effort was succeeded by the authors using evolutionary and nonlinear algorithms with the 

uncertainty of global optimality in [44]-[45]. This uncertainty is limited by using comparison study 

with BBA's metrics for evolutionary algorithms [45] or using clustering methods for nonlinear 

algorithms [44]. Our target is to reformulate a constraint optimization problem by which a joined act 

of selecting or devoting choices can be done to attain a maximum return on complete observability and 

maximum level of observability [39].  

The nonlinear programming model is declared as an optimization model consisting of a linear 

objective function under a non-convex constraint function structure that is known to be difficult to be 

solved with a global optimum point under sufficient precision [8]-[14]. Hence, a mathematical model 

is stated where the objective function is linear under a polynomial constraint whereas the decision 

variables are needed to take only binary values [55]-[58]. 

Despite this general truth, this study presents such optimization problems being implemented in the 

YALMIP library [59]. The whole optimization framework interfaces suitable ILP and NLP solvers 

obtainable in the MATLAB optimization library, optimization commercial or open-sources 

optimization packages [62]-[70]. This programming model attacks this kind of the nonlinear 
model, overcoming the difficulty of the determination of global solutions [59], [69]-[70].  

This paper studies a nonlinear programming model with binary values, which adopts two optimizer 

functions to attain a rapid convergence and avoid too soon convergence to a local optimum point.  

Then we can solve this programming model with the built-in solver named bmibnb in the YALMIP 

toolbox to deliver explicit optimally global solutions [59]. YALMIP extends the previous study on a 

non-convex programming formulation by adding  a suitable symbolic syntax to activate binary 

decision variables in a trial to minimize the nonlinear model [70].  

These solutions are benchmark global points for wide-area applications and power system 

monitoring. Explicit solutions are given by using bmibnb interfacing external solvers to count the high 

and lower levels in the binary tree construction. The bmibnb develops the binary tree with branching 

or pruning infeasible areas. The routine terminates the entire recursive process at a given root-node.  

The objective function has been found to be the absolute minimum within a zero-gap tolerance. 

Hence, the desired optimal solution is achieved [8]-[14], [56]-[58], [59], [62]-[70].   

The optimization procedure can be considered as a recursive plan to achieve the variation between 

the high bounds calculated so far, which the objective relative worth of the incumbent solution is at 

present, and the current lower bound. Due to running calculations of sub-problems, this upper bound 

of the cost function is achieved at the root-node while the lower bound closes the gap to zero to ensure 

optimality [8]-[14], [56]-[58], [59], [62]-[70].  

This strategy is done repeatedly counting the variation between these levels to reach the zero value 

of the optimality gap. Hence, a robust optimization problem is studied to calculate the true global 

optimum point. On that occasion, the optimizer routine chooses to terminate the iterative process 

whereas a global minimum point has been found.  
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5. Motivation of this Study 
The principal target is to introduce a novel and at the same time a methodology in optimization to 

produce results which are strongly global optimum points. This process optimization in decision 

making process is the subject of tuning a procedure to optimize an objective function involving two 

terms in competition without violating the constraint function at the final root-node [16].  

The optimization problem is minimized in two stages. This optimization function includes two 

statements at odds. Therefore, the two terms objective function are stated as a scalarizing function 

[48]-[51]. The critical point is to get an optimal solution by optimizing a single-cost function [48]-

[51].  In the first step in a process, we minimize the PMUs number and an optimal vector dependent 

by size of power network is achieved. Ιn the second stage, we optimize a two-product objective 

function. The objective function includes two competitive terms (minimize/maximize) under 

restrictions. It is transformed into a single-cost function. Then, this function is minimized using a BBA 

implementation [8]-[16]. The decision maker problem is stated in the YALMIP optimization toolbox 

where a nonlinear programming is proposed to discover optimality [52], [68]-[70]. 

To succeed the optimization, the programming model is built in the YALMIP platform where the 

decision variables are declared in symbolic binary format [59], [69]-[70]. The context is that we 

present polynomial constraints that should be defined for a binary restriction of the decision variables. 

The strategy is to transform the initial optimization model into a polyhedral approximation and then 

to examine the non-convexity constraint function and binary decision variables to find a solution. 

The proposed model can be solved through the branch-and-bound algorithm embedded in the 

YALMIP optimization toolbox [59]. This can be implemented by using an ILP solver jointly with an 

NLP solver, delivering global optimality without to be a necessity a comparison study with other 

optimality metrics found by previous studies. Therefore, this process optimization arrives at a global 

optimum point on the output of solving the nonlinear polynomial model [59]-[60], [62]-[70]. 

The proposed optimization software develops a B&B tree process to reach the best incumbent and 

feasible solution trying to reduce the dimension of its [70]. The B&B tree's size is keeping as small as 

possible to find the first feasible current solution and then to the global solution [8]-[14].  

6. Contribution of this Study 
The OPP problem belongs to a combinatorial optimization problem with a binary logic related to the 

nature of the decision variable. The problem has an affect on the location of a PMU at a system node 

or not for adequate power network monitoring. The optimal PMU localization problem is an essential 

tool for a successful run of the state-estimation model [2]-[3].  

This process considers all network buses phasor voltages to be computed by Smart Grid devices 

[1]-[7]. This can be done using phasor measurement units optimally posed at selected power network 

buses. Its solution lies in this area to accomplish a minimum PMUs number whereas a maximum 

reliability amount is accomplished for a successful run of the State Estimator (SE) Processor [5]-[7].  

The attempt is to solve the optimal PMU problem and a methodology not wasteful is implemented 

to find an objective-method producing results related to install a PMU at power system or not using a 

binary (Boolean) model with logic construction in the observability constraints. Since the solution 

covers the least number of synchrophasors sensors with maximum indicator remains a hot topic issue.  

Hence, this study covers up the lack of relative studies from the side of finding a globally optimal 

solution. Pioneering works have already discussed the optimization task which is to properly minimize 

PMU in numbers without giving a sufficient answer about solving it globally or found the upper limit 

measurement quantity of redundancy required [5]-[7].  

Given that the PMU price remains with a price excessively high [5], it is essential to propose an 

optimal PMU arrangement in an alternative framework than 0-1 integer programming being solved 

globally. Up to now integer and non-convex programming models are adopted for the optimal 

PMU localization problem solving [5]-[7]. Non-convex optimization methods can be handled and 

solved locally. The local optimization methodologies are relatively fast, but they require gradient-

based information and descent directions to accomplish a local solution but not the global one [8]-[11].  

Even if they are able to detect a globally optimal solution, they cannot confirm it by a mathematical 

rule [8], [24]-[25]. Branch-and-Bound algorithms can be adopted to solve non-convex optimization, 
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counting lower and upper bounds, giving a gap-zero to  demonstrate that a global solution can be 

found [24]-[25], [58].  In this work, we study a nonlinear program with binary decision variables for 

solving the optimal PMU placement problem globally. We extend a nonlinear programming approach 

with continuous variables presented in past studies [27]-[31] into a polynomial model. Beyond 

that nonlinear approaches with continuous variables detect the desired outcome; our proposal is to 

strictly declare the decision variables as binary to deliver a global optimum point [62]-[70].  

This study is taking into account a global branch-and-bound algorithm running in the YALMIP 

environment to implement a combinatorial decision-maker and problem solving [59], [63], [69]-[70].  

To the best of a fact, two cost terms are used; either as a single term cost function or a two-

objective criteria function in an NLP framework for the optimal PMU localization problem.  

This optimization problem involves the cost and the constraints which function twice differentiable 

with binary decision variables over the whole search [8]. The initial model is approximated by a 

polyhedron and is solved by a BBA based-solver in conjunction with an NLP solver interfacing in the 

main optimizer routine included in the YALMIP environment performing in MATLAB [60], [62].  

Our aim is to show that our program runs in MATLAB programming with suitable YALMIP 

command syntax to attack the optimization problem on a global optimum point [59], [62], [69]-[70]. 

We introduce an optimization package named  which is a built-in solver in the YALMIP 

program to the optimal PMU allocation problem solving [59]. BMIBNB utilizes commercial and 

open-source optimizer routines to figure out the solution within a 0.00 % [59]-[70] 

The BMIBNB solver can solve the binary polynomial optimization problem by calling two sub-

routines that effectively calculate the lower and upper bounds related to the optimal objective value on 

a feasible region [70]. A B&B tree process is built and terminates at a root-node with an optimality 

certificate [14]. Therefore, an optimal solution is achieved in well accepted calculation time.  

This optimizer function is able to interface outer approximations including ILP and NLP solvers to 

deliver a cost-efficient optimal solution. With the uncertainties in getting a global optimal solution 

related to non-convex formulations, we address this task in a try for the purpose of getting a cure 

connected with the global optimality [68]-[70]. The foremost idea is to attempt to learn about an 

efficient solution methodology related to the problem-solving summarizing at the following stages. 

1. Our innovation is that this is the first time where a NLP problem is 

formulated and solved in the direction of global optimality. 

2. The nature of the proposed model is a non-convex problem with binary decision 

variables not always giving an absolute optimal solution from the globalized 

angle from which is seen. 

3. Α YALMIP global branch & bound is suggested and can be tested on an 

optimization problem related to the optimal PMU arrangement task. 

4. The iterative process results in a global minimum solution point established by 

using local and global solvers with a good enough degree of correctness.  

5. The globally optimal solution is guaranteed within a zero-gap tolerance at 

specific calculated root nodes in the implementation of the BBA’ tree.

The combination of binary decision variables, a linear cost function and a non-convexity constraint 

function is NP-hard model in theory but we prove through the simulations that it is easy and 

straightforward in the implementation. Hence, global optimality is discovered in reasonable running 

time. Then, the solution algorithm is followed within a s-BBA framework embedded in the SCIP 

optimizer routine and ensures global optimality within a zero-gap tolerance [63]-[65].  

Hence, an optimal solution being is derived by an outer polyhedral approximation. It delivers a 

solution that is also global for the original binary (Boolean) polynomial optimization model. SCIP 

optimizer function utilizes an NLP solver which is the IPOPT solver to solve the binary polynomial 

model [63]-[65]. The optimization framework is summarized as follows [63]-[65]: 
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1. The optimization model is transformed into a polyhedron and is solved by the 

SCIP optimizer function which builds a branch-and-bound tree where the Primal 

and Dual Bounds are calculated to be equal at the given root-node.  

2. The optimization is terminated with accuracy because the difference of these 

bounds gives a zero-tolerance gap. This tolerance achieved means that a global 

optimal solution is attained. The cost value is considered to be the upper bound 

when the relative gap tolerance is calculated to be close to  at the 

explored root-node of the B&B implementation tree. 

 

This procedure is achieved considering a piece of algorithmic data calculated during the 

construction of the binary tree within the iterative process. The iterative process is fulfilled when pre-

defined stopping and tolerance criteria are met in unison [16]. The log file certificates the global 

solution being achieved. The whole optimization can be characterized as robust since an optimal 

solution is attained; also, a global one under strong optimality conditions [8]-[14]. The absolute gap is 

found to be closed [70].  

We implement a minimization problem using a branch-and-bound algorithm. The upper bound is 

its solution whereas the lower bound is responsible for closing the absolute gap in order to give a 

strong condition for optimality [70].  

Those optimality conditions are satisfied within a zero-gap tolerance and a meaningless percentage 

relative gap. Therefore, we propose a novel optimization approach to break free of local minima, avoid 

being trapped into them and to produce a solution within a 0.00 % optimality [14]-[16].  

 

7. Novelty and Assessment Criteria to Achieve Optimality 
We study a combinatorial optimization problem related to some binary (Boolean) optimization model 

with application in the field of synchronized measurements for monitoring the smart grids. The 

innovation of this study is proved in practice because a polynomial problem with continuous variables 

is able to attain locally optimal solutions [8]-[12], [27]-[30].  

The motivation of this study is to find a solution for the binary (Boolean) minimization problem 

and notice an optimal point within a zero-gap tolerance; hence to be characterized as a global one 

[16]. Two targets are aimed at optimizing and they are presented to be solved globally [63]-[65]. 

 

1. To properly minimize an objective function involving one term being in a linear 

form under topological observability constraints while the binary restriction is 

satisfied on the design variables. 

2. To achieve a sufficient optimal and a global solution for a two-product objective 

function being optimized where these terms perform competitively during the 

optimization process. 

 

Both algorithmic models are implemented in a strict binary constraint regarding the nature of the 

arrangement variables. Each mathematical model delivers the desired outcome which is a strong 

minimum point. This point reflects the PMU required in a suitable number to validate the power 

system observability. Hence, we bring into clear view the BMIBNB optimizer built-in the YALMIP 

library. This optimizer function is tested on a binary (Boolean) polynomial problem [70].  

In this study, we solve the polynomial problem with binary variables in symbolic format in the 

YALMIP [59]. The YALMIP global ILP solver invokes external nonlinear and integer solvers and 

results in a global optimal and feasible solution in unison [70]. The polynomial nonlinear problem is 

transformed into a polyhedral approximation. Then, a B&B tree is implemented and results in a 

globally solution; just the same for the initial model [14]-[16].  

This is achieved through the solution of the polyhedral approximation by a s-BBA interfacing 

external general-purpose solvers to derive a globally optimal solution point [8]-[16]. Hence, this study 

overcomes the uncertainties in getting a global solution of a nonlinear program [8], [24]-[25].  

There are three principal optimality metrics adopted in this study, the feasibility, the optimality 
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and the uniqueness or not of a global solution [15]-[16]. The fundamental element in solving the 

proposed minimization problem is firstly to define if we can find a feasible solution through the 

iterative process before any optimal minimum point can be detected [8], [16], [24]-[25].  

The proposed algorithmic scheme firstly seeks out the best integral solution which is a feasible 

one, soon after upper solver and lower routines calculations, LP-based domain reduction, and a 

significant amount of heuristic calculations in getting optimality [8]-[16]. The process in optimization 

ends when the upper and lower bounds in the B&B tree are totally equal in quantity, so as the solution 

to be within a 0.00 % optimality. The upper bound is considered to be the solution [70]. 

 

8. Preliminary Noteworthy Remarks 
The PMU localization problem is presented in this study with the aim to accomplish the global 

optimality condition to a binary polynomial optimization model. The mathematical model consists of 

a linear cost function with a polynomial equality constraint function in a binary restriction related to 

the nature of the decision variables. This study has a major concern of the utilization of a multi-

criteria optimization model consisting of two stages:  

I. The first stage calculates the adequate PMU in numbers for full condition of observability 

II. The second stage calculate those optimal solutions with maximum observability indicator  

 

The major concern is to solve the multi-criteria polynomial optimization problem with binary 

variables have been ranked accordingly to relating to a b&b approach: (a) transformation of the 

polynomial model into a polyhedral approximation, (b) solved by global b&b algorithm (c) suitable 

external nonlinear and integer solvers are interfacing in the main b&b optimizer routine, and (d) a set 

of optimal solutions are derived satisfying the multi-criteria optimization model [15].  

In addition to the above, this work solves the multi-criteria constraint problem into the following 

types: (a) overall optimization framework consists of a zero-one constraint integer and binary 

polynomial models (b) classifying suitable b&b and nonlinear solvers, (c) approximation of the binary 

polynomial model by a polyhedral model, (d) delivering a resulting globally optimal solutions, and (f) 

the presentation of solutions satisfying the two optimization models either with one criterion or two 

competitive trends in the objective function [15].  

Allow us to draw the optimization framework slated with two optimization models. In this study, 

we introduce a robust binary (Boolean) optimization model, which is appropriate to a constraint 

optimization problem with a linear cost function under a non-convex constraint function following  the 

classical 0-1 integer linear program [14]. The numerical result relies on a global branch-and-bound 

algorithmic function calling external nonlinear as well as integer linear solvers [62], [66]-[70].  

We study its robustness to figure out the globally optimal solution reflecting the appropriate 

number of synchrophasors sensors. This ILP solver relies on a spatial B&B methodology adopting 

convex envelope approximation procedures for nonlinear programs. External routines are used such as 

nonlinear and integer solvers to come across the best possible and feasible solution [70].  

This branch-and-bound global optimization algorithm requires sub-routines for delivering feasible 

solutions. YALMIP global b&b process invokes NLP and ILP solvers for computing upper and lower 

levers of the objective value and an LP solver to solve the relaxation problems. Hence, a global 

optimum point is detected under warranty [70].  

This  polynomial model is solved by using a global branch-and-bound (BB) algorithm. The 

principal ideal is based on a global BBA solver which efficiently invokes two sub-routines to calculate 

a lower and an upper lever on the optimal objective value [70]. This model is defined on a set 

consisting of the linear objective function under polynomial constraints within a binary decision 

investment integrality. BBA plays a crucial role solve the non-convex model given that they relax the 

polynomial constraint functions, the integrality of the decision variables and build a binary tree in 

getting optimality.Two optimization procedures are utilized towards optimality [14]-[16]: 

 

� an upper bound can be detected by a local optimization methodology 

� a lower bound can be delivered by solving convex relaxations, branching strategies 
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The first optimizer routine counts the upper bound and the second optimizer routine calculates the 

lower bound in the B&B tree implementation. The relaxed problems are solved by invoking an LP 

solver [14]. To reach an optimal solution, we adjust three separate optimization in the BMIBNB 

routine whereas the branching strategy is developed [70].  

We use a local nonlinear routine to calculate the upper bounds by using the command 
and an integer solver to compute the lower bounds of the objective value by 

calling the command  . Also, the relaxed problems and bound tightening 

issues are resolved by an LP solver with the command  [67]-[70].  

A reasonable calculation time is spent solving linear programs based on bound propagation. 

BMIBNB performs this procedure for such optimization problems [67]-[70]. Hence, we turn it off 

 [70]. The Boolean polynomial problem is solved globally with a pre-defined 

stopping criteria to be met [16].  

The base of such a building can be found in the technology advanced optimizer routines such a 

SCIP, Intlinprog, Gurobi, GLPK and LPSOLVE optimizer routines with an NLP solver such as 

FMINCON or IPOPT optimizer function. Finally, an optimal solution is achieved; a global one [14].  

 

9. Binary Linear and a Polynomial Programming Models 
An algorithmic scheme is proposed to attain a power observability and electrical measurement amount 

of redundancy concurrently. Its solution lies in this area by detecting a correct PMUs number 

reflecting the minimization of the objective function whereas a maximum reliability amount                         

of measuring terms is accomplished for a successful run of a State Estimator (SE) tool [2]-[3]. 

 This combinatorial mathematical model is characterized as a mathematical model 

which is stated in process optimization as a decision-making and combinatorial problem. Such 

combinatorial problems are characterized as an optimization problem and decision maker being 

studied and solved together [8]-[15].  

In this work, we analyze concepts such as the implementation, examination and assessment of an 

objective function in two stages, Viz., as a cost function with one product and as two terms objective 

function which are minimized in a process optimization. Uncertainties in finding a global solution are 

unavoidable. A suitable model is executed in an appropriate syntax and must be considered an 

optimization package. This can be true by involving a one term cost as well as a multi-objective 

function if trustworthy optimum points must be delivered [15]-[16].  

To this effect, we relate an optimization package implemented in the YALMIP in conjunction with 

MATLAB programming platforms that permits a strategy to solve the problem globally [59], [70].  

The utilization of this optimization package assists to escape from local minima points. The a 

binary polynomial optimization is stated to solve the OPP problem to get a global solution.  

Binary polynomial optimization is a numerical optimization task concerning multivariate 

polynomial functions defined on a search space involving binary-valued variables. The motivation of 

this study is that we propose a binary polynomial problem that leads to an optimal solution. This 

optimum point is a global one after the utilization of technology advanced optimizer functions being 

grouped into ILP and nonlinear programming (NLP) solvers [14]-[15], [62]-[67].  

A polynomial optimization model can be shown as a non-convex optimization model which is 

solved by a branch-and-bound algorithm (BBA). This programming model has a linear cost function, 

polynomial constraints and binary decision variables [8]-[11], [24], [68]-[70].  

To construct the B&B process, an ILP solver is invoked as a lower solver to solve the relaxed 

problems for branching implementation [14]. The integer linear programming (ILP) solver computes 

the lower bound related to the objective function value at a given root-node. Meantime, an LP solver is 

invoked that makes the bound stronger for solving the relaxed problems [14]-[15], [62]-[67]. 

An NLP solver is invoked as an upper routine to calculate the upper bounds. Hence, the upper 

bound is estimated by invoking the local solver [70]. A calculation time is spent to follow the length of 

the branching process to build the b&b tree [8]-[11], [62], [66].  
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As a consequence of the above used development, the upper bound is a solution point produced at 

the first root-node of the B&B tree whereas the lower bound closes the gap. All this process 

optimization is considered as a valuable performance to give the global solution [8]-[16]. 

 

10.  0-1 Constraint Integer Linear Programming Problem 
Two observability scenarios are examined in the recent bibliography [17], [26]. To evaluate the power 

network observability, a topological and a numerical model is utilized to successfully execute the state 

estimation tool based on traditional and synchrophasors measurements [17], [26]. A PMU calculates 

the voltage phasor at a bus as well as the current phasors emanating from that bus [1]. This 

measurement is considered to be a straight measurement. Using the knowledge of the voltage phasor at 

one end point of the line and its current phasor, we proceed to calculate the voltage phasors at the 

other adjacent nodes through Ohm's rule calculations. Knowing the phasor voltages between two 

network nodes, we already know the current flow on the line connecting these nodes using Ohm's rule.  

If a PMU is posed at every power network bus, the phasor voltage can be calculated by PMU's 

node and therefore positive feedback is given to the linear state estimation.  

In addition, it is not possible to install PMU at each node for realistic power transmission systems 

[5]-[7]. This demands a communication system and fiber optics at each substation for sending the 

information to phasor concentrator center (PDC) to run the state estimator tools [2]. Hence, it is 

difficult enough for full entry of PMUs at a desired amount in Smart Grids [5]-[7].  

Meaning desired amount, each network bus must be equipped with a PMU for monitoring its 

voltage phasor and the currents originating from that bus. Therefore, the minimization of that 

equipment still remains an adequate process [5]. In the optimal PMU localization problem, design 

variables are getting involved by choosing a number of a candidate decision's investment to solve it.  

This optimization model is declared in a integer linear program with binary decision 

variables [9]. In this application, decision variables are defined to be zero-one values, that is, 

 [8]-[16]. With this formulation, the ℎ decision is accepted or refused [9], [15].  

Hence, the optimal PMU localization problem is based on a binary logic interpreted as 

decision [9]. The binary integer program consists of a linear cost function under a number 

of inequality constraints which are characterized as [9], [15].  

This term is used for these constraints due to the logical nature of them [9]. Initially, an integer 

linear programming framework with binary decision variables is defined for the optimal PMU 

implementation in Smart Grids. The objective function is minimized subject to a topological 

observability function over the entire number of power network buses [17]-[22]. The Boolean 

constraint integer program is stated in Esq. (3)-(5) as [17]-[22]: 

 

 

                                                                    (3)

                                                                                                                                  

Where is a binary decision variable vector, whose elements are as [17]-[23]:     

                                     (4) 

iw  is the cost of the PMU installed at the bus i , and 1̂  is a vector whose 

entries are all ones. Initially we define , meaning that all PMUs have the same place in 

order of arrangement [17]. Based on topological analysis, the binary connectivity matrix is built based 

on logic theory and the corresponding operators. The elements of the binary connectivity matrix of the 

power system is defined as follows [17]: 

 

                                                           
      or 

                                                      (5) 
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The binary connectivity matrix is based on the topology structure of a power transmission grid. The 

data are taken from the MATPOWER package running in MATLAB environment [61].  

 

A. An Aggregated Revisited Formulation for Optimal PMU Model 
A multi-criteria decision maker problem is studied in this paper. The study of the multi-objective 

criteria decision maker model is a methodical procedure which involves uncertainties related to 

decision for solving making problems [9].  

Multi-objective mathematical programming is a procedure used to solve the optimum PMU 

localization problem, giving trade-off globally optimal solutions. A multi-objective optimization 

problem involves two competing targets, that is, the perfecting in one objective may lead to decline in 

quality in another objective [8].  

We develop an optimization model that integrates all the mathematics parameters defined in the 

objective to optimize it based on the tuning optimizer function’s parameters [15]. Hence, the optimal 

solution is to hold up the decision maker for the optimal PMU localization problem [15]-[16].  

Optimal PMU localization problem is based on two types of cost standards being optimized for the 

optimal outcome: Ι) to minimize the PMU cost arrangement ΙΙ) to maximize the times by which a 

network bus is observed by a selected PMUs number optimal around the power network either directly 

or indirectly. In the constraint optimization model, we have two competitive objectives, minimizing 

the cost of PMUs arrangement output, and maximizing the maximum amount of the redundancy of the 

measurements. To declare the optimal PMU localization problem to suffice two targets (I) to minimize 

the objective function value, (II) to reach an optimal solution with maximum observability indicator.  

The main issue for a cost function in binary domain variables is to calculate the global minimum 

point and in a second stage to determine if or not an optimal solution covers two competitive trends in 

the augmented objective function. A multi-cost function is stated as follows Esq. (6)-(7) [48]-[51]: 

 

                                                                       (6) 

Where Ω is the feasible region constituded by the constraint function and the restriction on the 

declaration of the decision variable of the objective function [25]. The vector of the cost function is 

declared using the Esq. (7) [8]-[16], [24]-[25], [48]-[51]:                  

                                                                                                                 (7)  

Τhe multi-objective problem involves more than one cost function that must be minimized or 

maximized. The goal is to derive a solution which is the best trade-off solution between competitive 

trends including in the objective function [8]-[16]. A global B&B algorithm optimizes the two-product 

cost function, to detect those optimal solutions satisfying the optimality metrics [14]-[16]. The final 

output is a PMU numbers put in appropriate places around the power network [17]-[23].  

 

B. Scalarization Methodology for Multi-Objective Optimization 
A two-production objective function is converted into a single-objective function by specifying a 

predefined weight factor per decision variable in the objective. A simple way to solve the multi-

objective function  is to scalarize this process and to return a linear combination of these terms  
whereas the binary restriction holds on the design variable.  

Hence, the classical process to solve bi-objective integer programs is to adopt the scalarization by 

which the problem is stated into a single-cost function [51]. 

The main target is to minimize the PMU in numbers to provide fully observable conditions whereas 

the second one performs differently in a manner that prevents agreement with the main objective term 

in minimization [18], [23], [44]-[45].  

This function relies on two targets, that is, to attain full condition of observability whereas a PMU 

set solution with maximum measurement indicator is delivered by properly optimizing the objective. 
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The two-cost constraint optimization problem is converted into an optimization problem consisting 

of a single-cost function being optimized under topological observability and certain restrictions on 

the arrangement variables [14]-[16]. 

 For a multivariate objective function declared binary-valued, the branch-and-bound algorithm can 

determine if or not a global minimum point by the simulation run. The resulting optimal vector 

satisfies the observability constraint either in linear inequality or polynomial equality functions.   

We transform this two-criterion objective function into a summation in which each weight factor 

reflects a placement variable which varies linearly for the purpose of getting the optimality. In the 

resulting scalarizing cost-function, a weight factor is assigned for each objective function [48]-[53].   

To calculate the best measurement outcome, we declare the relative product with a negative sign as 

we desire to maximize it with the purpose of getting trade-off optimal solutions. Hence, an assessment 

mathematical model is determined as the constitution of two optimality criteria in the objective 

function. The integer linear program with binary bounds is formulated using the Esq. (8)-(10): 

 

                                                                                                   (8) 

                                                                                                                                          (9) 

                                                                                                                                      (10) 

The aggregate cost function consists of a linear combination of two objective functions, one 

reflects to minimize the minimization of synchrophasor devices. The second product is desired to be in 

the objective to maximize the time by which a power network bus is observed within a topological 

observability constraint being applied [21].  

Therefore, the second product is declared with a negative sign in order for the whole objective to be 

possible in minimization [8]-[16]. The extra product signifies that each power system node can be 

monitored by a PMU installed at that node and its incident buses.  

The product  is classified by the sum of power system nodes so that the cost functions to be 

minimized with appropriate weights to each placement variable. Each placement variable has a weight 

factor analogous to its power system's connectivity node priority.  

The size of the objective depends on the dimension of the power system [8]-[16], [24]-[25]. Hence, 

we multiply the objective with an augmented weight parameter which reflects an appropriate PMUs 

number to ensure topological observability with a maximum number of times by which each power 

network is monitored either directly or indirectly [18], [44]-[45].  

Minimizing one cost function probably leads to maximizing the amount of times by which a power 

network bus is observed [31]; hence, it is not always possible to deliver one optimum point satisfying 

all competitive objective terms in unison [14]-[16], [49]-[51]. Thus, this scalar function is optimized 

giving trade-off optimal solutions presenting well performance to the maximum observability solution 

of the optimal localization problem of PMUs in a Smart Grid [18], [23], [35], [41]-[42], [44]-[45].  

 

C. 0-1 Polynomial Optimization Problem 
Non-convex nonlinear models are intellectually demanding tasks in solving them because they have 

inside objectives and constraints in a non-convex format [8], [24]-[25]. The solution of the general 

non-convex nonlinear problems is an intellectually demanding issue because such problems have an 

objective function subject to a constraint function, both of them in a non-convex format [24]-[25], 

[56]-[58]. Similar problems with integer decision variables have the same importance even though 

these variables are relaxed to be continuous to solve it [8]-[15].  

A characteristic of nonlinear programming models is that the solution algorithms are getting 

trapped in a local minimum point due to the non-convexities of the models [8], [24]-[25]. This can be 

overcome by using clustering methods [8]-[15].  

Although there is no strictly mathematical definition, only empirical rules and stochastic processes 

can be adopted to detect a global optimum point with high probability [44]. Based on this remark, past 

studies presented the optimal PMU localization problem as a nonlinear program with continuous 
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decision variables [27]-[31]. The problem is locally solved and is able to return a globally solution 

with clustering methods [44].  

Such problems are stated to have investments that enforce an arrangement variable to be 

meaning that a PMU is installed at a network node or not [15]. This paper follows these studies 

and declares a polynomial model with binary variables and solves it with appropriate global integer 

programming solver in the direction of global optimality [70]. This can be achieved by the constraint 

 integer linear program which is the leading one for transforming into an equivalent polynomial 

constraint model for achieving a global optimum point for both optimization models.  

An intellectually demanding task is to declare polynomial equality constraints as well as an 

inequality constraint function, an optimization problem arising in combinatorial optimization [8]-[16].  

The optimal PMU localization problem is proposed as a discrete process in optimization where the 

decision variables are declared in a binary symbolic format. Its minimum solution point satisfies a set 

of polynomial equality constraints. Such optimization problems are imposed with  

decision in the declaration of the design variables [8]-[16].  The aim is to properly handle and finally 

solve this kind of problem to identify optimal solutions using decisions [15].  

Therefore, the target is to minimize a linear cost function subject to a polynomial constraint 

function whereas the binary restriction is satisfied [14]-[16]. Constraint optimization is declared in a 

binary polynomial model and it is a widespread formulation that permits us to state the optimal PMU 

placement in optimization.  

The deployment of enforcing  decision variables in the YALMIP symbolic syntax is a key 

characteristic which makes a distinction between the proposed algorithmic optimization scheme from 

previous nonlinear PMU arrangement approaches. A Boolean (binary) process is used to revisit the 

constraint integer program by keeping in force polynomial transformations in all inequality 

constraints of the ILP problem [8]-[16], [27]-[31].   

Hence, this proposal declares the decision variables as binary to handle nonlinear equations to 

discover global optimality for solving this combinatorial optimization problem. The outcome is a high-

quality global quantity solution. The binary Boolean polynomial program is declared as Esq. (9)-(11). 

The optimum agreement of a PMU optimally installed at a power bus can be written as Esq. (11)-(13): 

 

                                                 (11) 

                                                                                                                             (12) 

 

Where ℎ element determines a polynomial observability constraint for the ℎ bus [27]-[31], [44]: 

 

          (13) 

 

An auxiliary binary-valued variable is an extra term incorporated into the polynomial model to 

reflect yes or no decision investment [8]-[9]. Hence, such variables are binary adding to our proposed 

model with the aim to declare it as a pure Boolean optimization model [15].  

Those auxiliary binary decision variables are stated in the declaration of the nonlinear problem and 

help a lot to find a solution [69]-[70]. Τhe utilization of auxiliary binary variables is to transform a 

nonlinear problem with continuous variables into an equivalent binary polynomial problem. Also, the 

utilization of auxiliary binary variables helps a lot to keep the binary (Boolean) tree as small as 

possible in size [53]-[58]. Hence, a global optimal outcome is achieved as soon as possible [14]. 

 

D. An Aggregated Revisited Formulation for Optimal PMU Model 
The aim of optimizing PMUs in number needed for power network monitoring is to figure out a vector 

of decision variables reflecting the least objective function satisfying indisputably a constraint 

function. Hence, the authors consider some criteria raised in competitive trends, such as minimize in 

parallel with maximize in an objective function with two products [15]. The resulting model permits 

us to figure out a trade-off optimal solution in a globally framework using the appropriate optimizer 
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routine to succeed this purpose. Solving the twofold binary Boolean polynomial problem means that 

two distinct cost term must be satisfied in unison: (I) to achieve an optimal solution which maintain 

the topological observability and (ΙΙ) to reach those optimal solution.  

In this mathematical model, we declare two competitive objectives, minimizing the PMU cost 

installation at power network buses, and maximizing the measurement indicator [18]. Such 

optimization problems include a two-product objective function being optimized with a wrapped 

optimization package of two optimization solvers of computing the global optimality [62], [66]-[70].  

To implement the two-criterion constraint optimization formulation, we transform it into a single-

cost function to reach optimality [48]-[51]. We can define a linear cost function consisting of 

polynomial equality constraints defined on  related to the declaration of the decision variables' 

nature as Esq. (14)-(15). This objective is composed of the functioning costs of selected PMU at a 

power network or not and an extra term resulting from maximum level of the summation of times by 

which each network node is monitored either directly or indirectly Esq. (14)-(15) [17]. 

 

                                                                                              (14)                          

                                                                (15) 

 

To get a consideration to the first one term, the second one is declared to ensure that the maximum 

number being observed each network bus will be accomplished in unison. Of course, for minimization 

purposes, the maximization term is involved with a negative sign in the single-cost function [44]-[45].  

Based on the above mentioned, in a second stage the one objective function term is expanded to 

include a product term related to the number of times which a network bus is monitored by a PMU 

installed at that bus or in a neighborhood bus. The b-objective function is optimized under the certain 

polynomial constraint function within a binary decision restriction [48]-[52].  

Using a YALMIP global branch & bound algorithm, the polynomial problem is well optimized in 

the direction of getting the best optimal solution; a global one at a single run. The optimal solution is 

attained by spending a small number of nodes where the LP relaxations are solved and the branching 

process be done towards an solution with an optimality criteria [8]-[16], [24]-[25].  

The optimal solution satisfies the competitive trends involved in the objective function 

concurrently. Thus, the optimization model's performance is proven in practice, that is, being able to 

attain a global solution for the optimal PMU arrangement problem and giving a globally optimal 

solution having the maximum value of observability information redundancy in the second stage [23].  

 

11.  Solving a Boolean Polynomial Problem 
In general scope, a nonlinear algorithm such as sequential quadratic programming and interior-point 

methods used for such nonlinear programming explore the search space seeking out locally optimal 

solutions [27]-[30]. These mathematical algorithms detect local optimal solutions which result to be 

characterized as global solutions [8], [24]-[25]. On that occasion, the aim of detecting the true global 

optimal solution is satisfied using multi-start methodologies with high probability [8], [44].  

To overcome this uncertainty, the non-convex optimization problem is declared as a linear cost 

function that is minimized consisting of a number polynomial equality constraints over decision 

variables declared in a binary format in the YALMIP platform [59].  

The initial model is transformed into a polyhedral approximation being solved by B&B process 

using a built-in solver in the YALMIP and technology advanced ILP and NLP solvers. Developing the 

B&B tree, the solvers reach the incumbent solution which is the best feasible solution up until now to 

prune some areas which don't include any optimum point [70].  

The model is solved globally within specific tolerance gaps which ensure the optimal solution [8]-

[16]. The iterative process ends up with the best possible solution derived with a powerful integer 

routine in combination with a local nonlinear algorithm. The polynomial integer program involves 

products of binary variables declared in a YALMIP syntax command with MATLAB language [59].  
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The proposed mathematical PMU positioning algorithm turns out well in delivering the global best 

possible solution related to the best-known PMU number published so far in bibliography [5]-[7].  

This best possible PMUs number is put in place around the power grid for suitable power 

monitoring and state estimation and power control applications [1]-[3], [5]-[7]. To fill the above-

mentioned deciding factors, it is adequate to define an objective function that reflects the minimization 

of sensors capable of synchronization of phasor measurements augmented by a factor related to the 

maximization of the level of power network observability [18], [23], [44]-[45].  

The principal aim is to accomplish the minimization of PMUs and put in suited locations with a 

purpose to satisfy the state estimation process that ensures the topologically observability [5]-[7]. To 

accomplish as large as possible the power network computation of times that a bus is being monitored 

by synchronized measurements, an extra term was added following studies in [44]-[45].  

An easy preferred method is followed to attack the two-criterion objective constraint model with a 

B&B process. We reformulate the cost function with an augmented product multiplying the decision 

variable. In this mathematical model, two terms involved in the objective function perform 

competitively towards optimality. This mathematical model is stated in a NLP framework [58].  

The proposed polynomial programming model is executed in the YALMIP program whereas 

each decision variable is given in a binary symbolic format [59]. The aim of this paper is to illustrate 

that the proposed programming model is effectively solved unambiguously using the YALMIP library 

in conjunction with MATLAB optimization solvers [59], [62]-[63], [69]-[70].   

It aims at minimizing the PMU numbers needed to cover the power system monitoring, and 

maximizing the amount of times where a network bus is monitored directly or indirectly by a PMU 

installed at a bus around the power transmission network [18]-[19], [38]-[45]. The ΥALMIP’s bmibnb 

optimizer function is utilized to solve the suggested binary polynomial model [70].  

This can be considered as a novel creation because such programming models don't always ensure 

global optimal solutions [27]-[31], [44]-[45].  The optimization systematic actions are adequate to 

accomplish the global solution with accurate standard optimality measures. The global solution is 

interpreted in the exact PMUs number put in suitable sites around the power grid.  

 

12.  Detecting of Global Minima Points for the Optimal PMU placement Problem 
We utilize branch-and-bound algorithms, widely used in mixed-integer programming solving in a 

binary polynomial model. A global process optimization is utilized to detect the global minimum point 

related to this model. The solution is based on the calculation of the upper and lower bounds of the 

objective function during the construction of the b&b tree [70].  

Hence, an integer linear programming solver is essential for counting the convex relaxations and a 

nonlinear solver to solve the problem based on locality [56].  For illustration and validation purposes, 

we use IEEE-bus systems to simulate the binary (Boolean) optimization model for both case studies 

[61], [71]. In the first phase, we minimize an objective function with one-term to learn about the 

precise number of synchronized measuring devices to be optimally placed around the power grid.  

In the second one, we optimize the augmented function for full condition of observability and 

maximum number of times being observed on each network bus. The initial non-convex program is 

transformed into a polyhedron which is solved by using an appropriate B&B algorithm [69]-[70].  

Two optimizer functions are performed in conjunction for calculating the upper and lower bounds 

in the B&B process' calculations. A B&B tree is constructed whereas upper and lower bounds are 

produced by appropriate local and global solvers embedded in a global nonlinear integer programming 

routine.The iterative process calculates the variation between these bounds so as to establish the 

lowest cost value at the tree node in the direction of global solution achievement [69]-[70].  

 

a) Full Condition of Observability Scenario 
The objective function in those problems is most frequently a multi-modal cost-function having a 

considerable amount of local optimal points [9], [15]. Hence, the proposed problem is solved by an 

appropriate algorithmic scheme avoiding being trapped into the same local solution point. The local 

optimizer routines FMINCON and IPOPT cannot guarantee to detect a global solution for a non-
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convex programming problem. Hence, we utilize a reformulation strategy in the specific non-convex 

(MI) NLP problem. To achieve a global solution, computations must be done in the MATLAB 

environment using suitable YALMIP toolbox's commands [59], [62], [69]-[70].  

                   

b) Studying the OPP by Reformulating in Non-Convex (MI) NLP Model 
Reformulation permits us to convert the polynomial problem into a formulation that is easier and more 

straightforward to be solved by the proposed BMIBNB solver [70]. This is approached by a 

polyhedron which accomplishes the solution by linearizing the constraints and relaxing the binary 

decision variables [8]-[16]. Hence, the initial model is more easily solved in a global solution. 

 Considering that we have already programmed the MATLAB code, we run the BMIBNB branch-

and-bound global optimizer function included in the YALMIP toolbox, wrapped with a nonlinear local 

optimizer function. This function is an upper solver used to implement and solve sub-problems within 

the global ILP function. FMINCON or IPOPT being available in the MATLAB optimization library 

and OPTI toolbox respectively can be used for that purpose.Technology advanced ILP solvers are 

used to solve linear programs and lower solvers [62]-[70].  

BMIBNB uses linear relaxations to solve the proposed multivariate binary polynomial model. The 

optimizer function relies on a s-BBA and adopts a convex envelope act of estimating, that is, 

approximations to manipulate the nonconvexities [62]-[70]. The relaxation problems are solved using 

an LP solver that is relatively connected with the nature of the problem [70].  

The upper bounds of the B&B tree are detected using a local nonlinear solver such as FMINCON 

included in MATLAB optimization library [62] or IPOPT included in OPTI-toolbox [66]. The upper 

and lower bounds can be found by using the NLP and ILP solvers as [59]: 

 

                                     (16) to interface the local NLP solver 

                                     (17) to invoke the ILP solver 

                                            (18) to invoke an LP solver to tighten the bounds 

towards a feasible solution 

 

BMIBNB adopts additional cuts to tighten the relaxations, and the involved time required in the 

lower bound optimizer routines [70]. In the iterative process, whenever BMIBNB comes across a zero-

gap with cuts also made by non-convex constraint, it means that the global solution is detected [70].  

An optimization is performed with efficiency because it is based on a Bound Tightening solving 

linear programming relaxations [8]. During the implementation of the B&B tree, propagation 

procedures are taken into consideration in a way to achieve a fast approximation in using the Bound  

Tightening process helps a lot with the whole given strength for convex relaxations being solved as 

well as to decrease the variable domain [63]-[65]. This is a crucial parameter because the enumerative 

search is carried out on the variable domain [8]-[16]. The optimization library solves the problem with 

the built-in solver bmibnb interfacing obtainable routines as local and global solvers to reach a 

globally optimal solution within a zero-gap and an acceptable relative-gap tolerances [8]-[16].  

The global solution is attained through the B&B optimization process where the upper and lower 

bounds are computed giving a zero-Gap within a predefined relative gap tolerance. Thus, it 

delivers with this manner one candidate solution which is the global one in reasonably elapsed time.  

The FMINCON routine is stated as the Upper Solver [62] whereas an ILP solver is utilized as 

Lower Solver as well as an LP Solver to get an optimum point [62], [66]-[67]. Therefore, the B&B 

process starts to build the binary tree, developing the branching and exploring the nodes [14]-[16]. The 

principal physical thing in the optimizer routine is to solve the relaxation program [14]-[16].  

This one is produced when bounds are obtainable at a given root-node so that the entire framework 

is constructed by using outer convex envelope approximation approaches [8]-[16], [59], [63], [69]-

[70]. The LP relaxations are suitably solved by the LP solver in the direction of optimality. Early 

heuristic tool is calculated during all of the process in optimization solving to reach the first incumbent 

solution which is also a feasible one to satisfy the constraint function [47], [64].  
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The main concept of using dividing heuristics is to incorporate in the B&B tree in getting 

optimality in a better and fast computational way [54]. They are used to round some fractional variable 

iteration and thus to revisit the linear approximation problems, succeeding a depth-first-search in the 

B&B tree [8]-[16]. In this case, dividing heuristics adopt a specific branching regulation which helps a 

lot to find out a first feasible solution. Thus, heuristic calculations perform helpfully to reach the 

optimal solution in a fast way [54]. This heuristic implementation is calculated at the given root-node 

of the B&B tree for necessary achievement for the purpose of getting the true optimality [70].  

Therefore, getting an adequate feasible solution at an early stage throughout the iterative process is 

not only practically advantageous, but likewise assists to go faster the process optimization.  A 

globally optimal solution is met satisfying optimality and feasibility performing in unison.The binary 

tree terminates its development when a feasible and best possible solution is noticed while some areas 

are pruned to eliminate infeasibility metrics [8]-[16], [59], [63], [69]-[70].   

The main element to implement the proposed optimization model in the YALMIP is to state the 

design variables using the command  with the following syntax. The binary nature of it is clear 

using a symbolic syntax in the YALMIP platform as [59], [69]-[70]. 

 

                                                                                                                 (19) 

 

Hence, a linear matrix variable with size analogous to the optimization model's dimensions is 

declared. Therefore, all manner of things can be done related to the binary nature of the optimization 

model. Once the decision variable is declared in a binary framework, we define the constraints of the 

proposed programming model using an appropriate syntax fully compatible with the YALMIP 

platform.  We invoke the YALMIP branch-and-bound algorithm with the command [68]-[70]: 

 

                                                                                  (20) 
                                                                                      (21)   

 

We optimize the binary (Boolean) optimization model using the YALMIP routine [59], [68]-[70]: 

                                                                                          (22) 

c) Studying the Benchmark IEEE-14 bus System 
We indicate the value of transformation of the initial model into a polyhedral approximation being 

solved by a B&B tree. The  IEEE 14-bus system is used as the first test system to simulate our 

proposal in YALMIP/MATLAB [61], [71]. Starting with the YALMIP branch-and-bound algorithm, 

we present an optimum point within an absolute zero-gap tolerance preserving a certificate of global 

optimality [8]-[16]. We use the IEEE-14 bus system as a first  benchmark system to prove our 

algorithmic scheme’s accuracy. The solution is displayed in the log file shown in the Table 1. 

FMINCON or IPOPT, both included in commercial or free optimization libraries, are used to 

produce the Upper bounds [62], [66]-[67]. The nonlinear solver gives the Upper bound to find the first 

integral solution [70]. On the other hand, the Lower bound is produced by a target integer 

programming solver. A linear programming solver is used to relax and tight the boundaries [8]-[16].   

Meanwhile solving the linear approximation problems by the integer program solver, the Lower 

bound is produced with sufficient precision [62], [66]-[67], [70].  

Starting with a global B&B algorithm, the YALMIP program identifies the equality constraints, some 

of them as polynomial and some as bilinear as shown in log files produced by the routine. The 

algorithmic strategy uses improved solutions found by heuristics calculations during the iterative 

process to come across a proper solution of the underlying NLP model [8]-[15].  

Also, a linear relaxation is implemented to illustrate that this heuristic approach delivers global-

optimal solutions in a reasonable timetable. Enforcing relaxations of the polynomial and bilinear 

constraints and binary decision restrictions lead to global optimality despite the non-convexity nature 
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of the optimization model [70]. Powerful optimizer routines help the attempt spent on propagation 

getting a decision to the optimizer construction itself [14]-[16].  

Afterward, the YALMIP BBA solver constructs the binary tree, explores the feasible set, prunes 

infeasibilities, uses heuristic calculations and delivers a solution. The lower bound is calculated by an 

ILP optimizer function whereas the upper bound is computed by FMINCON optimizer routine or 

IPOPT optimizer function behaving well as a local solver in the entire optimization [62].  

The performance of optimizing the objective with one criterion is illustrated in Table 1 where the 

FMINCON routine is used as an upper solver whereas the SCIP solver is invoked as the lower solver 

[63]-[65]. The branching process ensures a globally optimal solution, since the lower bound can be 

valid to close the absolute gap  [70].   

 

Table 1. Optimization Process: Results of bmibnb routine 
 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

|    ID|                             Constraint|   Coefficient range| 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

|    #1|   Equality constraint (polynomial) 1x1|               1 to 1| 

|    #2|   Equality constraint (polynomial) 1x1|               1 to 1| 

|    #3|   Equality constraint (polynomial) 1x1|               1 to 1| 

|    #4|   Equality constraint (polynomial) 1x1|               1 to 1| 

|    #5|   Equality constraint (polynomial) 1x1|               1 to 1| 

|    #6|   Equality constraint (polynomial) 1x1|               1 to 1| 

|    #7|   Equality constraint (polynomial) 1x1|               1 to 1| 

|    #8|     Equality constraint (bilinear)     1x1|               1 to 1| 

|    #9|   Equality constraint (polynomial) 1x1|               1 to 1| 

|   #10|   Equality constraint (polynomial) 1x1|              1 to 1| 

|   #11|   Equality constraint (polynomial) 1x1|              1 to 1| 

|   #12|   Equality constraint (polynomial) 1x1|              1 to 1| 

|   #13|   Equality constraint (polynomial) 1x1|              1 to 1| 

|   #14|   Equality constraint (polynomial) 1x1|              1 to 1| 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

* Starting YALMIP global branch & bound. 

* Upper solver: ipopt 

* Lower solver: SCIP 

* LP solver: SCIP 

* -Extracting bounds from model 

* -Performing root-node bound propagation 

* -Calling upper solver  

****************************************************************************** 

This program contains Ipopt, a library for large-scale nonlinear optimization. 

 Ipopt is released as open-source code under the Eclipse Public License (EPL). 

         For more information visit http://projects.coin-or.org/Ipopt 

****************************************************************************** 

 (No solution found) 

* -Branch-variables: 14 

* -More root-node bound-propagation 

* -Performing LP-based bound-propagation  

* -And some more root-node bound-propagation 

* Starting the b&b process 

 Node       Upper         Gap (%)   Lower         Open   Time 

    1:   4.00000E+00     0.00      4.00000E+00    2     1s Solution found by heuristics   
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Table 1. Optimization Process: Results of bmibnb routine (continued) 
 

* Finished.  Cost: 4 (lower bound: 4, relative gap 2e-09%) 

* Termination with relative gap satisfied  

* Timing: 13% spent in upper solver (2 problems solved) 

*                7% spent in lower solver (1 problems solved) 

*                54% spent in LP-based domain reduction (28 problems solved) 

*                1% spent in upper heuristics (1 candidates tried) 

Elapsed time is 2.525123 seconds. 

 

ans = 

 

     0     1     0     0     0     1     0     1     1     0     0     0     0     0 

 
ans = 

 

     2     6     8     9 

 

Linear scalar (real, binary, 14 variables) 

Current value: 4 

Coefficients range: 1 to 1 

 

SORI = 

 

    17 

 

It is essential to detect an upper and a lower bound in this case, We can detect the upper bound 

using any local optimizer solver [60], [62]. On the other side, the lower bound is obtained through a 

convex relaxation or duality. The convex relaxations are solved through calling an external integer 

linear programming solver [60], [62], [66]-[67]. With this manner, the YALMIP BBA detects the 

global optimum point in reasonable computational time [70]. 

Numerical problems are calculated by the lower solver and upper solver using also a reasonable 

number of heuristic calculations as the simulation run illustrated in the final output [64]-[70].  

YALMIP BBA solver terminates if the difference between the internally computed  and 

 bounds on the objective function is less than or equal to Absolute Gap Tolerance. The 

absolute gap is defined as [15]-[16], [70]: 

 

                                                                                                             (23) 

 

Where  is the default tuning parameter to return with an optimal solution under warrancy [9]. The 

relative gap is defined as follows [15]-[16], [70]: 

 

                                                                        (24) 

 

The algorithm terminates with a certificate producing ε-suboptimality [8]. The optimizer routine 

constantly considers the upper and lower bound on the objective function, the difference between 

those levels. A gap is calculated and validates the entire optimization process  [8]-[16].  

As presented by the log file, the lower bound closed the gap ensuring a globally optimality of 

certificate [14]. Although we declare the relative gap tolerance as a decimal number, the log file 

produced by the routine displays the gap as a percentage [15]-[16], [70].  
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That means the relative gap tolerance value is 100 times the calculated relative gap. The solution is 

an optimum point at the given root-node. The optimum point is met within  a zero-gap tolerance and a

meaningless relative gap. This solution is not suffering by floating points [15]-[16].  

The log file gives as an ouput a pure binary solution. By solving the minimization problem, we 

consider the upper bound as the optimum point whereas the lower bound is the culprit to close the gap 

[70]. That optimal solution is strongly characterized as a global one. The optimal result is 

satisfying the one criterion objective function and it is shown in Fig.1.  

Figure 1. Optimal PMU Arrangement Achieved by bmibnb Optimizer Routine 

d) Full Observability and Maximum Amount of Observability 
The first instance declares an objective model with one criterion, that is, the determination of an 

investment responsible to install a PMU at a power grid or not to cover the full scenario                          

of observability. In the second instance one must choose those solutions by minimizing the b-objective 

function, getting solutions to suffice the competitive trends in the defined objectives [51].  

In this paragraph, we show how the augmented function is optimized and two criterions are 

satisfied at the same time giving a global optimality certificate. A binary (Boolean) model is optimized 

to be written in symbolic format in the YALMIP program [59], [68]-[70]. We attack this two-criterion 

constraint optimization problem using a linear combination of the two product terms [15].  

We use a negative sign related to the maximization inside the objective function as we desire to 

maximize this product. Therefore, the aim is to guarantee that the outcome product being derived by 

the optimization fulfilled those solutions satisfying the aggregate objective [44]-[45].  

Our aim of this study was to resolve the optimal PMU localization problem using optimization 

models with small up to large dimension size [61], [71]. For validation purposes, we use the IPOPT as

an alternative local solver to count the upper bound whereas the B&B tree is developed in the 

direction of getting a first incumbent feasible solution which is the best integral solution [66].  

This NLP routine is included in OPTI-toolbox which contains a number of open-source codes such 

as SCIP, lpsolve, GLPK optimizer routines [66]. As a benchmark system to test the multi-objective 

function, the 14 bus system is used [61], [71]. The optimization process is illustrated in Table 2. 
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Table 2. Optimization Process: Results of bmibnb routine  
 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

|    ID|                             Constraint|   Coefficient range| 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

|    #1|   Equality constraint (polynomial)  1x1|               1 to 1| 

|    #2|   Equality constraint (polynomial)  1x1|               1 to 1| 

|    #3|   Equality constraint (polynomial)  1x1|               1 to 1| 

|    #4|   Equality constraint (polynomial)  1x1|               1 to 1| 

|    #5|   Equality constraint (polynomial)  1x1|               1 to 1| 

|    #6|   Equality constraint (polynomial)  1x1|               1 to 1| 

|    #7|   Equality constraint (polynomial)  1x1|               1 to 1| 

|    #8|     Equality constraint (bilinear) 1x1     |               1 to 1| 

|    #9|   Equality constraint (polynomial)  1x1|               1 to 1| 

|   #10|   Equality constraint (polynomial) 1x1|               1 to 1| 

|   #11|   Equality constraint (polynomial) 1x1|               1 to 1| 

|   #12|   Equality constraint (polynomial) 1x1|               1 to 1| 

|   #13|   Equality constraint (polynomial) 1x1|               1 to 1| 

|   #14|   Equality constraint (polynomial) 1x1|               1 to 1| 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

* Starting YALMIP global branch & bound. 

* Upper solver: ipopt 

* Lower solver: SCIP 

* LP solver: SCIP 

* -Extracting bounds from model 

* -Performing root-node bound propagation 

* -Calling upper solver 

****************************************************************************** 

This program contains Ipopt, a library for large-scale nonlinear optimization. 

Ipopt is released as open-source code under the Eclipse Public License (EPL). 

For more information visit http://projects.coin-or.org/Ipopt 

****************************************************************************** 

(no solution found) 

* -Branch-variables: 14 

* -More root-node bound-propagation 

* -Performing LP-based bound-propagation 

* -And some more root-node bound-propagation 

* Starting the b&b process 

Node       Upper       Gap (%)   Lower       Open           Time 

1:   2.64286E+00     0.00     2.64286E+00    2     1s Solution found by heuristics 

* Finished.  Cost: 2.6429 (lower bound: 2.6429, relative gap 2.7451e-09%) 

* Termination with relative gap satisfied 

* Timing: 13% spent in upper solver (2 problems solved) 

*               7% spent in lower solver (1 problems solved) 

*               56% spent in LP-based domain reduction (28 problems solved) 

*               1% spent in upper heuristics (1 candidates tried) 

Elapsed time is 2.563467 seconds. 

 

ans = 

 

0     1     0     0     0     1     1     0     1     0     0     0     0     0 
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Table 2. Optimization Process: Results of bmibnb routine (continued) 
 

 
ans = 

 
2     6     7     9 

 

Linear scalar (real, binary, 14 variables) 

Current value: 2.6429 

Coefficients range: 0.57143 to 0.85714 

 

SORI = 

 

19 

 

Also, SCIP is used as an LP solver to solve  the linear approximations problems at a given B&B 

tree root-node [66]. As observed, the local ipopt solver is used as an Upper Solver and detects a 

feasible and a local solution at the same time [70]. This fact results in an upper bound on the 

obtainable function value [70]. Then a convex approximation is solved. On an occasion that the lower 

bound is larger than the upper bound achieved so far, this node is pruned [14].  

The aim is to tighten the bounds during the branching development so that the relaxation problems 

can be efficiently solved by spending an amount of nodes in the binary tree [70]. The relative gap 

between the upper and lower bound is calculated, which presents the most frequent process 

measurement quantity for the b&b tree.  

The difference between those bounds is the optimality gap [8]-[16]. At this root-node, the upper 

and lower bounds are found to be equal in quantity. The upper bound of the cost function is considered 

the best possible solution found at the given root-node.  

On the other side, the calculation of the lower bound is crucial to minimize the absolute gap giving 

a global certificate of optimilaty [70]. Therefore, we measure the absolute  where a 

percentage relative gap is meaningless [70].  

Τhis optimum solution is the global one. This one is attained at a root-node within an absolute Gap 

and a meaningless relative gap satisfied at one root-node [70]. Also, less runtime is spent 

due to the utilization of using heuristic calculations [68]-[70].  

Those calculations are required for the optimizer routine to detect the lowest objective function 

value. The resulting placement vector satisfies the two criteria involved in the objective. The global 

solution is illustrated in Fig.2. The optimal result  is the desired outcome to satisfy the 

topological observability and maximum amount of its [18], [23], [35], [38], [41]-[42], [44]-[45].  
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Figure 2. Optimal PMU Arrangement Achieved by bmibnb Optimizer Routine 

 
13. Modeling and Solving the Binary (Boolean) Optimization Problem 
Polynomial process optimization is to formulate a multivariate polynomial objective function 

consisting of a polynomial constraint function to be optimized under some restrictions of the decision 

variables. In this study, a linear multivariate cost function is optimized under a number of polynomial 

equality functions within a strict binary definition related to the nature of the decision variables.  

The target of global optimization is to discover the generally the most excellent solution, that is, for 

the frequent issue of minimization, to achieve those design variable values that minimize the cost 

function on a global solution. As a benchmark case study, we use the optimal PMU allocation problem 

which is a combinatorial problem in which all design variables are yes/no [9], [15].  

A straightforward binary-valued minimization-based problem is proposed to the PMU localization 

problem solving. Thus, a binary (Boolean) polynomial model comes into view to be a tailored globally 

optimal solution for such optimization problems [14]. The  NLP model chooses a target at the 

minimization of a linear objective function subject to polynomial is making use of an iterative process 

which results in optimality. The entire optimization model is implemented by two optimization solvers 

wrapped in a MATLAB optimization package [62] compatible within the YALMIP program [59].  

The optimization solvers are indexed in an upper solver which is a local nonlinear programming 

(NLP) solver and in a lower integer linear programming (ILP) solver [70]. Meanwhile, an LP 

optimizer function is used for a suitable branching the branch & bound tree towards optimality.  

The desired outcome is given with an zero absolute gap as well as a satisfied relative gap thus, the 

whole process results in a solution with a global certificate of optimality [59], [66]-[67], [69]-[70].  

 

14.  Strategy for Using the YALMIP Global branch-and-bound 
This study presents a global branch & bound algorithm, convex relaxations, a novel branching 

strategy, and upper and lower levels computed by NLP and ILP solvers respectively to reach an 

optimal solution [70]. Therefore, a novel branch-and-bound algorithm is presented based on an ILP 

solver performing jointly with an NLP solver in MATLAB  [59]-[60], [62]-[70].  

The built-in YALMIP solver interfaces an NLP solver with either FMINCON or IPOPT to count 

the upper bounds and a powerful ILP solver to count the lower bounds and solves the relaxed 

problems [70]. Those solvers measure the difference between those bounds and finally to deliver an 

optimal solution within a zero-gap optimality and an acceptable relative gap. The entire optimization 

process is summarized in the following steps [8]-[14], [56]-[58], [69]-[70]. 
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1. A methodology to compute the lower bounds. 

2. A methodology to compute the upper bounds. 

3. A branching strategy and exploring nodes. 

4. A termination to be done satisfying a zero-gap and a relative gap. 

 

Α considerable problem along the branching away procedure is to calculate the upper level 

problems using a local NLP optimizer routine. Ιn spatial branch-and-bound implementation tree, the 

NLP problem is solved by the FMINCON or IPOPT optimizer routines using the solution of the 

convexification at the upper bound of the B&B process tree [8]. Therefore, a local search is 

implemented to come across the first best integral optimal solution [8], [12]-[13], [24]-[25]. 

In  solver settings [70], an NLP optimizer routine such as [61] or  

embedded in OPTI-toolbox [66] runs at the explored nodes counting the upper bounds of the BBA’s 

process tree giving with this way the upper lever of the cost function value [59], [69]-[70].  

This upper bound must be calculated for comparison with a lower bound value which is computed 

by an ILP solver for the purpose of measuring the gap tolerance [59], [69]-[70]. The gap tolerance is 

the difference between these bounds and it is an indicator for the algorithm's termination [8]-[16].  

Until then, the global branch & bound algorithm prunes the area with infeasible solutions and 

finally is fulfilled with an optimal solution to be achieved [59], [69]-[70].   

This optimization procedure makes a comparison between the upper and lower bounds and results 

in an optimal solution spending a reasonable time involving calculation time. This time is divided into 

timing spent in upper solver's calculations and in lower solver's computations [69]-[70].  

The heuristics calculation strategy in MINLP solvers is adopted to solve mixed-integer linear 

nonlinear programming with a non-convex structure. Heuristics is a frequent parameter being 

considered for algorithmic computations to attain feasible solutions. These solutions are achieved with 

a good performance indicator spending a reasonable amount of time to the problem solving.  

These heuristic calculations are used for such non-convex nonlinear models with binary decisions, 

also using a NLP as well as ILP solvers in getting the optimality [59], [69]-[70]. The (MI) NLP solvers 

utilizes a MIP primal heuristic process in optimization by default [46], [63]-[66], [69]-[70].  

Using a heuristic approach within the MILP routine, the target is to search an LP feasible solution 

by solving the LP relaxation to come across a current feasible solution (best integral solution) at the 

root-node [16], [46], [63]-[66], [69]-[70]. The optimizer routine analyzes if the solution found so far 

satisfies the nonlinear constraints of the proposed model [15]-[16], [24]-[25], [64].  

In an opposite condition, a point is remarked as a reference for using heuristic calculations within 

the NLP based on a local search process in process optimization [14]-[16], [64]. Also, an amount of 

time is spent in an LP-domain reduction and a trivial elapsed time related to heuristics computations is 

spent for the purpose of getting the best possible solution [8]-[14]. The optimal solution is considered 

to be a global one when the absolute gap tolerance is found to be zero at the given root-node [14]-[16].  

 

15.  Modeling Binary (Boolean) Polynomial Problem with bmibnb Solver 
The process optimization in a decision maker problem consists of the explanation of the decision 

context, and declaration of the objective function [8]-[15]. The objective must be optimized under the 

constraint function and the characterization of the decision variable's nature involved in a decision 

maker statement. It is a context where decision making faces the optimization problem in which the 

optimal solution is given by at least two multiple choices [9].  

The optimization will resolve the optimal PMU arrangement encountered by the uncertainty of 

getting the global optimum point and make it true to come across it. Initially, the optimization model 

is stated as a single-cost constraint optimization model trying to solve it globally [16].  

Then, a two-term objective constraint optimization problem is declared to be optimized in a multi-

criteria process optimization and model solving [15]. As a result, the optimization technique is an 

agreement between two conflicting statements to come across optimality satisfying such confecting 

trends [15]. Those statements are ranked into a minimization product term of the objective and a 

maximization term getting involved in a scalarization function [8].  
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The minimization term reflects the least PMUs number whereas the maximization term concerns 

the upper limit measurement quantity of maximum observability required. Ιn this context, a global 

optimal solution is achieved in a reasonable quantity involving calculation time being performed 

proportional to the size of the optimization problem [8]-[16], [56]-[58].  

The aim is to make the entire procedure optimization a fully efficient model using optimization 

tools wrapped in the same optimization MATLAB software code [62]-[70]. The solver 

basically analyzes the linear cost function under a non-convex constraint function whereas the binary 

nature of decision variables is stated in symbolic format using a suitable syntax included in the 

YALMIP program. The sdpsettings function enables the interfacing of the built-in YALMIP solver for 

solving optimization problems [59], [69]-[70].  

The function sdpsettings is utilized to interface YALMIP's options with optimizer functions 

ranking between global ILP and nonlinear solvers [59], [69]-[70]. This function invokes suitable 

solvers and gives back a MATLAB output defining the minimization of the objective function towards 

a global optimal solution [59]. The upper bound is the solution within a 0.00% optimality [70]. 

Our model adopts technology advanced optimizer routines to come across optimality. Hence, and a 

methodology leading to a global optimal solution is well introduced in this study [62]-[70].  

For that reason, a nonlinear framework is adopted involving decision variables in a binary domain 

to accomplish the desired target which is to be solved globally relatively easy and in a reasonable time 

scale. Hence, this optimization model is considered to be a pioneer model for the optimal PMU 

localization problem as firstly defined in [17]-[23].  

As a consequence of that, a NLP model is programmed to be optimized by the built-in 

optimizer function  in the YALMIP program [59], [69]-[70]. BMIBNB relaxes the binary integrality as 

well as the non-convex constraint function giving a polyhedral approximation that is easier to be 

solved in the direction of global optimality than the initial model given in a binary polynomial 

optimization format [59], [69]-[70]. BMIBNB solves the polynomial problem to seek out first for a 

feasible solution to keep with this way the enumeration tree's dimension as small as possible [70].  

Then, the incumbent solution results in a global optimum at a given root-node [70]. The 

optimization solvers are indexed in an upper solver which is a local solver and in a lower integer linear 

programming (ILP) solver [8]-[15].  

Meanwhile, an LP solver is used for a suitable branching of YALMIP global branch & bound tree 

in getting optimality [70]. This case study is managed to confirm the ability to accomplish aim and the 

flexible nature of the optimized manner of working object [8]-[16], [59], [63], [69]-[70].  
The optimization model is optimized using the FMINCON as a local solver and a standard ILP 

solver such as SCIP optimizer tool to perform as a global solver to construct the B&B tree [14].  

Τhe FMINCON optimizer routine is used as an upper solver and as lower solver is preferred in a 

commercial package as the Gurobi [67] to achieve an optimal solution in a faster time.  

For that purpose, we consider the optimization options stated by the user. These options embedeed 

in the solver are the declaration of and interfacing 

external ILP solvers and a local NLP solver is used with the option  to count 

the upper bound [70]. The lower bounds are computed with and bound 

tightening is implemented by using a linear programming (LP) solver with the option such as 
 [58], [69]-[70].  

FMINCON calculates the upper bound and an ILP solver is utilized to count the lower bounds and 

solve the relaxed problems during the development of the B&B tree. As an ILP solver, Gurobi 

optimizer is selected to come across the lower bound with a satisfied relative gap [14]-[16].  

The process optimization is performed where the B&B tree is developed through branch-variable, 

branching, and an LP propagation methodology [8]-[16].  

We use the IEEE-30 bus network to show convergence towards a globally optimal solution either 

with one criterion or with two-criterion performing competitively regarding to the minimization of the 

objective function. The optimization model is executed in two stages as shown in Tables 3 and 5. 
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Tables 3-6 illustrate the performance of the optimization package including the two scenarios being 

optimized by the YALMIP b&b process. The placement result is shown in Tables 4 & 6. YALMIP 

global ILP solver detects a globally solution within a zero-gap tolerance as illustrated in Figures 3 & 4.  

We use the influence of IPOPT and Gurobi optimizer engines to detect globally optimal solutions 

spending a trivial amount of runtime [62], [67]. All solvers are executed with similar performance to 

deliver a globally optimal solution within a zero-gap tolerance spending an acceptable elapsed time.  

The optimization problem is solved at one given root-node as illustrated in relative tables. The 

process optimization is illustrated in Table 3. The best possible sites are shown in Table 4 and Fig.3. 

The B&B algorithmic process is terminated when the solution point is delivered within a 

percentage Gap  and a meaningless relative gap. Therefore, an explicit optimal solution is 

achieved by starting a YALMIP global branch & bound routine [69]-[70].  

The determination of the global optimum point is the desired goal, and for the specific optimization 

problem, a solution is finally detected during the b&b tree implementation towards optimality [16].  

We optimize a single-cost function with binary-valued variables under a constraint function and 

binary decision variables restrictions. We discover the solution point which minimizes the objective 

function satisfying optimality and feasibility metrics [16].  

Optimizing and giving a desired outcome, a least PMU number is located for full conditions of 

observability purposes as those defined in [17]. In a second stage, the objective is extended to a two-

term function (minimize/maximize) to cover the topic of achieving the maximum level of 

observability. The entire optimization gives solution using  built-in solver in the YALMIP.  

This algorithm shceme is implemented based on ILP solvers jointly with an NLP solver fully 

compatible with the MATLAB environment. We focus on algorithms in the binary domain to declare a 

 nonlinear programming model with the aim to attain a global optimal solution [70].  

As observed in the log file illustrated in the Tables 3 & 5, the YALMIP BBA converges to an 

optimal solution within 1.272357 seconds. The percentage relative gap  percentage is calculated as: 

 

                                                           (25)  

 

That gap tolerance is a difference between  and  bounds of the cost function that 

bmibnb computes in its branch-and-bound algorithm [70]. We implement a minimization problem 

using a built-in YALMIP global integer solver where the relative gap is meaningless [70].  

The solver returns a solution with a 0.00% optimality. A zero-gap tolerance is a necessity and a 

relative gap also succeeded within a predefined optimality tolerance [70].  

 

Table 3. Optimization Process: Results of bmibnb routine 
 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

* Starting YALMIP global branch & bound. 

* Upper solver: ipopt 

* Lower solver: GUROBI 

* LP solver: GUROBI 

* -Extracting bounds from model 

* -Performing root-node bound propagation 

* -Calling upper solver (no solution found) 

* -Branch-variables: 30 

* -More root-node bound-propagation 

* -Performing LP-based bound-propagation  

* -And some more root-node bound-propagation 

* Starting the b&b process 

 Node       Upper        Gap (%)     Lower        Open        Time 

    1:    1.00000E+01     0.00     1.00000E+01    2     2s Solution found by heuristics   

* Finished.  Cost: 10 (lower bound: 10, relative gap 9.0909e-10%) 
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Table 3. Optimization Process: Results of bmibnb routine (continued) 
 

* Termination with relative gap satisfied  

* Timing: 14% spent in upper solver (2 problems solved) 

*               4% spent in lower solver (1 problems solved) 

*               16% spent in LP-based domain reduction (60 problems solved) 

*               1% spent in upper heuristics (1 candidates tried) 

Elapsed time is 1.216967 seconds. 

ans = 

 

  Columns 1 through 17 

 

     1     0     0     0     0     1     1     0     0     1     1     1     0     0     0     0     0 

 

  Columns 18 through 30 

 

     1     0     0     0     0     1     0     0     1     0     0     0     1 

 

Linear scalar (real, binary, 30 variables) 
 

Current value: 10 
 

Coefficients range: 1 to 1 

 

SORI = 

 

    40 

 

ans = 

 

     1     6     7    10    11    12    18    23    26    30 

 
 

FIGURE 3. Optimal PMU Arrangement Achieved by bmibnb Optimizer Routine 
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TABLE 4. Optimal PMU Arrangement for the 30-bus power network 
 

PMU Arrangement Locations with Observability Indicator Equal to 35 
1, 6, 7, 10, 11, 12, 18, 23, 26, 30 

 
As we observed, the optimal solution is a global one given that the gap is equal to zero. The 

optimality conditions are finally satisfied within pre-specified stopping and tolerance criteria whereas 

the optimal global solution is attained without using clustering methods to come across it [16].  

YALMIP program's solver can solve the programming model with non-convexities incorporating a 

powerful global Gurobi solver and a local IPOPT solver [66]. The problem is optimized when certain 

assessment criteria and the global solution is fulfilled [8]-[16].  

The optimal results show that this numerical method is not wasteful and converges to the true 

optimality. This optimal solution is accepted because the upper and lower levels are found to be equal 

in number minimizing the gap tolerance with a satisfied relative gap for the two minimization models.  

Hence, when no more minimization in the cost function happens during the iterative process, the 

algorithm ends up with the recognition of the identity of the global optimum point [14]-[15].  

So, an unambiguous outcome found to support the effectiveness of the polynomial programming 

model to come across optimality. The experimental computational results illustrated that the BBA is 

able to deliver globally optimal points even for large-scale power networks [70].  

Then, the single-objective function is expanded in two competitive terms satisfying two criteria: 

cost minimization and maximum reliability for wide-area and state estimation applications.  This 

mathematical based model is efficiently solved for both case studies, that is, to minimize the cost and 

to achieve those solutions with maximum observability indicator [18], [44]-[45]. The  desirable 

solution is achieved by interfacing outer solvers running in the MATLAB environment [70].  

YALMIP global branch & bound is based on integer linear solvers to solve the lower bounding 

relaxed problems, and nonlinear routines to calculate the upper bound [70]. Due to branching strategy, 

exploring nodes, pruning infeasible regions by this optimizer function, the optimal solution is different 

with the same least cost function value. We set the option bmibnb ‘lpreduce’ to zero [70] so as to 

definitely reduce the computational time spent to solve the optimization globally [18], [44]-[45].  

 

Table 5. Optimization Process: Results of bmibnb routine 
 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

* Starting YALMIP global branch & bound. 

* Upper solver: ipopt 

* Lower solver: GUROBI 

* LP solver: GUROBI 

* -Extracting bounds from model 

* -Preforming root-node bound propagation 

* -Calling upper solver (no solution found) 

* -Branch-variables: 30 

* -More root-node bound-propagation 

* -Performing LP-based bound-propagation  

* -And some more root-node bound-propagation 

* Starting the b&b process 

 Node       Upper           Gap (%)   Lower         Open   Time 

    1:     8.26667E+00     0.00     8.26667E+00    2     1s Solution found by heuristics   

* Finished.  Cost: 8.2667 (lower bound: 8.2667, relative gap 1.0791e-09%) 

* Termination with relative gap satisfied  

* Timing: 12% spent in upper solver (2 problems solved) 

*               6% spent in lower solver (1 problems solved) 
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Table 5. Optimization Process: Results of bmibnb routine (continued) 
 

*               15% spent in LP-based domain reduction (60 problems solved) 

*               1% spent in upper heuristics (1 candidates tried) 

 

sol =  

 

  struct with fields: 

 

    yalmipversion: '20210331' 

    matlabversion: '9.4.0.813654 (R2018a)' 

       yalmiptime: 0.1015 

       solvertime: 1.1635 

             info: 'Successfully solved (BMIBNB)' 

          problem: 0 

 

Elapsed time is 1.272357 seconds. 

 

ans = 

 

    8.2667 

 

ans = 

 

  Columns 1 through 16 

 

     0     1     0     1     0     1     0     0     1     1     0     1     0     0     1     0 

 

  Columns 17 through 30 

 

     0     1     0     0     0     0     0     0     1     0     1     0     0     0 
 

ans = 
 

     2     4     6     9    10    12    15    18    25    27 

 

Linear scalar (real, binary, 30 variables) 

Current value: 8.2667 

Coefficients range: 0.73333 to 0.93333 

 

SORI = 

 

    52 
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FIGURE 4. Optimal PMU Arrangement Achieved by bmibnb Optimizer Routine 
 

TABLE 6. Optimal PMU Arrangement for the 30-bus Power Network 
 

PMU Arrangement Locations with Maximum Observability Indicator Equal to 52 
2, 4, 6, 9, 10, 12, 15, 18, 25, 27 

 

16.  Ιmplementation of binary polynomial problem using medium-sized power networks 
Relaxing the polynomial constraints as well as the binary integrality of the decision variables doesn't 

always importantly decrease the complexity of the solution of the proposed mathematical model. The 

not easy task is involved with the number of the decision variables linking together to formulate each 

constraint getting involved in the optimization process [8]-[16].  

The main target of the relaxation of the polynomial optimization model is to make the 

programming model easier to be solved and for which is easier to attain a global optimal solution 

spending one root-node [56]-[58]. This numerical procedure is a hybrid B&B algorithm which 

performs with an outer approximation NLP solver to the optimization problem solving on global point.  

The solver relies on a spatial branch-and-bound algorithm (s-BBA) which adopts convex 

approximations for nonlinear calculations during the construction of the binary tree [59], [63], [69]-

[70]. Proper simulation results are generated in MATLAB using technology advanced optimization 

solvers with a sufficient and adequate optimization way [14], [61]-[62], [68]-[70].  

Hence, the optimal solution is collected by performing the nonlinear model using powerful 

NLP as well as ILP standard solvers [66]-[70]. For that reason, the proposal model is tested on 

optimization models including from a few variables up some thousands of decision variables.  

After the declaration of the Boolean polynomial optimization model, medium-sized power 

networks are used for the optimization task. Their data are taken by using the MATPOWER software 

package [61]. The optimization model is programmed in MATLAB & YALMIP platforms [62], [68].  

The YALMIP global branch & bound adopts strategies integrated in its implementation to 

transform the original model into a polyhedral approximation [70]. Hence, a number of convex sub-

regions are created for the purpose of getting the best possible solution satisfying the feasibility of the 

new one model. So, this solution is considered to be the same for the initial model [16].  

The optimization process gives tighter variable bounds being achieved by considering the 

constraint function and the current bounds in the manner by which the B&B tree is developing [70]. 

Local domain reductions are noticed at the incumbent root-node of the B&B tree [69]-[70].  
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Domain propagation is a programming methodology used by mixed-integer linear solvers [14]-

[16]. This branching methodology is performed at every root-node of the B&B tree in tightening the 

local domains of each decision variable [14]-[15], [46]. Therefore, a strong branching is developed 

with the help of propagation embedded in an ILP solver to come across the optimality [46].  

Hence, a powerful branching is developed using domain propagation methodology which is 

considerably advantageous in our (MI) NLP model with the help of an ILP solver and an NLP solver.  

The whole optimization package has the ability to recognize the global optimum point being 

covered by a warranty that the optimality gap goes to zero when the upper and lower bounds are 

totally equal and the relative gap is satisfied. The lower bound minimizes the suboptimality criteria, 

thus the solution is calculated within an absolute gap. Hence, the zero-gap is achieved [70].  

The 57-and 118-bus systems are used for simulating the binary (Boolean) polynomial optimization 

model. The second and third experimental tests are larger polynomial problems. The process 

optimization is performed using the 57-, 118-bus systems to come across the optimality [61], [71].  
As observed, a handle constraint mechanism adopted in an ILP solver is implemented to tighten the 

bound called domain propagation [8]-[14]. The best possible outcome satisfies the competitive trends 

involved in the objective function. Heuristic calculations happen accelerating the entire optimization 

and recognizing the incumbent solution with the lowest objective function value. This lower value is 

considered to be the global solution within an absolute Gap as shown in Table 7.  

During the iterative process, the branching and nodes are being explored for the purpose of getting 

a global optimum point by an ILP optimizer function. For that purpose, the LP relaxations and convex 

approximations are necessary to be computed to come across the optimality [8]-[16].  

The optimizer functions are used for solving the relaxation problems, and nonlinear solvers for the 

upper bound calculations [8]-[14], [56]-[58], [70]. The local solver is used for calculating upper 

bounds [70]. Also, a lower solver which is an ILP optimizer routine is used for counting the lower 

solver and solving the relaxed problems to develop the binary enumaration tree [70].  

This process in optimization can be viewed as a method done repeatedly to attain a comparison 

between the difference of the current upper bound, which is the cost incumbent value (best integral 

solution), and the lower bound at present, which is the least of the lower bounds of the running for 

selection sub-problems [8]-[14], [56]-[58], [70]. The whole framework is terminated at a root-node 

giving the global solution optimality where optimality criteria are met. The PMU localization sites are 

shown in Figures 5 and 6 and shown in relative Tables.  

Table 9 illustrates the procedure optimization and tested on a 118-bus system for the purpose of 

finding the global optimum point within a zero-gap tolerance and meaningless relative gap, [59]-[70]. 

The solution is the upper bound for the minimization problem while the lower bound is culprit to 

close the gap [68]. Hence, the difference of them is equal to zero giving an absolute gap equal to zero 

[70]. Hence, an optimality certificate has been achieved and validated the entire optimization process. 

 

Table 7. Optimization Process: Results of bmibnb routine 
 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

* Starting YALMIP global branch & bound. 

* Upper solver: fmincon 

* Lower solver: SCIP 

* LP solver: SCIP 

* -Extracting bounds from model 

* -Performing root-node bound propagation 

* -Calling upper solver (no solution found) 

* -Branch-variables: 57 

* -More root-node bound-propagation 

* -Performing LP-based bound-propagation  

* -And some more root-node bound-propagation 

* Starting the b&b process 
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Table 7. Optimization Process: Results of bmibnb routine (continued) 
 

 Node       Upper           Gap (%)     Lower          Open      Time 

    1:     1.70000E+01     0.00       1.70000E+01     2     6s Solution found by heuristics   

* Finished.  Cost: 17 (lower bound: 17, relative gap 5.5555e-10%) 

* Termination with relative gap satisfied  

* Timing:  4% spent in upper solver (2 problems solved) 

*               19% spent in lower solver (1 problems solved) 

*               101% spent in LP-based domain reduction (114 problems solved) 

*               1% spent in upper heuristics (1 candidates tried) 

Elapsed time is 6.167039 seconds. 

 

sol =  

 

  struct with fields: 

 

    yalmipversion: '20210331' 

    matlabversion: '9.4.0.813654 (R2018a)' 

       yalmiptime: 0.1864 

       solvertime: 32.2366 

             info: 'Successfully solved (BMIBNB)' 

          problem: 0 

 
  Columns 33 through 48 

 

     0     0     0     1     0     0     1     0     1     0     0     0     1     1     1     0 

 

  Columns 49 through 57 

 
     0     1     0     1     0     1     0     0     0 

 
Linear scalar (real, binary, 57 variables) 

Current value: 17 

Coefficients range: 1 to 1 

 

SORI = 

 

    61 

 

ans = 

 

  Columns 1 through 16 

 

     2     6    12    19    22    25    27    32    36    39    41    45    46    47    50    52 

 

  Column 17 

 

    54 
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Table 7. Optimization Process: Results of bmibnb routine (continued) 

 

Nonlinear scalar (real, models 'come across', 1 variable) 

Current value: 2 

Coefficients range: 1 to 1 

Nonlinear scalar (real, models 'milpsubsref', 1 variable) 

Current value: 1 

Coefficients range: 1 to 1 

 
 

Figure 5. Optimal PMU Arrangement Achieved by bmibnb Optimizer Routine 
 

Table 8. Optimal PMU Arrangement for the 57-bus Power Network 
 

PMU Arrangement Locations with Maximum Observability Indicator Equal to 61 
2, 6, 12, 19, 22, 25, 27, 32, 36, 39, 41, 45, 46, 47, 50, 52, 54 

 
Table 9. Optimization Process: Results of bmibnb routine 

 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

* Starting YALMIP global branch & bound. 

* Upper solver: fmincon 

* Lower solver: INTLINPROG 

* LP solver: INTLINPROG 

* -Extracting bounds from model 

* -Performing root-node bound propagation 

* -Calling upper solver (no solution found) 

* -Branch-variables: 118 

* -More root-node bound-propagation 

* -Performing LP-based bound-propagation  

* -And some more root-node bound-propagation 

* Starting the b&b process 

 Node       Upper         Gap (%)    Lower         Open            Time 
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Table 9. Optimization Process: Results of bmibnb routine (continued) 
 

    1 :   3.20000E+01     0.00     3.20000E+01     2       32s  Solution found by heuristics   

* Finished.  Cost: 32 (lower bound: 32, relative gap 3.0302e-10%) 

* Termination with relative gap satisfied  

* Timing: 18% spent in upper solver (2 problems solved) 

*               4% spent in lower solver (1 problems solved) 

*               14% spent in LP-based domain reduction (236 problems solved) 

*               1% spent in upper heuristics (1 candidates tried) 

 

sol =  

 

  struct with fields: 

 

    yalmipversion: '20210331' 

    matlabversion: '9.4.0.813654 (R2018a)' 

       yalmiptime: 0.1864 

       solvertime: 32.2366 

             info: 'Successfully solved (BMIBNB)' 

          problem: 0 

 

Elapsed time is 32.424994 seconds. 

 

ans = 

 

  Columns 1 through 16 

 

     1     0     0     0     1     0     0     0     0     1     0     1     0     0     1     0 

 

  Columns 17 through 32 

 

     1     0     0     1     0     0     1     0     0     0     0     1     0     1     0     0 

 

  Columns 33 through 48 

 

     0     0     0     1     0     0     0     1     0     0     0     1     0     1     0     0 

 

  Columns 49 through 64 

 

     1     0     0     1     0     0     0     1     0     0     0     0     0     1     0     1 

 

  Columns 65 through 80 

 

     0     0     0     0     0     0     1     0     0     0     1     0     1     0     0     1 

 

  Columns 81 through 96 

 

     0     0     0     0     1     0     1     0     0     1     0     0     0     1     0     0 

 

  Columns 97 through 112 
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Table 9. Optimization Process: Results of bmibnb routine (continued) 
 

 

     0     0     0     0     0     1     0     0     1     0     0     0     0     1     0     0 

 

  Columns 113 through 118 

 

     0     1     0     1     0     0 
 

Linear scalar (real, binary, 118 variables) 

Current value: 32 

Coefficients range: 1 to 1 

 

ans = 

 

    32 

 

 

SORI = 

 

   152 

 

ans = 

 

  Columns 1 through 16 

 

     1     5    10    12    15    17    20    23    28    30    36    40    44    46    49    52 

 

  Columns 17 through 32 

 

    56    62    64    71    75    77    80    85    87    90    94   102   105   110   114   116 

 
FIGURE 6. Optimal PMU Arrangement Achieved by bmibnb Optimizer Routine 
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TABLE 10. Optimal PMU Arrangement for the 118-bus Power Network 

 
PMU Arrangement Locations with Maximum Observability Indicator Equal to 152 
1, 5, 10, 12, 15, 17, 20, 23, 28, 30, 36, 40, 44, 46, 49, 52, 56, 62, 64, 71, 75, 77, 80, 85, 87, 90, 94 

102, 105, 110, 114, 116 

 

After getting an optimal solution satisfying one criterion objective function, the second instance 

declares a two-criterion model. The iterative process is executed again and trade-off globally optimal 

solutions are derived having the maximum observability indicator [18], [23], [44]-[45].  

Multi-criteria optimization model is executed on a 57-bus and 118-bus system and a desired 

outcome is achieved as illustrated in Table 11 & 13 [61], [71]. The aim is at minimizing an objective 

function with the best outcome with a maximum System Observability Index (SORI) [18].  

This indicator is related to the aggregate count by which a power network is monitored either 

directly or indirectly by a resulting PMU arrangement [44]-[45]. bmibnb optimizer interfaces SCIP 

and INTLINPROG routine and an NLP routine for counting the lower and upper bounds respectively 

as shown in Tables 11 & 13.  

The LP solver does the branching rules using suitable LP relaxations and heuristic calculations 

being necessary to end the iterative process with success getting an optimal solution [70].  

The optimization terminates with a globally optimal solution at a given root-node [70]. The 

solution is achieved within optimality criteria 0.00 %.  This criteria means no better solution can be 

found therefore, a globally optimal solution has been found. To present the algorithmic scheme and its 

results, we illustrate the log file produced by the bmibnb optimizer routine in Tables 11 and 13.  

The process optimization is shown in Tables 11 and 13 whereas the placement sites are shown in 

Tables 12 and 14 with the plot-diagram shown in Fig 7 and 8.The PMU positioning sites are illustrated 

in Figures 7 & 8 and tabulated in Tables 12 &14 for the 57 bus and 118 bus systems [61], [71]. 
As observed, the entire optimization process ends up at one given root delivering a globally optimal 

solution in an affordable elapsed time [8]-[15], [62]-[70]. According to the B&B process, gap 

tolerance results in zero satisfying that the polyhedral approximation is efficiently solved.  
That solution satisfies the initial model which is declared as a nonlinear program with binary 

decision variables. As shown by the resulting outcome, the YALMIP returns an optimal solution 

within a gap equal to be zero [58], [62]-[67], [69]-[70].  Also, a meaningless relative gap is 

reported. There, any better solution doesn't exist. Hence, this one is a global solution [14].  

 

Table 11. Optimization Process with Maximum Observability 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

* Starting YALMIP global branch & bound. 

* Upper solver     : fmincon 

* Lower solver     : SCIP 

* LP solver           : SCIP 

* -Extracting bounds from model 

* -Performing root-node bound propagation 

* -Calling upper solver (no solution found) 

* -Branch-variables: 57 

* -More root-node bound-propagation 

* -Performing LP-based bound-propagation 

* -And some more root-node bound-propagation 

* Starting the b&b process 

Node       Upper        Gap (%)      Lower       Open            Time 
 1:     1.57368E+01     0.00      1.57368E+01    2         9s Solution found by heuristics 

* Finished.  Cost: 15.7368 (lower bound: 15.7368, relative gap 5.9749e-10%) 
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Table 11. Optimization Process with Maximum Observability (continued) 

* Termination with relative gap satisfied 

* Timing: 4% spent in upper solver (2 problems solved) 

*               38% spent in lower solver (1 problems solved) 

*               71% spent in LP-based domain reduction (114 problems solved) 

*               1% spent in upper heuristics (1 candidates tried) 

Elapsed time is 9.425901 seconds. 

 

ans = 

 

Columns 1 through 16 

 

1     0     0     1     0     1     0     0     1     0     0     0     0     0     1     0 

 

Columns 17 through 32 

 

0     0     0     1     0     0     0     1     0     0     0     1     0     1     0     1 

 

Columns 33 through 48 

 
0     0     0     1     0     1     0     0     1     0     0     0     0     0     1     0 

 

Columns 49 through 57 

 

0     1     0     0     1     0     0     0     1 

 

Linear scalar (real, binary, 57 variables 

Current value: 15.7368 

Coefficients range: 0.87719 to 0.96491 

 

SORI = 

 

    72 

 
ans = 

 
  Columns 1 through 16 

 

     1     4     6     9    15    20    24    28    30    32    36    38    41    47    50    53 

 

  Column 17 

 

    57 

 
Nonlinear scalar (real, models 'come across', 1 variable) 

Current value: 1 

Coefficients range: 1 to 1 

Nonlinear scalar (real, models 'milpsubsref', 1 variable) 

Current value: 1 

Coefficients range: 1 to 1 
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FIGURE 7. Optimal PMU Arrangement Achieved by bmibnb Optimizer Routine 

TABLE 12. Optimal PMU Arrangement for the 57-bus Power Network 
 

PMU Arrangement Locations with Maximum Observability Indicator Equal to 72 
1, 4, 6, 9, 15, 20, 24, 28, 30, 32, 36, 38, 41, 47, 50, 53, 57 

 
The optimal result is found to be the desired outcome having a  for 

the 118 bus system [18], [44]-[45]. Thus, this solution satisfies the two-term objective function. Table 

15 illustrates the entire optimization's performance metrics using standard ILP solvers and FMINCON 

or Ipopt as a local solver.  

The capability of YALMIP global branch & bound algorithm is illustrated by the fact of using NLP 

solvers such as FMINCON or IPOPT as upper solvers and ILP solvers for instance GLPK, SCIP, 

Intlinprog, LPSOLVE and Gurobi as lower solvers [62]-[70].  

Then, we turn the initial  ILP model presented in Esq. (3)-(5) into an augmented ILP model 

with measurement level of observability issues presented in Esq. (11)-(13). Based on the above logic 

statement, a zero-one constraint integer linear programming model must be optimized in two phases.  

 
Table 13. Optimization Process with Maximum Observability 

 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

* Starting YALMIP global branch & bound. 

* Upper solver: fmincon 

* Lower solver: INTLINPROG 

* LP solver: INTLINPROG 

* -Extracting bounds from model 

* -Performing root-node bound propagation 

* -Calling upper solver (no solution found) 

* -Branch-variables: 118 

* -More root-node bound-propagation 

* -Performing LP-based bound-propagation  

* -And some more root-node bound-propagation 

* Starting the b&b process 
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Table 13. Optimization Process with Maximum Observability (continued) 
 

 Node       Upper          Gap (%)  Lower          Open   Time 

    1:     3.06102E+01     0.00    3.06102E+01    2      38s Solution found by heuristics   

* Finished.  Cost: 30.6102 (lower bound: 30.6102, relative gap 3.1634e-10%) 

* Termination with relative gap satisfied  

* Timing: 10% spent in upper solver (2 problems solved) 

*               5% spent in lower solver (1 problems solved) 

*               17% spent in LP-based domain reduction (236 problems solved) 

*               1% spent in upper heuristics (1 candidates tried) 

Elapsed time is 39.010560 seconds. 

ans = 

 

  Columns 1 through 16 

 

     0     0     1     0     1     0     0     0     1     0     0     1     0     0     1     0 

 

  Columns 17 through 32 

 

     1     0     0     0     1     0     1     0     0     0     0     1     0     1     0     0 

 

  Columns 33 through 48 

 

     0     1     0     0     1     0     0     1     0     0     0     0     1     0     0     0 

 

  Columns 49 through 64 

 

     1     0     0     0     1     0     0     1     0     0     0     0     0     1     0     1 

 

  Columns 65 through 80 

 

     0     0     0     1     0     0     1     0     0     0     1     0     1     0     0     1 

 

  Columns 81 through 96 

 

     0     0     0     0     1     1     0     0     0     0     1     0     0     1     0     0 

 

  Columns 97 through 112 

 

     0     0     0     0     1     0     0     0     1     0     0     0     0     1     0     0 

 

  Columns 113 through 118 

 

     0     1     0     0     0     0 

 

Linear scalar (real, binary, 118 variables) 

Current value: 30.6102 

Coefficients range: 0.91525 to 0.98305 

 

SORI = 
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Table 13. Optimization Process with Maximum Observability (continued) 
 

   164 

 

ans = 

 

  Columns 1 through 16 

 
     3     5     9    12    15    17    21    23    28    30    34    37    40    45    49    53 

 

  Columns 17 through 32 

 

    56    62    64    68    71    75    77    80    85    86    91    94   101   105   110   114 

 
 

FIGURE 8. Optimal PMU Arrangement Based on the Maximum Observability 
 

TABLE 14. Optimal PMU Arrangement for the 118-bus Power Network 
 

PMU Arrangement Locations Maximum Observability Indicator Equal to 164 
3, 5, 9, 12, 15, 17, 21, 23, 28, 30, 34, 37, 40, 45, 49, 53, 56, 62, 64, 68, 71, 75, 77, 80, 85, 86, 91, 94 

101, 105, 110, 114 

 
TABLE 15. Best PMU Arrangement for Standard Power Systems 

 
Intlinprog and Fmincon Optimizer Routines to the binary (Boolean) Polynomial Problem 

IEEE bus system Single-Cost Function Aggregate-Cost Function 

14-bus 2, 8, 10, 13 2, 6, 7, 9 

30-bus 3, 5, 8, 10, 11, 12, 18, 23, 25, 29 2, 4, 6, 9, 10, 12, 15, 18, 25, 27 

57-bus 
3, 6, 12, 15, 19, 22, 25, 27, 32, 36, 39  41, 

44 47, 50, 52, 54 

1, 4, 6, 9, 15, 20, 24, 28, 30, 32, 36  

38, 39, 41 46, 50, 53 

118-bus 

2, 5, 10, 12, 15, 17, 20, 23, 28, 30, 36  40 

44, 46, 49, 52, 56, 62, 64, 71, 75, 77, 80, 

85, 87, 90, 94, 101, 105, 110, 114, 116 

3, 5, 9, 12, 15, 17, 21, 25, 29, 34, 37 

40, 45 49, 52, 56, 62, 64, 68, 70, 71 

78, 85 86, 89,  92, 96, 100, 105, 110 

114, 118 
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TABLE 15. Best PMU Arrangement for Standard Power Systems (continued) 
 

SCIP and Fmincon Optimizer Routines to the Binary (Boolean) Optimization Problem 
IEEE bus system Single-Cost Function Aggregate-Cost Function 

14-bus 2, 7, 11, 13 2, 6, 7, 9 

30-bus 1, 2, 6, 9, 10, 12, 15, 18, 25, 27 2, 4, 6, 9, 10, 12, 15, 19, 25, 27 

57-bus 
1, 4, 9, 20, 24, 25, 28, 29, 32, 36, 38, 39, 41 

44, 46, 51, 54  
1, 4, 6, 9, 15, 20, 24, 28, 31, 32, 36 

38, 41 46 50, 53, 57 

118-bus 

1, 7, 9, 11, 12, 17, 21, 25, 28, 34, 37, 41 45, 

49 52, 56, 62, 64, 71, 72, 75, 77, 80, 85, 87 
90,  94, 101, 105, 110, 114, 116 

3, 5, 9, 12, 15, 17, 21, 25, 28, 34, 37 

40, 45 49, 52, 56, 62, 64, 68, 70, 71 
78, 85, 86, 89 92, 96, 100, 105, 110 

114, 118 

GLPK and Fmincon Optimizer Routines to the Binary (Boolean) Optimization Problem 
IEEE bus system Single-Cost Function Aggregate-Cost Function 

14-bus 2, 7, 11, 13 2, 6, 7, 9 

30-bus 3, 5, 8, 9, 10, 12, 19, 23, 26, 29 2, 4, 6, 9, 10, 12, 15, 20, 25, 27 

57-bus 
1, 6, 13, 15, 19, 22, 25, 27, 32, 36, 39, 41, 44 

47, 51, 52, 54 

1, 4, 6, 9, 15, 20, 24, 28, 30, 32, 36 

38, 39 41 47, 51, 53 

118-bus 2, 5, 10, 11, 12, 17, 21, 24, 25, 29, 34, 37 40 

45 49, 52, 56, 62, 63, 68, 73, 75, 77, 80, 85 

86, 90 94, 101, 105, 110, 114 

3, 5, 9, 12, 15, 17, 20, 23, 29, 30, 34 

37, 40 45 49, 52, 56, 62, 64, 68, 71 

75, 77, 80, 85 86, 90 94, 101, 105 
110, 115 

lpsolve and Fmincon Optimizer Routines to the Binary (Boolean) Optimization Problem 
IEEE bus system Single-Cost Function Aggregate-Cost Function 

14-bus 2, 8, 10, 13 2, 6, 7, 9 

30-bus 1, 2, 6, 10, 11, 12, 15, 19, 25, 27 2, 4, 6, 9, 10, 12, 15, 18, 25, 27 

57-bus 
  1, 2, 6, 10, 19, 22, 25, 26, 29, 32, 36, 39, 41 

44 46, 49, 54 

1, 4, 6, 9, 15, 20, 24, 25, 28, 32, 36 

38, 39, 41 46, 51, 53 

118-bus 1, 5, 10, 11, 12, 17, 21, 25, 29, 34, 37, 40 45 
49, 52, 56, 62, 63, 68, 70, 71, 75, 77, 80, 85, 

87, 91, 94, 101, 105, 110, 114 

3, 5, 9, 12, 15, 17, 21,25, 29, 34, 37 
40, 45, 49 53, 56, 62, 64, 68, 70, 71 

78, 85 86, 89 92, 96 100, 105, 110 
114, 118 

Gurobi and Fmincon Optimizer Routines to the Binary (Boolean) Optimization Problem 
IEEE bus system Single-Cost Function Aggregate-Cost Function 

14-bus 2, 8, 10, 13 2, 6, 7, 9 

30-bus   1, 5, 8, 10, 11, 12, 19, 23, 26, 29 2, 4, 6, 9, 10, 12, 15, 19, 25, 27 

57-bus 
1, 4, 6, 13, 20, 22, 25, 27, 29, 32, 36, 41, 45 

47, 51, 54, 57 

1, 4, 6, 9, 15, 20, 24, 28, 31, 32, 36 

38, 41 46, 51, 53, 57 

118-bus 

3, 5, 10, 12, 15, 17, 21, 23, 29, 30, 36, 40 44, 
46, 49, 52, 56, 62, 64, 71, 75, 77, 80, 85 87  

90, 94 101, 105, 110, 115, 116 

3, 5, 9, 12, 15, 17, 21, 25, 29, 34, 37 
40, 45, 49, 52, 56, 62, 64, 68, 70, 71 

76, 78, 85, 86 89, 92, 96, 100 105, 

110, 114 

 

In the first one, we seek out a global solution meaning that a least number of PMU are needed to 

cover the full condition of topological observability [17]. The second phase covers the scenario where 

a resulting PMU placement is an adequate configuration to cover a maximum observability condition 

[18], [44]-[45]. The 118-bus system is used as a benchmark system, and the GLPK and SCIP routines 

are used for optimizing both optimization models Esq. (3)-(5) and Esq. (11)-(13). 

Two instances are studied. The first one minimizes an objective function with the aim to find the 

least PMUs number while the second one finds solution with 0.00 %. This solution is the least PMUs 

number where the network observability is found to have the maximum value [44]-[45].  
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Tables 16 and 19 illustrates the iterative process being executed for the purpose of getting an 

optimal solution for the  ILP model. The message window is displayed to a log file. The MIP log 

has the appearance displayed in Tables 16 & 18 [66].   

MPL shows the advancement of GLPK routine while an optimization run is performed. GLPK 

gives the number of iterations and the objective function value being derived and the status messages 

which gives the infeasibilities during the revised simplex implementation [66].  

 
Table 16. Optimization Process: Results of GLPK routine 

 
GLPK Simplex Optimizer, v4.48 

118 rows, 118 columns, 476 non-zeros 

      0   : obj  =  0.000000000e+000  infeas = 1.180e+002 (0) 

*   148: obj =  3.600000000e+001   infeas = 0.000e+000 (0) 

*   172: obj =  3.200000000e+001   infeas = 0.000e+000 (0) 

OPTIMAL SOLUTION FOUND 

Integer optimization begins... 

+   172: mip =     not found yet >=              -inf        (1; 0) 

+   190: >>>>>  3.200000000e+001 >=  3.200000000e+001   0.0% (3; 0) 

+   190: mip =  3.200000000e+001 >=     tree is empty   0.0% (0; 5) 

INTEGER OPTIMAL SOLUTION FOUND 

 
FIGURE 9. Optimal PMU Arrangement 

TABLE 17. Optimal PMU Arrangement for the 118-bus Power Network 

PMU Arrangement Locations Maximum Observability Indicator Equal to 156 
2, 5, 10, 11, 12, 17, 21, 24, 25, 29, 34, 37, 40, 45, 49, 52, 56, 62, 63, 68, 73, 75, 77, 80, 85, 86, 90 

94, 101, 105, 110, 114 
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Table 18. Optimization Process: Results of GLPK routine 
 

GLPK Simplex Optimizer, v4.48 

118 rows, 118 columns, 476 non-zeros 

      0   : obj =  0.000000000e+000  infeas = 1.180e+002 (0) 

*   148: obj =  3.446610169e+001  infeas = 0.000e+000 (0) 

*   187: obj =  3.061016949e+001  infeas = 0.000e+000 (0) 

OPTIMAL SOLUTION FOUND 

Integer optimization begins... 

+   187: mip =     not found yet >=              -inf        (1; 0) 

+   189: >>>>>  3.061016949e+001 >=  3.061016949e+001   0.0% (1; 0) 

+   189: mip =  3.061016949e+001 >=     tree is empty            0.0%  (0; 1) 

INTEGER OPTIMAL SOLUTION FOUND 

 

 ;  Termination criteria:   ; [66] 
 

The PMU locations are displayed in Fig. 10 and Table 19. 

 
FIGURE 10. A PMU Placement Set with Maximum Indicator of Observability 

 

TABLE 19. Optimal PMU Arrangement for the 118-bus Power Network 
 

PMU Arrangement Locations with Maximum Observability Indicator Equal to 164 
3, 5, 9, 12, 15, 17, 20, 23, 29, 30, 34, 37, 40, 45, 49, 52, 56, 62, 64, 68, 71, 75, 77, 80, 85, 86, 90 

94, 101, 105, 110, 115 

 

GLPK gives the data related to the initial linear programming relaxation while the b&b search 

shows the node count, the second column gives the best integer feasible solution delivered so far. The 

third column gives the best bound inside a relative gap at the particular step in the process [66].  

As shown in Tables 16 and 18, GLPK explores and prunes infeasible regions, seeking out for the 

best feasible solution and finally gets the best possible solution within a zero-gap tolerance [66].  
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The B&B tree is implemented by GLPK routine. This optimizer function is an essential process to 

locate promising feasible solution points in the space of optimality. We can observe that the optimum 

point has been achieved since the difference between the upper and lower bounds goes to zero so the 

optimal solution can be characterized as Globally Optimal by far [62].  

Hence, the tree is empty, and ends up with a solution with 0.00 %. An integer optimal solution has 

been found as the status message displays. An optimal solution is achieved by counting the optimality 

gap equal to zero which means that no better optimum point can be found by the ILP solution solver 

[8]-[16], [66]. 

SCIP executes the   ILP model, counting constantly the primal and dual bounds during the 

iterative process. The Primal bound is found to be equal with the Dual Bound and it is culript for the 

mininimization of the gap [63]-[66]. The gap is minimized so the certificate of optimality has been 

ensured [64]. The optimal results are shown in Tables 20 & 22. Table 20 shows the log file produced 

by SCIP. SCIP discovers a zero difference between those bounds. The Primal bound is the global 

solution for the minimization model and culpit for this is the Dual bound which closes the gap [65].  

 

Table 20. Optimization Process: Results of SCIP routine 
 

time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dual bound   | 
primal bound | gap    
t 0.1s|    1 |   0 |     0 |     - | 443k|   0 |   - | 91 | 65 |   0 |   0 |   0 |   0 |   0 |      --      |1.000000e+002 |    Inf  

b 0.1s|   1 |   0 |     0 |     - | 507k|   0 |   - | 91 | 65 | 91 | 65 |   0 |   0 |   0 |      --      |3.800000e+001 |    Inf  

* 0.1s|   1 |   0 |   52 |    - | 520k|   0 |   - | 91 | 65 | 91 |   65 |   0 |   0 |   0|3.200000e+001 |3.200000e+001|   0.00 

 0.1s |   1  | 0 |    52 |    - | 520k|   0 |   - | 91 | 65 | 91 | 65 |   0 | 0 |   0 |3.200000e+001 |3.200000e+001 |   0.00 

SCIP Status: problem is solved [optimal solution found] 

Solving Time (sec): 0.14 

Solving Nodes: 1 

Primal Bound: +3.20000000000000e+001 (4 solutions) 

Dual Bound:    +3.20000000000000e+001 

Gap: 0.00 

 

The PMU locations are displayed in Fig.11 and in Table 21. This placement solution has the 

maximum observability indicator [44]-[45]. Table 21 illustrates the PMU positioning sites being 

derived by optimizing the one-criterion objective function. Table 22 illustrates the process 

optimization for the multi-objective model using SCIP optimizer function [63]-[66].  

As the B&B tree has been constructed, a suitable number of nodes are explored where an LP 

relaxation is solved at each root-node [8]-[16]. The Primal Bound is the desired cost value for the 

minimization problem. Finally, an optimality and feasibility criteria has been found. Table 22 

produces the log file while Table 23 shows the PMU placement with a maximum observability 

indicator [59], [62]-[67], [69]-[70].  

The Dual Bound closes the gap giving global optimality. In this instance, the SCIP optimizer 

routine is considered to have delivered a solution with a certificate of 0.00 % optimality [66]. Two 

competitive trends are satisfied by a global branch & bound in unison. A global optimum point is 

delivered within a 0.00 % relative gap.  

Hence, an enumeration tree is considered in the direction of getting the first incumbent solution that 

satisfies the observability constraints, reducing the dimension of the B&B tree and finally giving the 

global one solution.The global optimality is fulfilled with a zero-gap and a relative gap within a pre-

specified tolerance tuned by the implementation of an optimization model in the MATLAB 

environment [62]. SCIP terminates with a desired outcome when the gap between the upper and lower 

bounds is equal to zero.  

More exactly, the primal bound is the upper bound for the minimization problems. On the other 

hand, the dual cost bound is the lower bound for such kind of optimization problems. The Primal 

bound is the solution for the minimization problem whereas the Dual Bound is responsible to close the 

absolute gap [57]-[58]. The solution is the upper bound for the objective function related to the 

minimization problems whereas the lower bound minimizes the optimality criteria to zero [63]-[65]. 
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FIGURE 11. Optimal PMU Arrangement 
 

TABLE 21. Optimal PMU Arrangement for the 118-bus Power Network 
 

PMU Arrangement Locations with Maximum Observability Indicator Equal to 150 
1, 5, 9, 12, 15, 17, 20, 23, 28, 30, 35, 40, 43, 46, 50, 51, 54, 62, 63, 68, 71, 75, 77, 80, 85, 86, 90 

94, 101, 105, 110, 114 

 

SCIP adopts only the interior point optimizer routin Ipopt to linearize and solve the non-convexity 

constraint function [66]. The discrepancy between the primal and dual bounds is zero which is inside 

the predefined criterion to determine a global optimal solution [64]. The Primal Bound is the solution 

whereas the Dual Bound is the culprit to close the gap. Hence, the optimizer solver returns a solution 

with 0.00 % optimality [63]-[65].  

 

Table 22. Optimization Process: Results of SCIP routine 

time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dual bound   | 
primal bound | gap    
t 0.1s |    1 |     0 |     0 |     - | 443k|   0 |   - | 91 | 65 |   0 |   0 |   0 |   0 |   0 |       --         |9.638136e+001 |    Inf  

b 0.1s|    1 |     0 |     0 |     - | 507k|   0 |   - | 91 | 65 | 91 | 65 |   0 |   0 |   0 |      --      |3.428814e+001 |    Inf  

* 0.1s|    1 |     0 |    47 |     - | 520k|   0 |   - | 91 | 65 | 91 | 65 |   0 |   0 |   0 |3.061017e+001 |3.061017e+001 |   0.00 

  0.1s|     1 |     0 |    47 |     - | 520k|   0 |   - | 91 | 65 | 91 | 65 |   0 |   0 |   0 |3.061017e+001 |3.061017e+001 |   0.00 

SCIP Status: problem is solved [optimal solution found] 

Solving Time (sec): 0.12 

Solving Nodes: 1 

Primal Bound: +3.06101694915254e+001 (4 solutions) 

Dual Bound:    +3.06101694915254e+001 

Gap: 0.00 
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FIGURE 12. Optimal PMU Arrangement 

TABLE 23. Optimal PMU Arrangement for the 118-bus Power Networks 

PMU Arrangement Locations with Maximum Observability Indicator Equal to 164 
3, 5, 9, 12, 15, 17, 21, 25, 28, 34, 37, 40, 45, 49, 52, 56, 62, 64, 68, 70, 71, 75, 77, 80, 85, 86, 90 

94, 101, 105, 110, 114 

 

Table 24 illustrates the optimal solutions derived by solving the integer linear program. For 

instance, GLPK, SCIP, Intlinprog, LPSOLVE and Gurobi solves the binary integer program [66].  

 

TABLE 24. BEST PMU Arrangement for Standard Power Systems 
 

Intlinprog routine to the binary (Boolean) Constraint Integer Problem 
IEEE bus 

system 
Single-Cost Function Aggregate-Cost Function 

14-bus 2, 8, 10, 13 2, 6, 7, 9 

30-bus 1, 5, 8, 10, 11, 12, 19, 23, 26, 29 2, 4, 6, 9, 10, 12, 15, 20, 25, 27 

57-bus 
1, 4, 9, 20, 23, 27, 29, 30, 32, 36, 38, 41   

45, 46, 50, 54, 57 

1, 4, 6, 9, 15, 20, 24, 28, 30, 32, 36, 38, 41, 

46 51, 53, 57 

118-bus 

2, 5, 10, 12, 15, 17, 21, 25, 29, 34, 37, 

41 ,45, 49, 53, 56, 62, 64, 72, 73, 75, 77, 

80, 85, 87, 91, 94, 101, 105, 110, 114, 

116 

3, 5, 9, 12, 15, 17, 21, 25, 29, 34, 37, 40, 45    

49, 53, 56, 62, 64, 68, 70, 71, 75, 77, 80, 85, 

86    91, 94, 101, 105, 110, 114 

SCIP routine to the binary (Boolean) Constraint Integer Problem 
IEEE bus 

system 
Single-Cost Function Aggregate-Cost Function 

14-bus 2, 7, 11, 13 2, 6, 7, 9 

30-bus 1, 2, 6, 9, 10, 12, 15, 18, 25, 27 2, 4, 6, 9, 10, 12, 15, 18, 25, 27 

57-bus 
1, 4, 6, 9, 20, 24, 25, 28, 32, 36, 38, 39    

41, 44, 46, 51, 53 

1, 4, 6, 9, 15, 20, 24, 25, 28, 32, 36, 38, 39, 

41 46, 50, 53 

118-bus 

1, 5, 9, 12, 15, 17, 20, 23, 28, 30, 35, 40   

43, 46, 50, 51, 54, 62, 63, 68, 71, 75, 77   

80, 85, 86, 90, 94, 101, 105, 110, 114 

3, 5, 9, 12, 15, 17, 21, 25, 28, 34, 37, 40, 45    

49, 52, 56, 62, 64, 68, 70, 71, 75, 77, 80, 85, 

86    90, 94, 101, 105, 110, 114 
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TABLE 24. BEST PMU Arrangement for Standard Power Systems (continued) 
 

GLPK routine to the binary (Boolean) Constraint Integer Problem 

IEEE bus 

system 
Single-Cost Function Aggregate-Cost Function 

14-bus 2, 6, 7, 9 2, 6, 7, 9 

30-bus 1, 5, 8, 10, 11, 12, 15, 18, 25, 27 2, 4, 6, 9, 10, 12, 15, 18, 25, 27 

57-bus 
1, 3, 6, 13, 19, 22, 25, 27, 32, 36, 39, 41 

44, 47 51, 52, 55 

1, 4, 6, 9, 15, 20, 24, 25, 28, 32, 36, 38, 39, 

41 46, 50, 53 

118-bus 

2, 5, 10, 11, 12, 17, 21, 24, 25, 29  34, 

37    40, 45, 49, 52, 56, 62, 63  68, 73, 

75, 77    80, 85, 86, 90, 94 101, 105, 

110, 114 

3, 5, 9, 12, 15, 17, 20, 23, 29, 30, 34, 37, 40, 

45 49, 52, 56, 62, 64, 68, 71, 75, 77, 80, 85 

86, 90 94, 101, 105, 110, 115 

lpsolve routine to the binary (Boolean) Constraint Integer Problem 
IEEE bus 

system 
Single-Cost Function Aggregate-Cost Function 

14-bus 2, 6, 8, 9 2, 6, 7, 9 

30-bus   1, 2, 6, 9, 10, 12, 15, 18, 25, 27 2, 4, 6, 9, 10, 12, 15, 20, 25, 27 

57-bus 
1, 4, 6, 9, 15, 20, 24, 25, 28, 32, 36, 38    

39, 41, 46, 51, 53 

  1, 4, 6, 9, 15, 20, 24, 25, 28, 32, 36, 38, 39    

41, 46, 50, 53 

118-bus 

1, 5, 9, 11, 12, 17, 20, 23, 25, 28, 34, 37   

40, 45, 49, 52, 56, 62, 63, 68, 71, 75, 77   

80, 85, 86, 90, 94, 101, 105, 110, 114 

3, 5, 9, 12, 15, 17, 21, 25, 29, 34, 37, 40, 45    

49, 52, 56, 62, 64, 68, 70, 71, 75, 77, 80, 85, 

86 91, 94, 101, 105, 110, 114 

Gurobi routine to the binary (Boolean) Constraint Integer Problem 
IEEE bus 

system 
Single-Cost Function Aggregate-Cost Function 

14-bus 2, 7, 10, 13 2, 6, 7, 9 

30-bus 1, 5, 6, 9, 10, 12, 15, 19, 25, 27 2, 4, 6, 9, 10, 12, 15, 19, 25, 27 

57-bus 
2, 6, 12, 19, 22, 25, 27, 29, 32, 36, 39, 

41 45 46, 49, 51, 54 

1, 4, 6, 9, 15, 20, 24, 25, 28, 32, 36, 38, 39, 

41 47, 50, 53 

118-bus 

1, 5, 9, 12, 15, 17, 21, 23, 28, 30, 34, 37 

40 45, 49, 52, 56, 62, 63, 68, 71, 75, 77 

80, 85 86, 91, 94, 102, 105, 110, 114 

3, 5, 9, 12, 15, 17, 21, 23, 28, 30, 34, 37, 40, 

45 49, 52, 56, 62, 64, 68, 71, 75, 77, 80, 85 

86, 91 94, 102, 105, 110, 114 

 

The  polynomial constraint model can be solved by using a s-BBA implemented in the SCIP 

optimizer routine [63]-[65]. The SCIP optimizer routine uses a spatial branch-and-bound algorithm to 

solve (MI) nonlinear programs [63]-[65]. SCIP needs an external LP routine to implement LP 

relaxations, which are required to be given at compilation computational time [63]-[65].  

SCIP uses Soplex by default for that purpose [63]-[65]. SCIP performs well the process 

optimization in the YALMIP jointly with MATLAB platform [62], develops the B&B tree, pruning 

infeasible regions and solving the problem with reasonable LP relaxations at a number of nodes 

calculated for this optimality purpose [63]-[66].   

The aim is to linearize the constraint function and binary restriction decision variable. The 

constraint function and performance operations are considered at a given B&B tree node. The 

enumeration B&B tree is composed by nodes and leaves [8]-[14], [63]-[66].  

The leaves are needed in the process optimization. The B&B tree is developed by branching 

procedures on fractional integer variables or variables in non-convex constraints being violated, using 

primal heuristics and reformulation through presolving [8]-[14], [63]-[66]. The strategy adopted in 

optimization constructs linear programming problems by relaxing the binary restriction of the decision 

variables and convexifying the non-convexity form of the constraint function [63]-[65].  
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The LP relaxation procedure consists of relaxing the binary restriction , transforming the 

non-convexities by convexification and linearization of nonlinear functions which are also convexity 

functions [8]-[16]. For the specific problem, the presolve procedure is performed as a short process 

towards getting a certificate of optimality [8]-[14], [63]-[70].  

The primal bound gives the solution for the minimization problem within a suboptimality criterion 

(%) whereas the dual bound is culprit to minimize this criteria and the solution to be the global one 

[63]-[65].  SCIP terminates the optimization process and displays the optimal solution within a zero-

gap optimality [63]-[65]. SCIP produces optimal results for the minimization of one and two criteria in 

two successive phases. The optimal solution is found to be inside a zero relative gap. The percentage 

relative gap is defined as follows [63]-[65]: 

 

                     (26) 
 

Tables 25 & 29 illustrate the number of nodes of the particular run of the s-BBA embedded in the 

SCIP optimizer routine [63]-[65]. Then, the whole optimization process terminates with the optimal 

solution and the Dual Bound closes the gap [62]-[69]. With the aspect to the simulation results, it has 

been illustrated that the Primal bound of the B&B tree for minimization purposes is considered to be 

the solution of the objective function within a sub-optimality criteria. The Dual bound closes the gap. 

The upper bound on the cost function value is the optimal.  

SCIP optimizer overcomes the phenomenon of trapping at a local minimum point giving the global 

optimal solution within an absolute Gap-tolerance equal to zero [59]-[60], [62]-[70]. 

Table 25 presents the log file produced by the SCIP optimizer routine to display the desired 

outcome. An amount of nodes are explored where the LP relaxations are solved, the discrepancy 

between the dual bound and primal bound is constantly calculated and finally an optimal solution is 

calculated with a zero-gap tolerance [64]-[65].  

Tables 25 & 29 & 31 & 33 illustrate the efficiency of the global BBA to come across an optimal 

solution within a zero-gap tolerance. Therefore, a notable output is its capability to succeed at a fact 

convergence rate for achieving global optimum point. A B&B enumeration tree has been built where 

limited number of nodes are explored to solve this combinatorial problem [8]-[16]. Table 26 illustrates 

the PMU positioning sites whereas those placement sites are dislpayed in Fig.13. 

 
FIGURE 13. Optimal PMU Arrangement Achieved by SCIP Optimizer 
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Table 25. Optimization Process: Results of SCIP optimizer routine 
 

time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr          | dual bound         | primal bound | gap    
T 0.7s |     1 |    0|      0 |     - |3623k|   0 |   -  | 422 | 630 | 422  | 886|   0  |   0 |   0 |      --                  |2.000000e+001   |    Inf  

  0.7s  |      1|    0|    85 |     - |3619k|   0 | 42 | 422 | 630 | 422 | 886  |   0  |   0 |   0 |8.250000e+000 |2.000000e+001   | 142.42 

U 0.8s|    1 |     0|    85 |     - |3642k|   0 | 42 | 422 | 630 | 422 | 886  |   0  |   0 |   0 |8.250000e+000 |1.000000e+001   |  21.21 

  0.9s  |      1 |   0|  104 |     -|4185k|    0 |   - | 422 | 631 | 422 | 972  | 86   |   0 |   0 |1.000000e+001 |1.000000e+001   |   0.00 

  0.9s  |      1 |   0|  104 |     -|4185k|    0 |   - | 422 | 631 | 422 | 972  | 86   |   0 |   0 |1.000000e+001 |1.000000e+001   |   0.00 

SCIP Status: problem is solved [optimal solution found] 

Solving Time (sec): 0.86 

Solving Nodes:   1 

Primal Bound: +1.00000000000000e+001 (2 solutions) 

Dual Bound: +1.00000000000000e+001 

Gap: 0.00  

Elapsed time is 0.938705 seconds. 
 

sol = 

struct with fields: 

yalmipversion: '20210331' 

matlabversion: '9.4.0.813654 (R2018a)' 

yalmiptime: 0.3288 

solvertime: 0.6072 

info: 'Successfully solved (SCIP-NL)' 

problem: 0 

ans = 
 

  Columns 1 through 14 

 

     0     0     1     0     1     0     0     1     1     1     0     1     0     0 

 

  Columns 15 through 28 
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Table 25. Optimization Process: Results of SCIP optimizer routine (continued) 
 

 

     0     0     0     1     0     0     0     0     1     0     1     0     0     0 

 

  Columns 29 through 30 

 

     1     0 

Linear scalar (real, binary, 30 variables)  

Current value: 10 

Coefficients range: 1 to 1 

SORI = 

 

    39 
 

ans = 

 

     3     5     8     9    10    12    18    23    25    29 

 

 ; termination criteria:   or Solving Time=0.86 s ;  [63]-[66]. 

 

BBA adopts a tree search strategy to unquestioningly count all solutions that can exist to the given minimization model, spreading pruning rules to 

get rid of regions of the search space that cannot give a high quality solution point [8]-[14]. SCIP utilizes three strategies to build the binary tree such as 

search and branching strategies and rules to prune infeasible regions to find a feasible and optimum point at the same time [63]-[66].  
We conclude that if the binary tree is small in size, the solving process is going to be fast [8]-[16]. That enumeration tree is solved without 

computation complexity as the algorithmic scheme's experimental outcome illustrates. That optimal result consists of a desired outcome in the direction 

of getting a feasible and global solution in a robust manner without computation burden [8]-[14]. An optimal solution is produced without the 

optimization to be computational heavy in the process. The solving time is 0.86 s as found jn the above log output [63]-[66]. 

Furthermore, the objective function is found to be equal at the lowest value estimated by the branch-and-bound tree iterated in the log file for the 

pure optimization [15]. The simulations validate the proposed program related to algorithms’ results and the involved calculation time [70].  

Table 25 displays the results where a simulation run is considered as successful because the Primal and Dual Bounds are found to be equal. We 

understand that in the status log file, the primal and dual bound are equal, hence, the optimization problem has been solved [63]-[66]. Therefore, SCIP 

leads quickly towards a solution within a 0.00 % optimality criterion [8]. SCIP results in a solution equal to the Primal Bound for the minimization 

problem where the Dual Bound closes the gap. In such a case, it is considered that the algorithm produces a certificate of optimality [8]-[14].  
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TABLE 26. Optimal PMU Arrangement for the 30-bus Power Network 

 

PMU Arrangement Locations with Maximum Observability Indicator Equal to 39 
3, 5, 8, 9, 10, 12, 18, 23, 25, 29 

 

A notable remark is that we count the measuring times by which a power network node is 

monitored either directly by a PMU at that node or indirectly by PMUs selected at adjacency buses. 

Thus, a novel framework for the nonlinear model is proposed in the SCIP for achieving global 

optimality avoiding being trapped into a local solution point [63]-[65].  

The objective function with two products results in a single-function for optimizing in a nonlinear 

framework with binary decision variables. This single-cost function is stated with a weight element by 

which each decision variable has its priority in the multi-criteria optimization shown in Table 27.  
 

TABLE 27. Measuring Times by Which a Power Network Bus is Monitored 
 

Columns 1 through 17 

 

     3     5     3     5     3     8     3     3     4     7     2     6     2     3     5     3     3 

 

  Columns 18 through 30 

 

     3     3     3     3     4     3     4     4     2     5     4     3     3 
 

The weights are shown in Table 28. This table signifies the weights reflecting the significance of 

each variable for the purpose of getting that solution with maximum observability indicator [18]. 

 
TABLE 28. Weights Defined in the Multi-Objective Function  

 
Columns 1 through 8 

 

    0.9000    0.8333    0.9000    0.8333    0.9000    0.7333    0.9000    0.9000 

 

  Columns 9 through 16 

 

    0.8667    0.7667    0.9333    0.8000    0.9333    0.9000    0.8333    0.9000 

 

  Columns 17 through 24  

 

    0.9000    0.9000    0.9000    0.9000    0.9000    0.8667    0.9000    0.8667 

 

  Columns 25 through 30 

 

    0.8667    0.9333    0.8333    0.8667    0.9000    0.9000 
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Table 29. Optimization Process: Results of SCIP optimizer routine 
 

 

 

 

 

 ; Termination criteria:    and  Solving Time=1.798749s; [63]-[66]. 

 

time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dual bound   | primal bound | gap    
T 0.8s|    1 |     0 |     0 |       - |3625k | 0 |   - | 422 | 630 | 422 | 886 |   0    |   0 |   0 |      --                   |1.720000e+001 |   Inf  

  0.8s |     1 |     0 |   112|     - |3622k |   0 | 60 | 422 | 630 | 422 | 886 |   0  |   0 |   0 |6.833333e+000 |1.720000e+001  | 151.71 

U 0.9s|    1 |     0 |   112 |    - |3647k|   0 | 60 | 422 | 630 | 422 | 886 |   0   |   0 |   0 |6.833333e+000 |8.266667e+000  | 20.98 

  0.9s|      1 |     0 |   169 |    - |4018k|   0 |   - | 422 | 631 | 422 |1030 | 144 |   0 |   0 |8.266667e+000 |8.266667e+000 |   0.00 

  0.9s|      1 |     0 |   169 |    - |4018k|   0 |   - | 422 | 631 | 422 |1030 | 144 |   0 |   0 |8.266667e+000 |8.266667e+000 |   0.00 

SCIP Status: problem is solved [optimal solution found] 

Solving Time (sec): 0.92 

Solving Nodes: 1 

Primal Bound: +8.26666666666667e+000 (2 solutions) 

Dual Bound:    +8.26666666666667e+000 

Gap: 0.00  

Elapsed time is 1.798749 seconds. 

ans = 

  Columns 1 through 14 

 

     0     1     0     1     0     1     0     0     1     1     0     1     0     0 

  Columns 15 through 28 

     1     0     0     1     0     0     0     0     0     0     1     0     1     0 

  Columns 29 through 30 

     0     0 

Linear scalar (real, binary, 30 variables) 

Current value: 8.2667 

Coefficients range: 0.73333 to 0.93333 

SORI = 52 
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FIGURE 14. Optimal PMU Arrangement Achieved by SCIP Optimizer Routine  

TABLE 30. Optimal PMU Arrangement for the 118 Power Network 

PMU Arrangement Locations with Maximum Observability Indicator Equal to 52 
2, 4, 6, 9, 10, 12, 15, 18, 25, 27 

 

The two-criterion constraint nonlinear program is implemented with SCIP optimizer and the 

implementation of it is given in Tables 31& 33. After beginning the optimization process, SCIP will 

primarily take a few rounds of the presolving process and after that the s-BBA will explore the region 

constituted by feasible solutions in the direction of getting the optimality [63]-[65].  

The presolving process helps a lot to reformulate the initial model. Then, we solve the proposed 

model with SCIP optimizer routine to ensure globally optimality [63]-[65].  

Tables 31&33 illustrate the number of nodes spent during the binary tree implementation, the 

elapsed time and the primal and dual bounds. The difference of them goes to zero ensuring that a 

global optimal solution is achieved [8]-[16]. The optimal solutions are illustrated in Tables 31&33.  

As can be observed, the linear programming relaxations are solved at specific nodes without being 

time consuming during the iterative process [8]-[16]. Therefore, the optimal solution is reached by 

solving a small number of LP relaxations at the root nodes exploring the optimizer function [65].  

The Primal Bound is the solution for the minimization while the lower bound closes the gap 

declaring that the global certificate of optimality has been achieved [63]-[65].  

The Primal and Dual Bounds are computed, the relative gap between those levels and an optimality 

is validated when the algorithm terminates the entire process to a global ϵ-optimality. [64]. The 

relative gap was found equal to zero giving the global optimality [14]-[15].  

The polynomial problem has been optimized globally in a fast computational way as shown 

in the log output of Table 31 [70].  Table 31 shows the entire optimization process to a global                          

ϵ-optimality. The Primal Bound is the solution on the objective function and the globality is 

guaranteed because the Dual Bound has posed a lower limit in the whole process.
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TABLE 31. Optimization Process: Results of SCIP optimizer routine 
 
time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dual bound   | primal bound  | gap    
T 2.2s|    1 |     0  |       0 |     - | 26M|   0 |   - |3780 |4489 |3780 |7029   |   0 |   0  |   0   |      --                 |8.600000e+001 |    Inf  

   2.3s|    1 |     0  |   362 |     - | 26M|   0 | 205 |3780 |4489 |3780 |7029 |   0 |   0  |   0  |2.500000e+001 |8.600000e+001 | 244.00 

U 2.6s|   1 |     0  |   362 |    -  | 27M|   0 | 205 |3780 |4489 |3780 |7029 |   0 |   0   |   0 |2.500000e+001 |3.300000e+001 | 32.00 

  2.8s|     1 |     0  |   906 |     - | 28M|   0 | 211 |3780 |4490 |3780 |7427 | 398 |   0 |   0 |3.092857e+001 |3.300000e+001 |   6.70 

  2.9s|     1 |     0  |   906 |     - | 27M|   0 | 211 |3780 |4490 |3780 |6488 | 398 |   0 |   0 |3.092857e+001 |3.300000e+001 |   6.70 

  3.1s|     1 |     0  | 1358 |     - | 28M|   0 | 167 |3780 |4490 |3780 |7066 | 976 |   0 |   0 |3.173333e+001 |3.300000e+001 |   3.99 

  3.1s|     1 |     0  | 1358 |     - | 26M|   0 | 167 |3780 |4490 |3780 |3331 | 976 |   0 |   0 |3.173333e+001 |3.300000e+001 |   3.99 

  3.4s|     1 |     0  | 1642 |     - | 20M|   0 | 54 |3780 |1752 |3780 |3072 |1319 |   0  |   0 |3.200000e+001 |3.300000e+001 |   3.13 

  3.4s|     1 |     0  | 1642 |     - | 20M|   0 | 54 |3780 |1752 |3780 |2932 |1319 |   0  |   0 |3.200000e+001 |3.300000e+001 |   3.13 

  3.6s|     1 |     0  | 1759 |     - | 22M|   0 | 80 |3780 |1709 |3780 |2935 |1397 |   0  |   0 |3.200000e+001 |3.300000e+001 |   3.13 

  3.8s|     1 |     0  | 1785 |     - | 25M|   0 | 36 |3780 |1709 |3780 |3001 |1463 |   0  |   0 |3.200000e+001 |3.300000e+001 |   3.13 

  4.2s|     1 |     0  | 1823 |     - | 33M|   0 | 62 |3780 |1709 |3780 |3015 |1477 |   0  |   0 |3.200000e+001 |3.300000e+001 |   3.13 

  4.5s|     1 |     0  | 1825 |     - | 38M|   0 |   0 |3780 |1709 |3780 |3039 |1501 |   0  |   0 |3.200000e+001 |3.300000e+001 |   3.13 

* 4.5s|    1 |     0  | 1825 |     - | 38M|   0 |   - |3780 |1709 |3780 |3039 |1501 |   0   |   0 |3.200000e+001 |3.200000e+001 |  0.00 

SCIP Status: problem is solved [optimal solution found] 

Solving Time (sec): 4.54 

Solving Nodes:   1 

Primal Bound: +3.20000000000000e+001 (3 solutions) 

Dual Bound: +3.20000000000000e+001 

Gap: 0.00  

Elapsed time is 16.228007 seconds. 

 

 ; Termination criteria:    and Solving Time=4.54 s ;. 
 

SCIP  attends to produce a small sized branch-and-bound tree without producing many branching decisions. Therefore, a powerful branching 

regulation is performed that leads to optimality [14]. Τhe solver determines the Primal and Dual bounds where it terminates with the best solution [64].  
Thus, an optimal solution is attained within a zero-gap tolerance; a global solution was discovered within a 0.00 % optimality criterion. SCIP 

successfully closes the optimality gap. Gap zero means that no better possible solution can be found by far [70]. Therefore, SCIP returns a global 

optimal solution and the problem has been solved exactly avoiding being trapped into a local solution or a sub-optimal solution [63]-[65].  



IC-MSQUARE-2023
Journal of Physics: Conference Series 2701 (2024) 012001

IOP Publishing
doi:10.1088/1742-6596/2701/1/012001

58

 
 

FIGURE 15. Optimal PMU Arrangement Achieved by SCIP Optimizer Routine 
 

As observed, for the second case study, SCIP delivers optimal results with equal quality and 

quantity as those found in [23]. The optimal sites are shown in Table 32. An outcome is produced by 

the SCIP and it is a feasible optimal solution for the initial model at the same time [63]-[66]. 

 
TABLE 32. Optimal PMU Arrangement for the 118-bus Power Network 

 
PMU Arrangement Locations with Maximum Observability Indicator Equal to 154 

1, 5, 10, 12, 15, 17, 20, 23, 28, 30, 36, 40, 44, 48, 49, 52, 56, 62, 63, 68, 71, 75, 77, 80, 85, 86, 90 

94, 102, 105, 110, 114 

 

The optimization process is efficiently executed and shown in the log file illustrated in the Table 

33. During the iterative process, the Primal and Dual bounds are found to be equal in quantity [70].  

Soplex is an LP solver suitable to solve linear programming relaxations towards optimality. SoPlex 

solves the relaxed problems to find an optimum solution point. The difference of those bounds delivers 

the global certificate of optimality [63]-[66].  

For the proposed minimization problem, the Primal bound is the best possible solution whereas the 

Dual bound is culprit to close the absolute gap. Hence, the optimality is achieved within a 0.00% gap 

tolerance [45], [63]-[66]. That stopping tolerance is an adequate criterion because it says that no better 

solution can be found by the overall optimization.  

The optimal solution has a maximum observability indicator, that is, equal to . The 

elapsed computational time is reasonably spent considering the dimension of the optimization 

problem, the transformation of the polynomial problem into a polyhedral approximation and its 

computational complexity [13].  

Table 33 presents the log file produced by SCIP where the optimization process is displayed. The 

optimal solution is illustrated in Fig.16 and the PMU locations are shown in Table 34.  
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 TABLE 33. Optimization Process: Results of SCIP optimizer routine 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dual bound   | primal bound | gap    
T 2.4s|    1 |     0 |     0  |     - | 26M|   0 |   - |3780 |4489 |3780 |7029 |   0 |   0 |   0 |      --                     |8.300000e+001 |    Inf  

  2.6s|     1 |     0 |   344 |     - | 26M|   0 | 202 |3780 |4489 |3780 |7029 |   0 |   0 |   0 |2.392373e+001 |8.300000e+001 | 246.94 

U 3.0s|   1 |     0 |   344 |     - | 27M|   0 | 202 |3780 |4489 |3780 |7029 |   0 |   0 |   0 |2.392373e+001 |3.063559e+001 |  28.06 

  3.3s|     1 |     0 |   670 |     - | 28M|   0 | 149 |3780 |4490 |3780 |7489 | 460 | 0 |   0 |2.944504e+001 |3.063559e+001 |   4.04 

  3.3s|     1 |     0 |   670 |     - | 27M|   0 | 149 |3780 |4490 |3780 |6509 | 460 | 0 |   0 |2.944504e+001 |3.063559e+001 |   4.04 

  3.6s|     1 |     0 |   920 |     - | 28M|   0 | 65 |3780 |4490 |3780 |6836 | 787 |   0 |   0 |3.051332e+001 |3.063559e+001 |   0.40 

  3.6s|     1 |     0 |   920 |     - | 25M|   0 | 65 |3780 |4490 |3780 |2574 | 787 |   0 |   0 |3.051332e+001 |3.063559e+001 |   0.40 

  3.8s|     1 |     0 |   977 |     - | 18M|   0 | 27 |3780 |1372 |3780 |2063 | 871 |   0 |   0 |3.061017e+001 |3.063559e+001 |   0.08 

  3.8s|     1 |     0 |   977 |     - | 17M|   0 | 27 |3780 |1372 |3780 |1831 | 871 |   0 |   0 |3.061017e+001 |3.063559e+001 |   0.08 

  3.9s|     1 |     0 |   997 |     - | 18M|   0 | 35 |3780 |1158 |3780 |1786 | 888 |   0 |   0 |3.061017e+001 |3.063559e+001 |   0.08 

  4.0s|     1 |     0 | 1015 |     - | 19M|   0 | 32 |3780 |1158 |3780 |1831 | 933 |   0 |   0 |3.061017e+001 |3.063559e+001 |   0.08 

  4.0s|     1 |     0 | 1021 |     - | 20M|   0 | 33 |3780 |1158 |3780 |1839 | 941 |   0 |   0 |3.061017e+001 |3.063559e+001 |   0.08 

  4.2s|     1 |     0 | 1060 |     - | 22M|   0 | 43 |3780 |1158 |3780 |1848 | 950 |   0 |   0 |3.061017e+001 |3.063559e+001 |   0.08 

  4.3s|     1 |     0 | 1082 |     - | 24M|   0 | 41 |3780 |1158 |3780 |1871 | 973 |   0 |   0 |3.061017e+001 |3.063559e+001 |   0.08 

  4.4s|     1 |     2 | 1251 |     - | 24M|   0 | 41 |3780 |1158 |3780 |1871 | 973 |   0 | 17 |3.061017e+001 |3.063559e+001 |   0.08 

transformed objective value is always integral (scale: 0.00847457627118644) 

Presolving Time: 2.36 

time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dual bound   | primal bound | gap    

  4.7s|     1 |     0 | 1404 |     - | 10M|   0 | 10 | 291 | 529 | 291 | 478 |   0 |   0 | 17 |3.061017e+001 |3.063559e+001    |   0.08 

  4.7s|     1 |     0 | 1404 |     - | 10M|   0 | 10 | 291 | 529 | 291 | 471 |   0 |   0 | 17 |3.061017e+001 |3.063559e+001    |   0.08 

  4.7s|     1 |     0 | 1437 |     - | 10M|   0 | 29 | 291 | 500 | 291 | 504 | 44 |   0 | 17 |3.061017e+001 |3.063559e+001    |   0.08 

E 4.7s|    1 |     0 | 1437 |     - | 10M|   0 |   - | 291 | 500 | 291 | 504 | 44 |   0 | 34 |3.061017e+001 |3.061017e+001    |   0.00 

SCIP status: problem is solved [optimal solution found] 

Solving Time (sec): 4.74 

Solving Nodes: 1 (total of 2 nodes in 2 runs) 

Primal Bound: +3.06101694915254e+001 (3 solutions) 

Dual Bound: +3.06101694915254e+001 

Gap: 0.00 

Elapsed time is 32.601301 
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 ; Termination criteria:  
 and Solving Time=4.74 s ;   

 

 

TABLE 34. Optimal PMU Arrangement for the 118-bus Network 
 

 

 
 
 

FIGURE 16. Optimal PMU Arrangement achieved by SCIP Optimizer Routine 
 

 

SCIP optimization function performs the binary polynomial optimization model for power systems 

sized by 14 to 300 decision variables reflecting the number of power network buses within a power 

transmission grid as shown in Table 35 [71]. Hence, the polynomial constraint optimization 

problem is easy to be solved by spending a trivial quantity involving calculation time. This optimum 

point can be characterized as a high-quality optimal solution [18], [35]-[38], [41], [42], [44]-[45].  

SCIP solver explores the feasible region and gives the desired outcome at one root-node. The 

algorithm is characterized as a convergent method. The B&B algorithm explores a number of nodes 

where the relaxed problems are solved towards getting the best possible and feasible solution at the 

same time. Hence, an optimal solution was found with the dimension of the B&B tree keeping as 

small as possible. Once the MATLAB code is written, we execute this program to find optimality [62]. 

It is guaranteed that it is a global one with high probability. The optimum points are displayed in 

Tables 35-37. The numerical results are found to be a global optimal solution for power network size 

from small to medium size. The proposed arrangement of PMUs in smart grids was tested on                   

IEEE-300 bus systems. This power network reflects a large-scale optimization problem [24]-[25]. 

 BMIBNB solver supports integer, binary and continuous variables to execute an optimization 

program [70]. BMIBNB performs non-convex optimization problems, and come across the optimal 

solution. The BMIBNB optimizer function is performed with efficiency on the IEEE-300 bus system 

[61], [71]. It detects the global optimal solution for both case studies spending a trivial amount of time 

considering the dimension size of the optimization problem as illustrated in Tables 38 & 40.  

PMU Arrangement Locations with Maximum Observability Indicator Equal to 164 
3, 5, 9, 12, 15, 17, 21, 23, 29, 30, 34, 37, 40, 45, 49, 52, 56, 62, 64, 68, 71, 75, 77, 80, 85, 86, 90, 94 

101, 105, 110, 115 
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It is confirmed that it can be validated for larger power transmission networks in size [61].  The 

best resulting arrangement was found to be an economical solution satisfying the two criteria 

determined for the proposed nonlinear scheme; Optimal Arrangement of PMUs and maximum number 

of times by which a network bus is monitored either directly or indirectly [18], [44]-[45]. 

The large-scale optimization model is optimized by the bmibnb function embedded in YALMIP 

toolbox [70]. Such optimization problem corresponds to simulating the IEEE-300 bus system [61], 

[71]. The optimization problem includes  decision variables with equal number of equality 

constraints where a binary restriction of the decision variables  is defined [61], [71].  

 

TABLE 35. Best PMU Arrangement for Standard Power Systems 

SCIP Optimizer Routine to the Binary (Boolean) Optimization Problem 
IEEE bus 
system Single-Cost Function Aggregate-Cost Function 

14-bus 2, 7, 10, 13 2, 6, 7, 9 

30-bus 3, 5, 8, 9, 10, 12, 18, 23, 25, 29 2, 4, 6, 9, 10, 12, 15, 18, 25, 27 

57-bus 
1, 6, 9, 15, 18, 21, 24, 25, 28, 32, 36, 

38, 41 46, 50, 53, 57 

1, 4, 6, 9, 15, 20, 24, 28, 31, 32, 36, 38, 41 47, 

50, 53, 57 

118-bus 

1, 5, 10, 12, 15, 17, 20, 23, 28, 30, 36  

40    44, 48, 49, 52, 56, 62, 63, 68, 71 

75, 77  80 85, 86, 90, 94, 102, 105, 

110, 114 

3, 5, 9, 12, 15, 17, 21, 23, 29, 30, 34, 37, 40  45 

49, 52, 56, 62, 64, 68, 71, 75, 77, 80, 85  86, 90 

94, 101, 105, 110, 115 

300-bus 

1,  2,  3, 11, 15,  17, 19,  22, 23, 27, 

33, 37  38,  43, 48, 49, 53, 54, 55, 59, 

60,  64, 68 69, 71, 73, 76, 80, 86,  89, 

93, 96, 98, 99 101, 109, 111, 112, 

113, 116, 118, 122 125 132, 135, 

139, 141, 152, 157, 160  163, 168 

183, 187, 189, 190, 193 196  200, 

204, 208 210, 211 215, 216, 217  

219, 221, 223, 228 232, 233, 235, 

237  240, 242, 251, 265, 267 268, 

269, 270 272, 273, 274, 276, 294   

1,  2,  3, 11, 12, 15, 17, 19, 22, 23, 25, 27 29    

33, 37, 38, 43, 48, 49, 53, 54, 55, 58 59, 60   62 

64, 65,  68, 71, 79, 83, 85, 86  88,  89   93  98  

99, 101, 103, 109,  111 112, 113 116, 118 119 

124, 132, 135, 138 143, 145 152, 157  163, 167 

173, 177, 183 187, 189 190, 193, 196, 202, 204 

208, 210 211, 213 216, 217, 219 224, 225, 228 

267 268, 269 270, 272, 273, 274, 276, 294 

 

TABLE 36. Best Optimal Solution Satisfying One Objective-Criterion  Objective Function 
 

IEEE bus system Best Objective Function Value Maximum Measurement Indicator 
14-bus 4 16 

30-bus 10 39 

57-bus 17 70 

118-bus 32 154 

300-bus 87 393 

 
TABLE 37. Best Optimal Solution Satisfying Two Objective-Criterion Objective Function 

 
IEEE bus system Best Objective Function Value Maximum Measurement Indicator  
14-bus 4 19 

30-bus 10 52 

57-bus 17 72 

118-bus 32 164 

300-bus 87 432 
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As observed, the BBA solved efficiently the polynomial model in the direction of global 

optimality. The optimum point is the global solution; hence the tolerance gap is zero meaning that it 

can’t be a better solution than this found so far [8]-[15], [63]-[65].  

Gurobi and Intlinprog are used as lower bounds solvers to count the lower bound and take care of 

branching as linear programming solvers in the optimization [62], [67]. We reduce the elapsed time by 

setting ‘ ’ to zero [68], [70].  

We consider the IEEE-300 bus system for implementation to show the optimizer routine’s 

efficiency to get the optimality [61], [71].  Both case studies are illustrated in Tables 38 & 40 whereas 

the optimal PMU positioning sites are shown in Fig 17 and 18 using Gurobi as an ILP solver. Tables 

38 & 40 illustrate the entire process in optimization using the Gurobi solver [67]. The optimal results 

are obtained by testing the proposed model on the IEEE-300 bus network [61], [71].  

Table 38. Optimization Process: Results of bmibnb routine 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

* Starting YALMIP global branch & bound. 

* Upper solver: fmincon 

* Lower solver: GUROBI 

* LP solver: GUROBI 

* -Extracting bounds from model 

* -Performing root-node bound propagation 

* -Calling upper solver (no solution found) 

* -Branch-variables: 300 

* -More root-node bound-propagation 

* -Performing LP-based bound-propagation  

* -And some more root-node bound-propagation 

* Starting the b&b process 

 Node       Upper         Gap (%)   Lower         Open   Time 

    1 :   8.70000E+01     0.00     8.70000E+01    2     225s  Solution found by heuristics   

* Finished.  Cost: 87 (lower bound: 87, relative gap 1.1364e-10%) 

* Termination with relative gap satisfied  

* Timing: 22% spent in upper solver (2 problems solved) 

*               1% spent in lower solver (1 problems solved) 

*               6% spent in LP-based domain reduction (600 problems solved) 

*               1% spent in upper heuristics (1 candidates tried) 

 

sol =  

 

  struct with fields: 

 

    yalmipversion: '20210331' 

    matlabversion: '9.4.0.813654 (R2018a)' 

       yalmiptime: 0.7623 

       solvertime: 225.5867 

             info: 'Successfully solved (BMIBNB)' 

          problem: 0 

 

Elapsed time is 226.423003 seconds. 

 

ans = 
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Table 38. Optimization Process: Results of bmibnb routine (continued) 

 

  Columns 1 through 16 

 

     1     1     1     0     0     0     0     0     0     0     1     0     1     0     1     0 

 

  Columns 17 through 32 

 

     0     0     0     0     0     1     1     0     1     0     1     0     0     1     0     0 

 

  Columns 33 through 48 

 

     1     0     0     0     1     1     0     0     1     0     1     0     0     0     0     1 
 

  Columns 49 through 64 

 

     1     0     0     0     1     1     0     0     0     0     0     0     0     0     0     1 

 

  Columns 65 through 80 

 

     0     0     0     1     1     0     1     0     0     0     0     1     0     0     0     1 

 

  Columns 81 through 96 

 

     0     0     0     0     0     1     0     1     0     0     0     0     1     0     0     1 

 

  Columns 97 through 112 

 

     0     1     1     0     1     0     0     0     0     0     0     0     1     0     1     1 

 

  Columns 113 through 128 

 

     1     0     0     1     0     1     1     0     0     0     0     0     0     0     0     1 

 

  Columns 129 through 144 

 

     0     0     0     1     0     0     1     0     0     0     1     0     1     0     0     0 

 

  Columns 145 through 160 

 

     1     0     0     0     0     0     0     1     0     0     0     0     1     0     0     1 

 

  Columns 161 through 176 

 

     0     0     0     1     0     0     0     1     0     0     1     0     0     0     0     0 

 

  Columns 177 through 192 

 

     0     0     0     0     0     0     1     1     0     0     0     0     1     1     0     0 
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Table 38. Optimization Process: Results of bmibnb routine (continued) 

  Columns 193 through 208 

 

     1     0     0     1     0     0     0     0     0     1     0     0     0     0     0     0 

 

  Columns 209 through 224 

 

     1     1     0     1     0     0     1     1     1     0     0     0     0     0     1     0 

 

  Columns 225 through 240 

 

     0     1     0     0     1     1     0     0     1     0     0     1     1     1     0     1 

 

  Columns 241 through 256 

 

     0     1     0     0     0     0     0     0     0     0     1     1     0     0     0     0 

 

  Columns 257 through 272 

 

     0     0     0     0     0     1     0     0     0     0     0     1     1     1     0     1 

 

  Columns 273 through 288 

 

     0     0     1     1     1     0     0     0     0     0     0     0     0     0     0     0 

 

  Columns 289 through 300 

 

     0     0     0     0     0     0     0     0     0     0     1     1 
 

Linear scalar (real, binary, 300 variables) 

Current value: 87 

Coefficients range: 1 to 1 

 

SORI = 
 

   372 
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FIGURE 17. Optimal PMU Arrangement achieved by BMIBNB/GUROBI/FMINCON/ Routines 

TABLE 39. Optimal PMU Arrangement for the 300-bus Power Network 
 

PMU Arrangement Locations with Observability Indicator Equal to 372 
1, 2, 3, 11, 13, 15, 22, 23, 25, 27, 30, 33,  37, 38, 41, 43, 48, 49, 53, 54, 64, 68, 69, 71, 76,  80, 86   

88, 93, 96, 98, 99, 101, 109, 111, 112, 113, 116, 118, 119, 128, 132, 135, 139, 141, 145, 152, 157 

160, 164, 168, 171, 183, 184, 189, 190, 193, 196, 202, 209, 210, 212, 215, 216, 217, 223, 226  

229, 230, 233, 236, 237, 238, 240, 242, 251, 252, 262, 268, 269, 270, 272, 275, 276, 277, 299, 300 

 

Table 40 illustrated the experimental result for testing the two-criterion objective function being 

optimized under conflicting trends (minimize/maximize). To present the algorithmic idea, we illustrate 

the log file for the minimization problem in Table 40. The solver returns a solution within a 0.00% 

criterion. Thus, a validation is given for minimizing a large-scale optimization problem [61]. 

 

Table 40. Optimization Process: Results of bmibnb routine 
 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

* Starting YALMIP global branch & bound. 

* Upper solver: fmincon 

* Lower solver: GUROBI 

* LP solver: GUROBI 

* -Extracting bounds from model 

* -Performing root-node bound propagation 

* -Calling upper solver (no solution found) 

* -Branch-variables: 300 

* -More root-node bound-propagation 

* -Performing LP-based bound-propagation  

* -And some more root-node bound-propagation 

* Starting the b&b process 

 Node       Upper         Gap (%)   Lower          Open   Time 

    1 :   8.55600E+01     0.00     8.55600E+01    2     231s  Solution found by heuristics   
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Table 40. Optimization Process: Results of bmibnb routine (continued) 
 

* Finished.  Cost: 85.56 (lower bound: 85.56, relative gap 1.1553e-10%) 

* Termination with relative gap satisfied  

* Timing: 22% spent in upper solver (2 problems solved) 

*               1% spent in lower solver (1 problems solved) 

*               7% spent in LP-based domain reduction (600 problems solved) 

*               1% spent in upper heuristics (1 candidates tried) 

 

sol =  

 

  struct with fields: 

 

    yalmipversion: '20210331' 

    matlabversion: '9.4.0.813654 (R2018a)' 

       yalmiptime: 0.3034 

       solvertime: 231.0496 

             info: 'Successfully solved (BMIBNB)' 

          problem: 0 

 

Elapsed time is 231.359541 seconds. 

 

ans = 

 

  Columns 1 through 16 

 

     1     1     1     0     0     0     0     0     0     0     1     1     0     0     1     0 

 

  Columns 17 through 32 

 

     1     0     1     0     0     1     1     0     1     0     1     0     1     0     0     0 

 

  Columns 33 through 48 

 

     1     0     0     0     1     1     0     0     0     0     1     0     0     0     0     1 

 

  Columns 49 through 64 

 

     1     0     0     0     1     1     1     0     0     1     1     1     0     1     0     1 

 

  Columns 65 through 80 

 

     1     0     0     1     0     0     1     0     0     0     0     0     0     0     1     0 

 

  Columns 81 through 96 

 

     0     0     1     0     1     1     0     1     1     0     0     0     1     0     0     0 

 

  Columns 97 through 112 
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Table 40. Optimization Process: Results of bmibnb routine (continued) 
 

     0     1     1     0     1     0     1     0     0     0     0     0     1     0     1     1 

 

  Columns 113 through 128 

 

     1     0     0     1     0     1     1     0     0     0     0     1     0     0     0     0 

 

  Columns 129 through 144 

 

     0     0     0     1     1     0     0     0     0     1     0     0     0     0     1     0 

 

  Columns 145 through 160 

 

     1     0     0     0     0     0     0     1     0     0     0     0     1     0     0     0 

 

  Columns 161 through 176 

 

     0     0     1     0     0     0     1     0     0     0     0     0     1     0     0     0 

 

  Columns 177 through 192 

 

     1     0     0     0     0     0     1     0     0     0     1     0     1     1     0     0 

 

  Columns 193 through 208 

 

     1     0     0     1     0     0     0     1     0     0     0     1     0     0     0     1 

 

  Columns 209 through 224 

 

     0     1     1     0     1     0     0     1     1     0     1     0     0     0     0     1 

 

  Columns 225 through 240 

 

     1     0     0     1     0     0     0     0     0     0     0     0     0     0     0     0 

 

  Columns 241 through 256 

 

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

 

  Columns 257 through 272 

 

     0     0     0     0     0     0     0     0     0     0     1     1     1     1     0     1 

 

  Columns 273 through 288 

 

     1     1     0     1     0     0     0     0     0     0     0     0     0     0     0     0 

 

  Columns 289 through 300 

 

     0     0     0     0     0     1     0     0     0     0     0     0 
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Hence, the original model is transformed into a polyhedral approximation results in an optimal 

solution within a zero-gap and meanginless percenatage relative gap [15]. Log files produced by the 

optimizer routine shows the optimality [14]. Figures 18 and 19 show each one diagram derived by the 

optimization process whereas the optimal results are tabulated in 41, 43 & 45.  

 

FIGURE 18. Optimal PMU Arrangement achieved by BMIBNB/GUROBI/FMINCON/ Routine 

                          TABLE 41. Optimal PMU Arrangement for 300-bus Power Network 

PMU Arrangement Locations with Maximum Observability Indicator Equal to 432 
1, 2, 3,  11,  12, 15, 17, 19, 22, 23, 25, 27, 29, 33, 37, 38, 43, 48, 49, 53, 54, 55,  58, 59,  60,  62  

64,  65, 68, 71, 79,  83, 85, 86, 88,  89,  93,  98,  99, 101, 103, 109, 111, 112, 113, 116, 118, 119   

124, 132, 133, 138, 143, 145, 152, 157, 163, 167, 173, 177, 183, 187, 189, 190, 193, 196, 200,  204  

208, 210, 211, 213, 216, 217, 219, 224, 225, 228, 267, 268, 269, 270, 272, 273, 274, 276,  294 

 

Tables 42 & 44 shows the whole optimization is derived by the Intlinprog solver included in the 

MATLAB optimization library [62]. The upper bound on the cost function is the global solution due to 

the fact that the lower bound closes the gap. Therefore, the solution is achieved within a Gap (%) 

equal to zero. The optimizer function is invoked within the MATLAB optimization library which 

interacts with the YALMIP library [58], [67]-[69].  

The ILP solver counts the lower bounds and an LP solver is utilized to solve the relaxed problems 

[8]-[16]. The local nonlinear solver is the FMINCON solver or the IPOPT optimizer routine embedded 

in the YALMIP BBA solver to come across the upper bounds [8]-[16]. Using NLP and ILP functions 

in optimizing the proposed model, it is proven the efficiency of the entire procedure by delivering 

trade-off optimal solutions. Such optimal solutions are given in [44]-[45] covering the concept of 

conflicting trends (minimize/maximize) [15]-[16].  
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Table 42. Optimization Process: Results of bmibnb routine 

* Starting YALMIP global branch & bound. 

* Upper solver: fmincon 

* Lower solver: INTLINPROG 

* LP solver: INTLINPROG 

* -Extracting bounds from model 

* -Performing root-node bound propagation 

* -Calling upper solver (no solution found) 

* -Branch-variables: 300 

* -More root-node bound-propagation 

* -Performing LP-based bound-propagation 

* -And some more root-node bound-propagation 

* Starting the b&b process 

Node       Upper          Gap (%)   Lower        Open   Time 

1:        8.70000E+01     0.00    8.70000E+01    2     320s Solution found by heuristics 

* Finished.  Cost: 87 (lower bound: 87, relative gap 1.1361e-10%) 

* Termination with relative gap satisfied 

* Timing: 27% spent in upper solver (2 problems solved) 

*               2% spent in lower solver (1 problems solved) 

*               9% spent in LP-based domain reduction (600 problems solved) 

*               1% spent in upper heuristics (1 candidates tried) 

sol = 

struct with fields: 

yalmipversion: '20210331' 

matlabversion: '9.4.0.813654 (R2018a)' 

yalmiptime: 0.2423 

solvertime: 263.7147 

info: 'Successfully solved (BMIBNB)' 

problem: 0 

Elapsed time is 263.955948 seconds. 

 

ans = 

 

Columns 1 through 16 

 

1     1     1     0     0     0     0     0     0     0     1     0     0     0     1     0 

 

Columns 17 through 32 

 

0     0     1     0     0     0     1     0     1     0     1     0     1     0     0     0 

 

Columns 33 through 48 

 
1     0     0     0     1     0     0     0     0     0     1     0     0     0     0     1 

 

Columns 49 through 64 

 

1     0     0     0     1     1     0     0     0     0     0     0     0     1     0     1 

 

Columns 65 through 80 
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Table 42. Optimization Process: Results of bmibnb routine (continued) 

 
0     0     0     1     1     0     1     0     0     0     0     1     0     0     0     1 

 

Columns 81 through 96 

 

0     0     0     0     0     1     0     1     0     0     0     1     1     0     0     1 

 

Columns 97 through 112 

 

0     1     1     0     1     0     0     0     0     0     0     0     1     0     1     1 

 

Columns 113 through 128 

 

1     0     0     1     0     1     0     0     0     1     0     0     1     0     0     0 

 

Columns 129 through 144 

 

0     0     0     1     0     0     1     0     0     0     1     0     1     0     0     0 

 

Columns 145 through 160 

 

0     0     0     0     0     0     0     1     0     0     0     0     1     0     0     0 

 

Columns 161 through 176 

 

0     0     0     1     0     0     1     1     0     0     1     0     0     0     0     0 

 

Columns 177 through 192 

 

0     0     0     0     0     0     1     1     0     0     0     0     1     1     0     0 

 

Columns 193 through 208 

 

1     0     0     1     0     0     0     0     0     1     0     0     0     0     0     0 

 

Columns 209 through 224 

 

1     1     0     1     0     0     1     1     1     0     0     0     0     0     1     0 

 

Columns 225 through 240 

 

0     1     0     0     1     1     0     0     1     0     0     1     1     1     0     0 

Columns 241 through 256 

 

0     1     0     0     0     0     0     0     0     0     1     1     1     0     0     1 

 

Columns 257 through 272 

 

0     0     0     0     0     1     0     0     1     0     0     1     1     1     0     1 
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Table 42. Optimization Process: Results of bmibnb routine (continued) 

 

Columns 273 through 288 

 
0     0     1     1     1     0     0     0     0     0     0     0     0     0     0     0 

 

Columns 289 through 300 

 

0     0     0     0     0     0     0     0     0     0     1     1 

 

Linear scalar (real, binary, 300 variables) 

 
Current value: 87 

 
Coefficients range: 1 to 1 

 

SORI = 

 

371 

 

Fig.19 illustrates the plot diagram of the entire optimization problem whereas the exact PMU 

positioning sites are shown in Table 43 without the optimal result to be affected by floating-points 

phainomenon.  

 

FIGURE 19. Optimal PMU Arrangement achieved by BMIBNB/ INTLINPROG /FMINCON 

Table 44 illustrates that the optimal solution with maximum indicator of observability for a large-

scale optimization problem reflects the IEEE-300 bus system [61], [71]. The process optimization 

illustrates that a B&B process is within a globalized strategy and converges to a global solution which 

is the upper bound of the B&B tree given at a root-node [70].  

The upper bound is utilized to find the objective function for the minimization problem [14] 

whereas the lower bound minimizes the absolute gap delivering a global optimum solution [8]. This 

solution is achieved within a zero-absolute gap and a meaningless percentage relative gap [70].  
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TABLE 43. Optimal PMU Arrangement for the 300-bus Power Network 
 

PMU Arrangement Locations with Observability Indicator Equal to 371 
1, 2, 3, 11, 15, 19, 23,  25,  27, 29, 33, 37, 43, 48, 49, 53, 71, 76, 80, 86, 88, 92, 93, 96, 98, 99, 101  

109, 111, 112, 113, 116, 118, 122, 125, 132, 135, 139, 141, 152, 157, 164, 167, 168, 171, 183, 184   

189, 190, 193, 196, 202, 209, 210, 212, 215, 216, 217, 223, 226, 229, 230, 233, 236, 237, 238, 242   

251, 252, 253, 256, 262, 265, 268, 269, 270, 272, 275, 276, 277, 299, 300 

 

Table 44. Optimization Process: Results of bmibnb 
 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

* Starting YALMIP global branch & bound. 

* Upper solver: fmincon 

* Lower solver: INTLINPROG 

* LP solver: INTLINPROG 

* -Extracting bounds from model 

* -Performing root-node bound propagation 

* -Calling upper solver (no solution found) 

* -Branch-variables: 300 

* -More root-node bound-propagation 

* -Performing LP-based bound-propagation  

* -And some more root-node bound-propagation 

* Starting the b&b process 

Node           Upper          Gap (%)    Lower         Open        Time 

    1:        8.55600E+01     0.00     8.55600E+01    2         309s Solution found by heuristics   

* Finished.  Cost: 85.56 (lower bound: 85.56, relative gap 1.1553e-10%) 

* Termination with relative gap satisfied  

* Timing: 22% spent in upper solver (2 problems solved) 

*               2% spent in lower solver (1 problems solved) 

*               9% spent in LP-based domain reduction (600 problems solved) 

*               1% spent in upper heuristics (1 candidates tried) 

Elapsed time is 241.958038 seconds. 

sol = 

struct with fields: 

yalmipversion: '20210331' 

matlabversion: '9.4.0.813654 (R2018a)' 

yalmiptime: 0.2492 

solvertime: 241.7048 

info: 'Successfully solved (BMIBNB)' 

problem: 0 

ans = 

 

  Columns 1 through 16 

 

     1     1     1     0     0     0     0     0     0     0     1     1     0     0     1     0 

 

  Columns 17 through 32 

 

     1     0     1     0     0     1     1     0     1     0     1     0     1     0     0     0 
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Table 44. Optimization Process: Results of bmibnb (continued) 
 

  Columns 33 through 48 

 

     1     0     0     0     1     1     0     0     0     0     1     0     0     0     0     1 

 

  Columns 49 through 64 

 
     1     0     0     0     1     1     1     0     0     1     1     1     0     1     0     1 

 

  Columns 65 through 80 

 

     1     0     0     1     0     0     1     0     0     0     0     0     0     0     1     0 

 
  Columns 81 through 96 

 

     0     0     1     0     1     1     0     1     1     0     0     0     1     0     0     0 

 

  Columns 97 through 112 

 

     0     1     1     0     1     0     1     0     0     0     0     0     1     0     1     1 

 

  Columns 113 through 128 

 

     1     0     0     1     0     1     1     0     0     0     0     1     0     0     0     0 

 

  Columns 129 through 144 

     0     0     0     1     0     0     1     0     0     1     0     0     0     0     1     0 

 

  Columns 145 through 160 

 

     1     0     0     0     0     0     0     1     0     0     0     0     1     0     0     0 

 

  Columns 161 through 176 

 

     0     0     1     0     0     0     1     0     0     0     0     0     1     0     0     0 

 

  Columns 177 through 192 

 

     1     0     0     0     0     0     1     0     0     0     1     0     1     1     0     0 

 

  Columns 193 through 208 

 

     1     0     0     1     0     0     0     1     0     0     0     1     0     0     0     1 

 

  Columns 209 through 224 

 

     0     1     1     0     1     0     0     1     1     0     1     0     0     0     0     1 
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Table 44. Optimization Process: Results of bmibnb (continued) 
 

  Columns 225 through 240 

 

     1     0     0     1     0     0     0     0     0     0     0     0     0     0     0     0 

 
  Columns 241 through 256 

 

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

 

  Columns 257 through 272 

 
     0     0     0     0     0     0     0     0     0     0     1     1     1     1     0     1 

 

  Columns 273 through 288 

 

     1     1     0     1     0     0     0     0     0     0     0     0     0     0     0     0 

 
  Columns 289 through 300 

 

     0     0     0     0     0     1     0     0     0     0     0     0 

 
Linear scalar (real, binary, 300 variables) 

Current value: 85.56 

Coefficients range: 0.96 to 0.99333 

 

SORI = 

 
   432 

 

FIGURE 20. Optimal PMU Arrangement Achieved by BMIBNB/Intlinprog/FMINCON 
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TABLE 45. Optimal PMU Arrangement for the 300-bus Power Network 

PMU Arrangement Locations with Maximum Observability Indicator Equal to 432 
1, 2, 3, 11, 12, 15, 17, 19, 22, 23, 25, 27, 29, 33, 37, 38, 43, 48, 49. 53, 54, 55, 58, 59, 60, 62, 64   

65, 68, 71, 79, 83, 85, 86, 88, 89, 93, 98, 99, 101,103, 109, 111, 112, 113, 116, 118, 119, 124, 132   

135, 138, 143, 145, 152, 157, 163, 167, 173, 177, 183, 187, 189, 190, 193, 196, 200, 204, 208   

210, 211, 213, 216, 217, 219, 224, 225, 228, 267, 268, 269, 270, 272, 273, 274, 276, 294 

 

Tables 46 and 48 illustrate the BBA’s performance calling the SCIP optimizer as an outer 

approximation solver [63]-[65]. This polyhedron formulation can be solved using an s-BBA embedded 

in SCIP optimizer [63]-[66].  

During the iterative process, the optimizer calculates the variation between the upper and lower 

bounds and results in the best possible solution; a global one at the same time. The zero-gap is the 

desired tolerance to be met for the purpose of getting the optimum point at a one root-node. 

 

                                              Table 46. Optimization Process: Results of  bmibnb routine 
 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

* Starting YALMIP global branch & bound. 

* Upper solver     : fmincon 

* Lower solver    : SCIP 

* LP solver          : SCIP 

* -Extracting bounds from model 

* -Performing root-node bound propagation 

* -Calling upper solver (no solution found) 

* -Branch-variables: 300 

* -More root-node bound-propagation 

* -Performing LP-based bound-propagation  

* -And some more root-node bound-propagation 

* Starting the b&b process 

 Node       Upper         Gap (%)  Lower          Open   Time 

    1:   8.70000E+01     0.00    8.70000E+01    2    681s Solution found by heuristics   

* Finished.  Cost: 87 (lower bound: 87, relative gap 1.1364e-10%) 

* Termination with relative gap satisfied  

* Timing: 10% spent in upper solver (2 problems solved) 

*               3% spent in lower solver (1 problems solved) 

*               105% spent in LP-based domain reduction (600 problems solved) 

*               1% spent in upper heuristics (1 candidates tried) 

Elapsed time is 682.055768 seconds. 

 

ans = 

 

  Columns 1 through 16 

 

     1     1     1     0     0     0     0     0     0     0     1     0     0     0     1     0 

 

  Columns 17 through 32 

 
     0     0     0     0     0     1     1     0     1     1     1     0     1     0     0     0 

 

  Columns 33 through 48 
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                          Table 46. Optimization Process: Results of  bmibnb routine (continued) 
 

 

     1     0     0     0     1     1     0     0     0     0     1     0     0     0     0     1 

 

  Columns 49 through 64 

 

     1     0     0     0     1     1     0     0     0     0     0     0     0     1     0     1 

 

  Columns 65 through 80 

 

     0     0     0     1     1     0     1     0     0     0     0     1     0     0     0     0 

 

  Columns 81 through 96 

 

     0     0     1     0     0     1     0     0     1     0     0     0     1     0     0     0 

 

  Columns 97 through 112 

 
     0     1     1     0     1     0     1     0     0     0     0     0     1     0     1     1 

 

  Columns 113 through 128 

 

     1     0     0     1     0     1     0     0     0     1     0     0     1     0     0     0 

 

  Columns 129 through 144 

 

     0     0     0     1     0     0     1     0     0     1     0     0     1     0     0     0 

 

  Columns 145 through 160 

 

     0     0     0     0     0     0     0     1     0     0     0     0     1     0     0     1 

 
  Columns 161 through 176 

 

     0     0     0     1     0     0     0     1     0     0     0     0     1     0     0     0 

 

  Columns 177 through 192 

 

     0     0     0     0     0     0     1     0     0     0     1     0     1     1     0     0 

 

  Columns 193 through 208 

 

     1     0     0     1     0     0     0     0     0     1     0     1     0     0     0     0 

 

  Columns 209 through 224 

 

     1     1     0     1     1     0     0     1     0     1     0     0     0     0     1     0 

 

  Columns 225 through 240 
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                          Table 46. Optimization Process: Results of  bmibnb routine (continued) 
 

 

     1     0     0     1     0     1     0     0     1     0     1     1     1     1     0     0 

 

  Columns 241 through 256 

 

     0     0     0     0     0     0     0     0     0     0     1     1     0     0     0     0 

 

  Columns 257 through 272 

 

     0     0     0     0     0     1     0     0     1     0     0     1     1     1     0     1 

 

  Columns 273 through 288 

 

     0     0     1     1     1     0     0     0     0     0     0     0     0     0     0     0 

  Columns 289 through 300 

 

     0     0     0     0     0     0     0     0     0     0     1     1 

 

Linear scalar (real, binary, 300 variables) 

Current value: 87 

Coefficients range: 1 to 1 

 

SORI = 

 

   384 

 
Figures 21 and 22 illustrate the best possible PMU sites for both case studies. Those optimal sites 

are shown in Tables 48 and 49. Table 49 illustrate the process optimization whereas the BBA tree is 

implemented to get the best optimal solution within zero-gap tolerance and a meaningless relative gap.  

 

FIGURE 21. Optimal PMU Arrangement Achieved by BMIBNB Routine 
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TABLE 47. Optimal PMU Arrangement for the 300-bus Power Network 
 

PMU Arrangement Locations with Observability Indicator Equal to 384 
1, 2,  3, 11, 15, 22, 23, 25, 26, 27, 29, 33, 37, 38, 43, 48, 49, 53, 54, 62, 64, 68, 69, 71, 76 

83, 86, 89, 93, 98, 99, 101, 103, 109, 111, 112, 113, 116, 118, 122, 125, 132, 135, 138, 141 

152, 157, 160, 164, 168, 173, 183, 187, 189, 190, 193, 196, 202, 204, 209, 210, 212 213 

216, 218, 223, 225, 228 230, 233, 235, 236, 237, 238, 251, 252, 262, 265, 268, 269, 270 

272, 275, 276, 277, 299, 300 

 

The optimal PMU localization sites are shown in Fig.22 whereas the exact sites are tabulated in 

Tables 48 & 49. Table 49 illustrates the performance of the multi-criterion objection function, and 

getting the global optimum point with a 0.00 optimality criterion [8]-[16].  

The whole optimization model is successfully minimized at single run within an optimality gap. 

The optimality gap means how much better an optimum point can be achieved by the entire process 

optimization. The optimal solution is achieved with a zero-gap tolerance and meanglisess relative gap. 

The iterative process ends up with the best optimal solution spending reasonable running time 

considering the optimization problem’s dimension size. The B&B algorithm ends up with an upper 

bound within an acceptable relative gap, almost zero and within an absolute gap to be equal to zero 

and the lower bound is culprit to minimize it [68]-[70].  

A global solution is achieved at the given root-node without signifact elapsed time. Thus, a global 

solution is attained at a given root-node within an absolute zero-gap and a meaningless percentage 

relative gap [70]. The  polynomial model extends the programing models presented in [44]-[45] 

tested on the  300 bus system [61], [71]. The global BBA delivers the best optimal solution, that is, 

 with a system observability index equal to  [35], [44]-[45].  

This measurement indicator redundancy is the upper amount for achieving measurements with 

maximum reliability in a Smart Grid [18], [23], [35], [44]-[45]. The optimal PMU’s number and their 

positions in a power transmission grid help a lot to monitor in real-time the Smart Grid [2]-[3]. 

As a result of that, the gap tolerance is found to be equal to zero which ensures that a global 

optimality is discovered at a root-node. All log files illustrate that the optimizer routine is able to get a 

solution within 0.00 %, and this fact is a necessary and sufficient condition to certify optimality. 

 

Table 48. Optimization Process: Results of bmibnb routine 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

* Starting YALMIP global branch & bound. 

* Upper solver: fmincon 

* Lower solver: SCIP 

* LP solver: SCIP 

* -Extracting bounds from model 

* -Performing root-node bound propagation 

* -Calling upper solver (no solution found) 

* -Branch-variables: 300 

* -More root-node bound-propagation 

* -Performing LP-based bound-propagation 

* -And some more root-node bound-propagation 

* Starting the b&b process 

Node       Upper          Gap (%)   Lower        Open   Time 

1:        8.55600E+01     0.00     8.55600E+01    2    621s Solution found by heuristics 

* Finished.  Cost: 85.56 (lower bound: 85.56, relative gap 1.1553e-10%) 

* Termination with relative gap satisfied 
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Table 48. Optimization Process: Results of bmibnb routine (continued) 

* Timing: 10% spent in upper solver (2 problems solved) 

*               1% spent in lower solver (1 problems solved) 

*               104% spent in LP-based domain reduction (600 problems solved) 

*               1% spent in upper heuristics (1 candidates tried) 

Elapsed time is 622.548840 seconds. 

ans = 

Columns 1 through 16 

 

1     1     1     0     0     0     0     0     0     0     1     1     0     0     1     0 

 

Columns 17 through 32 

 

1     0     1     0     0     1     1     0     1     0     1     0     1     0     0     0 

 

Columns 33 through 48 

 

1     0     0     0     1     1     0     0     0     0     1     0     0     0     0     1 

 

Columns 49 through 64 

 

1     0     0     0     1     1     1     0     0     1     1     1     0     1     0     1 
 

Columns 65 through 80 

 

1     0     0     1     0     0     1     0     0     0     0     0     0     0     1     0 
 

Columns 81 through 96 
 

0     0     1     0     1     1     0     1     1     0     0     0     1     0     0     0 
 

Columns 97 through 112 

 

0     1     1     0     1     0     1     0     0     0     0     0     1     0     1     1 

 

Columns 113 through 128 

 

1     0     0     1     0     1     1     0     0     0     0     1     0     0     0     0 

 

Columns 129 through 144 

 

0     0     0     1     0     0     1     0     0     1     0     0     0     0     1     0 

 

Columns 145 through 160 

 

1     0     0     0     0     0     0     1     0     0     0     0     1     0     0     0 

 

Columns 161 through 176 

 

0     0     1     0     0     0     1     0     0     0     0     0     1     0     0     0 
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Table 48. Optimization Process: Results of bmibnb routine (continued) 

 

Columns 177 through 192 

 

1     0     0     0     0     0     1     0     0     0     1     0     1     1     0     0 

 

Columns 193 through 208 

 

1     0     0     1     0     0     0     0     0     1     0     1     0     0     0     1 

 

Columns 209 through 224 

 

0     1     1     0     1     0     0     1     1     0     1     0     0     0     0     1 
 

Columns 225 through 240 

 

1     0     0     1     0     0     0     0     0     0     0     0     0     0     0     0 

 

Columns 241 through 256 

 

0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

 

Columns 257 through 272 

 

0     0     0     0     0     0     0     0     0     0     1     1     1     1     0     1 

 

Columns 273 through 288 

 

1     1     0     1     0     0     0     0     0     0     0     0     0     0     0     0 

 

Columns 289 through 300 

 

0     0     0     0     0     1     0     0     0     0     0     0 

 

Linear scalar (real, binary, 300 variables) 

Current value: 85.56 

Coefficients range: 0.96 to 0.99333 

 

SORI = 
 

432 



IC-MSQUARE-2023
Journal of Physics: Conference Series 2701 (2024) 012001

IOP Publishing
doi:10.1088/1742-6596/2701/1/012001

81

 
 

FIGURE 22. Optimal PMU Arrangement Achieved by BMIBNB/SCIP/FMINCON/Routines 
 

TABLE 49. Optimal PMU Arrangement for the 300-bus Power Network 

PMU Arrangement Locations with Maximum Observability Indicator Equal to 432           
1, 2, 3, 11,  12,  15, 17, 19,  22,  23, 25, 27, 29, 33, 37, 38, 43, 48, 49,  53, 54, 55, 58, 59, 60,  62, 64 

65, 68, 71, 79,  83,  85, 86, 88, 89,  93,  98,  99, 101, 103, 109, 111, 112, 113, 116, 118, 119, 124, 132 

135, 138 , 143, 145, 152, 157, 163, 167, 173, 177, 183, 187, 189, 190, 193, 196, 202,  204, 208, 210 

211, 213,  216,  217, 219, 224, 225, 228, 267, 268, 269, 270, 272, 273, 274, 276, 294 

The simulation run illustrates the ability to accomplish optimality goals related to convergence 

speed and gap-tolerances and optimality metrics leading to ℇ-optimality. The optimum point is a 

global solution within a zero-gap tolerance and a trivial amount of computational time spent by the 

optimizer function. Competitive trends getting involved in the optimization function are satisfied.  

The solution has an objective 8.55600E+01  whereas the lower bound is at 8.55600E+01  which is 

responsible to minimize the absolute gap. The optimal solution is with a 0.00 % optimality whereas 

the relative gap is meaningless [70]. As presented by the log file, the lower bound closed the gap 

ensuring a globally optimality of certificate. The whole procedure is terminated at one root-node.  

As observed, the two criteria declared in the augmented function are fully satisfied given that the 

optimal solution is a feasible one from the aspect of minimization of synchrophasor sensors optimally 

placed around the 300-bus system while the maximum reliability of measurements are achieved. 

SCIP delivers the best optimal solution within a gap equal to zero [64]-[65].  

Thus, a global optimal solution is achieved. The optimal result is a global solution given that it is 

achieved satisfying a  zero-gap tolerance and a relative gap close to zero [70]. Thus, the B&B tree’s 

upper bound is considered the best optimal solution for the mininimization problem [9]; the global one 

since the gap optimality-tolerance is zero [14]-[15], [70].  

Hence, the lower bound is the culprit to close the gap [69]. A zero-gap tolerance and a relative gap 

close to zero or zero are calculated and they depend on the complexity of the minimization problem, 

the achievement of a global optimal solution is attained under warranty [53].   

All algorithms are stable for solving the process optimization, and thus a globally convergent 

algorithmic scheme is developed to come across optimality in reasonable runtime considering the 

dimension size of the optimization problem [24]-[25].  

The experimental results have illustrated that the new B&B algorithm is easy to give global 

optimality jointly with external solvers such as ILP and NLP solvers. Hence, the optimization problem 
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is declared without considering uncertainties being relevant to the determination of a global optimal 

solution [24]-[25]. The log file is the certificate to ensure that the global solution has been achieved. 

Three integer programming solvers were selected to count the lower bound, to solve the relaxed 

problems and estimate the variation between the upper and lower bounds [14]. Gurobi and MATLAB 

intlinprog are commercial solvers and SCIP is an open-source code [62], [66]-[67].  

The only considerable experimental time is spent by the upper solver to come across the first 

incumbent or otherwise best integral solution [13]. As an Upper Solver, FMINCON was executed for 

the purpose of getting the best integral solution found so far [62]. Also, a considerable run time is 

spent in LP-based domain reduction. The elapsed time is reasonably spent considering the size of the 

minimization problem. We illustrate the log file for the minimization problem in Table 46. 

A robust non-unique constrained global optimum point is derived spending a trivial run time 

considering the dimension size of the optimization problem. The gap was found zero where the 

relative gap is satisfied. Hence, the YALMIP B&B optimizer delivers a global optimum point [70]. 

 

17.  Numerical Discussion about the simulation results 
In this study, we have introduced and studied the transformation of a polynomial binary (Boolean) 

optimization model by polyhedral approximation methods, specifically the concept of using ILP 

solvers and NLP solvers to count the upper and lower levels in the B&B tree [8]-[14].  

The foremost innovation is that a system of polynomial equalities can be linearized to a polyhedral 

approximation where the binary decision variables are getting relaxed to get an optimal solution [14]-

[16]. Τhe attracting attention characteristic of the proposed algorithmic scheme is that a global optimal 

solution is achieved as well as a trivial runtime is spent [70]. The algorithmic scheme was tested on 

power systems from network buses and solved on a global solution. Some corresponding 

optimal results were derived and found to be global optimal solutions [8]-[9].  

The global optimal solution ensures full condition observability and maximizes the number of 

measurements in unison for each power network bus. Hence, each power network node is monitored 

with the maximum number of times by a well-established PMUs number in the power grid either 

directly or indirectly [18], [23], [35], [38], [41]-[42], [44]- [45].  

A computational difficult task is to come across the global optimum, and most times the nonlinear 

algorithm is getting stuck in a local optimum point [8]-[16], [24]-[31]. To avoid being trapped in a 

non-global minimum point, clustering methods are used to initialize the iterative process [44].  

For that reason, we declare the transformation of the initial model into a polyhedral approximation, 

to ensure sufficient conditions for optimality where a global solution has been found for every 

benchmark IEEE test system [63]-[64].  

Ιt is significant to declare that the optimization model is able to be solved towards global optimality 

although the constraint function is non-convex with a binary restriction  and usually a local 

minimum point is detected by the optimization calculations being used so far [8]-[16], [24]-[31]. 

Here we draw a process optimization to come across global optimal solutions with a BMIBNB 

solver. This optimizer routine interfaces an LP solver for branching implementation of the B&B tree.  

The ILP solver as well as the NLP solver compute both the upper and lower bounds on the 

objective value at the given root-node. The absolute gap is the variation between those bounds to 

declare a condition for an adequate optimality.  

The variation between those bounds results in a zero optimality gap value. Hence, a global optimal 

solution is attained for every experimental result [68]-[70].  

The arousing interest of this research work is that the proposed programming model is solved 

globally. As found by simulating the polynomial model, the LP-based domain reduction is performed 

in less time than the case without selecting the above option [8]-[16].  

As observed by the desired outcome, the cost function value is the best outcome given that this cost 

price is on the side of an absolute gap tolerance. The minimization problem is proved easy to be 

solved because the solution has been found at the given root-node within a 0.00 % optimality gap. 

The optimality criterion is an absolute tolerance for optimality and it found to be zero giving with 

this way the best possible solution. This solution is the upper bound on the objective function for the 
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minimization problem. The zero-gap tolerance is a desired outcome obtainable by a considerable 

termination criterion to take accountability to come across a global optimal solution point [14].  

The optimal solution point is the best number of PMU which is a necessity to cover the complete 

power network [17]-[23]. This PMUs number is adequate in a second stage for maximizing the 

amount of the measuring times for each power network bus to be observed within the power 

transmission grid. The optimal solutions are equal in quality as well as in quantity to those found by 

nonlinear and evolutionary algorithms [44]-[45]. Hence, a certificate of optimality is achieved. 

 

18.  Noteworthy Remarks and Final Outlook 
This study comes to cover this lack of global knowledge in getting optimal solutions related to the 

specific optimization problem. Thus, the aim is to deliver the true optimality of the mathematical 

model being optimized using the YALMIP in combination with MATLAB. 

The binary (Boolean) optimization model is solved through the BMIBNB optimizer function to 

figure out the global optimal solution and tested on  realistic power transmission systems.  

BMIBNB is a customary branch & bound algorithm for solving non-convex optimization problems 

that relies on  linear programming (LP) relaxations and convex approximations enclosed in the B&B 

tree. The BMIBNB optimizer routine interfaces suitable external solvers to solve the proposed 

programming model. The external solvers are ranked into NLP and ILP solvers. 

The algorithmic procedure interacts with technology advanaced ILP functions and local solvers for 

the purpose of getting a global optimal solution.  

This can be produced by using widespread backbone optimization tools acting in the YALMIP 

environment, an optimization library which is fully compatible with optimizer functions embedded in 

MATLAB optimization library, Gurobi, and open-source NLP and ILP solvers. These optimization 

functions enact an interior in YALMIP function  to effectively solve the proposed NLP model 

for all supported optimization solvers, commercial or not in the direction of getting global optimality.  

The aim is to define all decision variables in a binary symbolic format and the constraints needed 

for the optimization problem statement. BMIBNB interfaces external solvers such as FMINCON or 

IPOPT as an upper solver and a suitable ILP solver as a lower routine.  

The upper solver such as the FMINCON or IPOPT routine is utilized to attain the upper bound on 

the optimum point, that is, the best integral solution achieved so far by the process optimization.  

The ILP solver is adopted as an LP solver to implement the branching and exploring the nodes in 

the B&B tree as well as to prune infeasible regions [70]. The ILP optimizer builds the B&B tree to 

estimate the lower bounds whereas the local solver comes across the upper bounds.  

Aslo, a lower bound is calculated being responsible to close the absolute gap. LP relaxations are 

solved at root-nodes and the upper and lower bounds are constantly compared so as a gap tolerance as 

well as a  meaningless relative gap to be computed for getting the global optimum.  

The routine is suitable for the implementation of non-convex optimization problems that rely on 

linear programming (LP) relaxations that encloses a convex act of estimating. The lower solver takes 

care of solving the LP relaxations during the B&B implementation tree whereas the nonlinear solver 

measures the appropriate computations of the upper bounds at one root-node. The upper bound is the 

objective solution while the lower bound is culprit to close the absolute gap giving a global optimality.  

This mathematical methodology allows us to escape local optimal solutions, and it can be identified 

as the global optimal solution points with a good enough convergence speed. It encounters non-unique 

constrained global minima points with sufficient warranty within a zero-gap tolerance criterion.  
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