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Abstract

This paper addresses the problem of estimating the population ratio, product and mean
using multi auxiliary information in presence of non-response. Some classes of estimators
have been proposed with their properties. Asymptotic optimum estimator(s) in the
class(s) have been investigated along with their mean squared error formulae. Further
the optimum value (depending upon population parameters) when replaced from sample
values gives the estimators having the mean squared errors of the asymptotic optimum
estimators. An empirical study is carried out in the support of the present study. Both
theoretical and empirical findings are encouraging and in favour of the present study.
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1. Introduction

In survey sampling, it is well recognized that the use of auxiliary information results in
substantial gain in efficiency over conventional estimators, which do not utilize such in-
formation. The problem of estimation of ratio, product and mean using single auxiliary
character has been dealt to great extent by several authors including Singh (1965), Rao
(1987), Bisht and Sisodia (1990), Naik and Gupta (1991), Upadhyaya and Singh (1999),
Singh and Tailor (2005 a,b) and Singh et al. (2007). Further the problem has been extended
by using supplementary information on additional auxiliary character by various authors
such as Chand (1975), Sahoo and Sahoo (1993), Sahoo et al. (1993), Sahoo and Sahoo
(1999) and Singh and Ruiz Espejo (2000).

Quite often information on many supplementary variables are available in the survey,
which can be utilized to increase the precision of the estimate. Olkin (1958) has considered
the use of multi auxiliary variables, positively correlated with the study variable to build
up a multi variate ratio estimator of the population mean. Singh (1967) extended Olkin’s
estimator to the case where auxiliary variables are negatively correlated with variate under
study. Later various authors including Shukla (1965, 1966), Mohanty (1967), Tujeta and
Bahl (1991) and Agrawal and Panda (1993, 1994) have used the information on several
auxiliary variables in building up estimators for population mean. Khare (1991) has sug-
gested a generalized class of estimators for estimating the ratio of two means using multi
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auxiliary characters with known population means.
It is well known especially in human surveys that information is generally not obtained

from all the sample units even after callbacks. The problem of estimating the parameters
such as ratio of two means, population mean and variance when some observations are
missing due to random non response has been discussed by Toutenberg and Srivastava
(1998), Singh and Joarder (1998), Singh S. et al. (2000), Singh and Tracy (2001) and
Singh H. P. et al. (2003). In case of non-random non-response, the problem of estimation
of population mean using information on single auxiliary character has been considered
by different authors such as El Badry (1956), Srinath (1971), Cochran (1977), Rao (1986,
1987), Khare and Srivastava (1993, 1995, 1997), Tabasum and Khan (2004); Tabasum and
Khan (2006), Khare and Sinha (2004, 2007), Singh and Kumar (2008 a,b, 2009 a,b, 2010,
2011), Kumar et al. (2011) and Gamrot (2011) have discussed the problem of estimating
the ratio of two means using multi auxiliary characters in the presence of non-response.

In this paper I have suggested some classes of estimators for ratio, product and mean using
multi auxiliary in different situations and their properties have been studied. Conditions
for attaining minimum mean squared error of the proposed classes of estimators have also
been obtained. Estimators based on estimated optimum values have been obtained with
their approximate mean squared error. An empirical study has been carried out in support
of the present study.

2. Notations and sampling procedure

Let yil (i = 0, 1) and xjl (j = 1, 2, ..., p) be the non-negative values of lth unit of the study
variate yi (i = 0, 1) and the auxiliary variates xj (j = 1, 2, ..., p) for a population of size N
with population means Y i (i = 0, 1) and Xj (j = 1, 2, ..., p). When non-response occurs, the
subsampling procedure of Hansen and Hurwitz (1946) is an alternative to call backs and
similar procedures. In this approach, the population of size N is assumed to be composed of
two strata of size N1 and N2 = N−N1 , of “respondents” and “non-respondents”. The initial
simple random sample of size n is drawn without replacement results in n1 respondents and
n2 non-respondents. A sub sample of size m = n2/k, where (k > 1) is predetermined, is
drawn from the n2 non-respondents and through intensive efforts information on the study
variates yi (i = 0, 1) are assumed to be obtained from all of the m units (see, Rao (1983)).
Thus the estimator for the population mean Yi (i = 0, 1) of the finite population is

y∗i = (n1/n)yi(1) + (n2/n)yi(2) , i = 0, 1 (2.1)

where yi(1) and yi(2) ;i = 0, 1 are the sample means of the characters yi (i = 0, 1) based on
n1 and m units respectively. The estimator y∗i is unbiased and has variance

V ar (y∗i ) =

(
1− f

n

)
S2
yi +

W2(k − 1)

n
S2
yi(2)

(2.2)

where f = n/N , W2 = N2/N , S2
yi and S2

yi(2)
are the population mean square of the variates

yi (i = 0, 1) for the entire population and for non-responding group of the population.

Similarly the estimator x∗j (j = 1, 2, ...p) for the population mean Xj is given by

x∗j = (n1/n)xj(1) + (n2/n)xj(2) (2.3)
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The estimator x∗j (j = 1, 2, ..., p) is unbiased an has te variance

V ar
(
x∗j

)
=

(
1− f

n

)
S2
xj

+
W2(k − 1)

n
S2
xj(2)

(2.4)

where S2
xj

and S2
xj(2)

(j = 1, 2, ..., p) are the population mean square of xj for the entire
population and non responding group of the population.

Let R̂∗
(α) = (y∗0/y

∗α
1 ), (y∗1 ̸= 0) denote the conventional estimator of the population

parameter R(α) =
(
Y 0/Y

α
1

)
, Y 1 ̸= 0, α being a constant takes values (1,-1,0). For different

values of α, the following holds

(i) for α = 1, R̂∗
(α) −→ R̂∗

(1) =
y∗0
y∗1

= R̂∗ (say) is the conventional estimator of the ratio
R(α) −→ R(1) =

(
Y 0/Y 1

)
= R (say).

(ii) for α = −1, R̂∗
(α) −→ R̂∗

(−1) = y∗0y
∗
1 = P̂ ∗ (say) is the conventional estimator of the

ratio R(α) −→ R(−1) = Y 0Y 1 = P (say).
(iii) for α = 0, R̂∗

(α) −→ R̂∗
(0) = y∗0, is the conventional estimator of the population mean

Y 0.

Let uj =
x∗
j

Xj
, for j = 1, 2, ..., p =

x∗
j−p

Xj−p
, for j = p + 1, p + 2, ..., 2p and u denotes the

column vector of 2p elements u1, u2, ..., u2p. Super fix T over a column vector denotes the
corresponding row vector. Defining

y∗0 = Y 0(1 + η0), y∗1 = Y 1(1 + η1), ε0 =
{(
R̂∗
α/R

∗
α

)
− 1

}
≈

(
η0 − αη1 − α2η21 − αη0η1

)
,

εj = (uj − 1), j = 1, 2, ..., 2p and let εT = (ε1, ε2, ..., ε2p).

Then to the first degree of approximation, the following holds

E(ε0) = α
[(

1−f
n

)
Cy1 (αCy1 − ρy0y1Cy0) +

W2(k−1)
n Cy1(2)

(
αCy1(2) − ρy0y1(2)Cy0(2)

)]
,

E(εj) = 0 ∀ j = 1, 2, ..., 2p ,
E(ε0εj) = E [(η0 − αη1)εj ] =

[(
1−f
n

)
q(α)j +

W2(k−1)
n q

(2)
(α)j

]
, j = 1, 2, ..., p,

E(ε0εj) =
(
1−f
n

)
q(α)j , j = p+ 1, p+ 2, ..., 2p,

E(εjεl) =
[(

1−f
n

)
ajl +

W2(k−1)
n a

(2)
jl

]
= ejl(say), (j, l) = 1, 2, ..., p,

a =
(
1−f
n

)
ajl = fjl (say), (j, l) = 1, 2, ..., p, p+ 1, ..., 2p

where
ajl = ρxjxl

Cxj
Cxl

, a
(2)
jl = ρxjxl(2)Cxj(2)Cxl(2), C2

yi= S2
yi/Y

2
i , C2

yi(2)
= S2

yi(2)
/Y

2
i , i = 0, 1,

C2
xj
= S2

xj
/X

2
j , C2

xj(2)
= S2

xj(2)
/X

2
j , j = 1, 2, ..., p,

q(α)j = Cxj

(
ρy0xj

Cy0−αρy1xj
Cy1

)
, q(2)(α)j = Cxj(2)

(
ρy0xj(2)Cy0(2)−αρy1xj(2)Cy1(2)

)
, j = 1, 2, ..., p,(

ρy0y1 , ρyixj
, ρxjxl

, i = 0, 1; (j, l) = 1, 2, ..., p
)

and
(
ρy0y1(2), ρyixj(2), ρxjxl(2), i = 0, 1; (j, l) = 1, 2, ..., p

)
are the correlation coefficients between (y0 , y1) , (yi , xj) and (xj , xl) respectively for
the entire population and for the non-responding group of the population.
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bT(α) =
(
aT(α), C

T
(α)

)
=

(
a(α)1, a(α)2, ..., a(α)p, C(α)1, C(α)2, ..., C(α)p

)
aT(α) =

[(
1− f

n

)
qT(α) +

W2 (k − 1)

n

(
q
(2)
(α)

)T]
, qT(α) =

(
q(α)1, q(α)2, ..., q(α)p

)
,

(
q
(2)
(α)

)T
=
(
q
(2)
(α)1, q

(2)
(α)2, ..., q

(2)
(α)p

)
, a(α)j =

[(
1− f

n

)
q(α)j +

W2 (k − 1)

n
q
(2)
(α)j

]
, j = 1, 2, ..., p ,

CT(α) =

(
1− f

n

)
qT(α), C(α)j =

(
1− f

n

)
q(α)j , j = 1, 2, ..., p, D =

[
E F
F T F

]
which is assumed to be positive definite. The matrices E = (ejl)p×p and F = (fjl)p×p are
p× p matrices. Now utilizing the multi auxiliary characters with known population means,
I have suggested a class of estimators for the parameter R(α) in section 3.

3. The class of estimators

Suppose non-response occurs on the study variables (y0, y1), information on the p-
auxiliary variables xj , j = 1, 2, ..., p are obtained from all sample units (i.e. the
initial sample units), and the population means Xj , j = 1, 2, ..., p of p-auxiliary
variables are known. In this situation we note that when suggesting the estima-
tor for the population parameter R(α), Khare and Sinha (2007) used only the in-
formation on the sample means xj , j = 1, 2, ..., p and on the population means
Xj , j = 1, 2, ..., p of the p-auxiliary variables xj , j = 1, 2, ..., p. However one can
also obtain the unbiased estimators x∗j = (n1/n)xj(1) + (n2/n)xj(2) of the population
mean Xj , j = 1, 2, ..., p (without any extra effort) while in the process of obtaining
y∗i = (n1/n) yi(1) + (n2/n) yi(2), i = 0, 1 the unbiased estimators of the population
means Y i , (i = 0, 1) . Thus, in the situation stated above we have two unbiased
estimators x∗j and xj of the population mean Xj , j = 1, 2, ..., p of the auxiliary variate
xj , j = 1, 2, ..., p. With this background author convinced to suggest the class of
estimators, G(α) = G

(
R̂∗

(α), u1, u2, ..., u2p
)
= G

(
R̂∗

(α), u
T
)

of the population parameter
R(α).

Let eT denote the row vector of 2p unit elements. Whatever be the sample chosen, let(
R̂∗

(α), u
T
)

assume values in a closed convex subset, S of the (2p+ 1) dimensional real space

containing the point
(
R(α), e

T
)
. Let G

(
R̂∗

(α), u
T
)

be a function of
(
R̂∗

(α), u1, u2, ..., u2p
)

such that

G
(
R(α), e

T
)
= R(α) for all R(α) (3.1)

and which is continuous and bounded with continuous and bounded first and second order
partial derivatives in S.
Define a class of estimators of the parameter R(α) as

G(α) = G
(
R̂∗

(α), u1, u2, ..., u2p
)
= G

(
R̂∗

(α), u
T
)

(3.2)

Since there are only a finite number of samples, the expectations and mean squared error
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of the estimator G(α) exist under the above conditions.

To obtain the mean squared error of G(α), expand the function G
(
R̂∗

(α), u
T
)

in a second
order Taylor’s series

G(α) = G
(
R(α), e

T
)
+
(
R̂∗

(α) −R(α)

)
∂G( . )
∂R̂∗

(α)

∣∣∣∣
(R(α),eT )

+ (u− e)T G(1)
(
R(α), e

T
)

+1
2

{(
R̂∗

(α)−R(α)

)2
∂2G( . )
∂R̂∗2

(α)

∣∣∣∣
(R̂**

(α),u
∗T )

+ 2
(
R̂∗

(α) −R(α)

)
(u− e)T ∂G(1)( . )

∂R̂∗
(α)

∣∣∣∣
(R̂**

(α),u
∗T )

+ (u− e)T G(2)
(
R̂**

(α), u
∗T
)
(u− e)

}
,

where R̂**
(α) = R(α) + η

(
R̂∗

(α) −R(α)

)
, u∗ = e+ η (u− e) , 0 < η < 1; G(1) denotes the

2p elements column vector of first partial derivatives of G ( . ) and G(2) denotes 2p× 2p

matrix of second partial derivatives of G ( . ) with respect to u. Substituting for R̂∗
(α) and

u in terms of η0, η1, ε0 and ε and using (3.1), one can get

G(α) =R(α) +R(α)

{
(1 + η0) (1 + η1)

−α − 1
} ∂G ( . )
∂R̂∗

(α)

∣∣∣∣∣
(R(α),eT )

+ εTG(1)
(
R(α), e

T
)

+
1

2

{(1 + η0) (1 + η1)
−α−1

}2 ∂2G ( . )
∂R̂∗2

(α)

∣∣∣∣∣
(R̂**

(α),u
∗T )

+ 2R(α)

{
(1 + η0) (1 + η1)

−α − 1
}
εT

∂G(1) ( . )
∂R̂∗

(α)

∣∣∣∣∣
(R̂**

(α),u
∗T )

+εTG(2)
(
R̂**

(α), u
∗T
)
ε
]

. (3.3)

Taking expectation in (3.3) and noting that the second partial derivatives are bounded,
the following theorem holds.

Theorem 3.1

E
(
G(α)

)
= R(α) + o

(
n−1

)
From theorem 3.1, it follows that the bias of the estimator G(α) is of the order n−1, and

hence its contribution to the mean squared error of G(α) will be of the order n−2.

Now prove the following result

Theorem 3.2 To the first degree of approximation, the mean squared error of

G(1)
(
R(α), e

T
)
= −R(α)D

−1b(α) (3.4)
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and the minimum mean squared error is given by

min.MSE
(
G(α)

)
=MSE

(
R̂∗

(α)

)
−R2

(α)b
T
(α)D

−1b(α) (3.5)

where

MSE
(
R̂∗

(α)

)
= R̂2

(α)

[(
1−f
n

) (
C2
y0 + α2C2

y1 − 2αρCy0Cy1
)

+ W2(k−1)
n

(
C2
y0(2)

+ α2C2
y1(2)

− 2αρCy0(2)Cy1(2)

)] (3.6)

is the mean squared error of R̂∗
(α) to the first degree of approximation.

Proof From (3.3), the MSE
(
G(α)

)
to the first degree of approximation is given by

MSE
(
G(α)

)
= E

(
G(α) −R(α)

)2
= E

[
R(α) (η0 − αη1)

∂G( . )
∂R̂∗

(α)

∣∣∣∣
(R(α),eT )

+ εTG(1)
(
R(α), e

T
)]2

(3.7)

From (3.1) which implies that ∂G( . )
∂R̂?

(α)

∣∣∣∣
(R(α),eT )

= 1.

Thus the expression (3.7) reduces to

MSE
(
G(α)

)
= E

[
R(α) (η0 − αη1) + εTG(1)

(
R(α), e

T
)]2,

= E
[
R2

(α) (η0 − αη1)
2 + 2R(α) (η0 − αη1) ε

TG(1)
(
R(α), e

T
)

+
(
G(1)

(
R(α), e

T
))T

εεTG(1)
(
R(α), e

T
)]
,

= MSE
(
R̂∗

(α)

)
+ 2R(α)b

T
(α)G

(1)
(
R(α), e

T
)
+
(
G(1)

(
R(α), e

T
))T

D
(
G(1)

(
R(α), e

T
))

(3.8)
which is minimized for

G(1)
(
R(α), e

T
)
= −R(α)D

−1b(α) (3.9)

Substituting (3.9) in (3.8), the resulting (minimum) mean squared error of G(α)

min.MSE
(
G(α)

)
= MSE

(
R̂∗

(α)

)
−R2

(α)b
T
(α)D

−1b(α) (3.10)

Thus the theorem is proved. �

Remark 3.1 The class of estimators G(α) at (3.2) is very large. If the parameters in the

function G
(
R̂(α), u

T
)

are so chosen that they satisfy (3.4), the resulting estimator will
have MSE given by (3.5). A few examples are:

(i) G(1) = R̂∗
(α)exp

{
αT log u

}
,

(iii) G(3) = R̂∗
(α)exp

{
φT (u− e)

}
(v) G(5) = R̂∗

(α)/
{
R̂∗

(α) − φT (u− e)
}

(ii) G(2) = R̂∗
(α)

[
1 + φT (u− e)

]
,

(iv) G(4) = R̂∗
(α) + φT (u− e)

where φT = (φ1, φ2, ..., φ2p) is a vector of 2p constants. The optimum values of these
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constants are obtained from (3.4). Since (3.4) involves 2p equations, taken exactly 2p
unknown constants in defining above estimators of the class.

4. Estimator based on estimated optimum value

To obtain the estimator based on estimated optimum, adopt the same procedure as dis-
cussed in Singh (1982) and Srivastava and Jhajj (1983).

It is to be mentioned that the proposed class of estimator G(α) at (3.2) will attained
minimum MSE given by (3.5) (or (3.10)) only when the optimum value of the derivatives
(or constants involved in the estimators) given by (3.4), which are functions of the unknown
population parameters are used. To use such estimators in practice, one has to use some
guessed values of the parameters in (3.4), either through past experience or through a
pilot sample survey. It may be noted that even if the values of the constants used in the
estimator are not exactly equal to their optimum values as given by (3.4) (or (3.9)) but are
close enough, the resulting estimator will be better than usual estimator R̂∗

(α) as has been
demonstrated by Das and Tripathi (1978). For more discussion on this point in connection
with the estimation of population mean the reader is referred to Srivastava (1966), Murthy
(1967, p.325), Reddy (1973, 1974) and Srivenkataramana and Tracy (1980).

However there are situations where the exact optimum values of the derivative given by
(3.4) or its guessed value may be rarely known in practice, hence it is advisable to replace
it by its estimate from sample values. We suppose that the equation (3.4) can be solved
uniquely for the 2p unknown constants in the estimator (3.2). The optimum values of these
constants will involve D−1b(α) or may be both D−1b(α) and R(α), which are unknown.
When these optimum values are inserted in (3.2), it no longer remains an estimator since
it involves unknown ψ = D−1b(α), and may be also R(α). Let ψ̂ be a consistent estimator
of ψ computed from the sample data at hand. Then replace ψ by ψ̂ and also R(α) by R̂∗

(α)

if necessary, in the optimum G(α) resulting in the estimator G∗
(α) say, which will now be a

function of R̂∗
(α), u and ψ̂. Define

G∗
(α) = G∗

(
R̂∗

(α), u
T , ψ̂T

)
(4.1)

where the function G∗
(
R̂∗

(α), u
T , ψ̂T

)
is derived from the function G

(
R̂(α), u

T
)

cited at
(3.2) by replacing the unknown constants in it by the consistent estimates. The condition
(3.1) will then imply that

G∗
(
R̂∗

(α), e
T , bT

)
= R(α) for all R(α), (4.2)

which in turns implies

∂G∗ ( . )
∂R̂∗

(α)

∣∣∣∣∣
(R(α),eT , ψT )

= 1 (4.3)

We further assume that

∂G∗ ( . )
∂u

|(R(α),eT , ψT ) =
∂G ( . )
∂u

|(R(α),eT , ψT )= −R(α)ψ (4.4)
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and

∂G∗ ( . )
∂ψ̂

∣∣∣∣
(R(α),eT , ψT )

= 0 (4.5)

Expanding the function G∗ (R(α), u
T , ψT

)
about the point

(
R(α), e

T , ψT
)

in a Taylor’s
series and using (4.1) to (4.5), one get

G∗
(α) = G∗ (R(α), e

T , ψT
)
+
(
R̂∗

(α) −R(α)

)
∂G∗( . )
∂R̂∗

(α)

∣∣∣∣
(R(α),eT ,ψT )

+ (u− e)T ∂G∗( . )
∂u

∣∣∣
(R(α),eT ,ψT )

+
(
ψ̂ − ψ

)T
∂G∗( . )
∂ψ̂

∣∣∣
(R(α),eT ,ψT )

+ second order terms,

= R(α) +R(α)ε0 + εT
(
−R(α)ψ

)
+ second order terms.

(4.6)

Since ψ̂ is a consistent estimator of ψ, the expectation of the second order terms in (4.6)
will be o

(
n−1

)
and hence

E
(
G∗

(α)

)
= R(α) + o

(
n−1

)
From (4.6) one obtain(

G∗
(α) −R(α)

)
= R(α) (η0 − αη1)−R(α)ε

Tψ + second order terms. (4.7)

Squaring both sides of (4.7) and neglecting terms of ε′s having power greater than two

(
G∗

(α) −R(α)

)2
= R2

(α) (η0 − αη1)
2 +R2

(α)ψ
T εεTψ − 2R2

(α) (η0 − αη1) ε
Tψ

or (
G∗

(α) −R(α)

)2
= R2

(α)

[
(η0 − αη1)

2 + ψT εεTψ − 2 (η0 − αη1) ε
Tψ

]
(4.8)

Taking expectations of both sides in (4.8) one get the mean squared error of G∗
(α), to the

first degree of approximation as

MSE
(
G∗

(α)

)
= MSE

(
R̂∗

(α)

)
−R2

(α)b
T
(α)D

−1b(α)

which is same as given in (3.5) (or (3.10)) i.e.

MSE
(
G∗

(α)

)
= min.MSE

(
G(α)

)
= MSE

(
R̂∗

(α)

)
−R2

(α)b
T
(α)D

−1b(α) (4.9)

It may be noted that the following estimators:
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(i) d∗(1) = R̂∗
(α)exp

{
ψ̂T log u

}
(iii) d∗(3) = R̂∗

(α)exp
{
−ψ̂T (u− e)

}
,

(v) d∗(5) = R̂∗2

(α)/
{
R̂∗

(α)+ψ
T (u− e)

}
, etc.

(ii) d∗(2) = R̂∗
(α)

[
1− ψ̂T (u− e)

]
,

(iv) d∗(4) = R̂∗
(α) − ψ̂T (u− e),

are the members of the suggested class of estimators G∗
(α). It can be shown to the first

degree of approximation that the mean squared errors of the estimators G∗
(j), j = 1 to 5

are same and equals to the MSE
(
G∗

(α)

)
= min.MSE

(
G(α)

)
given by (4.9).

For different values of α one can obtain a class of estimators for ratio, product and
population mean for G∗

(α), H(α), F(α) and J(α) respectively. The results are explained in
the Appendix I, II, III and IV, respectively.

Remark 4.1 Population means X1, X2, ..., Xp are known, incomplete information on
the study variates (y0, y1) and on the auxiliary variates xj (j = 1, 2, ..., p).
In this case we use information on (n1 +m) responding units on the study variates (y0, y1)
and the auxiliary variate xj (j = 1, 2, ..., p) from the sample of size n along with known
population means X1, X2, ..., Xp. Thus propose a class of estimators for R(α) as

H(α) = H
(
R̂∗

(α), ν
T
)

(4.10)

where ν denotes the column vector of p elements ν1, ν2, ..., νp with νj = x∗j/Xj ,

j = 1, 2, ..., p; H
(
R̂∗

(α), ν
T
)

is a function of
(
R̂∗

(α), ν
T
)

such that

H
(
R(α), e

T
)
= R(α) for all R(α) (4.11)

⇒ ∂H ( . )
∂R̂∗

(α)

∣∣∣∣∣
(R(α),eT )

= 1 (4.12)

and also satisfies certain conditions similar to those given for the class of estimators G(α)

at (3.2) and eT denote the row vector of p unit elements.
It can be shown that

E
(
H(α)

)
= R(α) + o

(
n−1

)
,

and to the first degree of approximation the MSE of H(α) is given by

MSE
(
H(α)

)
= MSE

(
R̂∗

(α)

)
+ 2R(α)a

T
(α)H

(1)
(
R(α), e

T
)

+
(
H(1)

(
R(α), e

T
))T

E
(
H(1)

(
R(α), e

T
)) (4.14)

which is minimized for

H(1)
(
R(α), e

T
)
= −R(α)E

−1a(α),
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and thus the resulting minimum mean squared error

min.MSE
(
H(α)

)
= MSE

(
R̂∗

(α)

)
−R2

(α)a
T
(α)E

−1a(α) (4.14)

= MSE
(
R̂∗

(α)

)
−R2

(α)

[{(
1−f
n

)
q(α) +

W2(k−1)
n q

(2)
(α)

}T
+E−1

{(
1−f
n

)
q(α) +

W2(k−1)
n q

(2)
(α)

}]
,

where H(1)
(
R(α), e

T
)

denote the p elements column vector of first partial derivatives of
H ( . ).

Thus state the following theorem:

Theorem 4.1 Up to terms of order n−1,

MSE
(
H(α)

)
≥

[
MSE

(
R̂∗

(α)

)
−R2

(α)a
T
(α)E

−1a(α)

]
,

with equality holding if

H(1)
(
R(α), e

T
)
= −R(α)E

−1a(α).

Remark 4.2 Population meansX1, X2, ..., Xp are known, incomplete information on the
study variates (y0, y1) and complete information on the auxiliary variates xj (j = 1, 2, ..., p).
In this case observe that n1 units respond on the study variates (y0, y1) but there is com-
plete information on the auxiliary variate xj (j = 1, 2, ..., p) and the population means
X1, X2, ..., Xp are known. In such a situation define a class of estimators for population
parameter R(α) as

F(α) = F
(
R̂∗

(α), w
T
)

(4.15)

where w denotes the column vector of p elements w1, w2, ..., wp with wj = x∗j/Xj ,

j = 1, 2, ..., p; F
(
R̂∗

(α), w
T
)

is a function of
(
R̂∗

(α), w
T
)

such that

F
(
R(α), e

T
)
= R(α) for all R(α), (4.16)

⇒ ∂F ( . )
∂R̂∗

(α)

∣∣∣∣∣
(R(α),eT )

= 1 (4.17)

and also satisfies certain conditions similar to those given for the class of estimators G(α)

at (3.2) and eT denote the row vector of p unit elements.
It can be shown that
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E
(
F(α)

)
= R(α) + o

(
n−1

)
,

and to the first degree of approximation, the MSE of F(α) is given by

MSE
(
F(α)

)
= MSE

(
R̂∗

(α)

)
+ 2R(α)C

T
(α)F

(1)
(
R(α), e

T
)

+
(
F (1)

(
R(α), e

T
))T

F
(
F (1)

(
R(α), e

T
)) (4.18)

where F (1)
(
R(α), e

T
)

is the p elements column vector of the partial derivatives of F ( . ),

C(α) =
(
C(α)1, C(α)2, ..., C(α)p

)
, C(α)j =

(
1−f
n

)
q(α)j , q(α)j = Cxj

(
ρy0xj

Cy0−αρy1xj
Cxj

)
,

F = (fjl)p×p , fjl =
(
1−f
n

)
ρxjxl

Cxj
Cxl

.
The MSE of F(α) at (4.18) is minimized for

F (1)
(
R(α), e

T
)
= −R(α)F

−1C(α) (4.19)

and thus the resulting minimum mean squared error of F(α) is given by

min.MSE
(
F(α)

)
= MSE

(
R̂∗

(α)

)
−R2

(α)C
T
(α)F

−1C(α) (4.20)

= MSE
(
R̂∗

(α)

)
−R2

(α)

(
1− f

n

)
qT(α)F

−1
0 q(α)

where F0 = (ajl)p×p and ajl = ρxjxl
Cxj

Cxl
.

Thus the following theorem holds.

Theorem 4.2 Up to terms of order n−1,

MSE
(
F(α)

)
≥

[
MSE

(
R̂∗

(α)

)
−R2

(α)C
T
(α)F

−1C(α)

]
,

with equality holding if

F (1)
(
R(α), e

T
)
= −R(α)F

−1C(α).

Remark 4.3 Population means of auxiliary characters are unknown, incomplete infor-
mation on the study variates (y0, y1) and complete information on the auxiliary variates
xj (j = 1, 2, ..., p).

In this case, I use information on (n1 +m) responding units on the study variates
(y0, y1) and complete information on the auxiliary variate xj (j = 1, 2, ..., p). Here in for-
mulation of the estimator, in addition to xj (j = 1, 2, ..., p) I also use the information on
x∗j (j = 1, 2, ..., p) which can be easily computed while computing y∗i (i = 0, 1). The popu-
lation means xj (j = 1, 2, ..., p) of the auxiliary characters xj (j = 1, 2, ..., p) are not known.
With this background define a class of estimators for the parameter R(α) as

J(α) = J
(
R̂∗

(α), z
T
)

(4.21)
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where z denotes the column vector of p elements z1, z2, ..., zp, super fix T over a column
vector denotes the corresponding row vector, zj = x∗j/xj , j = 1, 2, ..., p; J

(
R̂∗

(α), z
T
)

is a

function of
(
R̂∗

(α), z
T
)

such that

J
(
R(α), e

T
)
= R(α) for all R(α) (4.22)

⇒ ∂J ( . )
∂R̂∗

(α)

∣∣∣∣∣
(R(α),eT )

= 1 (4.23)

and also satisfies certain conditions similar to those given for the class of estimators G(α)

at (3.2) and eT denote the row vector of p unit elements. It can be shown that

E
(
J(α)

)
= R(α) + o

(
n−1

)
,

and to the first degree of approximation the MSE of J(α) is given by

MSE
(
J(α)

)
= MSE

(
R̂∗

(α)

)
− 2R(α)

(
a
(2)
(α)

)T
J (1)

(
R(α), e

T
)

+R2
(α)

(
J (1)

(
R(α), e

T
))T

M
(
J (1)

(
R(α), e

T
)) (4.24)

where J (1)
(α)

(
R(α), e

T
)

denote the p elements column vector of the first partial derivatives

of J
(
R̂∗

(α), z
T
)

with respect to R̂∗
(α) about the point

(
R(α), e

T
)
;(

a
(2)
(α)

)T
=

(
a
(2)
(α)1, a

(2)
(α)2, ..., a(2)(α)p

)
, M = (mjl)p×p, a

(2)
(α)j =

W2(k−1)
n q

(2)
(α)j , j = 1, 2, ..., p,(

a
(2)
(α)

)T
= W2(k−1)

n

(
q
(2)
(α)

)T
, q

(2)
(α)j = Cxj(2)

(
ρy0xj(2)Cy0(2)−αρy1xj(2)Cy1(2)

)
, j = 1, 2, ..., p,

mjl =
W2(k−1)

n ρxjxl(2)Cxj(2)Cxl(2)=
W2(k−1)

n a
(2)
jl , (j, l) = 1, 2, ..., p.

The MSE of J(α) at (4.24) is minimized for

J (1)
(
R(α), e

T
)
= −R(α)M

−1a
(2)
(α) = −R(α)M

−1
0 q

(2)
(α) (4.25)

where M0 =
(
a
(2)
jl

)
p×p

, a
(2)
jl = ρxjxl(2)Cxj(2)Cxl(2).

Thus the resulting minimum mean squared error of J(α) is given by

min.MSE
(
J(α)

)
= MSE

(
R̂∗

(α)

)
−R2

(α)

(
a
(2)
(α)

)T
M−1

(
a
(2)
(α)

)
= MSE

(
R̂∗

(α)

)
−R2

(α)

W2 (k − 1)

n

(
q
(2)
(α)

)T
M−1

0

(
q
(2)
(α)

)
(4.26)

Thus we state the following theorem.

Theorem 4.3 Up to terms of order n−1,
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MSE
(
J(α)

)
≥

[
MSE

(
R̂∗

(α)

)
−R2

(α)

(
a
(2)
(α)

)T
M−1

(
a
(2)
(α)

)]
with equality holding if

J (1)
(
R(α), e

T
)
= −R(α)M

−1a
(2)
(α).

5. Efficiency comparisons

Note that

bT(α)D
−1b(α) = aT(α)E

−1a(α) +
(
F TE−1a(α) − C(α)

)T
A−1

(
F TE−1a(α) − C(α)

)
(5.1)

and

bT(α)D
−1b(α) = CT(α)F

−1C(α) +
(
a
(2)
(α)

)T
M−1

(
a
(2)
(α)

)
(5.2)

where A =
(
F − F TE−1F

)
.

Thus from (3.10), the result follows

min.MSE
(
G(α)

)
= MSE

(
R̂∗

(α)

)
−R2

(α)

[
aT(α)E

−1a(α)

+
(
F TE−1a(α) − C(α)

)T
A−1

(
F TE−1a(α) − C(α)

)] (5.3)

= MSE
(
R̂∗

(α)

)
−R2

(α)

[
CT(α)F

−1C(α) +
(
a
(2)
(α)

)T
M−1

(
a
(2)
(α)

)]
(5.4)

From (4.23), (4.37), (4.52) and (5.4), one obtain

min.MSE
(
H(α)

)
− min.MSE

(
G(α)

)
=

R2
(α)

(
F TE−1a(α) − C(α)

)T
A−1

(
F TE−1a(α) − C(α)

)
≥ 0 (5.5)

min.MSE
(
F(α)

)
− min.MSE

(
G(α)

)
= R2

(α)

(
a
(2)
(α)

)T
M−1

(
a
(2)
(α)

)
≥ 0 (5.6)

min.MSE
(
J(α)

)
− min.MSE

(
G(α)

)
= R2

(α)C
T
(α)F

−1C(α) ≥ 0 (5.7)

Thus from (5.5), (5.6) and (5.7), the following inequalities holds

min.MSE
(
G(α)

)
≤ min.MSE

(
H(α)

)
(5.8)

min.MSE
(
G(α)

)
≤ min.MSE

(
F(α)

)
(5.9)

min.MSE
(
G(α)

)
≤ min.MSE

(
J(α)

)
(5.10)

From (5.8), (5.9) and (5.10) it follows that the proposed class of estimators G(α) given
by (3.2) is the best (in the sense of having least minimum MSE) among the classes of
estimators G(α), H(α), F(α) and J(α).
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6. Empirical study

To demonstrate the performance of the suggested estimator relative to usual estimator
R̂∗

(α) with α = 1, consider a natural population data earlier considered by Khare and Sinha
(2007). The description of the population is given below:

The data on the physical growth of upper-socio- economic group of 95 school going
children of Varanasi under an ICMR study, Department of Pediatrics, BHU during 1983-
84 has been taken under study. The first 25% (i.e. 24 children) units have been considered
as non-response units. Denote by
y0: Height (in cm) of the children, y1: Weight (in kg) of the children,
x1: Skull circumference (in cm) of the children, x2: Chest circumference (in cm) of the
children.

The required values of the parameters are:

Y 0 = 115.9526, Y 1 = 19.4968, X1 = 51.1726, X2 = 55.8611, Cy0 = 0.0515,
Cy1 = 0.15613, Cx1

= 0.03006, Cx2
= 0.05860, Cy0(2) = 0.044, Cy1(2) = 0.121,

Cx1(2) = 0.02478, Cx2(2) = 0.054, ρy0x1
= 0.374 ρy0x2

= 0.620, ρy1x1
= 0.328,

ρy1x2
= 0.846, ρy0x1(2) = 0.571, ρy0x2(2) = 0.401, ρy1x1(2) = 0.477, ρx1x1

= 0.297,
ρx1x1(2) = 0.570, ρy0y1 = 0.713, ρy0y1(2) = 0.678

To illustrate results, consider the difference type estimator using two auxiliary variables:

td = R̂∗
(α) + α1 (u

∗
1 − 1) + α2 (u

∗
2 − 1) + φ1 (u1 − 1) + φ2 (u2 − 1) (6.1)

where α′
is and φ′

is, (i = 1, 2) are suitably chosen constants, u∗i =
(
x∗i /Xi

)
and

ui =
(
xi/Xi

)
, (i = 1, 2).

For the sake of convenience, the MSE of td to the first degree of approximation is given
by

MSE (td) = MSE
(
R̂∗

(α)

)
+

2∑
j=1

α2
jej + 2α1α2e12 + 2R(α)

2∑
j=1

αja(α)j +
(

1−f
n

)[
2∑

j=1

φ2
jC

2
xj
+2φ1φ2a12

+2R(α)

2∑
j=1

φjq(α)j + 2
{
α1φ1C

2
x1
+α2φ1a12+α1φ2a12+α2φ2C

2
x2

} (6.2)

where

ej =
{(

1−f
n

)
C2
xj
+W2(k−1)

n C2
xj(2)

}
, j = 1, 2; e12 =

{(
1−f
n

)
a12 +

W2(k−1)
n a

(2)
12

}
;

q(α)j = Cxj

(
ρy0xj

Cy0−αρy1xj
Cy1

)
, j = 1, 2; a12 = ρx1x2

Cx1
Cx2

; a
(2)
12 = ρx1x2(2)Cx1(2)Cx2(2);

q(α)j(2) = Cxj(2)

(
ρy0xj(2)Cy0(2)−αρy1xj(2)Cy1(2)

)
, j = 1, 2;

a(α)j =
{(

1−f
n

)
q(α)j +

W2(k−1)
n q(α)j(2)

}
, j = 1, 2 .

Expression (6.2) can also be obtained from (3.8) just by putting the suitable values of
the derivatives. The MSE at (6.2) is minimized for
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α10 = R(α)d
∗
(2) (6.3)

α20 = R(α)d
∗
1(2) (6.4)

φ10 = R(α)

(
d∗ − d∗(2)

)
(6.5)

φ20 = R(α)

(
d∗1 − d∗1(2)

)
(6.6)

where

d∗ =
[q(α)2ρx1x2Cx1−q(α)1Cx2 ]

[C2
x1
Cx2(1−ρ2x1x2

)]
, d∗1 =

[q(α)1ρx1x2Cx2−q(α)2Cx1 ]
[Cx1

C2
x2
(1−ρ2x1x2

)]
,

d∗(2) =
[q(α)2(2)ρx1x2(2)Cx1(2)−q(α)1(2)Cx2(2)]

[C2
x1(2)Cx2(2)(1−ρ2x1x2(2))]

, d∗1(2) =
[q(α)1(2)ρx1x2(2)Cx2(2)−q(α)2(2)Cx1(2)]

[Cx1(2)C2
x2(2)(1−ρ2x1x2(2))]

.

Putting (6.2)-(6.6) in (6.1), we get the asymptotic optimum estimator (AOE) in the class
of estimators td as

t
(0)
d = R̂∗

(α) +R(α)

[
d∗(2) (u

∗
1 − u1) + d∗1(2) (u

∗
2 − u2) + d∗ (u1 − 1) + d∗1 (u2 − 1)

]
(6.7)

The MSE of t(0)d to the first degree of approximation is given by

MSE
(
t
(0)
d

)
= MSE

(
R̂∗

(α)

)
−R2

(α)

(1− f

n

){
(a1Cx1

− a2Cx2
)2+2a1a2Cx1

Cx2
(1− ρx1x2

)
}

(
1− ρ2x1x2

)

+
W2 (k − 1)

2

{(
a1(2)Cx1(2) − a2(2)Cx2(2)

)2
+2a1(2)a2(2)Cx1(2)Cx2(2)

(
1− ρx1x2(2)

)}(
1− ρ2x1x2(2)

)


= min.MSE (td) (6.8)

where
a1 = ρy0x1

Cy0

Cx1

−ρy1x1

Cy1

Cx1

, a2 = ρy0x2

Cy0

Cx2

−ρy1x2

Cy1

Cx2

, a1(1) = ρy0x1(1)
Cy0(2)

Cx1(2)
−ρy1x1(2)

Cy1(2)

Cx1(2)
,

a2(2) = ρy0x2(2)
Cy0(2)

Cx2(2)
−ρy1x2(2)

Cy1(2)

Cx2(2)
.

In practice the optimum values of α1, α2, φ1 and φ2 given by (6.2)-(6.6) are not known.
In such a case it is worth advisable to replace them by their consistent estimators in (6.8)
and thus one get an estimator based on “estimated optimum values” as

t̂
(0)
d = R̂∗

(α)

[
1 + d̂∗(2) (u

∗
1 − u1) + d̂∗1(2) (u

∗
2 − u2) + d̂∗ (u1 − 1) + d̂∗1 (u2 − 1)

]
(6.9)

where d̂∗, d̂∗1, d̂
∗
(2) and d̂∗1(2) are the consistent estimators of d∗, d∗1, d

∗
(2) and d∗1(2) based

on the available data under the given sampling design. It can be easily shown to the first
degree of approximation that

MSE
(
t̂
(0)
d

)
= min.MSE (td) = min.MSE (td) (6.10)
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where MSE
(
t
(0)
d

)
isgiven by (6.8).

Further consider the following difference type estimators:

td1 = R̂∗
(α) + α1 (u

∗
1 − 1) + α2 (u

∗
2 − 1) (6.11)

td2 = R̂∗
(α) + φ1 (u1 − 1) + φ2 (u2 − 1) (6.12)

td3 = R̂∗
(α) + λ1 (z1 − 1) + λ2 (z2 − 1) (6.13)

where z1 = x∗1/x1, z2 = x∗2/x2, α
′
is, φ

′
is and λi′s, (i = 1, 2) are suitably chosen constants.

To the first degree of approximation, the minimum MSE of td1 , td2 and td3 are respectively
given by

min.MSE (td1 ) = MSE
(
R̂∗

(α)

)
−

R2
(α)(

e1e2 − e212
) [(a(α)1)2 e2 + (

a(α)2
)2
e1 − 2a(α)1a(α)2e12

]
(6.14)

for optimum values of α1 and α2 given by

α∗
10 =

R(α)[a(α)2e12−a(α)1e2]
(e1e2−e212)

α∗
20 =

R(α)[a(α)1e12−a(α)2e1]
(e1e2−e212)

}
, (6.15)

min.MSE (td2 ) = MSE
(
R̂∗

(α)

)
−
(
1−f
n

)
R2

(α)[
C2

x1(2)C
2
x2(2)−(a

(2)
12 )

2
] [(q(α)1(2))2C2

x2(2)

+
(
q(α)2(2)

)2
C2
x1(2)

− 2q(α)1(2)q(α)2(2)a
(2)
12

]
,

(6.16)

for optimum values of φ1 and φ2 given by

φ∗
10 =

R(α)[q(α)2(2)a
(2)
12 −q(α)1(2)C2

x2(2)][
C2

x1(2)C
2
x2(2)−(a

(2)
12 )

2
]

φ∗
20=

R(α)[q(α)1(2)a
(2)
12 −q(α)2(2)C2

x1(2)][
C2

x1(2)C
2
x2(2)−(a

(2)
12 )

2
]

 , (6.17)

min.MSE (td3 ) = MSE
(
R̂∗

(α)

)
− W2(k−1)

n

R2
(α)[

C2
x1(2)C

2
x2(2)−(a

(2)
12 )

2
] [(q(α)1(2))2C2

x2(2)

+
(
q(α)2(2)

)2
C2
x1(2)

− 2q(α)1(2)q(α)2(2)a
(2)
12

]
,

(6.18)

for optimum values of λ1 and λ2 given by

λ10 =
R(α)[q(α)2(2)a

(2)
12 −q(α)1(2)C2

x2(2)][
C2

x1(2)C
2
x2(2)−(a

(2)
12 )

2
]

λ20=
R(α)[q(α)1(2)a

(2)
12 −q(α)2(2)C2

x1(2)][
C2

x1(2)C
2
x2(2)−(a

(2)
12 )

2
]

 . (6.19)

Estimators based on estimated values of (α∗
10, α

∗
20), (φ

∗
10, φ

∗
20) and (λ10, λ20) are respec-

tively given by
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t̂
(0)
d1 = R̂∗

(α) + α̂∗
10 (u

∗
1 − 1) + α̂∗

20 (u
∗
2 − 1) (6.20)

t̂
(0)
d2 = R̂∗

(α) + φ̂∗
10 (u1 − 1) + φ̂∗

20 (u2 − 1) (6.21)

t̂
(0)
d3 = R̂∗

(α) + λ̂10 (z1 − 1) + λ̂20 (z2 − 1) (6.22)

where α̂∗
10, α̂

∗
20, φ̂

∗
10, φ̂

∗
20, λ̂10 and λ̂20 are the consistent estimates of the optimum value

α∗
10, α

∗
20, φ

∗
10, φ

∗
20, λ10 and λ20 respectively based on the data available under the given

sampling design. To the first degree of approximation, it can be shown that

MSE
(
t̂
(0)
d1

)
= min.MSE (td1 ) (6.23)

MSE
(
t̂
(0)
d2

)
= min.MSE (td2 ) (6.24)

MSE
(
t̂
(0)
d3

)
= min.MSE (td3 ) (6.25)

where min.MSE (td1 ), min.MSE (td2 ) and min.MSE (td3 ) are respectively given by (6.14),
(6.16) and (6.18).
I have computed the percent relative efficiencies (PREs) of t(0)d

(
or t̂(0)d

)
, t(0)d1

(
or t̂(0)d1

)
,

t
(0)
d2

(
or t̂(0)d2

)
and t

(0)
d3

(
or t̂(0)d3

)
with respect to usual estimator R̂∗

(α) with α = 1 where

t
(0)
d1 , t(0)d2 and t(0)d3 are respectively the optimum estimators in td1 , td2 and td3 .

The findings are given in Table 1.

Table 1. Percent relative efficiencies of the estimators with respect to R̂∗
(α)

with α = 1 for fixed n and different
values of k.

Estimator (1/k)
(1/5) (1/4) (1/3) (1/2)

R̂∗ 100.00 100.00 100.00 100.00
t
(0)
d

(
or t̂

(0)
d

)
368.22 352.24 332.44 309.50

t
(0)
d1

(
or t̂

(0)
d1

)
240.12 248.64 261.16 282.91

t
(0)
d2

(
or t̂

(0)
d2

)
147.86 158.73 175.89 207.44

t
(0)
d3

(
or t̂

(0)
d3

)
117.68 114.78 111.13 106.39

It is observed from Table 1 that the percent relative efficiencies of t
(0)
d

(
or t̂(0)d

)
and t

(0)
d3

(
or t̂(0)d3

)
decrease while the percent relative efficiencies of t(0)d1

(
or t̂(0)d1

)
and

t
(0)
d2

(
or t̂(0)d2

)
increase with respect to R̂∗ as the sub-sampling fraction increases. It has

also been perceived that t(0)d
(
or t̂(0)d

)
is the best among R̂∗, t(0)d1

(
or t̂(0)d1

)
, t(0)d2

(
or t̂(0)d2

)
and t(0)d3

(
or t̂(0)d3

)
. Thus, the suggested estimator t(0)d

(
or t̂(0)d

)
is to be preferred for its use

in practice, when the difference type estimator using two auxiliary variables is used.
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7. Conclusion

In the present problem, some classes of estimators for ratio, product and mean are discussed
by using multi auxiliary in different situations in the presence of non-response and their
properties have been studied. Conditions for attaining minimum mean squared error of
the proposed classes of estimators have also been obtained. Estimators based on estimated
optimum values have been obtained with their approximate mean squared error. Due to the
non-availability of the data, I have tried to show the performance of the suggested estimator
relative to usual estimator R̂∗

(α) with α = 1 for two auxiliary variables. The performance
of the suggested estimator is preferable when the non-response occurs on the study as well
as auxiliary variables.
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Appendix I

Putting α = 1, −1, 0 in (3.2) we get

(i) a class of estimators for ratio R as

G(1) = G
(
R̂∗, uT

)
(I-1)

(ii) a class of estimators for product P as

G(−1) = G
(
P̂ ∗, uT

)
(I-2)

(iii) a class of estimators for population mean Y 0 as

G(0) = G
(
y∗0, u

T
)

(I-3)

The minimum mean squared errors of the estimatorsG(1), G(−1) andG(0) are respectively
given by

min.MSE
(
G(1)

)
= MSE

(
R̂∗

)
−R2bT(1)D

−1b(1) (I-4)

min.MSE
(
G(−1)

)
= MSE

(
P̂ ∗

)
− P 2bT(−1)D

−1b(−1) (I-5)

min.MSE
(
G(0)

)
= Var (y∗0)− Y

2
(0)b

T
(0)D

−1b(0) (I-6)

where
MSE

(
R̂∗

)
= R2

[(
1−f
n

) (
C2

y0
+C2

y1
−2ρy0y1Cy0Cy1

)
+W2(k−1)

n

(
C2

y0(2)
+C2

y1(2)
−2ρy0y1(2)Cy0(2)Cy1(2)

)], (I-7)
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MSE
(
P̂ ∗

)
= P 2

[(
1−f
n

) (
C2

y0
+C2

y1
+2ρy0y1Cy0Cy1

)
+W2(k−1)

n

(
C2

y0(2)
+C2

y1(2)
+2ρy0y1(2)Cy0(2)Cy1(2)

)], (I-8)

are the mean squared errors of R̂∗ and P̂ ∗ to the first degree of approximation, respec-
tively, and

Var (y∗0) =
[(

1− f

n

)
S∗2

0 +
W2 (k − 1)

n
S∗2

0(2)

]
(I-9)

where

bT(1) =
(
a(1)1, a(1)2, ..., a(1)p, C(1)1, C(1)2, ..., C(1)p

)
,

bT(−1) =
(
a(−1)1, a(−1)2, ..., a(−1)p, C(−1)1, C(−1)2, ..., C(−1)p

)
,

bT(0) =
(
a(0)1, a(0)2, ..., a(0)p, C(0)1, C(0)2, ..., C(0)p

)
,

a(1)j =
[(

1−f
n

)
q(1)j +

W2(k−1)
n q

(2)
(1)j

]
, j = 1, 2, ..., p;

a(−1)j =
[(

1−f
n

)
q(−1)j +

W2(k−1)
n q

(2)
(−1)j

]
, j = 1, 2, ..., p;

a(0)j =
[(

1−f
n

)
q(0)j +

W2(k−1)
n q

(2)
(0)j

]
, j = 1, 2, ..., p;

q(1)j = Cxj

(
ρy0xj

Cy0−ρy1xj
Cy1

)
, q(2)(1)j = Cxj(2)

(
ρy0xj(2)Cy0(2)−ρy1xj(2)Cy1(2)

)
,

q(−1)j = Cxj

(
ρy0xj

Cy0+ρy1xj
Cy1

)
, q(2)(−1)j = Cxj(2)

(
ρy0xj(2)Cy0(2)+ρy1xj(2)Cy1(2)

)
,

q(0)j = ρy0xj
Cy0Cxj

, q
(2)
(0)j = ρy0xj(2)Cy0(2)Cxj(2), C(1)j =

(
1−f
n

)
q(1)j ,

C(−1)j =
(
1−f
n

)
q(−1)j , C(0)j =

(
1−f
n

)
q(0)j .

8. Appendix II

Putting α = 1, −1, 0 in (4.10) we get the class of estimators

(i) for ratio R as

H(1) = H
(
R̂∗, νT

)
(II-1)

(ii) for product P as

H(−1) = H
(
P̂ ∗, νT

)
(II-2)

(iii) for population mean Y 0 as

H(0) = H
(
y∗0, ν

T
)

(II-3)

The minimum mean squared errors of the estimators H(1), H(−1) and H(0) can be ob-
tained from (4.13) by putting α = 1, −1, 0 and are respectively given by
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min.MSE
(
H(1)

)
= MSE

(
R̂∗

)
−R2aT(1)E

−1a(1) (II-4)

min.MSE
(
H(−1)

)
= MSE

(
P̂ ∗

)
− P 2aT(−1)E

−1a(−1) (II-5)

min.MSE
(
H(0)

)
= Var (y∗0)− Y

2
(0)a

T
(0)E

−1a(0) (II-6)

where
a(1) =

(
a(1)1, a(1)2, ..., a(1)p

)
,

a(0) =
(
a(0)1, a(0)2, ..., a(0)p

)
,

a(−1) =
(
a(−1)1, a(−1)2, ..., a(−1)p

)
,

a(1)j =
[(

1−f
n

)
q(1)j +

W2(k−1)
n q

(2)
(1)j

]
, j = 1, 2, ..., p;

a(−1)j =
[(

1−f
n

)
q(−1)j +

W2(k−1)
n q

(2)
(−1)j

]
, j = 1, 2, ..., p;

a(0)j =
[(

1−f
n

)
q(0)j +

W2(k−1)
n q

(2)
(0)j

]
, j = 1, 2, ..., p;

where
q(1)j , q(−1)j , q(0)j , q

(2)
(1)j , q

(2)
(−1)j , q

(2)
(0)j are same as defined earlier.

It is to be mentioned that the class of estimators

t1 = R̂∗h
(
νT

)
(II-7)

of the ratio R reported by Khare and Sinha (2007) is a member of the proposed class of
estimator H(1). To the first degree of approximation,

min.MSE (t1) = min.MSE
(
H(1)

)
(II-8)

where min.MSE
(
H(1)

)
is given by (II-2).

9. Appendix III

Putting α = 1, −1, 0 in (4.15) we get the class of estimators

(i) for ratio R as

F(1) = F
(
R̂∗, wT

)
(III-1)

(ii) for product P as

F(−1) = F
(
P̂ ∗, wT

)
(III-2)

(iii) for population mean Y 0 as

F(0) = F
(
y∗0, w

T
)

(III-3)

The minimum mean squared errors of the estimators F(1), F(−1) and F(0) are respectively
given by
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min.MSE
(
F(1)

)
= MSE

(
R̂∗

)
−R2CT(1)F

−1C(1) (III-4)

min.MSE
(
F(−1)

)
= MSE

(
P̂ ∗

)
− P 2CT(−1)F

−1C(−1) (III-5)

min.MSE
(
F(0)

)
= Var (y∗0)− Y

2
(0)C

T
(0)F

−1C(0) (III-6)

where

C(1) =
(
C(1)1, C(1)2, ..., C(1)p

)
, C(0) =

(
C(0)1, C(0)2, ..., C(0)p

)
, C(−1) =

(
C(−1)1, C(−1)2, ..., C(−1)p

)
C(1)j =

(
1−f
n

)
q(1)j , j = 1, 2, ..., p, C(−1)j =

(
1−f
n

)
q(−1)j , j = 1, 2, ..., p,

C(0)j =
(

1−f
n

)
q(0)j , j = 1, 2, ..., p,

q(1)j , q(−1)j and q(0)j , j = 1, 2, ..., p are same as defined earlier.

Khare and Sinha (2007) suggested a class of estimators for ratio R as

t2 = R̂∗f
(
wT

)
(III-7)

where f
(
wT

)
is a function of wT = (w1, w2, ..., wp) such that f

(
eT

)
= 1. The estimator

t2 is due to Khare and Sinha (2007) a member of the class F(1) defined at (III-7). The
minimum MSE of t2 is given by

min.MSE (t2) = min.MSE
(
F(1)

)
= MSE

(
R̂∗

)
−R2CT(1)F

−1C(1) (III-8)

Appendix IV

Putting α = 1, −1, 0 in (4.21) we get the class of estimators

(i) for ratio R as

J(1) = J
(
R̂∗, zT

)
(IV-1)

(ii) for product P as

J(−1) = J
(
P̂ ∗, zT

)
(IV-2)

(iii) for population mean Y 0 as

J(0) = J
(
ȳ∗0, z

T
)

(IV-3)

The minimum mean squared errors of the estimators J(1), J(−1) and J(0) are respectively
given by
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min.MSE
(
J(1)

)
= MSE

(
R̂∗

)
−R2

(
a
(2)
(1)

)T
M−1

(
a
(2)
(1)

)
(IV-4)

min.MSE
(
J(−1)

)
= MSE

(
P̂ ∗

)
− P 2

(
a
(2)
(−1)

)T
M−1

(
a
(2)
(−1)

)
(IV-5)

min.MSE
(
J(0)

)
= MSE (ȳ∗0)− Ȳ 2

0

(
a
(2)
(0)

)T
M−1

(
a
(2)
(0)

)
(IV-6)

where

a
(2)
(1) =

(
a
(2)
(1)1, a

(2)
(1)2, a

(2)
(1)3, ..., a

(2)
(1)p

)
, a

(2)
(−1) =

(
a
(2)
(−1)1, a

(2)
(−1)2, a

(2)
(−1)3, ..., a

(2)
(−1)p

)
,

a
(2)
(0) =

(
a
(2)
(0)1, a

(2)
(0)2, a

(2)
(0)3, ..., a

(2)
(0)p

)
, a

(2)
(1)j =

W2(k−1)
n q

(2)
(1)j , a

(2)
(−1)j =

W2(k−1)
n q

(2)
(−1)j ,

a
(2)
(0)j =

W2(k−1)
n q

(2)
(0)j , q

(2)
(1)j = Cxj(2)

(
ρy0xj(2)Cy0−ρy1xj(2)Cy1(2)

)
,

q
(2)
(−1)j = Cxj(2)

(
ρy0xj(2)Cy0+ρy1xj(2)Cy1(2)

)
, q(2)(0)j = ρy0xj(2)Cy0Cxj(2), j = 1, 2, ..., p.
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