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Abstract 
 The weighted xgamma distribution, a weighted version of xgamma distribution (Sen et 

al. (2016) is introduced and studied in this article. A special non-negative weight function is 

considered to obtain the form of the weighted xgamma distribution which is shown as a 

generalization of xgamma distribution. The length biased xgamma distribution is then obtained as 

a special case of weighted xgamma density. Different distributional and survival properties of 

length biased xgamma distribution are studied along with the distributions of order statistics and 

entropy measure. We propose method of moments and maximum likelihood for estimating the 

unknown parameter of the length biased version. A sample generation algorithm along with a 

Monte Carlo simulation study is prepared to observe the pattern of the estimates for different 

sample sizes. Finally, a real life time-to-event data set is analyzed as an illustration and length 

biased distribution is compared with other standard lifetime distributions and length biased 

weighted exponential distribution to check the suitability of the model. 

 

Key Words: Weighted Distributions, Maximum Likelihood Estimation, Order Statistics, 

Fatigue Life. 

 
1. Introduction 
 The concept of weighted distributions can be traced back to Fisher (1934) in 

the study of the effect of methods of ascertainment upon the estimation of frequencies. 

While extending the basic ideas of Fisher, Rao (1965, 1985) saw the need for a unifying 

concept by identifying various sampling situations that can be modeled by what he 

termed as weighted distributions. Zelen (1974) introduced weighted distributions to 

represent what he broadly perceived as length-biased sampling in the context of cell 

kinetics and the early detection of disease. In a series of articles with other co-authors, 

Patil has extensively pursued weighted distributions for purposes of encountered data 

analysis, equilibrium population analysis subject to harvesting and predation, meta-

analysis incorporating publication bias and heterogeneity, modeling clustering and 

extraneous variation, etc. (see for more details on these applications Dennis and Patil 

(1984), Laird et al. (1988), Patil (1981, 1991, 1996), Patil and Ord (1976), Patil and 

Rao (1978), Patil and Taillie (1989), Patil et al. (1993), Taillie et al. (1995) and 

references therein). More references can be seen in Patil (1997). 
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In this article, we study the weighted version of xgamma distribution as a generalization 

of xgamma distribution (see Sen et al. (2016)), with special reference study made to its 

length biased version. The method of moments and maximum likelihood estimation 

procedures are proposed to estimate the unknown parameter of the length biased 

xgamma distribution. We apply the length biased xgamma distribution for modeling 

time-to-event data set. 

 
2. The weighted xgamma distribution 
 The form of the probability density function (pdf) of weighted distribution, we 

have by definition, see Patil et al. (1988), as 

       .
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Following (1) we have r
th

 order moment weighted version of xgamma distribution with 

the following definition. 

 

Definition 1: A non-negative continuous random variable, X, is said to follow weighted 

xgamma distribution with parameters r and θ if its pdf  is of the form 
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We denote it by ),(~ θrWXGX . 

Figure 1 shows the density functions for weighted xgamma distribution for different 

values of r and θ. 
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Figure 1: Probability density curves of weighted xgamma distribution for different 

values of θ and r. 
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The cumulative distribution function (cdf) of weighted xgamma distribution is 
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where dueuxa

x

ua∫ −−=
0

1),(γ  is the lower incomplete gamma function. 

The survival function (sf) is then, 
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where dueuxa
x

ua∫
∞

−−=Γ 1),(  is the upper incomplete gamma function. 

The failure rate (FR) or hazard rate (HR) function is obtained as 
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 Hereafter, we mainly emphasize on the length biased version of xgamma 

distribution. The rest of the article is organized as follows: 

 

 The length biased version for xgamma distribution is described along with its 

moments and related measures in section 3. Distributions of order statistics for length 

biased xgamma distribution are derived in section 4. Entropy measure is described in 

section 5 and different survival properties are studied in section 6 for length biased 

version of xgamma distribution. Section 7 deals with the methods of estimation for the 

unknown parameter in length biased xgamma model. An algorithm for generating 

random samples from length biased xgamma along with a Monte-Carlo simulation 

study is presented in section 8. Real data illustration is described in section 9 for 

studying the application of length biased xgamma model. Finally, the section 10 

concludes. 

 
3.  Length biased version of xgamma distribution 
 This section deals with the length biased version of xgamma distribution. 

The length biased version of xgamma distribution is obtained as a special case of 

weighted xgamma distribution discussed in the previous section. 

If we put r =1 in (2), then we obtain so called length biased version of the xgamma 

distribution. 

 

Definition 1. A non-negative continuous random variable, X, is said to follow length 

biased xgamma distribution with parameter θ if its pdf is of the form 
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We denote it  by )(~ θLBXGX . 

Note.  Length biased xgamma distribution is a special mixture of Gamma (2, θ) and 

Gamma(4, θ)  with mixing proportions θ/(3+θ) and 3/(3+θ), respectively. The 

probability density plot for different values of θ is shown in figure 2. 
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Figure 2: Probability density function of length biased xgamma distribution for 

different values of θ. 

 

The cdf of )(~ θLBXGX  is given by 
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The characteristic function (cf) is obtained as 
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3.1. Moments and associated measures 

 The k
th

 order raw moments, 
'
kµ  for k=1, 2, 3, …, of length-biased xgamma 

distribution can be obtained either directly using the pdf in (7) or substituting k =1, 2, 3, 

…, in (3) after putting r = 1. Hence, we have  
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So, we have the expression for second order central (about mean) moment or the 

population variance for X as 
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The moment generating function (MGF) of X is derived as                                                              
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The cumulant generating function (CGF) of X is obtained as 
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4. Distribution of order statistics 
 Let X1, X2, …, Xn be a random sample of size n drawn from X ~ LBXG(θ). 

Denote X(j) as the j
th

 order statistic. Then X(1) and X(n) denote the smallest and largest 

order statistics for a sample of size n drawn from length-biased xgamma distribution 

with parameter θ, respectively. 

 

The pdf of X(1) is derived as 
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for 0,0 >> xθ . 

Similarly, the pdf of X(n) is obtained as 
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for 0,0 >> xθ . 

 
5. Renyi entropy measure 
 The Renyi entropy is defined as 
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6. Survival properties of length biased xgamma distribution 
 The survival function for X ~ LBXG(θ) is 

 

0,;
)3(

2

1

2

3
)3()3(

)(

3322

>
+






 +++++
= − θ

θ

θθθθθ
θ xe

xxx

xS x                                                                 

       (16) 

Hence, the hazard rate/failure rate function is obtained as 
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 The hazard rate plot for different values of θ is shown in the figure 3. It is 

clear that the hazard rate is increasing function in x (> 0). The fact can easily be 

identified as the length biased distribution given in (7) is log-concave. Therefore, the 

distribution posses increasing failure rate (IFR) and decreasing mean residual life 

(DMRL) property. 

 

 

 
Figure 3: Hazard rate function of length biased xgamma distribution for different 

values of θ. 
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For a continuous random variable X with pdf f(x) and cdf F(x), the mean residual life 

(MRL) function is defined as 
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When X ~ LBXG(θ), the MRL function is obtained as 
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 It is to be noted that the MRL function in (18) is bounded below by 1/θ and 

bounded above by 2(θ+6)/θ(θ+3)=E(X) and is decreasing in x. The plot of MRL 

function for different values of θ is shown in figure 4. 

 
Figure 4: Mean residual life function of length biased xgamma distribution for 

different values of θ. 

 

Theorem 1. If X ~ LBXG(θ1) and Y ~ LBXG(θ2), then for θ1 > θ2, X is smaller than Y 

in hazard rate order (i.e., YX hr≤ ) and thereby in mean residual life order (i.e., 

YX mrl≤ ) and stochastic order (i.e., YX st≤ ), respectively. 

Proof. For t > 0, we have the ratio of the hazard functions of X and Y as 
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which is more than unity if θ1 > θ2 (see figure5 for the plots of  )(/)( thth YX for 

selected values of θ1and θ2). Hence, )()( thth YX > for θ1 > θ2 and t > 0. So, 

YX hr≤ . 

Again, we know that YXYX mrlhr ≤⇒≤ and YXYX sthr ≤⇒≤ , and hence 

the proof. 

 

      The reversed hazard rate function of X ~ LBXG(θ) is given by (see figure 6 for the 

plots of reversed hazard rate function for selected values of θ) 
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Figure 5: Plots for )(/)( thth YX for selected values of θ1 and θ2 (θ1 > θ2). 
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Figure 6: Reversed hazard rate function of length biased xgamma distribution for 

different values of θ. 

 
7. Estimation of the parameter 

 In this section we propose method of moments and maximum 

likelihood estimators for θ when X ~ LBXG(θ).  Let X1, X2, …,  Xn be a random 

sample of size n drawn from LBXG(θ). 

 
7.1 Method of moment estimator 

If X denotes the sample mean, then by applying the method of moments, we have 
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7.2 Maximum likelihood estimator 

Let ),...,,(~
21 nxxxx = be sample observation on X1, X2, …,  Xn. The likelihood 

function of θ given x~ is then written as 
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The log-likelihood function is given by 
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Differentiating (21) with respect to θ and equating with zero, we have the log-

likelihood equation as 

∑∑
==

=



















+
+−

+
−

n

i
i

i
n

i

i

x

x
x

nn

1 2

2

1

0

2
1

2/

)3(

3

θθθ
                                                                              

       (22) 

Differentiating (21) twice with respect to θ, we have 
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The equation (22) cannot be solved analytically; hence for finding the maximum 

likelihood estimator for θ we apply numerical method. 

 
8. Sample generation and simulation study 
 Now we discuss the procedure for simulating random sample of specific 

size from length-biased xgamma distribution given in (7). We make use of the fact that 

length-biased xgamma distribution is a special mixture of Gamma (2,θ) and Gamma 

(4,θ) with mixing proportions θ/(3+θ) and 3/(3+θ), respectively, for constructing the 

simulation algorithm from the distribution. If X ~ LBXG(θ), then for generating a 

random sample of size n,  X1, X2, …, Xn, we have the following algorithm: 

 

1. Generate ~ (0,1); 1,2,..., .iU uniform i n=  

2. Generate  ~ (2, ); 1, 2,..., .iV gamma i nθ =  

3. Generate  .,...,2,1);,4(~ nigammaWi =θ  

4. If 
3+

≤
θ
θ

iU , then set ii VX = , otherwise set ii WX = . 

 A Monte-Carlo simulation study was carried out considering N=10,000 

times for selected values of n and θ. Samples of sizes 20, 40, 60 and 100 were 

considered and values of θ were taken as 0.1, 0.5, 1.0, 1.5, 3, 4.5 and 6. 

 

 The required numerical evaluations are carried out using R software. The 

following two measures were computed: 

(i) Average estimate of θ: 

∑
=

=
N

i

i
N 1

ˆ1ˆ θθ , where iθ̂ 's are simulated estimates. 
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(ii) Mean Square Error (MSE) of the simulated estimates iθ̂ , i=1, 2, …,N: 
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 The result of the simulation study is presented in Table 1. The following 

observations are made from the simulation study: 

(i) For a given value of θ, the average mean square error (MSE) decreases as 

sample size n increases. 

(ii) For a larger given value of θ, MSE gets higher and follow the similar trends as 

indicated in (i) above. 

 

9. Application with real data illustration 
 In this section we analyze a real life data set to illustrate the applicability of 

length biased xgamma distribution.  

 

 Fatigue is an important factor in determining the service life of ball 

bearings. Bearing manufacturers are therefore constantly engaged in fatigue-testing 

operations in order to obtain information relating fatigue life to load and other factors. 

 

θ 

n = 20 n = 40 

Estimate MSE Estimate MSE 

0.1 0.09989 0.00013 0.09976 0.00006 

0.5 0.48862 0.00326 0.48647 0.00171 

1.0 0.95012 0.01445 0.94499 0.00884 

1.5 1.39521 0.03706 1.38425 0.02610 

3.0 2.64595 0.22346 2.62256 0.18895 

4.5 3.80880 0.68941 3.78011 0.61890 

6.0 4.91580 1.53158 4.88066 1.42160 

θ 

n = 60 n = 100 

Estimate MSE Estimate MSE 

0.1 0.09963 0.00004 0.09935 0.00002 

0.5 0.48404 0.00126 0.48376 0.00085 

1.0 0.94193 0.00714 0.94072 0.00576 

1.5 1.38165 0.02240 1.38010 0.01935 

3.0 2.61816 0.17740 2.61517 0.16657 

4.5 3.76977 0.59767 3.76117 0.58579 

6.0 4.85885 1.41716 4.85344 1.38345 

 

Table 1: Estimate and average MSE for different sample sizes 

 
 We use a data set of 23 fatigue life for deep-groove ball bearings, compiled 

by American Standards Association and reported in Lieblein and Zelen (1956) to 

illustrate the applicability of our proposed length biased xgamma model. The data set 

(given in Table 2 is positively skewed (skewness = 0.94 and kurtosis = 0.49) with mean 

value 72.22, median 67.80 and is unimodal (mode at 50). 
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17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.48, 51.84, 51.96, 54.12, 55.56, 67.80,  

68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40. 

 

Table 2: Fatigue lives of 23 deep-groove ball bearings 

 

       For comparison purpose, besides length biased xgamma distribution with 

parameter θ, five other different lifetime distributions, viz., exponential with rate θ, 

gamma distribution with shape α and rate θ, weibull distribution with shape α and scale 

β, xgamma distribution with parameter θ and length biased weighted exponential 

distribution with parameters α and λ, i.e., LBWE(α, λ) (see Das and Kundu (2016)), are 

considered. 

 

 In order to compare we consider criteria like, -log-likelihood, Akaike 

information criterion (AIC) and Bayesian information criterion (BIC), for the data set. 

 

   AIC= - 2 ln(likelihood) + 2k;   

BIC = kln(n) - 2ln(likelihood), 

 

where  ln(likelihood) denotes the log-likelihood function evaluated at the maximum 

likelihood estimate, k is the number of parameters and n is the sample size. 

 

    The better fitted distribution corresponds to smaller -log-likelihood, AIC 

and BIC values. We use maximum likelihood method of estimation (MLE) for 

estimating the model parameter(s). Statistical software R is utilized for computation. 

Table 3 shows the maximum likelihood estimates (MLEs) of the model parameter(s) 

with standard error(s) of estimates in parenthesis (Std. Error) and model selection 

criteria. The figure 7 shows the plot of histogram and fitted exponential, gamma, 

weibull, xgamma and length biased xgamma curves for fatigue lives data. 

 

 

10. Concluding remarks 
 The weighted xgamma distribution is proposed and studied in this article as 

a generalization of xgamma distribution, which serves as a useful lifetime model in 

describing time-to-event data sets. As a special case of weighted xgamma distribution, 

length biased version of xgamma distribution is obtained and its properties are studied 

in detail. We observe that length biased xgamma distribution is a potential model in 

describing real life time-to-event data and can be utilized as a flexible model against the 

standard lifetime models available in the literature. We expect that the proposed 

weighted xgamma distribution along with the length biased version of xgamma 

distribution will serve as a competitive model, as reflected by its delegate distributional 

and survival properties, in describing data coming from survival and reliability fields as 

well as other fields of application. 
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Distributions Estimate (Std. Error) 
-Log-

likelihood 
AIC 

 

BIC 

 

Exponential(θ) θ̂ = 0.0138 (0.0029) 121.435 244.870 246.005 

Gamma(α, θ) 
α̂ = 4.0260 (1.1396) 

θ̂ = 0.0557 (0.0168) 
113.029 230.059 232.330 

Weibull(α, β) 

α̂ = 2.1021 (0.3286) 

β̂ = 81.8683 

(8.5986) 

113.691 231.383 233.654 

Xgamma(θ) θ̂ = 0.0407 (0.0049) 113.966 229.931 231.067 

LBWE(α, λ) 
α̂ = 0.0251 (0.8960) 

λ̂ = 0.0410 (0.0182) 
113.522 231.045 233.326 

LBXG(θ) θ̂ = 0.0549 (0.0057) 113.086 228.171 229.307 

 

Table 3: MLEs of model parameters and model selection criteria for fatigue lives 

of ball bearing data 

 

 
Figure 7: Plot of histogram and fitted exponential, gamma, weibull, xgamma, 

length biased weighted exponential and length biased xgamma curves  

for fatigue lives data. 
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