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ARTICLE INFO ABSTRACT

Keywords: Heart disease is a significant public health concern, affecting a large number of people worldwide
Heart disease daily. With a shortage of qualified cardiologists, particularly in low-income countries, the
ECG signals diagnosis and management of heart disease can be challenging. The electrocardiogram (ECG) is
Deep Learning the primary diagnostic tool for heart disease, but interpreting ECG reports requires the expertise
Heart Disease diagnosis of a qualified cardiologist, making it time-consuming and costly. To address this issue, automated

ECG signal interpretation is necessary. Hence, this article has made an encyclopedic review of
the existing literature. The article includes demonstration of frequently utilized data sets and tools
and techniques for this domain. Therefore, a framework is proposed based on the observation of
existing works. The proposed framework aims to improve the analysis of ECG reports for both
cardiologists and non-experts. Our framework considers the 12-lead ECG, the different types of
leads, wave patterns, and their relationship with heart disease. The objective is to produce reliable
and accurate results while reducing analysis time. The proposed framework is inherent to improve
the diagnosis and management of heart disease by enabling a wider range of healthcare providers
and individuals to interpret ECG reports. This could lead to earlier detection and treatment of
heart disease, which could improve outcomes and save lives.

1. Introduction

Cardiovascular disease (CVD) is a consolidated terminology for conditions affecting heart or blood arteries [1]. A
science base organization known as Centers for Disease Control and Prevention (CDC) depits that the leading cause
of death among men, women, and individuals from various racial and ethnic backgrounds in the United States is heart
disease. . Accordingly, World Health Organization (WHO) declares that 17.9 million people die due to heart disease
every year 2. Unhealthy and processed food, physical sluggishness, usage of nicotine, and excessive alcohol boozing
are the major behavioral threatening elements for heart disease. These risk factors can lead to elevated levels of blood
pressure, blood glucose, blood lipids, and being overweight or obese in individuals [2]. The accumulation of fatty
substances known as atheroma in the coronary arteries can cause a blockage or disturbance in the blood flow to the
heart muscle, which can lead to the development of coronary heart disease (CHD). [3]. Heart-related illnesses include
arrhythmia, myocardial infarction (MI), sometimes known as a heart failure, angina, stroke, heart attack, etc [4, 5]. The
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Figure 1: Several lead positions

irregularity of the heartbeat known as arrhythmia is linked to a higher risk of blood clots [6, 7, 8§]. MI follows when
not enough blood reaches a particular area of the heart muscle [3, 9]. The longer it takes for the heart to restore proper
blood flow, the greater the harm inflicted on the heart muscle [10]. Additionally, coronary artery disease (CAD) is the
primary cause of heart attacks, while the failure of the heart to effectively pump blood throughout the body is referred
to as heart failure, which can result from the heart becoming too stiff or weak [10, 11, 12]. This condition is also known
as congestive heart failure (CHF) [13, 14].

An ECG is a rapid diagnostic tool that can be utilized to assess the heart’s electrical function and rhythm [15, 16].
In this diagnosis, sensors attached to the skin that can detect the electrical impulses that the heart produces with each
beat [17, 18, 19]. The signals are recorded by a machine, and a physician evaluates them to determine if there are
any irregularities [20]. The 12 ECG leads each reflect a unique 3-D direction of heart action where lead I, II, III,
aVF, aVR, aVL, V1, V2, V3, V4, V5, and V6 are the standard ECG leads [21, 22, 23, 24]. However, these leads are
classified into two parts such as Leads I, II, III, augmented Vector Right (aVR), augmented Vector Left (aVL), and
augmented Vector Foot (aVF) are known as limb leads Figure 1 (a) and Leads V1, V2, V3, V4, V5, and V6 are known
as precordial leads shown in Figure 1 (b) [25, 26, 27]. Nowadays, detecting heart problems using ECG has become
popular due to its reliability and accurate production of signals [28, 29, 30]. Detecting heart disease from ECG signals
can be a challenging task for medical professionals due to the time required to understand these signals, as well as
the expense associated with having qualified experts perform this task. Therefore, the development of an automated
system for detecting heart disease from ECG signals may provide a potential solution to this issue.

Several works have been incorporated to detect various CVDs by analyzing ECG signals [31, 32, 33]. A thorough
analysis has been conducted on the automated identification of CAD through the use of ECG signals [34]. This study
employed sixteen entropy measures to detect distinct latent features from ECG signals obtained from patients with CAD
and healthy individuals. In recent years, various methods such as Machine Learning (ML), Deep Learning (DL), and
hybrid approaches have been employed for heart disease classification. A review of prior research on the application
of DL for ECG diagnosis revealed the use of four standard algorithms: stacked auto-encoders, Deep Belief Network
(DBN), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN) [1]. They conducted a thorough
assessment of ECG diagnosis for accomplishing their application, including their advantages and disadvantages.
However, most of the research has concentrated on utilizing ECG signals to identify the presence of heart disease
[14, 35, 36, 37]. But the working principle of ECG signals and the signal collection procedure of 12 leads of the ECG
device are not focal points of the research. Therefore, this research aims to incorporate this issue by answering the
following research questions:

e Q1: Which data sets are available to analyze heart rate variance?

e Q2: What is the importance of the automatic classification of heart diseases, and which approaches are utilized
to incorporate this issue?

e (Q3: What is the relation between heart disease and 12 lead ECG mechanisms and how do they help to predict
each distinct heart condition?
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1.1. Inclusion and exclusion criteria

In this work, some search strategies are applied to find relevant research in this domain. Moreover, this article
has analyzed only recent articles to understand the updated and current techniques applied for heart disease detection.
In this study, articles that were released between 2019 and 2023 were examined. In addition, we have selected some
well-known journals based on ranking and focus on various disease detection, and the medical sector is given more
priority to extract the papers. The search strategy along with the final list of the articles are illustrated in Figure 2.

Therefore, this study incorporates the popularly utilized data sets and techniques for various CVD. After that,
the relation between heart disease and 12 lead ECG mechanisms has also been incorporated in this study. Finally, a
framework has been developed to suggest an executable approach based on the concomitant literature that is described
in the Proposed Methodology section.

2. Frequently used databases

Data is the fundamental requirement for the detection, analysis, or interpretation of any kind of disease. It is a
challenging task to detect disease without any form of information or data. There are several data sets have been built
and they are publicly available for disease detection [15, 35, 63, 64]. Moreover, some popular data sets are publicly
available for the prediction of different heart problems [38, 13, 3]. Table 1 illustrates the frequently used databases that
are utilized for the prediction of several CVDs.

Q1: Which data sets are available to analyze heart rate variance?

One of the most popular data sets regarding heart disease is the Massachusetts Institute of Technology-Beth Israel
Hospital (MIT-BIH) data set [39, 40, 6, 50]. There are various categories of data available in this data set such as
the MIT-BIH arrhythmia data set, MIT-BIH Normal Sinus Rhythm (NSR) data set, MIT-BIH-PhysioNet databases,
MIT-BIH Atrial Fibrillation Database (MIT-AFDB), MIT-BIH Malignant Ventricular Ectopy Database (MIT-BIH
VFDB), MIT/BIH Sudden Cardiac Death Holter (SCDH), etc [42, 13, 11, 52, 57, 60]. Among them, the MIT-BIH
arrhythmia data set is the mostly utilized database and this data set is known by several names such as the MIT-BIH
arrhythmia data set, MIT-BIH ARR data set, etc. [12, 58, 60]. However, it is observed from the existing literature that
researchers are more concerned about detecting different types of arrhythmia disease than others [7, 8, 56]. This is
why the arrhythmia data set is popular in this domain for detecting heart problems. Additionally, arrhythmia is also
referred to as AF in some articles because AF is a type of arrhythmia [41, 60, 65]. After that, MI, CHF, and SCD are
also predicted in some research using the MIT-BIH data set [3, 11, 12].

Other heart-related problems such as heart failure, Ischemic Heart Disease (IHD), and abnormal heartbeat are
predicted in this field using several popular databases [14, 9, 66]. Hence, Beth Israel Deaconess Medical Center
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Table 1
Different types of ECG data sets

Citation Source of Data Number of Recordings Disease Detected

[38] MIT-BIH arrhythmia 47 subjects: 25 males  Arrhythmia
and 22 females, 4000
ECG Signal
[39] MIT-BIH arrhythmia N/A Arrhythmia
[40] MIT-BIH 47 subjects Arrhythmia
[13] (MIT-BIH) ARR database, MIT-BIH  Total 162 records CHF, Arrhythmia (ARR)
Normal, Sinus Rhythm (NSR), and
BIDMC CHF database
[3] PTBDB, MIT-BIH database 48 records Ml
[41] MIT-BIH Atrial Fibrillation Database =~ N/A Atrial Fibrillation (AF)
[14] RR interval database, BIDMC-CHF  Total 156 subjects Heart failure
database, NSR-RR, Fantasia
database, MIT-BIH, NSR database
[42] MIT-BIH arrhythmia 29 subjects Arrhythmia
[9] Self-developed database (ECG De- 1937 patients data COVID-19, Abnormal Heartbeat, Ml,
vice ‘EDAN SERIES-3) Previous History of MI, and Normal
Person
[6] MIT-BIH 29 subjects Arrhythmia
18 Self-developed 43 Patients IHD
[43] Numerical-sultanova, N/A, Arrhythmia
Cleveland, 1190 people,
ECG-physioNet, 18,885 patients,
MIT-BIH Arrhythmia data set, 109446 samples,
PTB Diagnostic ECG Database 14552 samples
[44] MIT-BIH arrhythmia and PTB-ECG 360 subjects Heart Disease
databases
[45] MIT-BIH Normal Sinus Rhythm, 18 (5 Males, 13 Fe- Arrhythmia, CHF
MIT-BIH Arrhythmia, males),
BIDMC CHF database 47 (25 Males, 22 Fe-
males),
15 (11 Males, 4 Fe-
males)
[10] PTB diagnostic, 236 patient, MI, Normal (N), CAD, Valvular heart
BIDMC CHF, 15 patient, disease (VHD) , Bundle Branch
St. Petersburg, 7 patient, Block (BBB), Hypertrophic car-
diomyopathy (HCM), Dilated car-
diomyopathy (DCM)
[11] MIT-BIH-PhysioNet databases 105 subjects Arrhythmia, CHF, sudden cardiac
death (SCD)
[46] China physiological signal challenge 6877 recordings 9 categories of Arrhythmia

(CPSC) 2018 data set

(BIDMC) CHF data set is employed in some studies to detect heart failure [13, 10, 12]. After that, Physikalisch
Technische Bundesanstalt (PTB) diagnostic ECG database is utilized in various literature to detect MI, arrhythmia,
etc, [3, 43, 49]. In spite of that, there are some data sets available employed for the detection of heart problems in
a few articles. For example, St-Petersburg, Fantasia database, Numerical-sultana, Cleveland, Creighton University
Ventricular Tachyarrhythmia Database (CUDB), European ST-T database, Multi-Parameter Intelligent Monitoring in
Intensive Care II (MIMIC-II) Waveform database, etc. are utilized in some articles to predict heart disease [52, 53, 62].
Therefore, these data sets are popularly utilized for a combination of detecting several heart diseases.
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Table 1
Different types of ECG data sets (continued)
Citation Source of Data Number of Recordings Disease Detected
[12] MIT-BIH ARR, 48 subjects, CHF, arrhythmia
MIT-BIH NSR, 18 subjects,
BIDMC CHF 15 subjects
[47] MIT-BIH, St.- Petersberg, PTB N/A AV nodal block (AV NB), Acute M,
databases Atrial fibrilation (AF), CAD, Earlier

MI (EMI), Healthy, Sinus Node Dys-
function (SND), Transient Ischemic
Attack (TIA), BBB, Cardiomyopa-
thy, Dysrhythmia, Healthy control,
MI, Myocarditis, VHD, AFIB, Nor-

mal, P, SBR
[48] ECG data from wearable sensors N/A Arrhythmia
[49] PTB database 549 ECG records from Ml
290 subjects
[50] MIT-BIH 48 records Heartbeats
[7] MIT-BIH 1800 records Arrhythmia
[8] MIT-BIH 48 records from 47 pa-  Arrhythmia
tients
[51] MIT-BIH 47 subjects, 48 record-  Arrhythmia
ings
[52] MIT-BIH AFDB, 23 subjects, 6 types of arrhythmia
CUDB, 35 subjects,
MITDB, 44 subjects,
MIT-BIH VFDB 22 subjects
[53] Fantasia Normal database, 40 subjects 40 record- Myocardial ischemia
European ST-T database, ings,
Collected data from IBN-AL- 78 subjects 88 record-
NAFEES Hospital ings,
30 subjects 30 record-
ings
[54] Cleveland data set 303 records Heart Disease
[55] PTB-XL data set 21,837 records
[56]  MIT-BIH 25 subjects AF
[57]  MIT/BIH-SCDH, 23 subjects, SCD
MIT/BIH-NSR databases 18 subjects
[58] MIT-BIH Arrhythmia Database 47 subjects left bundle branch block (LBBB)

beat, right bundle branch block
(RBBB) beat, PVC beat, ventricular
flutter wave beat, nodal (junctional)
escape beat, aberrated atrial prema-
ture beat, ventricular escape beat,
and normal beat

3. Observation of existing approaches

Q2: What is the importance of the automatic classification of heart diseases, and which approaches are utilized to
incorporate this issue?

Automatic classification of heart disease can help the cardiologist to save their time and they can operate more
patients within a short amount of time. Not only that, automatic diagnosis of heart problems using ECG signals can
also help the patients to acknowledge their condition before affected seriously [38, 3]. Therefore, it can also help to
diagnose accurately the heart issues since the pre-trained algorithm is trained by the existing database that helps the
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Table 1
Different types of ECG data sets (continued)
Citation Source of Data Number of Recordings Disease Detected
[59] PTB-XL database 21,837 records CvD
[60] MIT-BIH Normal Sinus Rhythm 18 records, AF
(NSR-DB),
MIT-BIH Atrial Fibrillation (AF- 23 records,
DB), 48 records
MIT-BIH Arrhythmia (ARR-DB)
[61] St-Petersburg, 5 subjects 17 records, CAD, CHF, MI, normal
BIDMC CHF, 15 subjects 15 records,
PTB Diagnostic 52 subjects 80 records
[62] MIMIC-II 12,000 instances of 942  Blood Pressure (BP)
patients

models to learn the signals specifically. Moreover, the available approaches in different domains are depicted in the
subsections below.

3.1. Deep Learning

There are several techniques have been utilized to detect different heart problems in many articles such as ML
techniques, DL approaches, Ensemble methods, hybrid approaches, etc. [38, 42, 49]. Among these approaches, some
DL algorithms such as CNN, Long-Short Term Memory (LSTM), CNN-LSTM, etc. are widely used in several
applications to identify heart illness [39, 40, 13]. CNN is commonly applied in several studies from DL approaches to
detect heart diseases [52, 60]. An article introduced a novel neural network architecture based on recent advancements
in CNNs as a solution to create self-governing systems for diagnosing heart disease using ECG signals [38]. This
research employs 1D convolutional layers and the ReL.U activation function, which produces 98.33% accuracy.

Alternatively, 1D and 2D CNN models with the same activation function are investigated to construct a robust
algorithm capable of effectively classifying the ECG signal in the presence of environmental noise [40]. The 1D
CNN and 2D CNN have achieved 97.38% and 99.02% accuracy, respectively. Another article proposed a method
for classifying multiple cardiac illnesses using a one-dimensional CNN with a modified ECG signal as input
[47]. They applied their method to three distinct data sets where the St. Petersburg data set yielded the best
accuracy of 99.71%. Moreover, CNN-based hybrid approaches are also popular in this field for classifying heart
disease [39, 13, 3, 48, 50, 12]. CNN-LSTM is a frequently used algorithm among CNN-based hybrid approaches
[41, 14, 35, 42]. An automated detection system is proposed for the detection of MI where CNN, CNN-LSTM, and
ensemble methods were applied. Among them, CNN-LSTM and ensemble techniques provided high accuracy of 99.9%
[3]. Another study suggests an automated diagnosis approach based on Deep CNN and LSTM Architecture (DCNN-
LSTM) for diagnosing CHF using ECG signals [14]. This approach has performed similarly to the previous work,
99.52%. In this study, CNN is utilized to extract deep features, while LSTM is employed to achieve the goal of detecting
CHF using the extracted features. However, another CNN-based hybrid approach known as Grey Wolf Optimizer
(GWO) Artificial Bee Colony (ABC) optimization algorithm (CNN-GWO-ABC) is proposed to detect arrhythmia
[48]. The automatic construction of CNN typology using neuro-evolution has been examined in this work. A unique
solution based on the ABC and the GWO has also been developed. The performance of this algorithm is satisfactory
but not excellent as compared to the previous study. It showed 94.27% accuracy which is less than the CNN-LSTM
approaches.

Another different hybrid strategy is suggested, and it involves a two-stage medical data classification and prediction
model [54]. If the results of the initial stage can accurately predict cardiac disease, the second stage may not be
necessary. During the first stage, data from medical sensors attached to the patient’s body was categorized, while the
second stage involved the classification of ECG images to forecast the likelihood of heart disease. To classify sensor
data, a hybrid model using Faster R-CNN with SE-ResNet-101 was used, while for ECG image classification, a hybrid
approach utilizing linear discriminant analysis with modified ant lion optimization (HLDA-MALOQO) was employed.
Therefore, the performance of this approach is 98.06% in terms of accuracy. Hence, 1D CNN, 2D CNN, and CNN-
LSTM are commonly used algorithms in this field for detecting various types of heart diseases. In addition, Generative
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Adversarial Networks (GAN) and LSTM (GAN-LSTM), Convolutional Capsule Networks, Resnet RNNs (ResRNN),
Bidirectional Long Short Term Memory (BiLSTM), Kernel Weight CNN (KWCNN) are also applied in few pieces of
literature for heart disease prediction from DL area [44, 10, 46]. The performance of these approaches is good but they
do not outperform the other approaches in DL [8, 51].

3.2. Machine Learning

ML based algorithms are also explored in some literature to detect heart illness such as Support Vector Machine
(SVM), k Nearest Neighbor (KNN), Decision Tree (DT), etc. [67, 44, 56, 59]. Moreover, a deep genetic ensemble
of classifiers (DGEC) is proposed that consists of three layers where SVM is used in every layer [6]. The suggested
framework comprises an ensemble of three layers (48 + 4 + 1) consisting of 12 classifiers each from the SVM (nu-
SVC, RBF), kNN, PNN, and RBENN + 4 classifiers from the C-SVC and 1 classifier from the C-SVC. This method
performs with a 99.37% accuracy rate, which is satisfactory. But the effectiveness of the DGEC system with additional
physiologic signals and the improved method was not examined in this study. However, other SVM and fusion SVM
models are proposed to detect myocardial ischemia, arrhythmia, and CHF where they have provided 99.09% and
99.06% accuracy respectively, [45, 53]. This study proposes a novel approach for identifying myocardial ischemia
using multi-lead long-interval ECG. The method employs Choi-Williams time-frequency distribution to detect changes
in the ST and PR segments of the ECG, which are related to ischemic symptoms, to extract ST and PR features [53].
The suggested method is quick, inexpensive, and non-intrusive. Moreover, another ML model known as KNN has been
established to detect MI and it showed 99.96% accuracy by single-channel ECG signal [49]. Another study introduced a
novel technique for the detection of R-waves and, based on them, the localization of QRS complexes. It was important to
evaluate classical classifiers, hence new methods of aggregating ECG signal fragments comprising QRS segments were
created. Yet, this model’s performance falls short of expectations. It demonstrated a 90.4% accuracy rate for detecting
CVD. As a result, using ML algorithms to predict cardiac problems is not widely used. In addition, several different
algorithms, including the ridge model, Jaya Algorithm with Red Deer Algorithm (J-RDA), Ensemble Empirical Mode
Decomposition (EEMD) with local means (LM) filtering, particle swarm optimization (PSO), differential evolution
(DE), and MDD-Net, have been investigated in a few studies [68, 58, 61]. Therefore, since ECG signals are one kind
of image related data, ML techniques sometimes cannot process them properly and for that reason DL approaches are
utilized in this area.

4. Correlation between ECG leads and heart diseases

Q3: What is the relation between heart disease and 12 lead ECG mechanisms and how do they help to predict each
distinct heart condition?

The 12-lead ECG is vital for detecting and monitoring heart conditions, such as arrhythmia, CHD, and electrolyte
imbalances [69]. It records the heart’s electrical activity using 10 electrodes placed on the chest, arms, and legs,
generating 12 leads. Each lead provides a different view of the heart’s activity and is crucial for identifying specific
types of heart disease, such as right ventricular infarction (RVI) in leads V1 and V2, and lateral wall infarction in leads
V5 and V6 [70]. The 12-lead ECG is widely used for screening potential cardiac ischemia and is essential for quickly
identifying patients who have suffered a heart attack. Healthcare professionals should prioritize the number of leads
used for accurate diagnosis and treatment [71].

Every ECG lead represents multiple types of waveforms and the ECG waveform consists of several distinct
components that represent different phases of the cardiac cycle. These components include the P wave, QRS complex,
and T wave, which are all different types of waves that are important in the interpretation of ECGs. The P wave
represents atrial depolarization, the QRS complex represents ventricular depolarization, and the T wave represents
ventricular repolarization. Understanding the different types of waves in ECG can help clinicians to diagnose and
manage a variety of cardiac conditions.

Several works have been incorporated for the detection of various heart problems using ECG signals [27, 72, 32].R
to R interval, QRS complex are different portions of an ECG signal and these portions are used for identifying different
heart problems [73, 74, 75]. However, the majority of the works utilized RR interval for several heart illnesses such
as AF, various types of arrhythmias, CAD, etc [74, 76]. Some works have utilized the QRS complex for incorporating
the issue [77, 75, 78]. An article has detected RR interval for AF detection using CNN-BiLSTM [73]. According to
earlier clinical investigations, the Q, R, and S (QRS complex) are three deflections that reflect a single heartbeat. Its
timing and structure reveal important details about the heart’s condition. Traditional techniques for locating R peaks
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include wavelet processing, frequency analysis, and digital filters that extract the local maximum value. And R peaks
indices have been shown to be important classification indicators for both human and computer-aided categorization.
In order to use their model to extract characteristics from pure ECG signals, they would only include R peaks indices
in this approach. As a result, they just applied R-R intervals to the original ECG signals in the feature extraction phase
to obtain segmentation, and the feature extraction phase will be handled by the model that was used. 0.82 F1 score is
achieved by the proposed model in this work.

In a different article, the R-Peak Engzee ECG segmentation technique was used to identify and extract features
while recording the position, duration, and quantity of R-Peaks [74]. They concentrated on R-R intervals because of
the positional invariant nature of CNN layers, the time-dependency of ECG data, and the importance of interval length
in ECG interpretation. Therefore, CNN architecture can learn the RR interval data rather than the QRS complex.
91.15% accuracy was achieved by the explainable CNN algorithm for the detection of various arrhythmia in this work.
On the contrary, the time domain ECG feature based on Feed Forward Neural Network (FFNN) and CNN provided
91.5% accuracy for the prediction of arrhythmia using the QRS complex [79]. The only portion of an ECG made up
of numerous clustered waves is the QRS complex [80]. The QRS complex consists of Q, R, and S waves and signifies
ventricular depolarization. After the QRS complex, the T wave denotes ventricular repolarization. Therefore, the QRS
complex is utilized for MI detection in research [81]. They stated that a QRS wider than usual is an indication of BBB
and ventricular hypertrophy. For that reason, it is easy to recognize MI by increased R wave amplitude, duration, and
high voltage QRS. Using CNN-BiLSTM, they achieved 99.62% accuracy. Therefore, RR interval and QRS complex
both are used for the detection of several heart problems and most of them have utilized the CNN algorithm and
CNN-based hybrid algorithms for evaluation purposes the performance is similar to each other for both RR interval
and QRS complex.

4.1. P-wave

The assessment of P-waves in a 12-lead ECG is a valuable tool for the diagnosis of heart disease [82]. Abnor-
malities in P-wave morphology, duration, and amplitude can indicate specific types of heart disease, including atrial
enlargement, AF, atrial flutter, atrial tachycardia (one kind of arrhythmia), and WPW syndrome. P-wave abnormalities
can be detected in leads II, III, aVF, V1, and V4-6, which are important for the detection of these conditions. The
morphology of P-waves in leads II, III can detect right atrial enlargement, while leads V1 and V2 can detect left atrial
enlargement. Hence, irregular P-waves are a hallmark of AF. Additionally, P-wave abnormalities are also associated
with other cardiac conditions, such as atrial flutter, atrial tachycardia, and WPW syndrome. Therefore, a comprehensive
assessment of P-wave morphology in multiple leads is essential in identifying and diagnosing various types of heart
disease related to atrial depolarization abnormalities [83].

4.2. P-R interval

The PR interval is a crucial measurement in an ECG that reflects the electrical conduction from the atria to the
ventricles of the heart [84]. Accurate interpretation of PR interval waves in a 12-lead ECG system is essential in
identifying the type of heart disease a patient may have. Specifically, Lead II, Lead III, and aVF are significant leads
that provide a view of the inferior wall of the heart, where abnormalities in the PR interval can indicate conduction
disturbances. Additionally, leads V1 to V6 offer further insight into the electrical activity of the heart’s anterior,
lateral, and posterior walls, indicating atrial enlargement or fibrillation [69]. It is important to note that the PR interval
can be affected by various heart conditions and medications, highlighting the importance of a comprehensive ECG
examination to identify the underlying cause of PR interval waves [85]. Combining multiple leads is usually necessary
to make an accurate diagnosis, which is vital in developing an effective treatment plan [69].

4.3. QRS complex

In a research article, the identification of the type of heart disease associated with QRS complex in a 12-lead
ECG system [86]. The significant leads for this purpose are V1 to V6, as well as II, III, and aVF. The QRS complex
is a representation of ventricular depolarization and its changes can indicate various cardiac conditions such as
ventricular hypertrophy, BBB, and MI [87]. To detect right ventricular hypertrophy, leads V1 and V2 are useful,
while left ventricular hypertrophy can be indicated by leads V5 and V6. Meanwhile, leads II, III, and aVF can provide
information on the inferior wall of the heart, where changes in the QRS complex can indicate blockages or ischemia
[88]. Morphology or shape of the QRS complex is also an important factor in identifying heart disease, with a widened
QRS complex indicating a BBB, while a narrow QRS complex suggesting a normal conduction pathway [89]. Presence
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of abnormally deep and wide Q waves may suggest a previous MI [90, 91, 92]. Therefore, an accurate diagnosis and
treatment plan require an analysis of a combination of leads and QRS complex morphology.

4.4. R-R interval

A research article examines the utility of a 12-lead ECG system for assessing the electrical activity of the heart
[93]. One key aspect of this system is the R-R interval waves, which reflect the time between consecutive R waves and
correspond to the ventricular depolarization. Alterations in the R-R interval can serve as indicators of various cardiac
conditions, including tachycardia, bradycardia, and arrhythmias. The analysis of the R-R interval can be performed
using any of the 12 leads, although lead II and lead V1 are commonly used [94]. Changes in the R-R interval may also
indicate heart blocks, such as first-degree AV block, second-degree AV block, and complete heart block. To effectively
identify the type of heart disease associated with R-R interval waves, healthcare providers must perform a meticulous
analysis of the R-R interval using a combination of leads. The R-R interval serves as a critical component of cardiac
function, allowing healthcare providers to accurately diagnose and treat a range of cardiac conditions [95].
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Figure 3: Different types of wave-forms

To summarize, specific leads in a 12-lead ECG system play a significant role in identifying the type of heart disease
associated with different types of wave-forms [96]. Each waveform has its own set of significant leads shown in Figure
3. For example, P waves in leads II, III, aVL, and V1 can indicate atrial arrhythmias, while Q waves in leads I, aVL,
V5, and V6 can indicate previous MI. There are different cardiac conditions that can be indicated by T waves in leads
V2 to V5, ST segment changes in leads II, III, aVF, V1 to V6, and U waves in leads V2 to V5 [97]. Therefore, it is
crucial to understand the significance of each waveform and its associated leads in identifying the type of heart disease
present and providing appropriate treatment.

The ECG is a valuable tool in diagnosing various heart conditions. Each type of heart disease can cause unique
changes in different leads of the 12-lead ECG. For instance, CAD may produce ST-segment depression [98] or
T-wave inversion in leads II, IIl, aVF, V4-V6, while a heart attack may cause ST-segment elevation in leads II,
III, and aVF (inferior MI) or leads V1-V4 (anterior MI). Heart failure may exhibit non-specific changes like left
ventricular hypertrophy or left BBB [99, 100, 101]. Meanwhile, arrhythmias can produce irregular or abnormal P
waves, widened QRS complexes, or absent or abnormal T waves. AF may produce an irregular rhythm, absent P waves,
and rapid ventricular response. Other heart conditions, such as heart valve disease, cardiomyopathy, congenital heart
defects, pericarditis, and pulmonary hypertension, also cause different ECG changes [102, 103, 104]. It is important to
emphasize that only trained healthcare professionals should interpret ECGs and that ECG changes can vary in different
individuals and in different stages of the disease.
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Figure 4: Cardiac Territory Mapping for Early Detection of Heart Abnormalities

5. Mapping cardiac territory: anterior, lateral, inferior, and septal leads for heart
abnormalities

Proper placement and interpretation of leads are critical for accurate diagnosis and management of cardiac
conditions. Anterior wall infarction rarely occurs in isolation and is often associated with infarcts of the septum, lateral
wall, or both. The anterior wall is represented by leads V3 and V4 [105]. If both the anterior wall and the septum are
affected, the infarct changes will appear in leads V1 to V4, known as an anteroseptal acute MI [106, 107, 108]. In cases
where the infarct affects both the anterior and lateral walls (anterolateral AMI), changes will appear in V3 to V6 and
possibly I and aVL. The lateral leads I, aVL, V5, V6 are placed on the left side of the chest and are essential in detecting
abnormalities in the left ventricle, such as left ventricular hypertrophy and acute MI [109, 110]. The inferior leads II,
III, aVF are placed on the lower part of the chest and are helpful in detecting abnormalities in the right ventricle and
inferior wall of the left ventricle, including RVI [111, 112]. Finally, the septal leads V1, V2 are placed on the front of
the chest and are crucial in detecting abnormalities in the septum [113], such as septal hypertrophy or septal infarction.
The appropriate use and interpretation of these leads shown in Figure 4 (a) in the 12-lead ECG that can contribute
to the accurate diagnosis and management of various cardiac conditions and also the specification for the mapping is
illustrated in the Figure 4 (b).

In the field of electrocardiography, specific leads can be used to diagnose and manage different types of MI. The
right-sided leads, which include V4R, V5R, and V6R, can show ST elevation in a right-side infarct. The posterior leads,
V7, V8, and V9, are used to diagnose a posterior acute MI [114]. Criteria for RVI include IWMI [115], ST segment
elevation greater in lead III than II, ST elevation in V1 (possibly extending to V5 to V6), ST depression [116] in V2,
and more than 1 mm of ST elevation in the right-sided leads (V4R to V6R). Most RVIs occur in conjunction with
inferior wall MI [117]. If ST segment elevation is seen in II, III, and aVF, as well as V1, the most probable explanation
is an RVI. The treatment of an RVI is very different from that of a left ventricular infarction, and the diagnostic criteria
should be carefully considered in treatment decisions.

6. Lead-specific patterns in diagnosing cardiac conditions

In general, premature ventricular contractions (PVCs) are best visualized in leads V1 to V3, which are located in the
right ventricular outflow tract and the septal region of the heart where PVCs often originate [118, 119, 120, 121, 122].
Lead V1 is particularly useful for detecting PVCs because it has a superior view of the right ventricle.

PACs (premature atrial contractions) are visualized in Lead II that is one of the most commonly used leads in
ECG and can provide valuable information in detecting PACs [123, 124, 125, 126]. PACs are defined as one kind of
arrhythmia. Additionally, the V1 lead, positioned at the fourth intercostal space on the right side of the sternum, may
be helpful in identifying PACs originating from the right atrium. The V2 lead, positioned at the same location on the
left side of the sternum, can help identify PACs originating from the left atrium. Furthermore, the V4-V6 leads, located
on the left side of the chest, can also be useful in detecting PACs originating from the left atrium.

RBBB is best visualized in leads V1 and V2, which are located in the right ventricular outflow tract where the right
bundle branch is located. RBBB can also be seen in leads V5 and V6, which are located in the left lateral aspect of the
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heart and may show delayed R-wave progression also help to confirm the diagnosis by showing a "rabbit ears" pattern
in the QRS complex [127, 128, 129].

LBBB is properly envisioned in leads V5 and V6, which are located in the left lateral aspect of the heart where
the left bundle branch is located. LBBB is a cardiac condition characterized by the disruption of the electrical signals
that regulate the heart’s pumping function. In the diagnosis of LBBB, V1 and V6 leads are crucial, being the most
important on a standard 12-lead ECG. ECG criteria that suggest the presence of LBBB include a QRS duration greater
than or equal to 120 ms, broad and monomorphic R waves in leads I, aVL, and V6, broad and monomorphic S waves in
leads III and aVF, an absence or reduction in the size of Q waves in leads V5 and V6, and an rsR’ pattern in V1. These
electrocardiographic patterns are indicative of a disruption in the electrical signals that control the heart’s pumping
function and are essential for accurate diagnosis [130, 131, 132, 133, 134]. By considering these criteria, medical
professionals can identify LBBB and provide appropriate treatment to manage this condition.

APCs (atrial premature complexes) are best visualized in leads II, III, and aVF, which are located in the inferior
wall of the heart where the atria are located. APCs can also be seen in other leads [135, 136, 137, 138], such as V1 and
V2, but they may be more difficult to distinguish from other abnormalities in those leads. The ECG is a non-invasive
diagnostic tool that is commonly used to predict atrial premature beats (APBs). The use of different leads in ECG
has been shown to aid in the identification of APBs. Lead II, for instance, is one of the most frequently used leads
and measures the electrical activity between the right arm and the left leg, which provides a clear view of the atria.
Similarly, the V1 and V2 leads are positioned on the right and left sides of the sternum, respectively, and can detect
APBs originating from the right and left atria. The V4-V6 leads, placed on the left side of the chest, are also useful in
identifying APBs originating from the left atrium [139, 140, 141]. However, a comprehensive evaluation of a patient’s
medical history, symptoms, and physical examination is necessary to achieve an accurate diagnosis.

Ventricular ectopic beats (VEBs) are abnormal heart rthythms that can be detected using ECG, a widely-used non-
invasive diagnostic tool. ECG provides valuable information for predicting VEBs [142, 143, 144], and while each lead
in ECG offers important insights, some leads are more sensitive than others in detecting VEBs. Specifically, the V1-V3
leads located on the chest wall are highly sensitive in detecting VEBs originating from the right ventricle, whereas the
V4-V6 leads are more sensitive in detecting VEBs originating from the left ventricle. Additionally, lead II can detect
abnormal electrical activity in the ventricles, making it useful for predicting VEBs. To accurately diagnose VEBs, a
comprehensive analysis of all ECG leads is necessary.

The leads that are most useful for detecting MI are the ones that correspond to the area of the heart that is affected
by the blockage of blood flow [145, 146, 147, 148]. For example, if the blockage is in the left anterior descending artery
(LAD), which supplies blood to the anterior wall of the left ventricle, leads V1-V4 may show ST-segment elevation, Q
waves, and T-wave inversion. If the blockage is in the right coronary artery (RCA), which supplies blood to the inferior
wall of the heart, leads II, III, and aVF may show ST-segment elevation, Q waves, and T-wave inversion.

AF is best visualize in leads II, III, and aVF, which are located in the inferior wall of the heart where the atria are
located. AF can also be seen in other leads, such as V1 and V2, which may show flutter waves or irregular R-R intervals
[149, 150]. Additionally, leads V5 and V6 may show a rapid ventricular response due to the irregularity of the atrial
activity.

Table 2

Best Leads for Visualization of Different Heart Conditions

Heart Condition Best Leads for Visualization
PVCs V1,Vv2\V3

PACs 1,V1,V2,V4V5V6

RBBB V1, V2,V5, V6

LBBB I11,aVL,aVF,V1,V5,V6
APCs I, 11, aVF,V1, V2

APBs 11,v1,v2,V4,V5V6

VEBs 11,V1,v2,V3,V4,V5 V6

Ml I, 11, aVF, V1,V2,V3,V4
AF Il, I, aVF, V1, V2, V5, V6

This Table 2 presents a comprehensive list of various heart conditions along with the optimal leads for visualizing
each of these conditions. The included heart conditions are Premature Ventricular Complexes (PVCs), Premature Atrial
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Figure 5: Data set preparation

Complexes (PACs), RBBB, LBBB, APCs, APBs, VEBs, MI, and AF. By providing the best leads for visualization of
each condition, this table can contribute to more accurate diagnoses and effective treatments for these conditions.

7. Proposed framework : specific heart disease classification framework

Based on the existing literature, we have found that the mostly used approach for classifying heart problems using
ECG signal is CNN. Because, this algorithm is well-known for processing image related data and it is reliable and
highest perfomer for predicting heart problems. Therefore, a CNN model DenseNet 201 that is configured using focal
loss and Adam optimization. The medical sector often deals with imbalanced data sets, where the normal data set
exceeds the disease data set. To address this, we adopt focal loss. Focal loss is effective for imbalance data set [151].
The Adam optimizer performs well with focal loss.The Adam technique also works efficiently for the high-dimensional
data set [152].

This research aimed to prepare a data set for heart disease prediction. To accomplish this, we combined multiple
data sets which are discussed in the data set section. We have also employed a technique to convert one-dimensional
ECG signals into two-dimensional ECG images. This conversion aids in reducing the noise of the ECG signals. The
conversion is done using Ecg-kit, where we have transformed the ECG signal waves into image format. Next, we split
the images into R-R intervals corresponding to one complete cardiac cycle. The resulting images are then stored in
separate folders for training and testing, and Lead-Specific Patterns are depicted in Figure 5. The ECG wave-to-image
generator is used for this conversion, and the heart bit segmentation is accomplished using the Ecg-kit with the Pan-
Tompkins algorithm. Finally, we split the data set in 70% for training, 20% for testing and 10% for validation purposes.

The Ecg-kit is a Python-based toolbox that offers a range of tools for the processing and analysis of ECG signals.
The toolkit includes functionalities for beat detection, heart rate variability analysis, ECG signal visualization, and ECG
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Figure 6: Proposed framework utilizing best classifier

signal processing. A noteworthy feature of Ecg-kit is its implementation of the Pan-Tompkins algorithm, a widely used
algorithm for detecting the QRS complex in ECG signals. This algorithm utilizes a combination of bandpass filtering,
differentiation, squaring, and integration to effectively detect the QRS complex. By leveraging this algorithm, Ecg-kit
allows users to convert ECG signals into gray scale images, which can be used for further analysis and visualization.

In light of the aforementioned background, we suggest a novel DL approach to accurately predict heart disease
from ECG signals in real-time scenarios. Specifically, our proposed method involves utilizing a CNN architecture
Densenet-201 to categorize ECG signals into ten distinct classes of heart disease data.

To ensure a diverse and comprehensive training data set, we will include unique combinations of lead data for
each heart disease class. we use leads V1-V3 for PVCs, leads 1I,V1,V2,V4,V5,V6 for PACs, leads V1, V2,V5, V6
for RBBB, leads II,aVL,aVFE,V1,V5,V6, for LBBB, leads II, III, aVF,V1, V2 for APCs, leads I[,V1,V2,V4,V5,V6
for APBs, leads II,V1,V2,V3,V4,V5,V6 for VEBs, leads II, III, aVF, V1-V4 for MI, leads II, III, aVF,V1, V2, V5,
V6 for AF, and leads II, III, aVF, V1-V6 for Normal (NOR). The CNN model will be trained using these segmented
images from our proposed data set that precisely classifies each image into its corresponding heart disease class. We
will evaluate the proposed model performance using several performance metrics such as precision, accuracy, recall,
and F1 score.

To demonstrate the effectiveness of our proposed model in real-time scenarios, the proposed model integrates with
12 lead ECG device that produce 12 different types of waveforms. Subsequently the ECG signals will be transformed
into images using an ECG wave to image generator. Subsequently, the images will be segmented based on the R-R
interval through heartbeats segmentation. Moreover, those split ECG images will be processed using the proposed
model, and the resulting heart disease predictions will be presented in real-time shown in Figure 6.

However, a major issue encountered in this research was the imbalance in the data set. For example, when
considering the lead aVF from the 12-Lead ECG, it was found that this lead could represent any disease. However,
certain classes such as NOR, LBB, APC, MI, and AF had pictures of aVF leads, which were not present in other classes
such as PVC, PAC, RBB, APB, and VEB. This made it difficult for the model to accurately predict diseases that did not
have aVF lead data. Due to the absence of certain types of leads in different types of heart disease classes, the use of
12-Lead ECG data as input for the model resulted in data ambiguity. To mitigate this issue, the research team applied
a threshold value of 85%. This meant that if the aVF signal was determined to be PVC, PAC, RBB, APB, or VEB with
a confidence level below 85%, the prediction would not be made, and the model would discourage misclassification.
Dealing with unknown data is a challenge in this solution, especially in the sensitive medical sector. A promising result
was obtained in our research with DenseNet 201, achieving an accuracy of 99.57%. The accuracy is assessed using
various metrics such as F1 score, precision, and recall shown in Table 3.

Based on the evaluation metrics, the classification model is exhibiting excellent performance. It is achieving high
scores for most of the classes, with precision, recall, and F1-score metrics above 0.95 for every class, indicating that
the model can accurately classify a substantial portion of instances for each class. Additionally, the accuracy metric is
almost perfect, with a score of 0.99, suggesting that the model can classify almost all instances accurately. The macro
average of precision, recall, and F1-score is 0.98, which demonstrates that the model is consistently performing well
across all classes. The weighted average is also high at 0.99, signifying that the model can correctly classify instances
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Table 3

ECG Report Heart Disease Classification Metrics

Class Precision Recall F1-score
LBB 0.98 0.98 0.98
NOR 0.99 0.99 0.99
PAC 0.95 0.97 0.96
APC 0.99 0.97 0.98
PVC 0.97 0.98 0.97
RBB 0.99 0.99 0.99
APB 0.96 0.94 0.95
Ml 0.97 0.98 0.97
VEB 0.98 0.98 0.98
AF 0.98 0.97 0.98
Accuracy 0.99
Macro Avg 0.98 0.98 0.98
Weighted Avg 0.99 0.99 0.99

across all classes with similar high performance. Overall, the findings of this report suggest that the classification
model performs well and can accurately classify instances across a wide range of classes, with high precision, recall,
and Fl1-score metrics. This indicates that it can be utilized for automatic classification of ECG reports in real-life
medical applications.

8. Conclusion

Heart disease is a major global public health issue, particularly in low-income countries where there is a shortage
of qualified cardiologists. The ECG is the primary diagnostic tool for heart disease, but interpreting ECG reports can
be time-consuming and costly, requiring the expertise of a qualified cardiologist. To address this issue, automated
ECG signal interpretation is necessary, and this article has made a comprehensive review of the existing literature,
including popular datasets and tools and techniques for this domain. The MIT-BIH data set, PTB database, BIDMC
data set, and PTB data set are popular for the diagnosis of heart disease. These data sets are publicly available and
easily accessible. Hence, researchers use them without any complexity. Moreover, CNN, LSTM, BiLSTM, CNN-
LSTM, CNN-BiLSTM are widely applied approaches to incorporate the issue of detecting heart disease. Therefore,
based on these observations, we have proposed a framework that considers the 12-lead ECG, the different types of
leads, wave patterns, and their relationship with heart disease. The proposed framework has the potential to improve
the diagnosis and management of heart disease by enabling a wider range of healthcare providers and individuals to
interpret ECG reports more reliably and accurately, thus leading to earlier detection and treatment of heart disease and
improved outcomes. This study also highlights the significance of utilizing various types of leads in developing a CNN
model to minimize unknown pattern complexity. The proposed framework and observations from the existing works
contribute significantly to the field of ECG analysis and can aid in the development of more accurate diagnostic tools
for detecting heart diseases. Therefore, we recommend further research to validate and refine our proposed framework,
which is based on the existing literature, to improve automated ECG signal interpretation and ultimately contribute to
better heart disease management.
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ARTICLE INFO ABSTRACT

Keywords: Heart disease is a significant public health concern, affecting a large number of people worldwide
Heart disease daily. With a shortage of qualified cardiologists, particularly in low-income countries, the
ECG signals diagnosis and management of heart disease can be challenging. The electrocardiogram (ECG) is
Deep Learning the primary diagnostic tool for heart disease, but interpreting ECG reports requires the expertise
Heart Disease diagnosis of a qualified cardiologist, making it time-consuming and costly. To address this issue, automated

ECG signal interpretation is necessary. Hence, this article has made an encyclopedic review of
the existing literature. The article includes demonstration of frequently utilized data sets and tools
and techniques for this domain. Therefore, a framework is proposed based on the observation of
existing works. The proposed framework aims to improve the analysis of ECG reports for both
cardiologists and non-experts. Our framework considers the 12-lead ECG, the different types of
leads, wave patterns, and their relationship with heart disease. The objective is to produce reliable
and accurate results while reducing analysis time. The proposed framework is inherent to improve
the diagnosis and management of heart disease by enabling a wider range of healthcare providers
and individuals to interpret ECG reports. This could lead to earlier detection and treatment of
heart disease, which could improve outcomes and save lives.

1. Introduction

Cardiovascular disease (CVD) is a consolidated terminology for conditions affecting heart or blood arteries [1]. A
science base organization known as Centers for Disease Control and Prevention (CDC) depits that the leading cause
of death among men, women, and individuals from various racial and ethnic backgrounds in the United States is heart
disease. . Accordingly, World Health Organization (WHO) declares that 17.9 million people die due to heart disease
every year 2. Unhealthy and processed food, physical sluggishness, usage of nicotine, and excessive alcohol boozing
are the major behavioral threatening elements for heart disease. These risk factors can lead to elevated levels of blood
pressure, blood glucose, blood lipids, and being overweight or obese in individuals [2]. The accumulation of fatty
substances known as atheroma in the coronary arteries can cause a blockage or disturbance in the blood flow to the
heart muscle, which can lead to the development of coronary heart disease (CHD). [3]. Heart-related illnesses include
arrhythmia, myocardial infarction (MI), sometimes known as a heart failure, angina, stroke, heart attack, etc [4, 5]. The

Abbreviations: ECG, electrocardiogram; CVD, Cardiovascular disease; CDC, Centers for Disease Control; CHD, coronary heart disease; MI,
myocardial infarction; CAD, coronary artery disease; CHF, congestive heart failure; aVR, augmented Vector Right; aVL, augmented Vector Left;
aVF, augmented Vector Foot; DL, Deep Learning; DBN, Deep Belief Network; CNN, Convolutional Neural Network; RNN, Recurrent Neural
Network; LSTM, Long-Short Term Memory; GWO, Grey Wolf Optimizer; ABC, Artificial Bee Colony; HLDA-MALO, hybrid linear discriminant
analysis with the modified ant lion optimization; GAN, Generative Adversarial Networks; BiLSTM, Bidirectional Long Short Term Memory;
KWCNN, Kernel Weight; ARR, Arrhythmia; VHD, valvular heart disease; BBB, Bundle Branch Block; HCM, Hypertrophic cardiomyopathy; DCM,
Dilated cardiomyopathy; CPSC, China physiological signal challenge; EMI, Earlier MI; SND, Sinus Node Dysfunction; TIA, Transient Ischemic
Attack; SCD, Sudden Cardiac Death; IHD, Ischemic Heart Disease; BIDMC, Beth Israel Deaconess Medical Center; PTB, Physikalisch Technische
Bundesanstalt; CUDB, Creighton University Ventricular Tachyarrhythmia Database; MIMIC-II, Multi-Parameter Intelligent Monitoring in Intensive
Care II; ML, Machine Learning; SVM, Support Vector Machine; KNN, k Nearest Neighbor; DT, Decision Tree; DGEC, deep genetic ensemble of
classifiers; J-RDA, Jaya Algorithm with Red Deer Algorithm; EEMD, Ensemble Empirical Mode Decomposition; LM, local means; PSO, particle
swarm optimization; DE, differential evolution; FFNN, Feed Forward Neural Network; RVI, Right ventricular infarction; PVC, premature ventricular
contraction; PAC, premature atrial contraction; RBBB, Right Bundle Branch Block; LBBB, Left Bundle Branch Block; APC, Atrial Premature
Complexe; APB, Atrial Premature Beat; VEBs, Ventricular Ectopic Beats; AF, atrial fibrillation.
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irregularity of the heartbeat known as arrhythmia is linked to a higher risk of blood clots [6, 7, 8§]. MI follows when
not enough blood reaches a particular area of the heart muscle [3, 9]. The longer it takes for the heart to restore proper
blood flow, the greater the harm inflicted on the heart muscle [10]. Additionally, coronary artery disease (CAD) is the
primary cause of heart attacks, while the failure of the heart to effectively pump blood throughout the body is referred
to as heart failure, which can result from the heart becoming too stiff or weak [10, 11, 12]. This condition is also known
as congestive heart failure (CHF) [13, 14].

An ECG is a rapid diagnostic tool that can be utilized to assess the heart’s electrical function and rhythm [15, 16].
In this diagnosis, sensors attached to the skin that can detect the electrical impulses that the heart produces with each
beat [17, 18, 19]. The signals are recorded by a machine, and a physician evaluates them to determine if there are
any irregularities [20]. The 12 ECG leads each reflect a unique 3-D direction of heart action where lead I, II, III,
aVF, aVR, aVL, V1, V2, V3, V4, V5, and V6 are the standard ECG leads [21, 22, 23, 24]. However, these leads are
classified into two parts such as Leads I, II, III, augmented Vector Right (aVR), augmented Vector Left (aVL), and
augmented Vector Foot (aVF) are known as limb leads Figure 1 (a) and Leads V1, V2, V3, V4, V5, and V6 are known
as precordial leads shown in Figure 1 (b) [25, 26, 27]. Nowadays, detecting heart problems using ECG has become
popular due to its reliability and accurate production of signals [28, 29, 30]. Detecting heart disease from ECG signals
can be a challenging task for medical professionals due to the time required to understand these signals, as well as
the expense associated with having qualified experts perform this task. Therefore, the development of an automated
system for detecting heart disease from ECG signals may provide a potential solution to this issue.

Several works have been incorporated to detect various CVDs by analyzing ECG signals [31, 32, 33]. A thorough
analysis has been conducted on the automated identification of CAD through the use of ECG signals [34]. This study
employed sixteen entropy measures to detect distinct latent features from ECG signals obtained from patients with CAD
and healthy individuals. In recent years, various methods such as Machine Learning (ML), Deep Learning (DL), and
hybrid approaches have been employed for heart disease classification. A review of prior research on the application
of DL for ECG diagnosis revealed the use of four standard algorithms: stacked auto-encoders, Deep Belief Network
(DBN), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN) [1]. They conducted a thorough
assessment of ECG diagnosis for accomplishing their application, including their advantages and disadvantages.
However, most of the research has concentrated on utilizing ECG signals to identify the presence of heart disease
[14, 35, 36, 37]. But the working principle of ECG signals and the signal collection procedure of 12 leads of the ECG
device are not focal points of the research. Therefore, this research aims to incorporate this issue by answering the
following research questions:

e Q1: Which data sets are available to analyze heart rate variance?

e Q2: What is the importance of the automatic classification of heart diseases, and which approaches are utilized
to incorporate this issue?

e (Q3: What is the relation between heart disease and 12 lead ECG mechanisms and how do they help to predict
each distinct heart condition?
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1.1. Inclusion and exclusion criteria

In this work, some search strategies are applied to find relevant research in this domain. Moreover, this article
has analyzed only recent articles to understand the updated and current techniques applied for heart disease detection.
In this study, articles that were released between 2019 and 2023 were examined. In addition, we have selected some
well-known journals based on ranking and focus on various disease detection, and the medical sector is given more
priority to extract the papers. The search strategy along with the final list of the articles are illustrated in Figure 2.

Therefore, this study incorporates the popularly utilized data sets and techniques for various CVD. After that,
the relation between heart disease and 12 lead ECG mechanisms has also been incorporated in this study. Finally, a
framework has been developed to suggest an executable approach based on the concomitant literature that is described
in the Proposed Methodology section.

2. Frequently used databases

Data is the fundamental requirement for the detection, analysis, or interpretation of any kind of disease. It is a
challenging task to detect disease without any form of information or data. There are several data sets have been built
and they are publicly available for disease detection [15, 35, 64, 65]. Moreover, some popular data sets are publicly
available for the prediction of different heart problems [38, 13, 3]. Table 1 illustrates the popular data sets used for the
detection of arrhythmia, 2 refers to the datasets that were used for some dangerous disease such as MI, heart failure,
etc. and 3 illustrate the frequently used databases that are utilized for the prediction of several heart problems.

Q1: Which data sets are available to analyze heart rate variance?

One of the most popular data sets regarding heart disease is the Massachusetts Institute of Technology-Beth Israel
Hospital (MIT-BIH) data set [39, 40, 6, 54]. There are various categories of data available in this data set such as
the MIT-BIH arrhythmia data set, MIT-BIH Normal Sinus Rhythm (NSR) data set, MIT-BIH-PhysioNet databases,
MIT-BIH Atrial Fibrillation Database (MIT-AFDB), MIT-BIH Malignant Ventricular Ectopy Database (MIT-BIH
VFDB), MIT/BIH Sudden Cardiac Death Holter (SCDH), etc [42, 13, 11, 48, 61, 49]. Among them, the MIT-BIH
arrhythmia data set is the mostly utilized database and this data set is known by several names such as the MIT-BIH
arrhythmia data set, MIT-BIH ARR data set, etc. [12, 62, 49]. However, it is observed from the existing literature that
researchers are more concerned about detecting different types of arrhythmia disease than others [7, 8, 50]. This is
why the arrhythmia data set is popular in this domain for detecting heart problems. Additionally, arrhythmia is also
referred to as AF in some articles because AF is a type of arrhythmia [41, 49, 66]. After that, MI, CHF, and SCD are
also predicted in some research using the MIT-BIH data set [3, 11, 12].
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Different types of ECG data sets for Arrhythmia

Comprehensive Review

Citation Source of Data

Number of Recordings

Disease Detected

[38] MIT-BIH arrhythmia 47 subjects: 25 males  Arrhythmia
and 22 females, 4000
ECG Signal
[39] MIT-BIH arrhythmia N/A Arrhythmia
[40] MIT-BIH 47 subjects Arrhythmia
[13] (MIT-BIH) ARR database, MIT-BIH  Total 162 records CHF, Arrhythmia (ARR)
Normal, Sinus Rhythm (NSR), and
BIDMC CHF database
[41] MIT-BIH Atrial Fibrillation Database N/A Atrial Fibrillation (AF)
[42] MIT-BIH arrhythmia 29 subjects Arrhythmia
[6] MIT-BIH 29 subjects Arrhythmia
[43] Numerical-sultanova, N/A, Arrhythmia
Cleveland, 1190 people,
ECG-physioNet, 18,885 patients,
MIT-BIH Arrhythmia data set, 109446 samples,
PTB Diagnostic ECG Database 14552 samples
[44] MIT-BIH Normal Sinus Rhythm, 18 (5 Males, 13 Fe- Arrhythmia, CHF
MIT-BIH Arrhythmia, males),
BIDMC CHF database 47 (25 Males, 22 Fe-
males),
15 (11 Males, 4 Fe-
males)
[11] MIT-BIH-PhysioNet databases 105 subjects Arrhythmia, CHF, sudden cardiac
death (SCD)
[45] China physiological signal challenge 6877 recordings 9 categories of Arrhythmia
(CPSC) 2018 data set
[12] MIT-BIH ARR, 48 subjects, CHF, arrhythmia
MIT-BIH NSR, 18 subjects,
BIDMC CHF 15 subjects
[46] ECG data from wearable sensors N/A Arrhythmia
[7] MIT-BIH 1800 records Arrhythmia
[8] MIT-BIH 48 records from 47 pa-  Arrhythmia
tients
[47] MIT-BIH 47 subjects, 48 record-  Arrhythmia
ings
[48] MIT-BIH AFDB, 23 subjects, 6 types of arrhythmia
CUDB, 35 subjects,
MITDB, 44 subjects,
MIT-BIH VFDB 22 subjects
[49] MIT-BIH Normal Sinus Rhythm 18 records, AF
(NSR-DB),
MIT-BIH Atrial Fibrillation (AF- 23 records,
DB), 48 records
MIT-BIH Arrhythmia (ARR-DB)
[50] MIT-BIH 25 subjects AF

Other heart-related problems such as heart failure, Ischemic Heart Disease (IHD), and abnormal heartbeat are
predicted in this field using several popular databases [14, 9, 51]. Hence, Beth Israel Deaconess Medical Center
(BIDMC) CHF data set is employed in some studies to detect heart failure [13, 10, 12]. After that, Physikalisch
Technische Bundesanstalt (PTB) diagnostic ECG database is utilized in various literature to detect MI, arrhythmia,
etc, [3, 43, 53]. In spite of that, there are some data sets available employed for the detection of heart problems in
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Table 2

A bunch of ECG data sets for prominent heart problems
Citation Source of Data Number of Recordings Disease Detected
[3] PTBDB, MIT-BIH database 48 records Ml
[14] RR interval database, BIDMC-CHF  Total 156 subjects Heart failure

database, NSR-RR, Fantasia
database, MIT-BIH, NSR database

[9] Self-developed database (ECG De- 1937 patients data COVID-19, Abnormal Heartbeat, Ml,

vice ‘EDAN SERIES-3) Previous History of MI, and Normal
Person

[51] Self-developed 43 Patients IHD

[52] MIT-BIH arrhythmia and PTB-ECG 360 subjects Heart Disease
databases

[10] PTB diagnostic, 236 patient, MI, Normal (N), CAD, Valvular heart
BIDMC CHF, 15 patient, disease (VHD) , Bundle Branch
St. Petersburg, 7 patient, Block (BBB), Hypertrophic car-

diomyopathy (HCM), Dilated car-
diomyopathy (DCM)

[53] PTB database 549 ECG records from Ml
290 subjects
[54] MIT-BIH 48 records Heartbeats
[55] Fantasia Normal database, 40 subjects 40 record- Myocardial ischemia
European ST-T database, ings,
Collected data from IBN-AL- 78 subjects 88 record-
NAFEES Hospital ings,
30 subjects 30 record-
ings
[56] Cleveland data set 303 records Heart Disease
[57] PTB-XL data set 21,837 records
[58] PTB-XL database 21,837 records CVvD
[59] St-Petersburg, 5 subjects 17 records, CAD, CHF, MI, normal
BIDMC CHF, 15 subjects 15 records,
PTB Diagnostic 52 subjects 80 records

a few articles. For example, St-Petersburg, Fantasia database, Numerical-sultana, Cleveland, Creighton University
Ventricular Tachyarrhythmia Database (CUDB), European ST-T database, Multi-Parameter Intelligent Monitoring in
Intensive Care II (MIMIC-II) Waveform database, etc. are utilized in some articles to predict heart disease [48, 55, 63].
Therefore, these data sets are popularly utilized for a combination of detecting several heart diseases.

3. Observation of existing approaches

Q2: What is the importance of the automatic classification of heart diseases, and which approaches are utilized to
incorporate this issue?

Automatic classification of heart disease can help the cardiologist to save their time and they can operate more
patients within a short amount of time. Not only that, automatic diagnosis of heart problems using ECG signals can
also help the patients to acknowledge their condition before affected seriously [38, 3]. Therefore, it can also help to
diagnose accurately the heart issues since the pre-trained algorithm is trained by the existing database that helps the
models to learn the signals specifically. Moreover, the available approaches in different domains are depicted in the
subsections below.

3.1. Deep Learning

There are several techniques have been utilized to detect different heart problems in many articles such as ML
techniques, DL approaches, Ensemble methods, hybrid approaches, etc. [38, 42, 53]. Among these approaches, some
DL algorithms such as CNN, Long-Short Term Memory (LSTM), CNN-LSTM, etc. are widely used in several
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Table 3
Detecting multiple heart problems using ECG data
Citation Source of Data Number of Recordings Disease Detected
[60] MIT-BIH, St.- Petersberg, PTB N/A AV nodal block (AV NB), Acute M,
databases Atrial fibrilation (AF), CAD, Earlier

MI (EMI), Healthy, Sinus Node Dys-
function (SND), Transient Ischemic
Attack (TIA), BBB, Cardiomyopa-
thy, Dysrhythmia, Healthy control,
MI, Myocarditis, VHD, AFIB, Nor-

mal, P, SBR

[61] MIT/BIH-SCDH, 23 subjects, SCD

MIT/BIH-NSR databases 18 subjects

[62] MIT-BIH Arrhythmia Database 47 subjects left bundle branch block (LBBB)
beat, right bundle branch block
(RBBB) beat, PVC beat, ventricular
flutter wave beat, nodal (junctional)
escape beat, aberrated atrial prema-
ture beat, ventricular escape beat,
and normal beat

[63] MIMIC-1I 12,000 instances of 942 Blood Pressure (BP)

patients

applications to identify heart illness [39, 40, 13]. CNN is commonly applied in several studies from DL approaches to
detect heart diseases [48, 49]. An article introduced a novel neural network architecture based on recent advancements
in CNNs as a solution to create self-governing systems for diagnosing heart disease using ECG signals [38]. This
research employs 1D convolutional layers and the ReLU activation function, which produces 98.33% accuracy.

Alternatively, 1D and 2D CNN models with the same activation function are investigated to construct a robust
algorithm capable of effectively classifying the ECG signal in the presence of environmental noise [40]. The 1D
CNN and 2D CNN have achieved 97.38% and 99.02% accuracy, respectively. Another article proposed a method
for classifying multiple cardiac illnesses using a one-dimensional CNN with a modified ECG signal as input
[60]. They applied their method to three distinct data sets where the St. Petersburg data set yielded the best
accuracy of 99.71%. Moreover, CNN-based hybrid approaches are also popular in this field for classifying heart
disease [39, 13, 3, 46, 54, 12]. CNN-LSTM is a frequently used algorithm among CNN-based hybrid approaches
[41, 14, 35, 42]. An automated detection system is proposed for the detection of MI where CNN, CNN-LSTM, and
ensemble methods were applied. Among them, CNN-LSTM and ensemble techniques provided high accuracy of 99.9%
[3]. Another study suggests an automated diagnosis approach based on Deep CNN and LSTM Architecture (DCNN-
LSTM) for diagnosing CHF using ECG signals [14]. This approach has performed similarly to the previous work,
99.52%. In this study, CNN is utilized to extract deep features, while LSTM is employed to achieve the goal of detecting
CHF using the extracted features. However, another CNN-based hybrid approach known as Grey Wolf Optimizer
(GWO) Artificial Bee Colony (ABC) optimization algorithm (CNN-GWO-ABC) is proposed to detect arrhythmia
[46]. The automatic construction of CNN typology using neuro-evolution has been examined in this work. A unique
solution based on the ABC and the GWO has also been developed. The performance of this algorithm is satisfactory
but not excellent as compared to the previous study. It showed 94.27% accuracy which is less than the CNN-LSTM
approaches.

Another different hybrid strategy is suggested, and it involves a two-stage medical data classification and prediction
model [56]. If the results of the initial stage can accurately predict cardiac disease, the second stage may not be
necessary. During the first stage, data from medical sensors attached to the patient’s body was categorized, while the
second stage involved the classification of ECG images to forecast the likelihood of heart disease. To classify sensor
data, a hybrid model using Faster R-CNN with SE-ResNet-101 was used, while for ECG image classification, a hybrid
approach utilizing linear discriminant analysis with modified ant lion optimization (HLDA-MALO) was employed.
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Therefore, the performance of this approach is 98.06% in terms of accuracy. Hence, 1D CNN, 2D CNN, and CNN-
LSTM are commonly used algorithms in this field for detecting various types of heart diseases. In addition, Generative
Adversarial Networks (GAN) and LSTM (GAN-LSTM), Convolutional Capsule Networks, Resnet RNNs (ResRNN),
Bidirectional Long Short Term Memory (BiLSTM), Kernel Weight CNN (KWCNN) are also applied in few pieces of
literature for heart disease prediction from DL area [52, 10, 45]. The performance of these approaches is good but they
do not outperform the other approaches in DL [8, 47].

3.2. Machine Learning

ML based algorithms are also explored in some literature to detect heart illness such as Support Vector Machine
(SVM), k Nearest Neighbor (KNN), Decision Tree (DT), etc. [67, 52, 50, 58]. Moreover, a deep genetic ensemble
of classifiers (DGEC) is proposed that consists of three layers where SVM is used in every layer [6]. The suggested
framework comprises an ensemble of three layers (48 + 4 + 1) consisting of 12 classifiers each from the SVM (nu-
SVC, RBF), kNN, PNN, and RBENN + 4 classifiers from the C-SVC and 1 classifier from the C-SVC. This method
performs with a 99.37% accuracy rate, which is satisfactory. But the effectiveness of the DGEC system with additional
physiologic signals and the improved method was not examined in this study. However, other SVM and fusion SVM
models are proposed to detect myocardial ischemia, arrhythmia, and CHF where they have provided 99.09% and
99.06% accuracy respectively, [44, 55]. This study proposes a novel approach for identifying myocardial ischemia
using multi-lead long-interval ECG. The method employs Choi-Williams time-frequency distribution to detect changes
in the ST and PR segments of the ECG, which are related to ischemic symptoms, to extract ST and PR features [55].
The suggested method is quick, inexpensive, and non-intrusive. Moreover, another ML model known as KNN has been
established to detect MI and it showed 99.96% accuracy by single-channel ECG signal [53]. Another study introduced a
novel technique for the detection of R-waves and, based on them, the localization of QRS complexes. It was important to
evaluate classical classifiers, hence new methods of aggregating ECG signal fragments comprising QRS segments were
created. Yet, this model’s performance falls short of expectations. It demonstrated a 90.4% accuracy rate for detecting
CVD. As a result, using ML algorithms to predict cardiac problems is not widely used. In addition, several different
algorithms, including the ridge model, Jaya Algorithm with Red Deer Algorithm (J-RDA), Ensemble Empirical Mode
Decomposition (EEMD) with local means (LM) filtering, particle swarm optimization (PSO), differential evolution
(DE), and MDD-Net, have been investigated in a few studies [68, 62, 59]. Therefore, since ECG signals are one kind
of image related data, ML techniques sometimes cannot process them properly and for that reason DL approaches are
utilized in this area.

4. Correlation between ECG leads and heart diseases

Q3: What is the relation between heart disease and 12 lead ECG mechanisms and how do they help to predict each
distinct heart condition?

The 12-lead ECG is vital for detecting and monitoring heart conditions, such as arrhythmia, CHD, and electrolyte
imbalances [69]. It records the heart’s electrical activity using 10 electrodes placed on the chest, arms, and legs,
generating 12 leads. Each lead provides a different view of the heart’s activity and is crucial for identifying specific
types of heart disease, such as right ventricular infarction (RVI) in leads V1 and V2, and lateral wall infarction in leads
V5 and V6 [70]. The 12-lead ECG is widely used for screening potential cardiac ischemia and is essential for quickly
identifying patients who have suffered a heart attack. Healthcare professionals should prioritize the number of leads
used for accurate diagnosis and treatment [71].

Every ECG lead represents multiple types of waveforms and the ECG waveform consists of several distinct
components that represent different phases of the cardiac cycle. These components include the P wave, QRS complex,
and T wave, which are all different types of waves that are important in the interpretation of ECGs. The P wave
represents atrial depolarization, the QRS complex represents ventricular depolarization, and the T wave represents
ventricular repolarization. Understanding the different types of waves in ECG can help clinicians to diagnose and
manage a variety of cardiac conditions.

Several works have been incorporated for the detection of various heart problems using ECG signals [27, 72, 32]. R
to R interval, QRS complex are different portions of an ECG signal and these portions are used for identifying different
heart problems [73, 74, 75]. However, the majority of the works utilized RR interval for several heart illnesses such
as AF, various types of arrhythmias, CAD, etc [74, 76]. Some works have utilized the QRS complex for incorporating
the issue [77, 75, 78]. An article has detected RR interval for AF detection using CNN-BiLSTM [73]. According to
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earlier clinical investigations, the Q, R, and S (QRS complex) are three deflections that reflect a single heartbeat. Its
timing and structure reveal important details about the heart’s condition. Traditional techniques for locating R peaks
include wavelet processing, frequency analysis, and digital filters that extract the local maximum value. And R peaks
indices have been shown to be important classification indicators for both human and computer-aided categorization.
In order to use their model to extract characteristics from pure ECG signals, they would only include R peaks indices
in this approach. As a result, they just applied R-R intervals to the original ECG signals in the feature extraction phase
to obtain segmentation, and the feature extraction phase will be handled by the model that was used. 0.82 F1 score is
achieved by the proposed model in this work.

In a different article, the R-Peak Engzee ECG segmentation technique was used to identify and extract features
while recording the position, duration, and quantity of R-Peaks [74]. They concentrated on R-R intervals because of
the positional invariant nature of CNN layers, the time-dependency of ECG data, and the importance of interval length
in ECG interpretation. Therefore, CNN architecture can learn the RR interval data rather than the QRS complex.
91.15% accuracy was achieved by the explainable CNN algorithm for the detection of various arrhythmia in this work.
On the contrary, the time domain ECG feature based on Feed Forward Neural Network (FFNN) and CNN provided
91.5% accuracy for the prediction of arrhythmia using the QRS complex [79]. The only portion of an ECG made up
of numerous clustered waves is the QRS complex [80]. The QRS complex consists of Q, R, and S waves and signifies
ventricular depolarization. After the QRS complex, the T wave denotes ventricular repolarization. Therefore, the QRS
complex is utilized for MI detection in research [81]. They stated that a QRS wider than usual is an indication of BBB
and ventricular hypertrophy. For that reason, it is easy to recognize MI by increased R wave amplitude, duration, and
high voltage QRS. Using CNN-BiLSTM, they achieved 99.62% accuracy. Therefore, RR interval and QRS complex
both are used for the detection of several heart problems and most of them have utilized the CNN algorithm and
CNN-based hybrid algorithms for evaluation purposes the performance is similar to each other for both RR interval
and QRS complex.

4.1. P-wave

The assessment of P-waves in a 12-lead ECG is a valuable tool for the diagnosis of heart disease [82]. Abnor-
malities in P-wave morphology, duration, and amplitude can indicate specific types of heart disease, including atrial
enlargement, AF, atrial flutter, atrial tachycardia (one kind of arrhythmia), and WPW syndrome. P-wave abnormalities
can be detected in leads II, III, aVF, V1, and V4-6, which are important for the detection of these conditions. The
morphology of P-waves in leads II, III can detect right atrial enlargement, while leads V1 and V2 can detect left atrial
enlargement. Hence, irregular P-waves are a hallmark of AF. Additionally, P-wave abnormalities are also associated
with other cardiac conditions, such as atrial flutter, atrial tachycardia, and WPW syndrome. Therefore, a comprehensive
assessment of P-wave morphology in multiple leads is essential in identifying and diagnosing various types of heart
disease related to atrial depolarization abnormalities [83].

4.2. P-R interval

The PR interval is a crucial measurement in an ECG that reflects the electrical conduction from the atria to the
ventricles of the heart [84]. Accurate interpretation of PR interval waves in a 12-lead ECG system is essential in
identifying the type of heart disease a patient may have. Specifically, Lead II, Lead III, and aVF are significant leads
that provide a view of the inferior wall of the heart, where abnormalities in the PR interval can indicate conduction
disturbances. Additionally, leads V1 to V6 offer further insight into the electrical activity of the heart’s anterior,
lateral, and posterior walls, indicating atrial enlargement or fibrillation [69]. It is important to note that the PR interval
can be affected by various heart conditions and medications, highlighting the importance of a comprehensive ECG
examination to identify the underlying cause of PR interval waves [85]. Combining multiple leads is usually necessary
to make an accurate diagnosis, which is vital in developing an effective treatment plan [69].

4.3. QRS complex

In a research article, the identification of the type of heart disease associated with QRS complex in a 12-lead
ECG system [86]. The significant leads for this purpose are V1 to V6, as well as II, III, and aVF. The QRS complex
is a representation of ventricular depolarization and its changes can indicate various cardiac conditions such as
ventricular hypertrophy, BBB, and MI [87]. To detect right ventricular hypertrophy, leads V1 and V2 are useful,
while left ventricular hypertrophy can be indicated by leads V5 and V6. Meanwhile, leads II, III, and aVF can provide
information on the inferior wall of the heart, where changes in the QRS complex can indicate blockages or ischemia
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[88]. Morphology or shape of the QRS complex is also an important factor in identifying heart disease, with a widened
QRS complex indicating a BBB, while a narrow QRS complex suggesting a normal conduction pathway [89]. Presence
of abnormally deep and wide Q waves may suggest a previous MI [90, 91, 92]. Therefore, an accurate diagnosis and
treatment plan require an analysis of a combination of leads and QRS complex morphology.

4.4. R-R interval

A research article examines the utility of a 12-lead ECG system for assessing the electrical activity of the heart
[93]. One key aspect of this system is the R-R interval waves, which reflect the time between consecutive R waves and
correspond to the ventricular depolarization. Alterations in the R-R interval can serve as indicators of various cardiac
conditions, including tachycardia, bradycardia, and arrhythmias. The analysis of the R-R interval can be performed
using any of the 12 leads, although lead II and lead V1 are commonly used [94]. Changes in the R-R interval may also
indicate heart blocks, such as first-degree AV block, second-degree AV block, and complete heart block. To effectively
identify the type of heart disease associated with R-R interval waves, healthcare providers must perform a meticulous
analysis of the R-R interval using a combination of leads. The R-R interval serves as a critical component of cardiac
function, allowing healthcare providers to accurately diagnose and treat a range of cardiac conditions [95].
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Figure 3: Different types of wave-forms

To summarize, specific leads in a 12-lead ECG system play a significant role in identifying the type of heart disease
associated with different types of wave-forms [96]. Each waveform has its own set of significant leads shown in Figure
3. For example, P waves in leads II, III, aVL, and V1 can indicate atrial arrhythmias, while Q waves in leads I, aVL,
V5, and V6 can indicate previous MI. There are different cardiac conditions that can be indicated by T waves in leads
V2 to V5, ST segment changes in leads II, III, aVF, V1 to V6, and U waves in leads V2 to V5 [97]. Therefore, it is
crucial to understand the significance of each waveform and its associated leads in identifying the type of heart disease
present and providing appropriate treatment.

The ECG is a valuable tool in diagnosing various heart conditions. Each type of heart disease can cause unique
changes in different leads of the 12-lead ECG. For instance, CAD may produce ST-segment depression [98] or
T-wave inversion in leads II, III, aVF, V4-V6, while a heart attack may cause ST-segment elevation in leads II,
III, and aVF (inferior MI) or leads V1-V4 (anterior MI). Heart failure may exhibit non-specific changes like left
ventricular hypertrophy or left BBB [99, 100, 101]. Meanwhile, arrhythmias can produce irregular or abnormal P
waves, widened QRS complexes, or absent or abnormal T waves. AF may produce an irregular rhythm, absent P waves,
and rapid ventricular response. Other heart conditions, such as heart valve disease, cardiomyopathy, congenital heart
defects, pericarditis, and pulmonary hypertension, also cause different ECG changes [102, 103, 104]. It is important to
emphasize that only trained healthcare professionals should interpret ECGs and that ECG changes can vary in different
individuals and in different stages of the disease.
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Figure 4: Cardiac Territory Mapping for Early Detection of Heart Abnormalities

5. Mapping cardiac territory: anterior, lateral, inferior, and septal leads for heart
abnormalities

Proper placement and interpretation of leads are critical for accurate diagnosis and management of cardiac
conditions. Anterior wall infarction rarely occurs in isolation and is often associated with infarcts of the septum, lateral
wall, or both. The anterior wall is represented by leads V3 and V4 [105]. If both the anterior wall and the septum are
affected, the infarct changes will appear in leads V1 to V4, known as an anteroseptal acute MI [106, 107, 108]. In cases
where the infarct affects both the anterior and lateral walls (anterolateral AMI), changes will appear in V3 to V6 and
possibly I and aVL. The lateral leads I, aVL, V5, V6 are placed on the left side of the chest and are essential in detecting
abnormalities in the left ventricle, such as left ventricular hypertrophy and acute MI [109, 110]. The inferior leads II,
III, aVF are placed on the lower part of the chest and are helpful in detecting abnormalities in the right ventricle and
inferior wall of the left ventricle, including RVI [111, 112]. Finally, the septal leads V1, V2 are placed on the front of
the chest and are crucial in detecting abnormalities in the septum [113], such as septal hypertrophy or septal infarction.
The appropriate use and interpretation of these leads shown in Figure 4 (a) in the 12-lead ECG that can contribute
to the accurate diagnosis and management of various cardiac conditions and also the specification for the mapping is
illustrated in the Figure 4 (b).

In the field of electrocardiography, specific leads can be used to diagnose and manage different types of MI. The
right-sided leads, which include V4R, V5R, and V6R, can show ST elevation in a right-side infarct. The posterior leads,
V7, V8, and V9, are used to diagnose a posterior acute MI [114]. Criteria for RVI include IWMI [115], ST segment
elevation greater in lead III than II, ST elevation in V1 (possibly extending to V5 to V6), ST depression [116] in V2,
and more than 1 mm of ST elevation in the right-sided leads (V4R to V6R). Most RVIs occur in conjunction with
inferior wall MI [117]. If ST segment elevation is seen in II, III, and aVF, as well as V1, the most probable explanation
is an RVI. The treatment of an RVI is very different from that of a left ventricular infarction, and the diagnostic criteria
should be carefully considered in treatment decisions.

6. Lead-specific patterns in diagnosing cardiac conditions

In general, premature ventricular contractions (PVCs) are best visualized in leads V1 to V3, which are located in the
right ventricular outflow tract and the septal region of the heart where PVCs often originate [118, 119, 120, 121, 122].
Lead V1 is particularly useful for detecting PVCs because it has a superior view of the right ventricle.

PACs (premature atrial contractions) are visualized in Lead II that is one of the most commonly used leads in
ECG and can provide valuable information in detecting PACs [123, 124, 125, 126]. PACs are defined as one kind of
arrhythmia. Additionally, the V1 lead, positioned at the fourth intercostal space on the right side of the sternum, may
be helpful in identifying PACs originating from the right atrium. The V2 lead, positioned at the same location on the
left side of the sternum, can help identify PACs originating from the left atrium. Furthermore, the V4-V6 leads, located
on the left side of the chest, can also be useful in detecting PACs originating from the left atrium.

RBBB is best visualized in leads V1 and V2, which are located in the right ventricular outflow tract where the right
bundle branch is located. RBBB can also be seen in leads V5 and V6, which are located in the left lateral aspect of the

Abu Sufiun et al.: Preprint submitted to Elsevier Page 10 of 20



Exploring the Relationship between Cardiac Disease and Patterns of 12-Lead ECG through Neural Network: A
Comprehensive Review

heart and may show delayed R-wave progression also help to confirm the diagnosis by showing a "rabbit ears" pattern
in the QRS complex [127, 128, 129].

LBBB is properly envisioned in leads V5 and V6, which are located in the left lateral aspect of the heart where
the left bundle branch is located. LBBB is a cardiac condition characterized by the disruption of the electrical signals
that regulate the heart’s pumping function. In the diagnosis of LBBB, V1 and V6 leads are crucial, being the most
important on a standard 12-lead ECG. ECG criteria that suggest the presence of LBBB include a QRS duration greater
than or equal to 120 ms, broad and monomorphic R waves in leads I, aVL, and V6, broad and monomorphic S waves in
leads III and aVF, an absence or reduction in the size of Q waves in leads V5 and V6, and an rsR’ pattern in V1. These
electrocardiographic patterns are indicative of a disruption in the electrical signals that control the heart’s pumping
function and are essential for accurate diagnosis [130, 131, 132, 133, 134]. By considering these criteria, medical
professionals can identify LBBB and provide appropriate treatment to manage this condition.

APCs (atrial premature complexes) are best visualized in leads II, III, and aVF, which are located in the inferior
wall of the heart where the atria are located. APCs can also be seen in other leads [135, 136, 137, 138], such as V1 and
V2, but they may be more difficult to distinguish from other abnormalities in those leads. The ECG is a non-invasive
diagnostic tool that is commonly used to predict atrial premature beats (APBs). The use of different leads in ECG
has been shown to aid in the identification of APBs. Lead II, for instance, is one of the most frequently used leads
and measures the electrical activity between the right arm and the left leg, which provides a clear view of the atria.
Similarly, the V1 and V2 leads are positioned on the right and left sides of the sternum, respectively, and can detect
APBs originating from the right and left atria. The V4-V6 leads, placed on the left side of the chest, are also useful in
identifying APBs originating from the left atrium [139, 140, 141]. However, a comprehensive evaluation of a patient’s
medical history, symptoms, and physical examination is necessary to achieve an accurate diagnosis.

Ventricular ectopic beats (VEBs) are abnormal heart rthythms that can be detected using ECG, a widely-used non-
invasive diagnostic tool. ECG provides valuable information for predicting VEBs [142, 143, 144], and while each lead
in ECG offers important insights, some leads are more sensitive than others in detecting VEBs. Specifically, the V1-V3
leads located on the chest wall are highly sensitive in detecting VEBs originating from the right ventricle, whereas the
V4-V6 leads are more sensitive in detecting VEBs originating from the left ventricle. Additionally, lead II can detect
abnormal electrical activity in the ventricles, making it useful for predicting VEBs. To accurately diagnose VEBs, a
comprehensive analysis of all ECG leads is necessary.

The leads that are most useful for detecting MI are the ones that correspond to the area of the heart that is affected
by the blockage of blood flow [145, 146, 147, 148]. For example, if the blockage is in the left anterior descending artery
(LAD), which supplies blood to the anterior wall of the left ventricle, leads V1-V4 may show ST-segment elevation, Q
waves, and T-wave inversion. If the blockage is in the right coronary artery (RCA), which supplies blood to the inferior
wall of the heart, leads II, III, and aVF may show ST-segment elevation, Q waves, and T-wave inversion.

AF is best visualize in leads II, III, and aVF, which are located in the inferior wall of the heart where the atria are
located. AF can also be seen in other leads, such as V1 and V2, which may show flutter waves or irregular R-R intervals
[149, 150]. Additionally, leads V5 and V6 may show a rapid ventricular response due to the irregularity of the atrial
activity.

Table 4

Best Leads for Visualization of Different Heart Conditions

Heart Condition Best Leads for Visualization
PVCs V1,Vv2\V3

PACs 1,V1,V2,V4V5V6

RBBB V1, V2,V5, V6

LBBB I11,aVL,aVF,V1,V5,V6
APCs I, 11, aVF,V1, V2

APBs 11,v1,v2,V4,V5V6

VEBs 11,V1,v2,V3,V4,V5 V6

Ml I, 11, aVF, V1,V2,V3,V4
AF Il, I, aVF, V1, V2, V5, V6

This Table 4 presents a comprehensive list of various heart conditions along with the optimal leads for visualizing
each of these conditions. The included heart conditions are Premature Ventricular Complexes (PVCs), Premature Atrial
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Figure 5: Data set preparation

Complexes (PACs), RBBB, LBBB, APCs, APBs, VEBs, MI, and AF. By providing the best leads for visualization of
each condition, this table can contribute to more accurate diagnoses and effective treatments for these conditions.

7. Proposed framework : specific heart disease classification framework

Based on the existing literature, we have found that the mostly used approach for classifying heart problems using
ECG signal is CNN. Because, this algorithm is well-known for processing image related data and it is reliable and
highest perfomer for predicting heart problems. Therefore, a CNN model DenseNet 201 that is configured using focal
loss and Adam optimization. The medical sector often deals with imbalanced data sets, where the normal data set
exceeds the disease data set. To address this, we adopt focal loss. Focal loss is effective for imbalance data set [151].
The Adam optimizer performs well with focal loss.The Adam technique also works efficiently for the high-dimensional
data set [152].

This research aimed to prepare a data set for heart disease prediction. To accomplish this, we combined multiple
data sets which are discussed in the data set section. We have also employed a technique to convert one-dimensional
ECG signals into two-dimensional ECG images. This conversion aids in reducing the noise of the ECG signals. The
conversion is done using Ecg-kit, where we have transformed the ECG signal waves into image format. Next, we split
the images into R-R intervals corresponding to one complete cardiac cycle. The resulting images are then stored in
separate folders for training and testing, and Lead-Specific Patterns are depicted in Figure 5. The ECG wave-to-image
generator is used for this conversion, and the heart bit segmentation is accomplished using the Ecg-kit with the Pan-
Tompkins algorithm. Finally, we split the data set in 70% for training, 20% for testing and 10% for validation purposes.

The Ecg-kit is a Python-based toolbox that offers a range of tools for the processing and analysis of ECG signals.
The toolkit includes functionalities for beat detection, heart rate variability analysis, ECG signal visualization, and ECG
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Figure 6: Proposed framework utilizing best classifier

signal processing. A noteworthy feature of Ecg-kit is its implementation of the Pan-Tompkins algorithm, a widely used
algorithm for detecting the QRS complex in ECG signals. This algorithm utilizes a combination of bandpass filtering,
differentiation, squaring, and integration to effectively detect the QRS complex. By leveraging this algorithm, Ecg-kit
allows users to convert ECG signals into gray scale images, which can be used for further analysis and visualization.

In light of the aforementioned background, we suggest a novel DL approach to accurately predict heart disease
from ECG signals in real-time scenarios. Specifically, our proposed method involves utilizing a CNN architecture
Densenet-201 to categorize ECG signals into ten distinct classes of heart disease data.

To ensure a diverse and comprehensive training data set, we will include unique combinations of lead data for
each heart disease class. we use leads V1-V3 for PVCs, leads 1I,V1,V2,V4,V5,V6 for PACs, leads V1, V2,V5, V6
for RBBB, leads II,aVL,aVFE,V1,V5,V6, for LBBB, leads II, III, aVF,V1, V2 for APCs, leads I[,V1,V2,V4,V5,V6
for APBs, leads II,V1,V2,V3,V4,V5,V6 for VEBs, leads II, III, aVF, V1-V4 for MI, leads II, III, aVF,V1, V2, V5,
V6 for AF, and leads II, III, aVF, V1-V6 for Normal (NOR). The CNN model will be trained using these segmented
images from our proposed data set that precisely classifies each image into its corresponding heart disease class. We
will evaluate the proposed model performance using several performance metrics such as precision, accuracy, recall,
and F1 score.

To demonstrate the effectiveness of our proposed model in real-time scenarios, the proposed model integrates with
12 lead ECG device that produce 12 different types of waveforms. Subsequently the ECG signals will be transformed
into images using an ECG wave to image generator. Subsequently, the images will be segmented based on the R-R
interval through heartbeats segmentation. Moreover, those split ECG images will be processed using the proposed
model, and the resulting heart disease predictions will be presented in real-time shown in Figure 6.

However, a major issue encountered in this research was the imbalance in the data set. For example, when
considering the lead aVF from the 12-Lead ECG, it was found that this lead could represent any disease. However,
certain classes such as NOR, LBB, APC, MI, and AF had pictures of aVF leads, which were not present in other classes
such as PVC, PAC, RBB, APB, and VEB. This made it difficult for the model to accurately predict diseases that did not
have aVF lead data. Due to the absence of certain types of leads in different types of heart disease classes, the use of
12-Lead ECG data as input for the model resulted in data ambiguity. To mitigate this issue, the research team applied
a threshold value of 85%. This meant that if the aVF signal was determined to be PVC, PAC, RBB, APB, or VEB with
a confidence level below 85%, the prediction would not be made, and the model would discourage misclassification.
Dealing with unknown data is a challenge in this solution, especially in the sensitive medical sector. A promising result
was obtained in our research with DenseNet 201, achieving an accuracy of 99.57%. The accuracy is assessed using
various metrics such as F1 score, precision, and recall shown in Table 5.

Based on the evaluation metrics, the classification model is exhibiting excellent performance. It is achieving high
scores for most of the classes, with precision, recall, and F1-score metrics above 0.95 for every class, indicating that
the model can accurately classify a substantial portion of instances for each class. Additionally, the accuracy metric is
almost perfect, with a score of 0.99, suggesting that the model can classify almost all instances accurately. The macro
average of precision, recall, and F1-score is 0.98, which demonstrates that the model is consistently performing well
across all classes. The weighted average is also high at 0.99, signifying that the model can correctly classify instances
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Table 5

ECG Report Heart Disease Classification Metrics

Class Precision Recall F1-score
LBB 0.98 0.98 0.98
NOR 0.99 0.99 0.99
PAC 0.95 0.97 0.96
APC 0.99 0.97 0.98
PVC 0.97 0.98 0.97
RBB 0.99 0.99 0.99
APB 0.96 0.94 0.95
Ml 0.97 0.98 0.97
VEB 0.98 0.98 0.98
AF 0.98 0.97 0.98
Accuracy 0.99
Macro Avg 0.98 0.98 0.98
Weighted Avg 0.99 0.99 0.99

across all classes with similar high performance. Overall, the findings of this report suggest that the classification
model performs well and can accurately classify instances across a wide range of classes, with high precision, recall,
and Fl1-score metrics. This indicates that it can be utilized for automatic classification of ECG reports in real-life
medical applications.

8. Conclusion

Heart disease is a major global public health issue, particularly in low-income countries where there is a shortage
of qualified cardiologists. The ECG is the primary diagnostic tool for heart disease, but interpreting ECG reports can
be time-consuming and costly, requiring the expertise of a qualified cardiologist. To address this issue, automated
ECG signal interpretation is necessary, and this article has made a comprehensive review of the existing literature,
including popular datasets and tools and techniques for this domain. The MIT-BIH data set, PTB database, BIDMC
data set, and PTB data set are popular for the diagnosis of heart disease. These data sets are publicly available and
easily accessible. Hence, researchers use them without any complexity. Moreover, CNN, LSTM, BiLSTM, CNN-
LSTM, CNN-BiLSTM are widely applied approaches to incorporate the issue of detecting heart disease. Therefore,
based on these observations, we have proposed a framework that considers the 12-lead ECG, the different types of
leads, wave patterns, and their relationship with heart disease. The proposed framework has the potential to improve
the diagnosis and management of heart disease by enabling a wider range of healthcare providers and individuals to
interpret ECG reports more reliably and accurately, thus leading to earlier detection and treatment of heart disease and
improved outcomes. This study also highlights the significance of utilizing various types of leads in developing a CNN
model to minimize unknown pattern complexity. The proposed framework and observations from the existing works
contribute significantly to the field of ECG analysis and can aid in the development of more accurate diagnostic tools
for detecting heart diseases. Therefore, we recommend further research to validate and refine our proposed framework,
which is based on the existing literature, to improve automated ECG signal interpretation and ultimately contribute to
better heart disease management.
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