
Asian Journal of Probability and Statistics

Volume 26, Issue 4, Page 66-79, 2024; Article no.AJPAS.116200

ISSN: 2582-0230

On Some Stochastic Ordering Comparisons
for Renewal Processes

Suman Kalyan Ghosh a∗ and S. Ravi b

aDepartment of Applied Mathematics, Alliance University, Bangalore 562106, India.
bDepartment of Studies in Statistics, University of Mysore, Mysore 570006, India.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final
manuscript.

Article Information

DOI: 10.9734/AJPAS/2024/v26i4609

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and

additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc
are available here: https://www.sdiarticle5.com/review-history/116200

Received: 12/02/2024

Accepted: 18/04/2024

Original Research Article Published: 23/04/2024

Abstract
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variables. Some numerical illustrations are given. The results obtained here appear to be new.
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1 Introduction

Ordinary renewal process (ORP) is a counting process which was introduced as a generalization of Poisson
process. ORP is applied in various areas, such as replacement and maintenance, reliability, actuarial mathematics,
manpower studies, demography, queuing theory, inventory control and so on. In reliability language, the system
or a component failure times, since when the observation started, generate a renewal process provided the
replacement time or the repair time is negligible in comparison to the inter-failure time scale, and renewal refers
to either the replacement of the failed component with a brand new one or the case where it is repaired in a
negligibly short period of time to an almost brand new condition (as good as before).

In this article, we look at the comparison of two independent ORPs and compound renewal processes (CRPs)
by means of stochastic ordering on the basis of the generating renewal distribution and distribution function
(df) of the independent and identically distributed (iid) summands. We have referred the Book “Stochastic
processes” by Ross [1] for renewal process and these have been studied extensively. For definitions and details
on various stochastic orders, we refer to Shaked and Shanthikumar [2], Nair, Sankaran and Balakrishnan [3],
Ravi and Prathibha [4], Mitov and Omey [5], and other references [6, 7, 8, 9, 10, 11, 12]. Definitions used in this
article are given in Appendix for ease of reference. We answer the following questions in this article: What are
the distributional properties of the rvs associated with these processes? How the renewal function and renewal
density behaves for various generating renewal distribution? What are the various stochastic ordering relations
while comparing two independent ORPs, and an ORP with a homogeneous Poisson process (HPP)? Whether
more arrivals (failures) are occurring for an ORP by a given time t when comparing to another independent
ORP? What are the implications in stochastic comparison of two independent ORPs with respect to different
ageing classes of life distributions? The article is sequenced as follows: Section 1.1 is a brief introduction to the
distributional properties of the corresponding random variables. Section 2 contains the main results and Section
3 has some examples and numerical illustrations. The results obtained here appears to be new.

1.1 Preliminaries

Definition 1.1. A generalized counting process, denoted as { N(t), t ≥ 0}, is defined as N(t) =
max

{
n ≥ 0 : Sn =

∑n
i=1 Xi ≤ t

}
, where {Xi, i = 1, 2, . . .} is a sequence of independent but not necessarily

identically distributed non negative continuous random variables (rvs). The events for the counting process
{N(t), t ≥ 0} are occurring at times S1, S2, . . . while the process was started observing at time 0. Therefore,
X1 = S1, Xi = Si − Si−1; for i = 2, 3, . . . can be interpreted as the i-th inter-event time, also known as inter-
failure time in reliability literature, whereas the rv N(t) denotes the number of events occurred in the time
interval [0, t] for some given time t, t ≥ 0.

Definition 1.2. If we consider the simpler case of the distribution of the first event/ failure/ arrival time X1

being identical to those of the inter-event times X2, X3, . . . in Definition (1.1), then the resulting counting process
is said to be an ORP, denoted as {NF (t), t ≥ 0}, generated by the baseline distribution function (df) F , where
Xi ∼ F for i = 1, 2, . . ..

Remark 1.1. As a special case of ORP as defined above (1.2), when the inter-arrival times are exponentially
distributed with constant failure rate parameter λ > 0, or in other words average time to failure is 1

λ
, the

resulting counting process is known as homogeneous Poisson process (HPP).

Probability Mass Function

For the ORP {NF (t), t ≥ 0} as defined in (1.2), Sn = X1+X2+. . .+Xn ∼ Fn, where Fn is the n-fold convolution
of F with itself, as Xi, i = 1, 2, . . . , n are iid rvs having df F . By definition, n-th event occurs prior to or at time
t iff the number of events occurring by time t is at least n, that is Sn ≤ t⇔ NF (t) ≥ n, therefore

P(NF (t) ≥ n) = P(Sn ≤ t) = Fn(t), (1.1)
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Fig. 1. pmf plots for t = 0.5

Fig. 2. pmf plots for t = 1

From (1.1) the probability mass function (pmf) for the rv NF (t) is obtained as

P(NF (t) = n) = P(NF (t) ≥ n)− P(NF (t) ≥ n+ 1) = Fn(t)− Fn+1(t) (1.2)

For a HPP {N(t), t ≥ 0} with rate λ, N(t) is a Poisson(λt) rv and therefore the pmf for N(t) is P(N(t) = n) =
(λt)n

n!
e−λt.

The pmf plots of the Poisson rv N(t) associated with rates λ = 10 and λ = 8, and for the counting rv NF (t)
associated with ORP generated by Gamma distributed inter-arrival times with shape 2.2 and scale 5 are displayed
in Figs. 1-3 for different values of time t. It is observed that as the time t increases the pmf plots shifted towards
right which indicates that more arrivals are occurring which is desirable although the shape of the plots remains
almost same. It is worth to note that while comparing the pmf plots for any value of t, the shape of the plots
are varying based on the generating df of the inter-arrival times.
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Fig. 3. pmf plots for t = 2

Renewal Function for an ORP

Renewal function (RNF) for the ORP {NF (t), t ≥ 0}, denoted as M(t), is defined as the expected number of
arrivals (failures) by time t. Therefore

M(t) = E (N(t)) =

∞∑
n=0

P (N(t) > n) =

∞∑
n=1

P (N(t) ≥ n) =

∞∑
n=1

P (Sn ≤ t) =

∞∑
n=1

Fn(t) (1.3)

Remark 1.2. For an HPP (1.1), M(t) = λt as N(t) ∼ Poisson (λt).

The analytical form of RNF can be obtained by Laplace transform (LT) method as given below. Taking LT of
both sides of (1.3), we get

M̂(s) =

∞∑
n=1

F̂n(s) =
1

s

∞∑
n=1

f̂n(s) =
1

s

∞∑
n=1

(
f̂(s)

)n
=

f̂(s)

s
(

1− f̂(s)
) (1.4)

where, fn(t) = Fn
′(t) be the n-fold convolution of f with itself, f(t) = F ′(t), and ĝ(s) denote the LT of a

function g(t). Inverting (1.4), the closed form of M(t) can be obtained for some specific baseline renewal dfs.

Renewal Intensity Function

Renewal density, also known as Renewal intensity function (RNIF), for the ORP {NF (t), t ≥ 0}, denoted as
m(t), is defined as

m(t) = M ′(t) =

∞∑
n=1

fn(t) (1.5)

Therefore m(t) can be interpreted as the mean number of renewals to be expected in a narrow interval near t.
Taking LT of both sides of (1.5), we get

m̂(s) = sM̂(s) =
f̂(s)

1− f̂(s)
(1.6)

and inverting (1.6) we get the analytical expression for m(t).

Some numerical illustrations for the comparison of RNF and RNIF of independent ORPs are provided in Section
(3), Example (3.5).
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Fig. 4. Renewal function plots for Gamma renewal distribution

Remark 1.3. For an HPP (1.1), m(t) = λ, that is the RNIF for a HPP is constant.

Definition 1.3. A stochastic process {W (t), t ≥ 0} is said to be a compound renewal process (CRP) if it can

be represented, for t ≥ 0, by W (t) =
∑NF (t)
i=1 Wi where {NF (t), t ≥ 0} is a ORP with renewal distribution F ,

and {Wi, i = 1, 2, . . .} is a family of iid rvs, each having df H, that is independent of the ORP {NF (t), t ≥ 0}.
Therefore, the rv W (t) can be interpreted as the total amount of time spent by time t > 0 where the arrivals
(visits to the website) follow a ORP {NF (t), t ≥ 0} and the each visitor spends a random amount of time at the
site independent of the others, denoted as sequence of iid rvs W1,W2, . . ., having df H.

For the CRP {W (t), t ≥ 0} as defined above, the df for the rv W (t) is obtained as

P(W (t) ≤ x) =

∞∑
n=1

P

NF (t)∑
i=1

Wi ≤ x|Nλ(t) = n

P (NF (t) = n)

=

∞∑
n=1

P

(
n∑
i=1

Wi ≤ x

)
P (NF (t) = n)

=

∞∑
n=1

Hn(x) (Fn(t)− Fn+1(t)) , using (1.2) (1.7)

where Hn denotes n-fold convolution of H with itself.

2 Main Results

Consider two independent ORPs {NF (t), t ≥ 0} and {NG(t), t ≥ 0}, generated respectively by two iid inter-
arrival times {Xn, n ≥ 1} and {Yn, n ≥ 1} with respective dfs F and G. We state and prove our main results
now. The following result characterizes the inter-arrival times of two independent ORPs by means of stochastic
ordering and the comparison between two independent HPPs, a HPP and an independent ORP and characterization
of inter-arrival times of two independent ORPs by means of hazard rate orders and likelihood ratio ordering, are
obtained as corollaries to this result. We state and prove a Lemma (2.1) which will be used prove other results
in this section.
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Fig. 5. Renewal intensity function plots for Gamma renewal distribution

Lemma 2.1. For two continuous non-negative rvs X and Y having dfs F and G respectively, X ≥st Y ⇔
Fn(t) ≤ Gn(t) for t ≥ 0, where Fn and Gn denotes n-fold convolution of F and of G with itself respectively.

Proof. X ≥st Y ⇒ P(X > t) ≥ P(Y > t) for all t ≥ 0 ⇒ F (t) ≤ G(t) for all t ≥ 0. Therefore, F2(t) =
F ∗F (t) =

∫ t
0
F (u)F (t−u)du ≤

∫ t
0
G(u)G(t−u)du = G∗G(t) = G2(t). Hence, the proposition is true for n = 2.

Let the proposition true for n− 1 for some positive integer n > 2, that is Fn−1(t) ≤ Gn−1(t), t ≥ 0. Therefore,
Fn(t) = Fn−1 ∗ F (t) =

∫ t
0
Fn−1(u)F (t− u)du ≤

∫ t
0
Gn−1(u)G(t− u)du = Gn(t). Hence, the proof follows using

method of induction. The converse is trivial and therefore omitted.

Theorem 2.2. The inter-arrival times of an ORP {NF (t), t ≥ 0} is stochastically larger (smaller) than the
inter-arrival times of another independent ORP {NG(t), t ≥ 0} iff NF (t) ≤st (≥st)NG(t), t ≥ 0.

Proof. Since the inter-arrival times of ORP {NF (t), t ≥ 0} are stochastically larger (smaller) than those of
another independent ORP {NG(t), t ≥ 0} , for t ≥ 0,

F̄ (t) ≥ (≤)Ḡ(t) ⇔ F (t) ≤ (≥)G(t)

⇒ Fn(t) ≤ (≥)Gn(t), n ≥ 0, using Lemma 2.1

⇒ P (NF (t) ≥ n) ≤ (≥)P (NG(t) ≥ n) , n ≥ 0, using (1.1)

⇒ NF (t) ≤st (≥st)NG(t),

proving necessity. To prove sufficiency,

NF (t) ≤st (≥st)NG(t), t ≥ 0⇒ P (NF (t) ≥ n) ≤ (≥)P (NG(t) ≥ n) , n ≥ 0, t ≥ 0.

For n = 1, we get, for t ≥ 0,

P (NF (t) ≥ 1) ≤ (≥)P (NG(t) ≥ 1) ⇒ P (NF (t) < 1) ≥ (≤)P (NG(t) < 1)

⇒ F̄ (t) ≥ (≤)Ḡ(t).

That is, the inter-arrival times of NF (.) are stochastically larger (smaller) than those of NG(.). Hence the
proof.
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Corollary 2.3. Consider two independent HPPs {N1(t), t ≥ 0} and {N2(t), t ≥ 0} with respective rates 1
µ1

and
1
µ2
, where µ1 > 0, µ2 > 0. Then N1(t) ≤st (≥st)N2(t) iff µ1 ≥ (≤)µ2.

Proof. We have

µ1 ≥ (≤)µ2 ⇔ t

µ1
≤ (≥)

t

µ2
, t ≥ 0

⇔ e
− t
µ1 ≥ (≤)e

− t
µ2 , t ≥ 0

⇔ N1(t) ≤st (≥st)N2(t), t ≥ 0,

using Theorem 2.2.

Corollary 2.4. Consider a HPP {N(t), t ≥ 0} with rate 1
µ
, µ > 0, and an independent ORP {NF (t), t ≥ 0} .

Then NF (t) ≤st (≥st)N(t) iff R(t) ≤ (≥) t
µ
, t ≥ 0, where R(.) is the hazard function associated with the df F (·).

Proof. Since R(t) = − log F̄ (t), for t ≥ 0,

R(t) ≤ (≥)
t

µ
⇔ − log F̄ (t) ≤ (≥)

t

µ

⇔ F̄ (t) ≥ (≤)e
− t
µ

⇔ NF (t) ≤st (≥st)N(t),

using Theorem 2.2.

Corollary 2.5. If the inter-arrival times of an ORP {NF (t), t ≥ 0} is larger (smaller) than the inter-arrival
times of another independent ORP {NG(t), t ≥ 0} in the hazard rate order (reversed hazard rate order), then
NF (t) ≤st (≥st)NG(t), t ≥ 0.

In other words, if rF (·) and rG(·) denote the respective hazard rate functions corresponding to the generating
renewal dfs of the independent ORPs {NF (t), t ≥ 0} and {NG(t), t ≥ 0} such that rF (t) ≤ (≥)rG(t) (qF (t) ≥
(≤) qG(t)), where qF (·) and qG(·) denote the respective reversed hazard rate functions), then NF (t) ≤st (≥st
)NG(t), t ≥ 0.

Proof. Since the inter-arrival times of {NF (t), t ≥ 0} being larger than the inter-arrival times of {NG(t), t ≥ 0}
in the hazard rate order (reversed hazard rate order) imply that the inter-arrival times of {NF (t), t ≥ 0} are
stochastically larger than those of {NG(t), t ≥ 0} , the proof follows from Theorem 2.2.

Corollary 2.6. If the inter-arrival times of a renewal process {NF (t), t ≥ 0} are larger (smaller) than those of
another independent renewal process {NG(t), t ≥ 0} in the likelihood ratio order, then NF (t) ≤st (≥st)NG(t), t ≥
0.

Proof. Since the inter-arrival times of {NF (t), t ≥ 0} being larger than those of {NG(t), t ≥ 0} in the likelihood
ratio order imply that the inter-arrival times of {NF (t), t ≥ 0} are stochastically larger than those of {NG(t), t ≥ 0} ,
the proof follows from Theorem 2.2.

The following result compares an ORP with that generated by the equilibrium distribution. We refer to the
Appendix for the definitions of NBUE and NWUE.

Theorem 2.7. If
{
ÑF (t), t ≥ 0

}
denotes the equilibrium F -renewal process, then ÑF (t) ≥st NF (t) iff F is

NBUE, and the inequality reverses iff F is NWUE.
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Proof. We prove the NBUE case and the NWUE case is similar. With µF =
∫∞

0
F̄ (x)dx < ∞, by definition,

the equillibrium df of F is Fe(t) = 1
µF

∫ t
0
F̄ (x)dx, t ≥ 0, and F̄e(t) = 1

µ

∫∞
t
F̄ (x)dx. The delayed renewal process

with the first inter-arrival time df as Fe and the later inter-arrival times being iid with df F is, by definition, the

equilibrium F -renewal process
{
ÑF (t), t ≥ 0

}
. If F is NBUE, then, by definition, 1

µF

∫∞
t
F̄ (x)dx ≤ F̄ (t), t ≥ 0

so that F̄e(t) ≤ F̄ (t), t ≥ 0. Now P (NF (t) ≥ n) = Fn(t), t ≥ 0, Fn the n-fold convolution of F with itself and

P
(
ÑF (t) ≥ n

)
= Fe ∗ Fn−1(t). We have

Fe(t) ≥ F (t), t ≥ 0 ⇒ Fe ∗ Fn−1(t) ≥ Fn(t), t ≥ 0, n ≥ 2,

⇒ P
(
ÑF (t) ≥ n

)
≥ P (NF (t) ≥ n) , t ≥ 0, n ≥ 1, using (1.1)

⇒ ÑF (t) ≥st NF (t), t ≥ 0,

proving sufficiency. For proving necessity, let ÑF (t) ≥st NF (t), t ≥ 0, so that P
(
ÑF (t) ≥ n

)
≥ P (NF (t) ≥ n) , n ≥

1, t ≥ 0. Since P
(
ÑF (t) ≥ 0

)
= P (NF (t) ≥ 0) = 1, t ≥ 0, we have

P
(
ÑF (t) = 0

)
≤ P (NF (t) = 0) , t ≥ 0 ⇒ F̄e(t) ≤ F̄ (t), t ≥ 0

⇒ 1

µF

∫ ∞
t

F̄ (x)dx ≤ F̄ (t), t ≥ 0

⇒ F is NBUE.

Remark 2.1. The following result combines Proposition 9.6.1 and Theorem 9.6.4 in Ross [1] and compares an
ORP with a HPP.

If {NF (t), t ≥ 0} is an ORP having mean inter-arrival time µ and {N(t), t ≥ 0} is a HPP with rate 1
µ
, and if F

is NBUE, then F ≤v Exp(µ), the exponential df with mean µ, and NF (t) ≤v N(t). The inequality reverses if F
is NWUE.

The following result compares two ORPs under variability ordering.

Theorem 2.8. Consider two independent ORPs {NF (t), t ≥ 0} and {NG(t), t ≥ 0} having the same mean
inter-arrival time µ, 0 < µ <∞. If F is NBUE and G is NWUE, then NF (t) ≤v NG(t).

Proof. If {N(t), t ≥ 0} is a HPP with rate 1
µ
, and F is NBUE, by Remark 2.1, we get NF (t) ≤v N(t) and if

G is NWUE, by Remark 2.1, we get NG(t) ≥v N(t). Therefore, NF (t) ≤v N(t) ≤v NG(t) ⇒ NF (t) ≤v NG(t),
completing the proof.

Theorem 2.9. Let {NF (t), t ≥ 0} and {NG(t), t ≥ 0} be two independent ORPs having the same mean µ, 0 <
µ <∞, and F ≥v G. Then NF (t) ≤st NG(t) iff F is NBUE and G is NWUE.

Proof. We have, for t ≥ 0,

F ≥v G ⇒
∫ ∞
t

F̄ (x)dx ≥
∫ ∞
t

Ḡ(x)dx,

⇒ 1

µ

∫ ∞
t

F̄ (x)dx ≥ 1

µ

∫ ∞
t

Ḡ(x)dx

⇒ F̄e(t) ≥ Ḡe(t),

and

F NBUE ⇒ 1

µ

∫ ∞
t

F̄ (x)dx ≤ F̄ (t)⇒ F̄e(t) ≤ F̄ (t),
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G NWUE ⇒ 1

µ

∫ ∞
t

Ḡ(x)dx ≥ Ḡ(t)⇒ Ḡe(t) ≥ Ḡ(t).

Therefore
F̄ (t) ≥ F̄e(t) ≥ Ḡe(t) ≥ Ḡ(t), t ≥ 0⇒ F (t) ≤ Fe(t) ≤ Ge(t) ≤ G(t), t ≥ 0.

Also, F (t) ≤ G(t) ⇒ Fn(t) ≤ Gn(t), n ≥ 1, by Lemma (2.1) so that P
(
ÑF (t) ≥ n

)
= Fe ∗ Fn−1(t) ≤ Ge ∗

Gn−1(t) = P
(
ÑG(t) ≥ n

)
. Hence P

(
ÑF (t) ≥ n

)
≤ P

(
ÑG(t) ≥ n

)
, n ≥ 0 ⇒ ÑF (t) ≤st ÑG(t), t ≥ 0. Using

Theorem 2.7, ÑF (t) ≥st NF (t) iff F is NBUE and ÑG(t) ≤st NG(t) iff G is NWUE. Combining these inequalities,
we get

NF (t) ≤st ÑF (t) ≤st ÑG(t) ≤st NG(t)

iff F is NBUE and G is NWUE, completing the proof.

A generalized version of Theorem 2.9 is the following result.

Theorem 2.10. Let {NF (t), t ≥ 0} and {NG(t), t ≥ 0} be two independent ORPs having finite means µF and
µG with µF ≤ µG and F ≥v G. Then NF (t) ≤st NG(t) iff F is NBUE and G is NWUE.

Proof. The theorem can be proved using arguments similar to those used to prove Theorem 2.9 and hence the
proof is omitted.

Remark 2.2. Note that for two ORPs {NF (t), t ≥ 0} and {NG(t), t ≥ 0}, F ≤v G does not necessarily imply
NF (t) ≤v NG(t). This can be seen from the following examples.

Consider two independent ORPs {NF (t), t ≥ 0} and {NG(t), t ≥ 0} having the same mean inter-arrival time
µ, 0 < µ < ∞. If F is NBUE and G is NWUE, then by Theorem 2.8, NF (t) ≤v NG(t). Consider now an
independent HPP {N(t), t ≥ 0} with rate 1

µ
. Then F NBUE⇒ F ≤v Exp(µ) and G NWUE⇒ G ≥v Exp(µ) by

Remark 2.1 which imply that F ≤v Exp(µ) ≤v G. Therefore, with F NBUE and G NWUE, we have F ≤v G⇒
NF (t) ≤v NG(t). Consider two independent ORPs {NF (t), t ≥ 0} and {NG(t), t ≥ 0} with F (t) = 1 − e−

t
µF ,

and G(t) = 1− e−
t
µG , 0 < µF ≤ µG <∞. We then have

µF ≤ µG ⇒ x

µF
≥ x

µG
, x ≥ 0

⇒ e
− x
µF ≤ e−

x
µG , x ≥ 0

⇒
∫ ∞
t

e
− x
µF dx ≤

∫ ∞
t

e
− x
µG dx, t ≥ 0

⇒
∫ ∞
t

F̄ (x)dx ≤
∫ ∞
t

Ḡ(x)dx, t ≥ 0

⇒ F ≤v G,

but E(NF (t)) = t
µF

and E(NG(t)) = t
µG

so that E(NF (t)) ≥ E(NG(t)), t ≥ 0, which implies NF (t) ≤v NG(t)

does not hold as NF (t) ≤v NG(t) implies that E(NF (t)) ≤ E(NG(t)). The following results provide comparison
of two independent CRPs by means of stochastic ordering on the basis of the df of iid summand rvs and/ or the
renewal distribution of the corresponding ORP. Let us define the notations for use in Theorem 2.11 and Remark
2.3.
Consider two independent CPPs {A(t), t ≥ 0} and {B(t), t ≥ 0} defined as

A(t) =

NF (t)∑
i=1

Ai, B(t) =

NG(t)∑
i=1

Bi (2.1)

where {Ai, i = 1, 2, . . .} and {Bi, i = 1, 2, . . .} are family of iid rvs, independent of the corresponding ORPs
{NF (t), t ≥ 0} and {NG(t), t ≥ 0} respectively, and the iid rvs Ai and Bi are having dfs K and L respectively.
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Fig. 6. P (NF (t) = n)− P (NG(t) = n) with F as Gamma(2,2) and G as Gamma(2,2.5)

Fig. 7. P (NF (t) = n)− P (NG(t) = n) with F as Gamma(3,2) and G as Gamma(2,2)

Theorem 2.11. Ai ≥st Bi ⇒ A(t) ≥st B(t), t ≥ 0 provided F = G.

Proof. Ai ≥st Bi ⇒ K(x) ≤ L(x), x ≥ 0 ⇒ Kn(x) ≤ Kn(x), x ≥ 0 using Lemma (2.1). Therefore using (1.7)
and the condition F = G, we obtain

P(A(t) ≤ x) =

∞∑
n=1

Kn(x) (Fn(t)− Fn+1(t)) ≤
∞∑
n=1

Ln(x) (Gn(t)−Gn+1(t)) = P(B(t) ≤ x) (2.2)

which implies A(t) ≥st B(t).

Remark 2.3. It is to be noted that the condition F = G is necessary for the result in Theorem (2.11) to be
valid. This is because, if F 6= G, then P (NF (t) = n) ≤ P (NG(t) = n) for some values of n, and P (NF (t) = n) ≥
P (NG(t) = n) for some other values of n, that is the difference P (NF (t) = n)−P (NG(t) = n) may be negative or
positive for different values of n. This is illustrated in Figs. 6-8. where a plot of P (NF (t) = n)−P (NG(t) = n)
is shown for F and G as Gamma dfs with different shape and rate parameters and for n = 1, . . . , 5. It is clear
from the figure that the values of the difference is negative for some values of t and n and positive for other
values of t and n. Therefore, if F 6= G, then the inequality in (2.2) may not hold.
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Fig. 8. P (NF (t) = n)− P (NG(t) = n) with F as Gamma(3,2) and G as Gamma(2,2.5)

3 Illustrations

The results are illustrated here with examples keeping the same notations used in the previous section.

Example 3.1. Consider an ORP {NF (t), t ≥ 0} having iid inter-arrival times with df F. and another independent
ORP {NG(t), t ≥ 0} with G(x) = (F (x))θ, where θ > 0, is a parameter. If 0 < θ < 1, F (x) ≤ (F (x))θ =
G(x), x ≥ 0 so that F̄ (x) ≥ Ḡ(x), x ≥ 0, and by Theorem 2.2, {NF (t), t ≥ 0} ≤st {NG(t), t ≥ 0} . If θ ≥ 1,
F (x) ≥ (F (x))θ = G(x), x ≥ 0 so that F̄ (x) ≤ Ḡ(x), x ≥ 0 and by Theorem 2.2, {NF (t), t ≥ 0} ≥st
{NG(t), t ≥ 0} .

Example 3.2. Consider two independent ORPs generated by dfs F (t) = 1−e−t, t ≥ 0, and G(t) = 1−e−t
2

, t ≥
0. If 0 ≤ t < 1, then t ≥ t2 and hence F̄ (t) ≤ Ḡ(t) so that NF (t) ≥st NG(t) by Theorem 2.2. If t ≥ 1, then
t ≤ t2 and hence F̄ (t) ≥ Ḡ(t) so that NF (t) ≤st NG(t) by Theorem 2.2.

Example 3.3. Consider an ORP generated by the df F (t) = 1 − e−t
2

, t ≥ 0 with mean inter-arrival time

µF =
∫∞

0
F̄ (t)dt =

√
π

2
, and an independent Poisson process {N(t), t ≥ 0} with rate 1

µF
. Then the pdf of F is

f(t) = 2te−t
2

and (log f(t))′′ = − 1
t2
− 2 < 0, t ≥ 0 so that f(.) is log-concave. Hence F (.) is also log-concave

(see Bagnoli and Bergstrom, 2005). Using the ageing class relationships, log-concave ⇒ IFR ⇒ NBU ⇒ NBUE,
F is NBUE, by Remark 2.1, NF (t) ≤v N(t).

Example 3.4. Consider two independent CRPs {A(t), t ≥ 0} and {B(t), t ≥ 0} with L(x) = (K(x))θ where
θ > 0 is a parameter. If 0 < θ < 1, K(x) ≤ (K(x))θ = L(x), x ≥ 0 and by Theorem 2.11, A(t) ≥st B(t). If
θ ≥ 1, K(x) ≥ (K(x))θ = L(x), x ≥ 0 and by Theorem 2.11, A(t) ≤st B(t).

Example 3.5. Consider a ORP with Gamma renewal distribution, with α as shape parameter and λ as scale

parameter. The LT of Gamma density f(t) = λα

Γ(α)
tα−1e−λt is obtained as f̂(s) =

(
λ
λ+s

)α
. However the closed

form of the RNF and RNIF is obtained only for positive integer shape parameter α. Using (1.4) and (1.6), for
α = 2, 3, and 4 the RNFs and RNIFs are obtained as shown in Tables 1 and 2.

The RNF and RNIF plots for Gamma renewal distribution for different combinations of shape parameter
α = 2, 3, 4, and scale parameter λ = 1.5, 2, 3 are displayed in Figs. 4 and 5. It can be observed from Fig.
4, that RNF M(t) increases as t increases which is obvious, and for fixed α = 2 and given t > 0, M(t) increases
as λ increases, whereas for fixed λ = 1.5 and given t > 0, M(t) decreases as α increases.
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Table 1. RNF

α RNF

2 λt
2
− 1

4
+ e−2λt

4

3 λ
3

+ 1
3

(
1− e−

3λt
2

(
cos
(
λt
√

3
4

)
+ 1√

3
sin
(
λt
√

3
4

)))
4 λt

4
+ e−2λt

8
+ e−λt(cos(λt)+sin(λt))

4
− 3

8

Table 2. RNIF

α RNIF

2 λ
2

(
1− e−2λt

)
3 λ

3

(
1− e−

3λt
2

(
cos
(
λt
√

3
4

)
+
√

3 sin
(
λt
√

3
4

)))
4 λ

4

(
1− e−2λt − 2e−λt sin(λt)

)

From Fig. 5, we observe that the RNIF m(t) is increasing rapidly near 0 as t increases, but gradually the plots
become parallel to the time axis, that is RNIF tends to some constant as t getting larger. This is also evident
from the analytical expression of the RNIFs. Also for fixed α = 2 and given t > 0, m(t) increases as λ increases,
whereas for fixed λ = 1.5 and given t > 0, m(t) decreases as α increases.

4 Conclusions

This paper has presented comparison of two independent ORPs by means of several stochastic orderings
between the generating inter-arrival time rvs, like stochastic order, hazard rate order, likelihood ratio order
and variability order, as well as on the basis of some ageing classes of the generating rvs, such as NBUE/
NWUE. Some stochastic ordering results obtained for the counting rvs associated with ORPs generated by some
specific ageing life distributions. Some numerical illustrations are provided using gamma renewal distribution
for comparing two independent ORPs using graph plots for the pmf of the counting rv, RNF and RNIF. We have
also defined compound renewal process (CRP), as a generalization of compound Poisson process, and presented
some stochastic comparisons of two independent CRPs on the basis of the iid summands and the renewal df of
the generating ORPs.
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Appendix

Let X and Y be two nonnegative independent rvs with respective dfs F (.) and G(.), survival functions (sfs) F̄ (.)
and Ḡ(.), hazard rate functions rX(.) and rY (.), reversed hazard rate functions qX(.) and qY (.).

A few definitions:

1. For any continuous non-negative rv X, we define its hazard rate function and reversed hazard rate function
as rX(t) = f(t)

F̄ (t)
and qX(t) = f(t)

F (t)
, t ≥ 0 respectively, where f(.) denotes the probability density function

(pdf) of the rv X.

2. X is said to be stochastically larger than Y, denoted by X ≥st Y, if P(X > t) ≥ P(Y > t), t ≥ 0, or
equivalently F (t) ≤ G(t), t ≥ 0.

3. X is said to be larger than Y in the hazard rate order, denoted by X ≥hr Y, if rX(t) ≤ rY (t), t ≥ 0, or

equivalently if F̄ (t)

Ḡ(t)
is increasing in t.

4. X is said to be larger than Y in the reverse hazard rate order, denoted by X ≥rh Y if qX(t) ≥ qY (t), t ≥ 0,

or equivalently if F (t)
G(t)

is increasing in t.

5. For two continuous non-negative independent rvs X and Y with respective pdfs f and g, X is larger than
Y in the sense of likelihood ratio, denoted by X ≥lr Y, if f(t)

g(t)
↑ t, t ≥ 0.

6. For two continuous non-negative independent rvs X and Y, X is said to be stochastically less variable
than Y, denoted as X ≤v Y, if

∫∞
t
F̄ (x)dx ≤

∫∞
t
Ḡ(x)dx, t ≥ 0.

For two discrete non-negative independent rvs X and Y, X is said to be stochastically less variable
than Y, denoted as X ≤v Y, if

∑∞
x=n F̄ (x) ≤

∑∞
x=n Ḡ(x) for all n = 0, 1, . . . .

7. X and the corresponding df F is said to be increasing failure rate (IFR) if rX(t) ↑ t.
8. X and the corresponding df F is said to be New Better than used (NBU) if F̄ (s + t) ≤ F̄ (t)F̄ )(s), t ≥

0, s ≥ 0.

9. X and the corresponding df F is said to be New better than used in expectation (NBUE) if

(a) X has finite mean µF =
∫∞

0
F̄ (x)dx,

(b) F̄ (t) ≥ 1
µF

∫∞
t
F̄ (x)dx, t ≥ 0.

10. A real valued function f is said to be concave (convex) if for any x, y ≥ 0 and for any α ∈ [0, 1],

f((1− α)x+ αy) ≥ (≤)(1− α)f(x) + αf(y).

If f is twice-differentiable, then f is concave (convex) iff f
′′

is non-positive (non-negative).

11. f is said to be log-concave (log-convex) if log f is concave (convex).

The dual stochastic orders/ ageing classes are defined by reversing the inequalities.
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