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Abstract: The present work deals with energy-harvesting
devices, which are useful in scavenging power using piezo-
electric materials. Utilizing classical beam theory and clas-
sical plate theory, finite element modelling has been
carried out to optimize the performance of output power of
a cantilever beam and a flexible rectangular plate. Harmonic
oscillations and base excitation will be the two different
forcing functions used to drive the system. Based on this,
numerical investigations of the performance of output
power for the piezoelectric cantilever beam and flexible
rectangular plate with different cases are considered. The
present work is also useful for designing the piezoelectric
cantilever beams and plates to extract maximum output
power within the frequency ranges from 0 to 200 Hz.
Numerical investigations on the piezoelectric cantilever
beam and flexible rectangular plate with different cases
reveal that the performance of output power is influenced
by factors like load resistance, applications of with and
without host structures, and different design parameters
like unimorph, bimorph, embedded, line- and cross-type
piezoelectric patch arrangements.
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1 Introduction

Energy-harvesting technology creates autonomous, self-
powered electronic systems that do not rely on battery

power for their operation (Johnson et al. 2006). The term
energy harvesting describes the process of converting
ambient energy surrounding a system into useful electrical
energy using a specific material or transducer. A widely
studied form of energy harvesting involves the conversion
of mechanical vibration energy into electrical energy using
piezoelectric materials, which exhibit electromechanical
coupling between the electrical and mechanical domains
(Ng and Liao 2004, 2005, Jiang et al. 2005). Typical piezo-
electric energy-harvesting systems are designed as add-on
systems to a host structure located in a rich vibration
environment (Anderson and Sexton 2006).

The energy requirements of low-power electronics
have steadily decreased with advancements in efficient
circuitry such that energy-harvesting systems can be con-
sidered feasible solutions in providing power to self-pow-
ered systems. Conventional low-power electronics, such as
wireless sensor nodes, rely on batteries to provide power
to the device. The use of batteries, however, presents sev-
eral drawbacks, including the cost of battery replacement
as well as limitations imposed by the need for convenient
access to the device for battery replacement purposes
(Mateu and Moll 2005). Besides, the disadvantages of bat-
teries also include a finite amount of energy or limited time
span, large maintenance requirements, very high mass-to-
electrical power ratio, and possible hazardous chemicals
and environmental effects. The limited time span of a bat-
tery makes a device not so reliable because it may stop
working at any time without notice due to the sudden
death of the battery (Roundy et al. 2005). The dead battery
must be replaced by a tedious and expensive task, espe-
cially when the device is in a remote location. Wireless
sensor nodes, for example, are often used in remote loca-
tions or embedded into a structure; therefore, access to the
device can be difficult or impossible. By scavenging ambient
energy surrounding an electronic device, energy-harvesting
solutions can provide permanent power sources that do not
require periodic replacement. Such systems can operate in
an autonomous, self-powered manner, reducing the costs
associated with battery replacement, and can easily be

Atul: Department of Mechanical Engineering, Alliance College of
Engineering and Design, Alliance University, Bangalore 562106, India,
e-mail: atul.sharma@alliance.edu.in, mindmakeupatul@gmail.com



* Corresponding author: G. Divya Deepak, Department of Mechanical
and Industrial Engineering, Manipal Institute of Technology, Manipal
Academy of Higher Education, Manipal, Karnataka, 576104, India,
e-mail: divya.deepak@manipal.edu

Energy Harvesting and Systems 2024; 11: 20230097

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/EHS-2023-0097
mailto:atul.sharma@alliance.edu.in
mailto:mindmakeupatul@gmail.com
mailto:divya.deepak@manipal.edu


placed in remote locations or embedded into host structures
(Baker et al. 2005, Kim et al. 2004). Thus, powering devices
require a size that is compatible with the application, suffi-
cient power, and extended lifetime using permanent and ubi-
quitous energy sources (Shahruz 2006). Different arrangements
of piezo patches are also encountered for the vibration sup-
pression behaviour of flexible plates (Atul and Deepak 2022).
Computational simulation is done to find 31 effects of the piezo
cantilever beam for sensor applications (Atul et al. 2014).

2 Objectives and scope of work

With piezoceramic materials, it is possible to harvest power
from vibrating structures. It has been proven that microwatts
of power can be generated from vibrating systems within fre-
quency ranges from 0 to 200Hz. The vibration sources for the
given frequency ranges are available in our day-to-day lives.
We develop finite element models to predict the power gener-
ated from a cantilever beam and cantilever plate. Harmonic
oscillations and base excitationwill be the two different forcing
functions used to drive the system. The finite element models
are validated by comparing them with published data. A para-
metric study is also performed to optimize the performance of
the output power of a cantilever beam plate. The primary
objectives of the present work are the following:
1. Finite element modelling and analysis of output power

of a piezoelectric cantilever beam and plate using clas-
sical beam theory and classical plate theory, respectively.

2. To examine the performance of output power of a piezo-
electric cantilever beam with host structure with dif-
ferent cases for unimorph, bimorph, and embedded
piezoelectric beam.

3. To examine the performance of output power of a piezo-
electric cantilever plate with line- and cross-type piezoelec-
tric patch arrangement with different cases of unimorph,
bimorph, and embedded piezoelectric plates.

This proposed work describes the numerical investiga-
tions of the performance of output power for the piezoelec-
tric cantilever beams and plates, considering different cases.
The numerical investigation is also useful for designing the
piezoelectric cantilever beams and plates to extract max-
imum output power in the frequency range of 0–200 Hz.

3 Numerical methodology

A piezoelectric cantilever beam is modelled under the
assumption of classical beam theory that describes the

kinematics of thin beams (beams for which the ratio of
length to the in-plane thickness L/b > 10). This theory
assumes that the area of the cross-section is rigid in its
own plane. So, no deformation of the cross-section occurs
in its plane, and the cross-section remains normal to the
deformed axis of the beam. The axial displacement can be
written in terms of rigid body translation and rotation as

( ) ( ) ( )= −u x z t u x t zθ x t, , , , ,
0

(1)

( ) =v x t, 0, (2)

( ) ( )=w x z t w x t, , , ,
0

(3)

where ( )u x t,
0

, ( )v x t, , and ( )w x t,
0

are the displacements of
the point of interest along the x, y, and z directions, respec-
tively, and ( )θ x t, is the rotation of the cross-sectional area
about the y-axis.

The strains developed in the beam can be found using
the kinematic quantities defined in equations (1)–(3). Now,
a generalized Hamilton’s principle is employed for pre-
dicting the electrical output power of cantilevered Euler–
Bernoulli beams in energy harvesting:

[ ( ) ]∫ − + + =δ T U W δW td 0,

t

t

e

1

2

(4)

where T is the total kinetic energy, U is the total potential
energy, and We is the electrical energy.

A piezoelectric beam in a series connection is consid-
ered. Electrodes are placed on top and bottom of the piezo
strips, and they are assumed to be perfectly conductive so
that a uniform electric field exists across them. A resistor R
is connected across the beam. In the series connection, the
two piezoelectric layers have opposite polarization direc-
tions, and an electric field is applied across the total thick-
ness of the bimorph.

The width and thickness of the piezoelectric cantilever
beam are very small compared to its length. For that
reason, the components of σ2 and σ3 of the stress tensor
are very small and they can be neglected. Thus, the linear
constitutive relations can be simplified as

= +σ c e Eϵ ,

p p

11 11 11 31 3

(5)

= − +D e ε Eϵ .

p p s

3 31 11 33 3

(6)

Equations (5) and (6) represent the piezoelectric con-
stitutive relations for the series connection. Using the
constitutive relations again, the generalized Hamilton’s
principle is solved.

The element shown in Figure 1 has two nodes with
three degrees of freedom (DOF). Three mechanical DOF
(u, w, θ), the axial nodal, transverse nodal displacements,
and the rotation angle, respectively, are defined at each
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node. The finite element discretization is done with the
help of ANSYS. The displacement DOF is constrained to
be zero for the fixed end of the cantilever beam. After
discretization based on Hamilton’s principle, the element
matrix [m], stiffness matrix [k], electromechanical cou-
pling matrix [θ], and capacitance cp are calculated for a
single element.

Thus, assembling the element matrices given for a single
element, the global equations of motion are then obtained as

+ + − =Md Cd Kd v F̈ ̇
Ʊ , (7)

+ + =d c v QƱ 0,

T

p 0
(8)

where M is the global mass matrix, K is the global stiffness
matrix, Ʊ is the global electromechanical coupling matrix,
cp is the diagonal global capacitance matrix, v0 is the global
vector of voltage outputs, Q is the global vector of electric
charge outputs, C is the global damping matrix, and F is the
force owing to base excitation.

A resistive load R, added across the piezoceramic layer,
results in a current I = dQ/dt in the circuit. Differentiating
equation (8), we get

+ + =d c v QƱ
̇

̇ 0.

T

p 0
(9)

By defining a potential degree of freedom for each
element, it is assumed that there are as many electrodes
as the number of elements and that these elements are
insulated from each other. So, the potential values are
not the same. A continuous electrode is placed on top of
the piezoceramic layer, and a single potential difference v0
exists across the thickness of the piezoceramic layer.

The current in the circuit can be expressed using
Ohm’s law (I = v0/R) as

+ + =d c v

v

R

Ʊ
̇

̇ 0.

T

p 0

0 (10)

Now, another case of a piezoelectric cantilever plate is
considered and modelled under the assumption of the clas-
sical (Kirchhoff) plate theory. According to this theory, the
transverse shear strains and rotary inertias of the finite

element are neglected, and in-plane displacements (u and
v) are assumed to be due to the bending (cross-section
rotation) of the plate only. Thus, the displacement field is
then given by
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where the displacement components u, v, and w at the
thickness level z from the reference (neutral) surface are
given in terms of the transverse deflection (w) of the refer-
ence surface.

The mechanical strain components can be written in
terms of displacement components from equation (11):
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Based on Hamilton’s principle given by equation (4),
the element matrix [m], stiffness matrix [k], electromecha-
nical coupling matrix [θ], capacitance cp, and the mechan-
ical forcing vector [f] are obtained.

The width and thickness of a piezoelectric cantilever
plate are not very small compared to its length. For that
reason, the components σ1, σ2, and σ3 of the stress tensor
are also not very small, and thus they are taken into
account. Therefore, the linear constitutive relations can
be simplified as
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The element shown in Figure 2 has four nodes having
three DOF. Three mechanical DOFs (w, θx, θy), which are
the transverse nodal displacements and bending rotation
angle in the x- and y-axis, respectively, are defined at each
node. The finite element discretization is done with the
help of ANSYS. The displacement DOFs are constrained
to be zero for the fixed end of the cantilever beam. After
discretization based on Hamilton’s principle, the element
matrix [m], stiffness matrix [k], electromechanical coupling
matrix [θ], and capacitance cp are calculated for a single
element. Then, assembling the element matrices, the global
equations of motion are given by equations (7) and (8).

u2

w2 

u1 

w1 1

θ1 θ2 

Figure 1: Two- node Euler–Bernoulli elements.
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4 Verifications against the
published results

The published results of Ly et al. (2011) have been used for
validation. Ly et al. (2011) used a piezoelectric cantilever
beam having a rectangular cross-section. The beam is sub-
jected to 0.01 N excitation forces at the free end of the
cantilever. The length of the beam is 49 mm with a thick-
ness of 0.6 mm and a width of 3.8 mm. Figures 3–6 show the
comparison of the published results with that of the present
work using the finite element method. Figures 3 and 4 show
the variation of tip displacement and voltage generated with
a piezoelectric cantilever beam under an excitation force of
0.01 N at the tip, and the coefficient of damping assumed is
0.05 for the first mode. Similarly, Figures 5 and 6 show the
variation of resonant frequencies and voltage generated
with different proof masses for the first mode, respectively.
Thus, as shown in Figures 3–6, a good agreement was

observed between the experiment and present work by
using the same methodology as discussed in Section 3.

The above agreement is done with the help of ANSYS,
which is used as a tool for the finite element method. Based
on the same methodology, the results obtained helped us
move further with different cases to evaluate the perfor-
mance of piezoelectric cantilever beams and plates.
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Figure 2: A four-node Kirchhoff’s element.
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Figure 3: Harmonic response in terms of tip displacement (first mode).
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Figure 4: Harmonic response in terms of voltage (first mode).
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Figure 5: Variation of resonance frequencies with different proof masses
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5 Results and discussion

5.1 Numerical investigation of the
performance of output power for a
piezoelectric cantilever beam without a
host structure

Under this objective, the numerical investigation of output
power for a piezoelectric cantilever beam without a host
structure is examined. Figure 7 shows a cantilever beam
without any substructure having proof mass at the free
end to adjust the resonance frequency.

The frequency dependence of the output voltage and
power at load resistances of 2.5, 4.5, 6.5, and 10 kΩ are
plotted in Figure 8. From the figure, it can be seen that
when the load resistance increases, the output peak vol-
tage increases, while the output power first increases,

reaches a maximum value at an appropriate load resis-
tance, and then decreases with a further increase of resis-
tance. The maximum value of the output power is about
2.8 μW at a load resistance of 30 kΩ. The maximum output
voltage can be obtained by choosing a load resistance that
is large enough, but a matching load resistance should be
chosen to obtain maximum output power. As shown in
Figure 9, the resonance frequency varies from 62 to 66 Hz
with the thickness of the piezoelectric layer, and the
output peak voltage decreases with an increase of thick-
ness because the piezoelectric layer with a larger thick-
ness weakens the deformation of the cantilever beam. The
dependence of the generated voltage can be studied con-
sidering the size of the device being used to generate the
electrical energy and the stress distribution that is acting
on the piezoelectric layer. So, a large output voltage can
be obtained by choosing the thinner beam where strain is
greater.

Figure 7: Schematic piezoelectric cantilever beam without a substructure.
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5.2 Numerical investigation of the
performance of output power for a
piezoelectric cantilever beam with a host
structure

Under this objective, three cases, i.e. unimorph, bimorph,
and embedded beams, are investigated numerically for
their output performance using silicon as a host structure,
as shown in Figures 9–11. The masses of unimorph and
bimorph cantilever plates remain constant, except for the
embedded piezoelectric beam (Figure 12).

5.2.1 Unimorph

An energy-harvesting cantilever beam with an integrated Si
proof mass was designed and numerically evaluated. The
maximum power is attained at 6.5 kΩ of optimal resistance
load, and the device had 147mV of peak voltage and 0.42 μW
under 0.75 g acceleration force at 162 Hz (Figure 13).

5.2.2 Bimorph

A bimorph piezoelectric energy-harvesting cantilever per-
formance is numerically evaluated. The mass remains

constant as that of an unimorph piezoelectric cantilever
beam. The resonance frequency at which the bimorph
energy harvester shows its performance is quite lower
than that of the unimorph energy harvester. Similar mono-
tonic behaviour of voltage output with increasing load resis-
tance is observed for all excitation frequencies according to
the results of the numerical finite element model. The max-
imum power is attained at 10 kΩ of the optimal resistance
load, and the device had 98mV of peak voltage and 0.96 μW
under 0.75 g acceleration force at 138 Hz, as shown in
Figures 14 and 15.
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5.2.3 Embedded

From Figure 16, it can be observed that when the load resis-
tance increases, the output voltage increases, but when the
load resistance exceeds 10 kΩ, it does not affect the output
power of the embedded energy harvester. In this case study,
the length and thickness of piezoceramics are kept constant,
and the proof is not present at the tip of the beam. The
resonance frequency at which the embedded energy har-
vester shows its performance is good as compared to the
previous energy harvester, which is discussed in the above
section. The frequency dependence output power is also
plotted in Figure 14, which shows that after applying a
load resistance greater than 10 kΩ, the output power of
the embedded cantilever beam decreases. Various para-
meters could be altered to analyse this case study. The max-
imum output power obtained in this case is 2.3 μW under a

gravitational acceleration of 0.75 g at 124 Hz with a load
resistance of 10 kΩ (Figure 17).

5.3 Numerical investigation of the
performance of output power for a
piezoelectric cantilever plate with a host
structure

Under this objective, three cases, i.e. unimorph, bimorph,
and embedded piezoelectric cantilever plates, are investi-
gated numerically for their output performance, where
line type and cross piezoelectric patch are imposed on
the silicon substructure, as shown in Figures 18 and 19
(top view). The mass remains constant throughout all the
cases being considered, except the embedded piezoelectric
plate.
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Figure 16: Frequency dependence output power for the bimorph energy harvester under 0.75g.
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5.3.1 Line-type unimorph

In this case study, from Figure 20, it is observed that the max-
imum output power obtained is 1.39 μW under a gravitational
acceleration of 0.75g at 117Hz with a load resistance of 10 kΩ.

Now, the remaining mass constant for another case, i.e. the
cross-type unimorph plate is examined for its output perfor-
mance. It is noticed that as the load resistance increases, the
maximum power increases first, but after that, attenuation
takes place when further load resistance is increased.
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5.3.2 Cross-type unimorph

In this case study, from Figure 21, it is observed that the
maximum output power obtained is 1.44 μW under a
gravitational acceleration of 0.75 g at 113 Hz with a load

resistance of 10 kΩ, keeping the remaining mass con-
stant. It is noticed that the output power increases
slightly as compared to that of the line-type unimorph
plate, and the frequency shifts to a lower side, which is
remarkable.
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Figure 22: Frequency dependence output power for the cross-type unimorph plate under 0.75 g.
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5.3.3 Line-type bimorph

In this case study, from Figure 22, it is observed that
the maximum output power obtained is 1.53 μW under a
gravitational acceleration of 0.75 g at 124 Hz with a load
resistance of 10 kΩ, keeping the remaining mass constant
throughout all cases. Again, the maximum output power
increases slightly, but in this case the frequency shifts to a
higher side.

5.3.4 Cross-type bimorph

In this case study, from Figure 23, it is observed that the
maximum power obtained is 1.66 μW under a gravitational
acceleration of 0.75 g at 93 Hz with a load resistance of

10 kΩ. It is observed that wherever cross-type cases are
considered, the frequency shifted to the lower side with
an increase of the maximum output power.

5.3.5 Line-type embedded

In this case study, from Figure 24, it is observed that the max-
imum output power obtained is 1.76 μW under a gravitational
acceleration of 0.75 g at 106Hz with a load resistance of 10 kΩ.
Embedded plates are used to replace the existingmaterials, cut
down on costs, and improve the output power performance.
This type of plate is usually used to overcome the limited
source of energy, limited size, and load capacity for any device
where it is applicable. In this case study, again the proof mass
is not added at the tip of the free end cantilever plate.
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Figure 25: Frequency dependence on the output power for the line-type embedded plate under 0.75 g.
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Figure 26: Frequency dependence on the output power for cross-type embedded plate under 0.75 g.
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5.3.6 Cross-type embedded

In this case study, from Figure 25, it is observed that the
maximum output power obtained is 2.03 μW under a grav-
itational acceleration of 0.75 g at 104 Hz with a load resis-
tance of 10 kΩ (Figure 26).

6 Conclusions

The following conclusions can be drawn from the results of
the numerical simulation conducted for different cases:
1. The maximum value of the output power is about

2.8μW at a load resistance of 30 kΩ at 66 Hz for the
piezoelectric cantilever beam without a host structure
under external force applied.

2. For a piezoelectric unimorph cantilever beam, the
maximum power is attained at 6.5 kΩ of the optimal
resistance load, and the device had 147 mV of peak
voltage and 0.42 μW under 0.75 g acceleration force at
162 Hz.

3. For a piezoelectric bimorph cantilever beam, the max-
imum power is attained at 10 kΩ of the optimal resis-
tance load, and the device had 98mV of peak voltage
and 0.96 μW under 0.75 g acceleration force at 138 Hz.

4. For a piezoelectric embedded cantilever beam, the
maximum output power obtained is 2.3 μW under the
gravitational acceleration of 0.75 g at 124 Hz with a
load resistance of 10 kΩ.

5. For a piezoelectric line-type unimorph cantilever plate,
the maximum output power obtained is 1.39 μW under
the gravitational acceleration of 0.75 g at 117 Hz with a
load resistance of 10 kΩ.

6. For a piezoelectric cross-type unimorph cantilever plate,
the maximum output power obtained is 1.44 μW under
the gravitational acceleration of 0.75 g at 113 Hz with a
load resistance of 10 kΩ, keeping the remaining mass
constant.

7. For a piezoelectric line-type bimorph cantilever plate,
the maximum output power obtained is 1.53 μW under
the gravitational acceleration of 0.75 g at 124 Hz with a
load resistance of 10 kΩ.

8. For a piezoelectric cross-type bimorph cantilever plate,
the maximum output power obtained is 1.66 μW under
the gravitational acceleration of 0.75 g at 93 Hz with a
load resistance of 10 kΩ.

9. For a piezoelectric line-type embedded cantilever plate,
the maximum output power obtained is 1.76 μW under
the gravitational acceleration of 0.75 g at 106 Hz with a
load resistance of 10 kΩ.

10. For a piezoelectric cross-type embedded cantilever plate,
the maximum output power obtained is 2.03 μW under
the gravitational acceleration of 0.75 g at 104 Hz with a
load resistance of 10 kΩ.

7 Concluding remarks and
future work

Numerical investigations on piezoelectric cantilever beams
and plates with different cases reveal that the performance
of output power is influenced by factors like load resistance,
applications with and without host structures, and different
design parameters like unimorph, bimorph, embedded, line-
type, and cross-type piezoelectric patch arrangements, which
are discussed in this article. The observations and data gen-
erated in the numerical work can be used to predict the
estimation of the sound pressure level or sound power level
at a given distance when the beam or plate vibrates under the
influence of load resistance, applications of with and without
host structures, and different design parameters with unim-
orph, bimorph, embedded, line- and cross-type piezoelectric
patch arrangements.
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