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Abstract. The classical theory of monstrous moonshine describes 
the unexpected connection between the representation theory of the 
monster group M, the largest of the sporadic simple groups, and certain 
modular functions, called Hauptmoduln. In particular, the n-th Fourier 
coefficient of Klein's )-function is the dimension of the grade II part of 
a special infinite dimensional representation yQ of the monster group. 
More generally the coefficients of Hauptmoduln are graded traces Tg of 
g E M acting on yb_ Similar phenomena have been shown to hold for 
·the Mathieu group M24, but instead of modular functions, mock modular 
forms must be used. This has been conjecturally generalized even further, 
to umbra! moonshine, which associates to each of the 23 Niemeier lattices 
a finite group, infinite dimensional representation, and mock modular 
form. We use generalized Borcherds products to relate monstrous moon­
shine and umbra! moonshine. Namely, we use mock modular forms from 
umbra] moonshine to construct via generalized Borcherds products ratio­
nal functions of the Hauptmoduln .Tg from monstrous moonshine. This 
allows us to associate to each pure A-type Niemeier lattice a conjugacy 
class g of the monster group, and gives rise to identities relating dimen­
sions of representations from umbral moonshine to values of T8 . We also 
show that the logarithmic derivatives of the Borcherds products are p-adic 

==s======;e====s==~mM· o~d~u~l:ar~fo~rms for certain primes p and describe some of the resulting 
propertie·s oftheircbefficientssmoduJ9.:,R-.. 

~~~~~~~--~ 
2010 Mathematics Subject.Classification. 11F30; 11F33, 11F37. 
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1. Introduction 

Monstrous moonshine begins with the surprising connection between the 
coefficients of the modular function 

. (1 + 240 ""'oo ""' d3 n)3 
J(r) := "(r) - 744 = L..n=I L..dln · q - 744 

J . q TI~1 (1 - qn)24 

1 · 2 = - + 196884q + 21493760q + ... q . 

·and the representation theory of the monster group M, which is the largest 
of the simple sporadic groups. Here q := e21eir and r E IHI := {z E C: 
~z > 0}. McKay noticed that 196884, the q1 coefficient of J(r), can be 
expressed as a linear combination of dimensions of irreducible representations 
of the monster group M. Namely, 

196884 = 196883 + 1. 

McKay saw that the same was true for other Fourier coefficients of J (r ). For 
example, 

21493760 = 21296876 + 196883 + 1. 

In (28], McKay and Thompson conjectured that the n-th Fourier coefficient 
of J ( i) js the dimension of the grade n part of a special infinite-dimensional . . 
graded representation v~ of M. 

This was later expanded into the full monstrous moonshine conjecture by 
Thompson, Conway, and Norton [11,27]. Since the graded dimension is just 
the graded trace of the identity element, they looked at the graded traces Tg ( r) 
of nontrivial elements g of M acting on vb. a6d conjectured that they were 
all expansions of principal moduli, or Hauptmoduln, for certain genus zero 
congruence groups r g commensurable with SL2 (Z). Note that these Tg are 

· constant on each of the 194 conjugacy classes of M, and therefore are class 
functions, which automatically have coefficients which are C-linear combi­
nations of irreducible characters of M. Part of the task of proving monstrous 
moonshine was showing that they were in fact Z~o-linear combinations. 

By way of computer calculation, Atkin, Fong, and Smith [26] verified the 
existence of a virtual representation of M. Then using vertex-operator theory, 
·Frenkel, Lepowsky, and Meurman [ 16] finally constructed a representation 
vb. of M thereby providing a beautiful algebraic explanation for the origi­
nal numerical observations of McKay and Thompson. Borcherds [1] further 
developed the theory of vertex-operator algebras, which he then used in [2] to 
prove the full conjectures as given by Conway and Norton. 

Monstrous moonshine provides an example of coefficients of modular func­
tions enjoying distinguished properties. Moreover, their values at Heegner 

I 
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points have also been considered important. A Heegner point r of discrimant 

d < 0 is a complex number of the form r = -b±~ with a, b, c E Z, 
gcd(a, b, c) = 1, and d = b2 - 4ac. The values of principal moduli at such 
points are called singular moduli. As an example of their importance, it is 
a classical fact that the singular moduli of j ( r) generate Hilbert class fields 
of imaginary quadratic fields. Moreover, the other McKay-Thompson series 
arising in monstrous moonshine satisfy analogous properties [7]. It is natural 
to ask what other interesting properties the values of the Hauptmoduln Tg ( r) 
could possess. We show that some of these values are related to another kind 
of moonshine, called umbra! moonshine. 

Recently, it was shown that phenomena similar to monstrous moonshine 
occur for other q-series and groups. In particular, the Mathieu group M24 
exhibits moonshine [15, 19], with the role of the }-invariant played by a mock 
modular form of weight 1/2, denoted H(2)(r). A mock modular form is 
the holomorphic part of a harmonic weak Maass form. Cheng, Duncan, and 
Harvey conjecture in [10] that this is a special case of a more general pheno­
menon, which they call umbra! moonshine. For each of the 23 Niemeier 
lattices X they associate a vector-valued mock modular form Hx (r), a group 
Gx, and an infinite-dimensional graded representation K x of Gx such that 
the Fourier coefficients of H x encode the dimensions of the graded compo­
nents of Kx. 

In particular, if ex (n, h) is the n-th Fourier coefficient of the h-th compo­
nent of H x, then 

l
ax dim x 

X Kh,-D/4m 

c (n,h)= 

ifn = -D/4m where 

DEZ, D = h2 (mod 4m), 

otherwise, 0 

where ax E {l, 1/3} and 

Kx = EB EB 
h (mod 2m) DEZ 

D=h2, (mod 4m) 

K£-D/4m· 

(1) 

For more information on umbral moonshine see Section 2 and for a definition 
of H X see Section 4. 

Using generalized Borcherds products (see [6]), we describe a connec­
tion between the mock modular forms H x ( r) of umbra} moonshine and 
the McKay-Thompson series Tg ( r) of monstrous moonshine. Generalized 
Borcherds products are a method to produce modular functions as infinite 
products of rational functions whose exponents come from the coefficients 
of mock modular forms, and they can be viewed as generalizations of the 
automorphic products in Theorem 13.3 of [3]. 
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Table 1. Pure A-type root systems. 

Root S_ystem X Coxeter Number m (X) Mock Modular Form Hx 

A24 
l 2 H(2)cr) 

A12 
2 3 H(3)(r) 

AS 
3 4 H(4)(,) 

A6 
4 5 HC5\r) 

A4 
6 7 HC7)c,) 

A3 
8 9 H(9)(,) 

Af2 13 H0 3\r) 

AJ4 25 H(25)(,) 

We focus on the Niemeier lattices X whose root systems are of pure 
A-type according to the ADE classification . .They are listed in Table 1, along 
with their Coxeter numbers m(X) and the notation we will use for the mock 
modular form H x. 

Table 2 gives the monstrous moonshine dictionary for the conjugacy classes 
g which correspond to pure A-type cases of umbra) moonshine1• Note that 
1J ( r) is the Dedekind eta function, defined by 

00 

,7(r) := ql/24 IT (I - qn). 
n=I 

All of our Hauptmoduln are normalized so that they have the form q-1 +O(q), 
which is why all of the 17-quotients in the table have a constant added to them. 

There is an evident correspondence between the pure A-type lattices X in 
Table 1 and the conjugacy classes g in Table 2. We give this correspondence 
in Table 3. 

We show that for a pure A-type Niemeier lattice X and its corresponding 
conjugacy class g := g(X), the "Galois (twisted) traces" of the CM values of 
the McKay-Thompson series Tg ( r) are the coefficients of the mock modular 
form H x. To more precisely state this, we set up the following notation. 

Let X be a pure A-type Niemeier lattice with Coxeter number m := m(X) 
and corresponding conjugacy class g := g(X). We call a pair (Li, r) 
admissible if Li is a negative fundamental discriminant and r 2 = Li 
(mod 4m). We also let e(a) := e2n:ia_ 

1 The case X = A24 corresponds to g(X) = (25Z), which is what Conway 
and Norton call a "ghost element". This means that f'o(25) is the only genus zero 
I'o(N) that does not correspond to a conjugacy class of the monster group. The 
parentheses are used to indicate a ghost element. 
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Table 2. The dictionary of monstrous moonshine: 

Monster Congruence McKay-Thomspon 
Conjugacy Class g Subgroup r g Series Tg ( r) 

2B r o (2) 17(r)24/11(2r)24 + 24 

3B ro(3) 17(r) 12 /17(3r) 12 + 12 

4C ro(4) 17(r)8 /i7(4r)8 + 8 

SB r o cs) · 17(r)6 /11(Sr)6 + 6 

7B ro(7) 17(r)4 /i7(7r)4 + 4 

9B ro(9) l/(r)3/17(9r) 3 +3 

13B r 0(t3) 11(r)2/11(13r)2 +2 

(25 Z) r 0(25) 17(r)/17(25r) + 1 

Theorem·t.1. Let c+(n, h) be the n-th Fourier coefficient of the h-th 
component of Hx. Let (D., r) be an admissible pair for X. Then the twisted 
generalized Borcherds product 

00 2 

'¥ t.,,-(r, HX) := TI Pt,(q 11 t+(I~!~ ,£!;), 
n=I 

where 

P1:,(x) := TI [1 - e(b/ b.)xl¾) 
beZ/lt.lZ 

is a rational function in T8 ( r) with a discriminant D. Heegner divis01: 

Remark 1.2. We consider only the pure A-type cases, because these are 
the ones for which the· harmonic Maass form transforms under the Weil 
representation. See Section 4 for more information. 

The next result gives a precise description of the rational functions in 
Th~orem 1.1. In particular,\it gives a "twisted" trace function for the values 
of Tg at points in the divisor and the coefficients c+ of the mock modular 
forms H x. It is often the case that coefficients of automorphic forms can be 
expressed in terms of singular moduli (see e.g., [ 4,5, 13,291). 

'I'~,,.(r, Hx) = TI(T8(r)-,T8(a;))Yi 
. i 
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Table 3. Correspondence between umbral 
and mon~trous moonshine. 

Root System X Conjugacy Class g(X) 

A24 
1 2B 

A12 
2 3B 

Ag 
3 4C 

A6 
4 5B 

A4 
6 7B 

A3 
8 9B 

Ai2 13B 

A}4 (25Z) 

for some discriminant /J. Heegner points ai. Then we have that 

where· 

Remark 1.4. Assuming the umbra] moonshine conjecture, the previous 
corollary implies the following "degree" formula in traces of singular moduli 
for classical moonshine functions: 

(2) 

In the case where m = 2, the relationship between the coefficients 
of the mock-modular form and the dimensions of the graded components of 
the representation \has been proven by Gannon [19], and so our work implies 
the following: 

Example 1.5. Let X = Af4, so m(X) = 2 and g(X) 
corresponding McKay-Thompson series is 

17(1:)24 1 
T8 (r) = 24 + 24 = - + 276q + .... 

17(2r) q 

(3) 

2B. Then the 
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We pick the admissible paii- (fl., r) = (-7, 1 ). In Section 5, we will show that 

( Tg(r) - 1-452,,;-7)2 
'I' -(r Hx) = (Tg(r) - Tg(a1))

2 
= ...:...._ ____ __:.,_ 

1:,,,, ' (Tg(r) - Tg(a2)) 2 (Tg(r) _ 1+45
2
,r-:'7)2 

= 1 + 9oµq + (283so + 45N)q2 + ... , 

where a1 := -l+/='7 and a2 := l+F. Note that Tg(a1) and Tg(a2) 
are algebraic integers of degree 2 which form a full set of conjugates. Their 
twisted trace is 

2[Tg(a1) - Tg(a2)] = -90H, 

which matches the q 1 Fourier coefficient above. To check Corollary 1.3, we 
note that 

and 

. Et,,= L, e(-b/7) · (~
7

) = -H 
be'll/Tll 

1'"' + . -~ y;Tg(a;) = 90 = c (7/8, 1/4) = d1111K(2J . 
Et,, . 1,7/8 

I 

Example 1.6. As a second example, again consider X Af4, so 
m(X) = 2 and g(X) = 2B. We pick the admissible pair (fl., r) = (-15, 1). 
Let Pl, P2, p3, p4 be the roots of 

x 4 
- 47x3 + I92489x2 

- 9012848x + 122529840, 

with Pl, p2 having positive imaginary parts. Then 

'J' _
15 1 

= (Tg(r) - P1)2(Tg(r) - p2)2. 
' . (Tg(r) - p3)2(Tg(r) - p4)2 

We g_et that . 

and 

E- 15 == .J=Ts, 

1 . . 
- L,P;Tg(a;) = 462 = c+ (15/8, 1/4) = dimKc2J . 
Et,, . . 1,15/8 

I 

In vie·w of this c_01:respond~n~~. it ts cl~ar thaJ the mock modular form~ of 
. umbral moonshine have important properties. The congruence properties of 
their coefficients have just begun to be studied. For. example, [12] examines 
the parity of the coefficients of the· McKay-Thompson series for Mathieu· 
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moonshine in relation to a certain conjecture in [9], which in our case corres­
ponds to X = Ai4 . Congruences modulo higher primes were also considered 
in [22]. 

Let 0 := qt = 2!i f,. Given the product expansion of a generalized 
Borcherds product, it is natural to consider its logarithmic derivative. It turns 
out that this logarithmic derivative has nice arithmetic properties. This .idea 
was also used in [6] and [23]. 

Theorem 1.7. Fix a pure A-type Niemeier lattice X with Coxeter number m. 
Let ( 11, r) be an admissible pair. Consider the logarithmic derivative 

of '¥,1,r(r) = '¥,1,r(T, Hx). Then f,1,r(r) is a meromorphic weigh( 2 
modular form. 

When pis inert or ramified in Q(~), it turns out that f ,1,r(r) is more than 
just a meromorphic modular form; it is a p-adic modular form. Essentially, 
a p-adic modular form is a q-series which is congruent modulo any power of 
p to a holomorphic modular form; we refer the reader to Section 6.1 for the 
definition. 

Theorem 1.8. Let X be a pure A-type Niemeier lattice with Coxeter 
number m. Let ( 11 , r) be admissible and suppose p is inert or ramified in 
(Q( .../i.). Then h ,r is a p-adic modular form of weight 2. 

We will use this result to study the p-divisibility of the coefficients a 6 ,r (n). 

Corollary 1.9. Let X, 11, r, p be as above. Then for all k :::: 1 there exists 
ak > 0 such that 

#{n ::=; x : a,1,r(n) ¢. 0 

In particular, if we let 

n,1,r(x; pk):= #{n ::=; x : a,1,r(n) = 0 (mod pk)}, 

then 

1
. n,1,r(x; pk) l 
Im ----- = . 

x➔ ao X 

Remark 1.10. Corollary 1.9 also applies to any constant multiple of f 6 ,r 

with integral coefficients. In the example below, we consider the coefficients 
of 

· f-7,l (r) = + O( 2). 
90./=? q q 
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Table 4. Divisibility of a_ 1, 1 (n) by p = 2, 3. 

X 1r2(x)/x 1r3(x)/x 

50 0.38 0.64 

100 0.45 0.68 

150 0.47 0.69 

200 0.49 0.71 

250 0.48 0.71 

300 0.49 0.72 

00 .5? I 

However, It IS not always the case that the analogous normalization has 
integral coefficients. 

Example 1.11. We illustrate Corollary 1 .9 for X = Af4, 6. = - 7, 
r = 1. Note that this is the same case considered in Example 1 .5. The first 
few coefficients of the normalized logarithmic derivative are given by 

.f-7 I (r) ~ 2 3 4 5 

90
F7 =:L.,a-1,1(n)q 11 =q+q -4371q +q +17773755q + ... 

11:,::l 

The prime p = 2 is split in (Q(H), and so Theorem 1.8 and Corollary 1.9 
do not apply. Therefore, we expect the coefficients a_ 1, 1 (n) to be equally dis­
tributed modulo 2, but cannot prove anything about them. The prime p = 3 
is inert, so Corollary 1.9 tell us that, asymptotically, 100% of the coefficients 
a_ 7 -I (n) are divisible by 3. We illustrate this behavior in Table 1.1 l. , . 

2. Umbral moonshine 

In this section, we summarize the main objects and conjectures of umbral 
moonshine. However, we first briefly describe Mathieu moonshine, which 
umbral moonshine generalized. 

2.1 Mathieu moonshine 

In 2010, the study of a new form of moonshine commenced, called Mathieu 
moonshine. Let µ(z, r) := µ(z, z, r) be Zwegers' famous function from his 
thesis [30), which is defined in the appendix. Let H<2)(r) be the q-series 

.;c__----'-',-~•"-'·c·.=••"-'• ''-'-'',c" =.• =--=••"'-' ..=.==·-="· --•••~-.o-··":,.''--'"''-'"···"'-•"--' ~• '"-'·~•-a,......._--•a-e'"~• '-'-' •=••=•·-;.'--• -,---,'~='-'---,..'""·•~••-c•__,·· .~• -"e''"c'-"~' "-';' ;,=-=---'-',,=-

1/2)(r) := -:-8 L µ(w, r) = 2q-118(-1 + 45~ + 231q2 + .. \ 
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which occurs in the decomposition of the elliptic genus of a K3 surface into 
irreducible characters of the N = 4 superconformal algebra. This is a mock­
modular form, and plays the role of J ( T) in Mathieu moonshine. Eguchi, 
Ooguri, and Tachikawa conjectured that the Fourier coefficients encode 
dimensions of irreducible representations of the Mathieu group M24 [15]. 
This was extended to the full Mathieu moonshine conjecture by [8,14,17,18], 
which included providing mock modular forms Hf) for every g E M24. , 
The existence of an infinite dimensional M24 module underlying the mock 
modular fomi's was shown by Gannon in 2012 [19]. 

2.2 The objects of umbral moonshine 

Cheng, Duncan, and Harvey generalized even further - conjecturing that 
Mathieu moonshine is but one example of a more general phenomenon which 
they call umbral moonshine [10]. 

For each of the 23 Niemeier root systems X, which are unions of irreducible 
simply-laced root systems with the same Cox~ternumber, they associate many 
objects, including a group ax (playing the role of M), a mock modular form 
Hx(T) (playing the role of j(T)), and an infinite dimensional graded ax 
module Kx (playing the role of the M-module VQ) Table 5 gives a more 
complete list of the associated objects. 

The ADE classification of simply laced Dynkin diagrams allows us 
to classify the irreducible components of the Niemeier root systems X. 
We will focus on the simplest cases - the root systems of pure A-type, i.e. 

24/(m-J) ( . X = Am-I , where m - l) I 24. In these cases, the lambency e 1s an 

integer and equals m, and rx = fo(m). The case X = Af4 corre~ponds to 
Mathieu moonshine, with ax ·= M24 and H x = H(2), as defined above. 
We will generally refer to H x , sx, lf/x, and TX as H(m), s(m), lfl(m), and 
jm respectively. These are the main quantities from Table 5 that we will work 
with, and we will only define them for pure A-type. This is done in Section 4. 

2.3 The conjectures of umbral moonshine 

The main conjectures of umbral moonshine are as follows: 

l. The mock modular form Hx encodes the graded super-dimension of a 
certain infinite-dimensional, Z/2m7l., x Q-graded ax-module K x. 

2. The graded super-characters H{ arising from the action of ax on 

K x are vector-valued mock modular forms with concretely specified 
shadows s;. 

3. The umbral McKay-Thompson series H{ are uniquely determined by an 
optimal growth property which is directly analogous to the genus zero 
property of monstrous moonshine. 
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Table 5. This table gives the objects associated to a Niemeier root system X. 

LX The Niemeier lattice corresponding to X 

m The Coxeter number of all irreducible components of X 

WX The Wey! group of X 

GX := Aut(LX)/WX The umbra! group corresponding to X 

nx The (formal) product of Frame shapes of Coxeter elements 
of irreducible components of X 

rX The genus zero subgroup attached to X 

TX The normalized Hauptmodul of rX, whose eta-product 
expansion corresponds to 1r X 

e The lambency. A symbol that encodes the genus zero 
group rX. Sometimes used instead of X to denote which 
case of umbra! moonshine is being considered. 

lfx The unique meromorphic Jacobi form of weight 1 and 
index m satisfying certain conditions. 

HX The vector-valued mock modular form of weight 1/2 
whose 2m components furnish the theta expansion of the 
finite part of ,p X. Called the umbra! mock modular form. 

5X The vector-valued cusp form of weight 3/2 which is the 
shadow of H X. Called the umbra! shadow. 

Hx The umbra] McKay-Thompson series attached tog E GX. g 
It is a vector-valued mock modular form of weight 1/2, 
and equals HX when g is the identity. 

s{ The vector-valued cusp form conjectured to be the shadow 
of Hf. 

xx The conjectural infinite dimensional graded Gx -module 
whose graded super-dimension is encoded by H X. 

3. Vector-valued modular forms 

In this section, we follow [6] in giving the needed background on vector­
valued modular forms, though we state results in less generality. 

3.1 A lattice related to fo(m) 

We will define a lattice Land a dual lattice L' related to fo(m) such that the 
components of our vector-valued modular forms are labeled by the elements 
of_L'/L. 

We consider the quadratic space 

V :={XE Mat2(Q): tr(X) = O} 
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with the quadratic form P(X) := m det(X).2 The corresponding bilinear form 
is then (X, Y) := -m tr(XY). Let L be the lattice 

L·- . 
{(

b -a/m) 
. - e. -b ' a, b, CE z}, 

The dual lattice is then given by 

L' := {(b/2;77 -a/m) · a, b, e E z] . 
e -b/2m ' 

We will switch between viewing elements of L' as matrices a11:d as quadratic 
forms, with the matrix 

X= . · (b/2m -a/m) 
e -b/2m 

corresponding to the integral binary quadratic form 

Q = [me, b, a]= mex2 + bxy + ay2. 

Note that then P(X) = - Disc(Q)/4m. 
We identify. L' / L with (2:

11 
Z)/Z, and the quadratic form P with the 

. 2 

quadratic form }:
11 

1---+ -;;::;, on Q/Z. We will· also occasionally identify 

,1:
11 

E Q/Z with h E Z/2mZ. 
For a fundamental discriminant D and r /2m E L' / L with r2 = D 

(mod 4N), let · 

. Qv,r := {Q = [me, b, a]: a, b, e E Z, Disc(Q) = D, b = r (mod 2m)} . 
. (4) 

The action of fo(m) on this set is given by the usual action of congruence 
subgroups on binary quadratic forms. We will later be working with 

Qv,,./ ro(m). 

3.2 The Weil representation 

By Mp2(Z) we denote the integral metaplectic group. It consists of pairs 
(y, rp), where y = ( ~ ~) E SL2 (Z) and ¢ : lHI -+ C is a holomorphic 
function with ¢ 2 (r:) = er: + d. The group f := Mp2 (Z) is generated by 

S := ( (? c/ ), ~) and T :_= ( ( 6 l) , 1). 
We consider the Weil representation PL of Mp2 (Z) corresponding to the 

discriminant form L' / L. We denote the standard basis elements of <C[L' / L] 

2Note that this corrects a typo in [6]. 



Classical and umbra! moonshine: Connections and p-adic properties 147 

by e11, h /2m E L' / L. Then the Weil representation p L associated with the dis­
criminant form L'/ Lis the unitary representation off on CC[L' / L] defined by 

and 
e(-11s) L 

PL(S)e1z = ---
£m h'E'll/2m'll 

e(hh' /2m)c1z,, 

3.3 Harmonic weak maass forms 

If f: IHI ➔ C[L' / L] is a function, we write 

1 == L 11ie1i 
hE'll/2m'll 

for its decomposition into components. For k E ½Z, let Ml,PL denote the 

space of C[L' / L] valued weakly holomorphic modular forms of weight k and 
type PL for the group f. The subspaces ofholomorphic modular forms (resp. 
cusp forms) are denoted by Mk,PL (resp. Sk,pL). Now, assume that k :::: 1. 
A twice continuously differentiable function f : IHI ➔ C[L' / L] is called 
a harmonic weak Maass form (of weight k with respect to f and pi) if it 
satisfies: 

l. f(Mr) = </J(r)2kpL(M, </J)f(r) for all (M, </J) E f; 
2. !J..kf = 0; 
3. There is a polynomial 

hE'll/2m'll nE'll-!J::... 
4m' 

-00«11.:::0 

such that 

for some E > 0 as v ➔ +oo. 

Note here that 

is the usual weight k hyperbolic Laplace operator, and that r = u + iv. 
We denote the vector space of these harmonic weakMaass forms by 'Hk,PL. 
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The Fourier expansion of any I E 'Hk,PL gives a unique decomposition 
I= 1+ + 1-, where 

hEZ/2111'1!, nEZ- 1,2 _ 
• 4m' 

-oo«n 

hEL'/L nEl{J), 
n<O 

(5) 

(6) 

and W(x) := f~x e-1t-kdt = r(l-k, 21xl) for x < 0. Then 1+ is called the 
holomorphic part and 1- the nonholomorphic part of I. The polynomial Pf 
is·also uniquely determined by I and is called its principal part. We define a 
mock modular lonn of weight k to be the holomorphic part 1+ of a harmonic 

- weak Maass form I of weight k which has 1- -::f. 0. Its weight is just the 
weight of the harmonic weak Maass form. 

Recall that there is an antilinear differential operator defined by 

where p L is the complex conjugate representation. The Fourier expansion of 
(k (f) is -given by 

(k(f) = - L L (4irn) 1-kc-(-n, h)q 11 e1i. 
hEZ/2mZ nEl{J),11>0 

The kernel of ~k is equal to Mk' - , and we have the following exact sequence: 
,PL 

We call ~k(f) the shadow of I. Note that (k (f) uniquely determines 1-, 
but the 1+ is only determined up to the addition of a weakly holomorphic 
modular form. 

4. Defining the umbral mock modular forms 

In this section we define the mock modular forms H(m) from umbral moon­
shine, as well as their shadows s(m) and non-holomorphic parts. Note that we 
only give definitions for the pure A-type cases - see [10) for a more detailed 
and general definition. We also refer the reader to the appendix for definitions 
of <p~

111\r, z), µ 111 ,o(r, z), 0111',r(r, z), and R(u; r). 
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For each lambency m E {2, 3, 4, 5, 7, 9, 13, 25}, which correspond to the 
pure A-type cases, define the Jacobi form IJl(m) by 

. (m) ( ) (m) ( ) ( ) 1J1 r,z :=cm<p 1 r,zµ1,or,z, 

where Cm -= 2 form = 2, 3, 4, 5, 7, 13 and c111 = 1 form = 9, 25. We can 
break up IJl(m) into a finite part IJl~n) and a polar part IJl~n). The polar part is 
given by 

(111) 24 
lflp (r,z) = --µm,o(r,z). 

m - 1 

Then the mock modular form H(m) is defined by · 

lj/~
11\r, z) = lf/(111\r, z) - lf/~

71
)(r, z) = L H;~

111
\r)0m,h(r, z), (7) 

hEZ/2mZ 

where 
0m,1z(r, z) := 

n=h (mod 2m) 

Note that lfl(m) satisfies an optimal growth condition, which is that 

q 114111 H{ (r) = 0(1) (8) 

as r -+ ioo for all h E 'll.,/2mZ. 
We also define the shadow s(m) ( r ), the non-holomorphic part F;111

\ r ), and 
the harmonic weak Maass form fi(m) ( r) corresponding to the mock modular 
form H(m) via their components: 

S(m)( ) ·= h r . 
n=h 

L nqn2/4m, 

(mod 2111) 

F (m)( ) ·- Jioo st')(z) d 
h r .- . Z 

-r ✓-i(z+r) 

= -2mq- -m m R --(2mr) + -; 2mr , and (h )214 ( h --' m 1 ) 
2m 2 

Ht\r) := H1~
111\r) + F1~m)(r) . 

(9) 

(10) 

(11) 

Note that by definition, st\r) = -S~~/(r). There_f9re, sgn) = S,~n) = 0. 

The same is true of H1~m). We can write this in terms ~f Shimura's theta 

functions as st\r) = 0(r; h, 2m, 2m, x) [25]. Then using the trans­
formation laws for his 0-functions, we get that s(m_) transforms as follows: 

====-=~~,;¾s.,~m)(r +I)= e(h2 /4m)S1~
111
)(;), and _ 

/"- S
1
~m)(-l/r) = -r;12 e(-~Sj :t .. ~~h/2;n)S~m~rn~:=. ~=·::e,=a_ ~a===== 

· . '\I 2111 · k (mod 2m) 



150 

Thus, we have 

\ 
Ken Ono, Larry Rolzn and Sarah Trebat-Leder 

s(m)(r + 1) = PL(T)S(m\r), and 

s(m)(-1/r) = r 312 pL(S)sCm\r). 

From these transformations, we see that s(ni)(r) : IHI ---+ C[L'/L] is 
a weight 3/2 vector-valued modular form transforming under the Weil 
representation PL, i.e. an element of the space M3;2,PL. From [10], we know 
that H(m) is a mock mo~ular form with shadow s(m)_3 This gives us the 
following theorem. 

Theorem4.1. We have that iJ(m)(r) : IHI ---+ C[L'/L] is a weight 

1/2 vector-valued harmonic weak Maass form transforming under the 

Weil representation 7h, i.e., it is an element of H 1/2,h. Moreover, it has 
shadow s(m)(r), non-holomorphic part p(m), and principal part P(r) = 
-2q-l/4m(e1 - e2m-1). 

The reason we focus on the lattices of pure A-type is because this theorem 
is not true for the other cases - the vector-valued harmonic weak Maass forms 
no longer transform under the Weil representation. 

5. Relating umbral and monstrous moonshine 

In this section, we explain the relationship between the mock modular forms 
H(m) from umbral moonshine and the Hauptmoduln Tg from monstrous 
moonshine. 

5.1 Twisted generalized Borcherds products 

We begin by giving the theorem of Bruinier and Ono we will use. 
Let c+(n, h) be then-th Fourier coefficient of Him)_ Let (Li, r) be an 

admissible pair, so that Li is a negative fundamental discriminant and r2 = Li 
(mod 4m). Let 'I' ti,r(r, iJm) be the twisted generalized Borcherds product 
defined in Theorem 1.1. 

Theorem 5.1 (Theorem 6.1 in [6]). We have that 'I' ti r ( r, iJ(m)) is a 
weight O meromorphic modular function on I'o(m) with divisor Zti,r (if(m)). 

3In fact, it is the only vector-valued mock modular form with shadow s(m) 
satisfying the optimal growth condition in 8. 
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For this theorem to make sense, we need to define the twisted Heegner 

divisor Z/',.,r(jj(m)) associated to iJ(m)_ ltis defined by 

z!',.,r(H(m)) := L L c+(n, h)Z!',.,r(n, h). 
hE'll/2m'll n<O 

Since the principal part of iJ(m) is -2q-h
2

/
4m(e1 - e2m-1), this means that 

~( ) (-1 -1) (-1 1 ) 
z!',.,r(H m) = 2Z!',.,r 4m' 2m - 2Z!',.,r 4m' 2m . 

Now, we just have to compute the divisors Z I',. ,r ( 41~, }: ) . They are defined as 
follows. 

z/',.,r(~~, 2:):= L x;(~}aQ, 
· QEQt,,1,,/I'o(m) 

where w(Q) = 2 fort:,,. < -4, xi',. is the generalized genus character defined 
in Gross-Kohnen-Zagier, and aQ is the unique root of Q(x, 1) in IHI. 

5.2 Proofs of Theorem 1.1 and Corollary 1.3 

Proof of Theorem 1.1. Theorem 5.1 gives us that 'P /',.,r(r, iJ(m)) is a weight 0 
meromorphic modular function on r o (m) with specified divisor, which is a 
discriminant t:,,. Heegner divisor. For all of our m, ro(m) has genus zero. 
Therefore, 'P /',. ,r(T, iJ(m)) is a rational function in the Hauptmodul for ro(m ). 
The normalized Hauptmodul, which we call }m(r), is defined by 

. 17(r)24/(m-l) 24 
Jm(T) := 17(mr)24/(m-l) + m - 1 · (12) 

But using Table 1, we see that Jm ( T) is equal to Tg(X) ( T ), the graded trace of · 
g(X)EMonV. D 

Proof of Corollary 1. 3. From Theorem 1.1, we have that 

We equate the q 1 Fourier coefficients of each side, using Table 2 to get the 
Fourier expansion 

.. 1 
Tg(T) = - + O(q). □ 

q 
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Table 6. Quadratic forms needed for m = 2, /1 = - 7, r = 1 case. 

Quadratic form = Q <XQ u.(Q) h(aQ) 

Q1 = [2, 1, ]] -1+-J='l 
<X] = 4 1 r ._ 1+4sR I.- 2 

Q2 = [-2, 1, -1] a - l+N_ ___ -1 l-45H 
2 - 4 --- Y2 := 2 

-Q2 a2 1 Y2 
-Qi <X] -1 Y! 

5.3 Examples 

For each pure A-type case X with coxeter number m, we illustrate how to 
write 'I' L'.,,(r, jj(m)) as a rational function in jm. Note that here D. < 0 is a 
fundamental discriminant and r E Z is such that D. = r2 (mod 4m ). 

First we work out an example for m = 2 in some detail, then list one 
example for each m. In Section 5.4, we explain how to find representatives of 
Q ;..,_ ,r / r o (m) using a method of Gross, Kohen, and Zagier. 

Consider the case m = 2, D. = - 7, r = 1. Using the method of Section 5.4, 
we compute that Q-1,i/ I'o(2) = {Q1, Q2} and that Q-1,-il ro(2) = 
{-Qi, -Q2}, where the quadratic forms Q, their Heenger points a.Q, and 
their generalized genus characters x ;..,_ (Q) are given in Table 6. We also 
include the value of h at each Heegner point. 

Using the table, the divisor of 'I'_ 7, 1 ( r) is given by: 

Therefore, · 

'I' ( jj(2))=(h(r)-n)2 
-7,1 r, (h(r) - Y1)2. 

Similarly, for each value of m corresponding to a pure A-type case, 
· we demonstrate in Table 7 how to write 'I' 1'1,,(r, Ji(m)) as a rational function 
in }m for some nice choice of D. , r. In all the examples we consider, 

'I' (r jj(m)) = Um ( r) - Y2)2 
1'1,r , ( • ( ) )2 

]m T - YI 

for some YI, Y2 E O(Q(v'K)· Note that 'I' 1'1,r will not always be a rational 
function of this particular form - we always picked D. with class number 1. 

5.4 Computing the elements in Q 1'1,r/ I'o(m) 

In this section, we explain how to compute Q ;..,_ ,r / r o (m ), following [20]. 
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Table 7. Examples. 

m ti r YI Y2 

2 -7 1 1+45✓-=7 1-45✓-=7 
2 2 

3 -11 1 17 + 8.J=Tf 17 - 8.J=Tf 

4 -7 3 -15+3R -15-3§ 
2 ~ 

5 -11 3 -3 + 2.J=IT -3 -2.J=TT 

7 -19 3 3+3✓-=19 3-3✓-=19 
2 2 

9 -11 5 -1 + .J=IT -1 -.J=TT 

13 -43 3 7+....,t::43 7-....,t::43 
--2- 2 

25 -19 9 ✓-=T9 -✓-=19 
-2- -2-

Let Q1 r be the subset ofp1imitive fo1ms. Then we have a fo(m)-invariant 
bijection ~f sets 

where S(£) := {h E 'lL/2m'lL : h2 = l::!./£2 (mod 4m), th = r (mod 2m)}. 
Since we pick I::!. to be a fundamental discriminant, the only possible prime we 
need to worry about is e = 2. In our examples, we always choose I::!., r such 
that S(2) = 0. In this case, we just need to work with Qtr• 

( 
r2 -t:i.) - 0 Now, let n := m, r, 4m . Then for Q = [me, b, a] E Q!:i.,r' define 

n1 := (m, b, a), n2 := (m, b, c), which are coprime and have product n. 
We have the following result: 

Lemma 5.2 (Section 1.1 of [20]). Define n as above and fix a decom­
position n = n 1112 with n 1, n2 positive and relatively prime. Then there 
is a 1:1 correspondence between the fo(rn)-equivalence classes bf forms 
[cm, b, a] E Q1,r satisfying (m, b, a)= n1, (m, b, c) = n2 and the SL2(Z) 

equivalence classes of forms in Q1 given by Q = [me, b, a] 1---+ Q = 
[cm1, b, a m2], where m1 •1112 is any decomposition ofm into coprime positive 
factors satisfying (n1, m2) = (112, m1) = 1. in particular, IQ1,r! fo(m)I = 

2v I Q1 /SL2 (Z) I, where v is the number of prime factors of n. 

. Note that W1/SL2(Z)I equals 2h(I::!.) for I::!. < 0, where the factor of 2 
== ~arises0because""Q1'also contains-negative semf:0oefinife lofiifs: --"- -- -

In our examples, we always choose I::!., r such that n = l; so that 
IQ1,rl fo(m)I = I Q1/SL2(Z)I = 2h(I::!.), where h(I::!.) is the class number 
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of (Q(~). The theory of reduced forms allows us to easily compute 
Qi/SL2(Z). 

6. p-adic properties of the logarithmic derivative 

6.1 p-adic modular forms 

For each i E N, let /i = Lai (n )qn be a modular form of weight ki with 
ai(n) E Q. If for each n, the a;(n) converge p-adically to a(n) E (Qlp, then 
f := L_a(n)qn is called a p-adic modular form. For p -:/= 2, we define the 
~eight space 

w := ~Zl¢(pt)z = Zp x Z/(p - l)Z. 
t 

For p = 2, we define 

Then the k; converge to an element k E W, which we call the weight off. 
We identify integers by their image in Zp x {O}. 

6.2 Proof of Theorem 1. 7 

Proof of Theorem 1.7. By Theorem 1.1, 'P li,r(r) is a meromorphic modular 
function, so that 0 ('P Li ,r ( r)) is a weight 2 meromorphic modular form on 

I'oEm). Thus, the logarithmic derivative ®~:~;(;))) is a weight 2 meromorphic 
modular form on r o (m) whose poles are simple and are supported on Heegner 
points of discriminant f1. D 

6.3 Proof of Theorem 1.8 and its Corollary 

Proof of Th~orem 1. 8. · We show that if ( f1 , r) is an admissible pair and p is 
inert or ramified in (Q( .JK), that 

f 
._ 0('Pii,r(r)) 

Li,r .- 'P Li,r(T) 

is a p-adic modular form of weight 2. Say f has poles at a 1, ... , an, all of 
which are CM points of discriminant f1. For each ai, there is some zero /Ji of 
E p-1 such that j ( r )- j (ai) = j (r )- j (/Ji) (see Theorem 1 of [21]). Then let 

E ·= E I] (j(r) - j(ai)) 
. p-1 . (j(r)-j(/Ji))' 

l 
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This has weight p - 1, is congruent to 1 modulo p, has zeros at a 1 , ... , an, 
and has no poles. Let fr := f £(P'). Then ft = f (mod pt) and is a modular 
form of weight kt = 2 + (p - l)pt = 2 (mod cp(p1+1)), so f is a p-adic 
modular form of weight 2. □ 

Proof of Corollary 1.9. This corollary follows directly for the coefficients of 
any p-adic modular form using the following beautiful result, proven by Serre 
[24] using the theory of Galois representations. 

Lemma 6.1 (Serre [24] Theorem 4.7 (I)). Let K be a number field and OK 
the ring of integers of K. Suppose f(r) = Lnc:O anqn E OK[[q]] is a 
modular form of integer weight k ::: 1 on a congruence subgroup. For any 
prime p, let p be a prime above p in OK. Let m ::: 1. Then there exists a 
positive constant O.m such that · 

(mod pyn} = 0 (( X ) . 
log X)am 

□ 

7. Appendix: Definitions of Jacobi forms, Theta functions, etc. 

We define the Jacobi theta functions 0;(r, z) as follows for q .- e(r) and 
y := e(z). 

CX) 

02 (r, z) := qlf8ylf2 IT (l _ qn)(l + yqn)(l + y-lqn-1) 

n=l 

CX) 

03(,, z) := IT (1 _ qn)(l + yqn-1/2)(1 + y-lqn-1/2) 

n=I 

00 

04 (r, z) := IT (1 _ qn)(l _ yqn-1/2)(1 _ y-lqn-1/2) 

n=l 

We use them to define weight zero index ,n - 1 weak Jacobi forms rp~m) as 
follows. Let 

rp~
2

) := 4(!{ + ff+ f;), 

rp?) := 2u:J /1 + /111 + fl 1:J), 
m(4) ·- 4f2f2 -r2 
'f'] .- 2 3 J4, 

rp?) := ~ (rp~4) rp~2) _ (rp}3))2) 

rpf) := q.i?) rp~5) _ (q.i~4))2 
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tpf9) := tpf3) tpf7) - (tpf5))2 

(13) ·- - (5). (9) 2( (7))2 
'P1 -~ 'P1 'P1 - 'P1_ 

where .fi(r, z) :~ 0;(r, z)/0;(,, 0) for i = 2, 3, 4. 
For the remaining positive integers m with ·m 

recursively_. 
For (12, m - 1) = land m > 5 we set 

< 25, we define tpfm) 

(m) _ (l 2 _ 5) (m-4) (5) + (l 2 _ 3) (m-2) (3) 
'P1 - , m 'P1 'P1 , 111 'P1 'P1 

- 2(12 · - 4) (m-3) (4) , m 'Pi 'P1 · 

For (12, m -) ) = 2 and m > 10 we set ·. · 
I 

1 ' 
(m) __: -((12 - 5) (m-4) (5) + c·12 - 3) (m-2) (3) 

'P1 - 2 , m 'P1 'P1 • , 111 'P1 . 'Pi 

- 2(12 - 4) (m-3) (4)) , m 'P1 'P1 · 

For (12, m - 1) = 3 and m > 9, we set 

(m) _ ~(J 2 _ 4) (m-3) (4) + ~(l 2 _ 7) (m-6) (7) 
'P1 -

3 
· , 111 'P1 'P1 3 , 111 'P1 'P1 

- (12 - 5) (m-4) (5) 
, 111 'P1 'P1 · 

For (12, m - 1) = 4 a!')d m > 16 we set 

(m) _ ~((l 2 _ l-3) (m-12) (13) 
'Pi - 4 , 111 'P1 'P1 

+ (12 _ 5) (m-4) (5) _ (l 2 • _ 9) (m-8) (9)) 
, m 'P1 'P1 ' 111 'P1 'P1 · 

.For (12, ni - 1) = 6 and m > 18 we set 

(m) _ ~(l 2 ·_ ~) (m-3) (4) + ~(l 2 _ 7) (111-6) (7) 
'Pi - 3 , 111 'Pi 'P1 6 , 111 'Pi 'Pi 

- ~(12 - 5) (m-4) (5) 
2 'm 'P1 'P1 . 

Form= 25, we set 

See the appendix of [10] for more information on the space of weight zero 
Jacobi forms. · 
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We use two versions of an Appell-Lerch sum. The first is the generalized 
Appell-Lerch sum µ 111 ,o, defined as in [10]. It is given by 

""'. k2 2, k 1 + Yl 
µm,o(r, z) := - L...iqm y n 1 k, 

. keZ - yq 

and is the holomorphic part of a weight I index m "real-analytic Jacobi form". 
Zwegers [30] uses a slightly different version of the Appell-Lerch sum. 

He first defines the theta function · 

Then he defines 

1J(z, r) := L qv2f2yve(v/2). 

vEl/2+Z 

This is completed to a "real-analytic Jacobi form" µ (u, v; r) of weight I /2 by 
· letting 

µ(u, v; r) := µ(u, v; r) + ~R(u - v; r), 

where 

R(z, r) := · L {sgn(v) - E(v + a)v'2t}(-Jt-112q- 11212 y- 11
, 

vel/2+Z 

~ . r- 2 
t := ~(r), a:= mry, and E(z) := 2 JO e-11:u du. 
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2. Actions of Z2 on finite dimensional real c• -algebras 

In this. section, we describe all possible actions of Z2, the group with two 
elements, on finite dimensional real C*-algebras. Our complete list is given 
by the following theorem. 

Theorem 1. Let (Aq.,, Z2, a) be a real C* -dynamical system with A finite 
dimensional. Then (A, Z2, a) .is equivariantly isomorphic to a direct sum of 
C*-dynamical Z2 systems of the following specialforms (we g.escribe the non­
identity automo1phism): 

· {I k) ' 
aIRi : MnCJR) ➔ Mn OR), given by x 1--+ Ad u(x), where u = h EB (-/1) 

andn =k+l; 

a~; M2n(IR.) ➔ M2nOR), given by x r-+ Ad Dn(x), where 
Dn = diag(D, ... , D) (n times) and Dis the rotation matrix ( ~1 i); 

a~IPl.: M11 (]R) EB M110R) ➔ Mn(IR.) EB Mn OR), given by (x, y) 1--+ (y, x); 

aJiijk): M11 (1HI) ➔ Mn(IHI), given by x 1--+ Ad u(x), where u = h EB (-/1) 
and n = k + l; 

allil2 : M11(IHI) ➔ M11(IHI), given by x 1--+ Adu.(x), where it= i/11 ; 

alli!IHI: M11(IHI) EB M11(IHI) ➔ M11(lHl) EB M11(IHI), given by (x, y) r-+ (y, x); 

ag{1 : Mn(<C) ➔ M11 (<C), given by x 1--+ Ad u(x), where u = Ik EB (-/1) 
andn =k+l; 

ac2 : M11 (<C) ➔ M11 (<C), given by x 1--+ i, where i denotes the matrix 
derived from x by taking the complex conjugates of all the entries; 

at3 : M211 (<C) ➔ M211 (<C), given by x 1--+ Ad Dn (i), where D11 is as 
above; 

ace: Mn(<C) E9 M11(<C) ➔ M11 (<C) EB M11 (<C), given by (x, y) 1--+ (y,x). 

Furthermore, the· special forms described above are pairwise non­
isomorphic, so the exp;ession of a given dynamical system as a direct sum of 
them is unique up to reordering the summands. 

Proof Let (Aq.,, Z2, a) be a real C*-dynamical system with A finite dimen­
sional. Then a restricts to a period two permutation of the set of minimal 
central projections of A. It follows that the minimal central projections are 
either fixed or switched in pairs. Hence we may write A ~ A I EB • • • EB Ak, 
where each A; is either a simple summand of A that is left globally invariant 
by a, or is a direct sum of two simple summands whose minimal central 
projections are interchanged by a. In the latter case, since a maps one 
summand to the other, the two summands must be isomorphic. We shall 
now determine all of the possible isomorphism classes for the1 sub-systems 
(A;, Z2, a). 
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Suppose first that A; ~ M11 (]~.). It follows from [4] that a. : M11 (IR) ➔ 
M11 (IR) is given by a.(x) = Ad u(x) for some orthogonal matrix u. 
Since a. gives an action of Z2, it follows that u2 lies in the centre of 
M11 (IR), so u2 = 1 or u2 = -1. If u2 = 1, then u is conjugate within 
the orthogonal matrices to h EB (-11) for some k, l with k + l = n, 
giving us the form a.~jkl. The equation u2 = -1 can only hold for an 
orthogonal matrix with even dimension, and in this case u is conjugate 
within the orthogonal matrices to one of the form D 11 , giving us form 
a. 211 

112· 
Suppose next that A; = M11 (1Hl). Again it follows from [4] that 

a. : M11 (1Hl) -+ M11 (1Hl) is given by a.(x) = Ad u(x) for some unitary matrix 
u, and, since the centre of M11 (1Hl) is also llU11 , we have u2 = 1 or u2 = -1. 
It follows from the spectral theorem for quatemionic matrices (cf [3]) that 
u is conjugate within the unitary group of M11 (lHI) to a diagonal matrix with 
entries in the closed upper half plane of C. If u 2 = 1, then the diagonal entries 
are 1 or -1, and we have form a.~{l. If u2 = -1, then we have i/11 , and form 

a.nir2· 
Suppose next that A; ~ Mn (C). Consider the restriction of a. to the centre 

of A;. This is either the identity map, or complex conjugation. If it is the 
identity map, then it follows from [ 4] that a. : Mn (C) -+ M11 (C) is given by 
a. (x) = Ad u (x) for some unitary matrix u, and since i lies in the centre of A;, 
we have only the one case, u2 = 1, to consider. It follows that if the action on 
the centre is trivial, we have form a.g{1. If the action on the centre is complex 
conjugation, then it follows from [4] that a. is given by a.(x) = Ad u(x) for 
some unitary matrix u. We have a. 2 (x) = u(u.xu*)u* = (uii)x(uii)* = x, 
for all x, so uii = y 111 for some y E 1l'. We have ii = y u*, and since u is 
unitary, ii commutes with u and uii = iiu = y 111 , soy = y and y = 1 or 
y = -1. 

Consider first the case where y = 1. In this case, ii = u*, so u is a sym­
metric matrix. It follows that there exists a symmetric matrix w in the func­
tional calculus of u such that wu = uw and w 2 = u. We then have w*uw = 1. 
It follows that a. o Ad w = Ad w o /J, where /J(x) = .x. Thus, in this case we 
have fonn a.c2. 

Now consider the case where y = -1. In this case, we have u = -u7 , 

where the superscript T denotes the transpose, so considering determinants 
shows we must have n even. We have that u T has the same spectral projec­
tions as u, so taking the transpose, which for projections is the same as 
taking their complex conjugates, induces a period: two permutation of them. 
,Since the_eigenvalues are multiplied by -1, none of the projections is fixed 
by taking the transpose: Thus we niay ·write U = {a1 P1 ~- a1 Q J) +: :...·_--\-:: _ ~ 
(akPk - akQk) where P;, Q; are the spectral projections of u, a's and -a's 
are its eigenvalues, and Q; = P{ = A for each i. Since taking complex 
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conjugates is a *-automorphism, it follows that the rank of P; is the same as 
that of Q; for each i. If P; is not ofrarik one, we may write P; = p; 1 + · .. + p;j 

for a set of pairwise orthogonal sub-projections p; 1 + • • • + Pij. If we let 
qa = pT,, it follows that in our decomposition of u above, we may assume 
that all of the P;, Q; are rank one, although the a' s may no longer be distinct. 
Assuming we have done this, consider the projection E; = P; + Q;. We have 
E; = E;, so E; is a rank two projection in M11 (JR). It follows that there exists 
a real orthogonal matrix M such that MT uM is a block diagonal matrix 
with two by two blocks on the diagonal, MT uM = diag(u1, ... U(n/2)) 

say, where each Uk satisfies u[ = -uk. For a two by two unitary matrix, 
it is easy to see that this implies Uk = bkD2 for some bk E 11'. Letting 
q E 11' be such that cl = bk, and letting C = diag(c;h ... , C(n/2)h), 

we have C = cT and u = (MC)D,i(MC)T . . Let w = (MC). Then 
at3 o Ad w*(x) = Ad (DnwT)(x) and Ad w* o a(x) = Ad (w*u)(x), 
but w* u = D 11 w T, so we have that our system is isomorphic to form 

211 • 
ac3· 

Suppose ne?<,t that A; ~ M11 (IF) E0 M11 (IF), where lF = IR or lF = IHI. 
Then, from [ 4 ], there exist unitaries u, v in M11 (IF) such that a (x, y) = 
(Ad u(y), Adv(x)). Since a 2 = id, it follows that uv = 1 or uv = -l, 
and we may take v = u*. Now let w = (v, v2). We have a o Ad w(x, y) = 
a(vxv*, v2y(v 2)*) = (uv(vyv*)v*u*, v(vxv*)v*), = (vyv*, (v 2)x.(v 2)*). 
Let f](x, y) = (y, x). Then we have Ad w o /J(x, y) = Ad w(y, x) = 
(vyv*, (v 2)x(v 2)* = a o Ad w(x, y). Thus we have the forms aim:. and 

II 
aIHIIHI· 

Finally, suppose next that A; ~ M11 (C) E0 M11 (<C). We have a (x, y) = 
(J(y), y (x)), Where o and y are either of the form x 1-+ uxu* or of the 
form x i-+ v.xv* for unitaries u, v. If both are of the form x 1-+ uxu*, 
then the same argument as in the case of IR or IHI shows that we have the 
form ace· It is not possible to have a(x, y) = (Ad u(y),_Ad v(x)) or 
a(x, y) = (Ad u(y), Adv(.x)), since this would result in a. 2 failing to be 
the identity action on the centre. Thus it remains to consider a (x, y) = -
(Adu(y), Adv(x)). Wehavethata2 = id gives uv = },1 for some}, E 11', so 
replacing u with },u if necessary, we may assume v = uT. Let w = (1, uT), 
and let 17(x, y) = (y, .x). Then a oAd w(x, y) = (u(u*yu)u*, uT (.x)(uT)*) = 
(y, UT (x)(uT)*) = Ad w O 17(x, y), so a and I] are inner conjugate. We com­
plete this part of the proof by noticing that 1J is outer conjugate to ace by the 
outer automorphism (x, y) 1-+ (x, y). 

That the above special forms are pairwise non-isomorphic follows from 
considering their fixed point sub-algebras. Elementary calculations show that: 

for a~{}, we have A22 ~ M1(IR) E0 Mk(IR); for a.~2, we have A22 ~ M11 (<C); 

for aim:., we have A22 ~ M11 (IR); for a~{1, we have A22 ~ M1(1Hl) E0 
Mk(IHI); for an7H2 , we have A22 ~ M 11 (C); for afimr, we have AZz ~ M 11 (IHI); 
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for ag{l, we have Az2 -~ M1(C) El, Mk(C); for ac;, we have Az2 ~ MnOR); 
for a~3, we have Az2 ~ M11 (]HI); .and for ace, \1/e have AZi ~ M11 (C). 
It follows that for every pair, either the algebras are non-isomorphic, or the 
fixed point sub-algebras are non-isomorphic. □ 

Remark 1. Inspecting the crossed products of the basic building blocks 
above shows that two of them are cocycle conjugate (exterior equivalent) if, 
and only if, they are isomorphic. 

3. Homomorphisms between building blocks 

In this section, we describe possible unital equivariant *-homomorphisms 
between our basic building blocks. We shall need these for the existence 
theorem in section 5. 

we· consider first the equivariant unital maps between simple building 
blocks isomorphic to M 11 (JR) or M11 (lHI). In these cases, the embedding 
'If : A ---+ B gives a tensor product decomposition of B ~ 1/f(A) ©JR (A' n B), 
so the action on B is a tensor product action. We have the following combi­
nations: 

211 ,o, 2111 ~ (211111,211111) 
aR2 'OI aR2 = aRJ 

{l,k) ,o, {r,s) ~ {lr+ks,kr+ls) 
aRI 'OI aIHII = alHII 

{l,k} ,o, 11 ~ 2n(k+l) 
alRl IOI alHI2 = alHI2 

{l,k} ,o, {r,s} ~ {4(1r+ks),4(kr+ls)) 
alHII 'OI all:lll = alRI 

{l,k} ,o, 11 ~ 4n(k+l) 
alHII ,c,, alHI2 = alR2 

It should be noticed that, with these building blocks, in no case do we have 
more than one kind of embedding from one type of building block into 
another. 

Next, we consider the case where the target algebra is non-simple. 
We have 'If : A ---+. B; x H- ('111 (x), '112(x)), where I/fl and 1/12 are unital 
*-homomorphisms. Equivariance implies that Vi2 = I/fl o o:, and there are no 
other restrictions. 

Next, we consider the case of a non~simple building block mapped to a 
simple one. Suppose 'If : A EB A ---+ B; (x, y) 1--+ 1/11 (x) + '112(y). Then 

---'·----1/£..(x, 0) = I/fl (x) = 1/f(a(O, x)) = /3(1/f(O, x)) = /3 o '112(x), so we must have 
I/ft = /3 o 1/12· Tliere~af'e"no-other...,restrictions, so we will have an equivariant 
unital *-homomorphism from A EB A ---+ B if, an-d onlyif;tlrere-exist-projecc_~-­
tions PI, p2 E B such that Pt + p2 = 1, /3 (p1) ~ p2, and there exists a unital 
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*-homomorphism If/I : A ➔ Pl Bpi. A straightforward inspection shows that 
projections p 1, p2 E B with Pl + P2 = I and /3 (p1) = pz exists if, and only 

if, n is even and, in the case that the target algebra's action is one of ai{(1, 
{r,s) {r,s) h 

ac 1 , or alHII , we aver= s. 
It remains to consider those cases where both building blocks are simple, 

and one or both of them are of the form Mn (<C) .· 
Consider the case where both building blocks are complex matrices. If both 

actions restrict to complex conjugation on the centre, then the actions respect 
the tensor product decomposition of B as lf/(A) ®c (l/f(A)' n B), and we 
have the combinations .a 11 '°'"' am '.:::::'. a 111 n a 11 ®"' a 2111 '.::::'. a 211111 and IC2 ,o,._, C2 - C2 ' C2 "-- 1C3 - ·(C3 , a~3 ®c at3 . ~ at211

• If both actions are trivial on the centre, then both must 
be type a {/,k) and we have the complex case a {/,k) '°'"' a {r,s) '.:::::'. a {rk+ls,sk+rl) 

CJ ' CI ,o,._, Ci - Cl 
froin [4]. 

It is clear that there is no equivariant *-homomorphism from ag1°l to 

ab2, however, agj01 embeds into aJii°l with the standard embedding, and 

a~i°1 embeds into a~2 , with the standard embedding. Using this, we get 

h .c ll · . {k,l) ~ {l,k) ,o,, {!,OJ {/,kl '°' 2 ,..,_, 2(k+/) 
t e 10 owmg. ac1 = anu ,o,JR ac1 ➔ aIRI ,o,JR ac2 = ac2 . 

Using a tensor product with one of our actions found above, we get: 
{l,k) ,..,_, {l,k) '°' {1,0) 2(k+I) '°' {1,0) ~ 2(k+I) = 2(k+I) Th · 

acI = aIRI ,o,JP. ac1 ➔ alC3 ,o,JR ac1 = ac3 w ac3 . us we 

get an embedding from ag{1 into a~~k+l). In the other direction, we have 
2 {2,2} {2,2) d J 2 2 2 ~ {2,2) {2,2) 

alC3 ➔ a!RI ➔ ac1 , an ac2 ➔ a!R2 ➔ a!R2 ®JR aIR2 = aIRI ➔ alCI · 

Tensoring with a standard embedding from M11 OR) to M111 OR); with the 
identity actions, gives higher multiplicities. 

Consider an embedding I.fl M,z(IR) ➔ M11k(<C). Here we have 
B ~ lf/(A) ®IR (lf/(A)' n B), and our action on B decomposes as a 
tensor product action. We have the following possible combinations: 

{l,k} '°' {r,s) ~ {lr+ks,kr+ls) 2n '°' {r,s) ~ 2m(r+s) {l,k) '°' 11 ~ 
a!RJ 'OI act = ac1 , aIR2 'OI alCI = ac2 , a!RI 'OI ac2 = 
a11(/+k) a211 '°'am '.::::'. a2nm a {/,k) '°'a2m '.:::::'. a2m(l+k) and a211 '°'a2m '.::::'. a4nm 

IC2 ' IR2 ,o, C2 - IC3 ' IR I ,o, IC3 - C3 ' !R2 ,o, C3 - IC2 · 
With the embeddding lfl M 11 (JH[) ➔ M2nk (C), we again have 

B ~ lf/(A) ®JR (l.fl(A)' n B), and our action on B decomposes as a tensor 

product action. We have the following possible combinations: a~{1 @af/1 ~ 
2/lr+ks,kr+ls) 11 '°' {r,s) ~ {2nr,2ns) {/,k) '°' 11 ~ 2n(l+k) 

ac1 , alHI2 IOI ac1 = ac1 , alHIJ IOI ac2 = ac2 , 
an '°' am '.:::::'. a2nm a {l,k) '°' a2m '.:::::'. a 4111(/+k) and a" '°' a2m '.::::'. a4nm 

lHI2 v::,, CC2 - C3 ' ·JHlt ,o, IC3 - C3 ' lHI2 IOI IC3 - C2 · 
Finally, we have to consider maps from Mn (C) into M211k (IR) and 

M 11k(IHI). In these cases, we no longer have B ~ l/f(A) ®JR (l/f(A)' n B), as 
l.fl(A) n (l/f(A)' n B) contains more than the scalars. 

It is straightforward to check that there exists a unital equivariant embed­
ding from (C with complex conjugation to M2 (IR) with action given by the 
unitary (? ~), which is conjugate to type a~/. However, a simple calcula­
tion shows that if Ad u implements complex conjugation on the image of 
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(C under the standard embedding, then the determinant of u must be -1, 
i;o there does not exist an embedding of (C into M2 (IR) with action of type 
ai2 . We do get an equivariant inclusion from CC into M4 (IR) with action 

a~2 ~ a~1
11 

0]R( al2 given by x f---+ st(x) 0 1, where st denotes the standard 
embedding above. One can check that conjugation by j E IHI gives com­
plex conjugation on the embedded copy of C, and that this action on IHI is 
conjugate to a~2 . Proceeding as above, we get the following embeddings: 

1 1 ,o. 2 ~ (1, 1) 2 ~ 1 ,o. I 1 ,o. 1 ~ {2,2) 
ac2 ➔ allil2 '<Y]R( alR2 = allill , ac3 = allil2 '<Yffi. ac2 ➔ a1Hl2 '<YlR alHI2 = a]R(J , 

2 ~ 1 ,o. 1 I ,o. {l, 1) ~ 2 2 ~ 1 ,o. 1 
aC3 = aIHI2 '<Y]R( ac2 ➔ aIHI2 '<Yffi. affi-1 = allil2' ac3 = aIHI2 '<Y]R( ac2 ➔ 

1 ,o. 2 ~ {1,1) d 2 ~ 1 ,o. I 1 {1,1) ~ 4 
a1Hl2 '<Yffi. affi.2 = aIHll ' an ac3 = allil2 '<YlR( ac2 ➔ a1Hl2 @JR( alHil = affi.2• 

Tensoring with the standard embedding of M 11 (IR) into M 111 (IR) gives embed-
d . 11 {11/,11/) 

mgs ac2 ➔ aIHI1 , and so on. 
That these are, up to conjugacy, all of the possibilities for the given pairs of 

algebras will follow from the uniqueness theorem in section 5. 

4. The Invariant 

In this section, we define our invariant, and describe it for each of the special 
building blocks from the first section. 

Definition 1. Given a real C*-dynamical system (A, a, Z2), let S(A, a) 
denote the subset of Ko(A)+ consisting of the classes of projections p in 
some matrix algebra A @JR( M11 (IR) such that there exists a unital equi­
variant *-homomorphism from ab to (A 0]R( M11 (IR), a 0 id) taking the unit 
top. 

Definition 2. Given an action a of Z2 on a real C* -algebra Aq.,, our 
invariant for a, to be denoted Inv(Aq.,, a) shall consist of the commutative 
diagram 

where each map is induced by the canonical inclusion, along with the the 
positive cones of all of the Ko groups, the classes of the identity elements 
in all the Ko groups, the class of the special element [(1 + g)/2], where g 
is the nonidentity element of Z2, in the middle Ko group in the bottom row, 
the period two automorphisms i11du<;ed by a on the top row, the period two 
automorphisms induced by a on. Ko groi:t_ps 'of the crossed products in the . . - . 
bottom row, and the distinguished sub-semigroup S(A, a). 
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Given two such systems, G and H say, a morphism of invariants from G to 
'H shall consist of six group homomorphisms v,, VcVh, µ,, µc, µ1z such that 
the following diagram 

G1 G2 G3 

~ ~ ~ 
H1 H2 H3 

G4 Gs G6 

~ ~ ~ 
H4 Hs H6 

commutes, each of the six maps respects the positive cones, specified elements, 
and distinguished sub-semigroup, and all of the maps intertwine the Z2 
actions on their domains and ranges. 

Next, we describe the invariants for each of the basic forms from the 
preceding section. Below, Z always has its usual ordering, and Z E0 Z has 
positive cone {(n, m) In, m :::: O}. We only describe S(A, a) for the case we 
shall need it in forthe existence theorem below. 

For a~jk) we have: 

z ---➔ z ---'--- z 

l l l 
ZEB Z ---➔ Z E0 Z ---➔ Z EB Z, 

where each horizontal map is the identity map, and each vertical map is 
x H- (x, x). In each case, a* is the identity and a* flips the two summands. 
The class of the identity in each group in the top row is n, in the bottom row 
it is (n, n), and the class of the special element is (k, l). 

For ai1 we have: 

z ---- z ---- z 

l l l 
Z EB Z ---➔ Z EB Z ---➔ Z E0 Z, 

where the horizontal maps in the top row are the identity, in the bottom row 
they are x H- (x, x) and (x, y) H- x + y, the first vertical map is the identity, 
the second is x H- (x, x), and the third is multiplication by two. In each case, 
a* is the identity, and a* is the identity on the outside groups and flips the two 
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summands on the middle one. The class of the identity in each group in the 
top row is 2n, along the bottom row it is 2n, (2n, 2n) and 4n respectively, and 
the special element is (n, n); The sub-semigroup S(A, a) is {4k k 2: l}. 

For ai~ we have: 

z ---➔ z -----➔ z 

l l l 
Z EB Z ---➔ Z EB Z ---➔ Z EB Z, 

where each horizontal map is the identity and each vertical map is 
(x, y) r+ x + y. In each case, a* flips the two summands and a* is the 
identity. The class of the unit in each group in the top row is (n, n ), in each 
group in the bottom row it is 2n, and the special element is n. 

For a~jk) we have: 

z __ __,.. z __ __,.. z 

l l ! 
Z---➔ ZEB Z - Z, 

where the horizontal maps are each two times the identity map, the vertical 
maps are each x 1-+ (x, x), the classes of the unit in the groups along the 
top m;e n, 2n, and 4n respectively, and they are (n, n), (2n, 2n), and (4n, 4n) 
along the bottom row. In each case a* is the identity and a* flips the two 
summands. The class of the special element is (2k, 21). 

For allil2, notice that the crossed product is isomorphic to M211 (<C). We have: 

z---z-------,..z 

l l ! 
Z ---➔ Z EB Z ---➔ Z, 

where in the top row the maps are both multiplication by two, along the 
bottom the maps are x 1--+ (x, x) and (x, y) r+ x + y, The first vertical map is 
multiplication by two, the second is x 1--+ (x, x), and the third is the identity. 
The classes of the units in the top row are n, 2n, and 4n, while in the bottom 
row they are 2n, (2n, 2n) and 4n. The special element is (n, n), and a* is the 
identity on the outside terms and flips the two summands on the middle one. 
In each case, a* is the identity. 

For alHIIHI we have: 

z EB z---➔ z EB z---➔ ZEBZ 

1 l -l 
z -----➔ z ---➔ z, 
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where the ~orizontal maps are each two times the identity, the vertical maps 
are each (x, y) i-+ x + y, the classes of the identity in th.e top row are (n, n), 
(2n, 2n), and (4n, 4n), while on the bottom they are 2n, 4n, and 8n. In each 
case a* flips the two summands, and a* is the identity. The special element is 
2n. 

For a~{1 we have: 

ZEB Z - ZEB ZEB ZEB Z - ZEB Z, 

where the horizontal maps along the top are x i-+. (x, x) and (x, y) i-+ 

x +_y; alorig the bottom they are (x, y) 1-+ (x, y, x, y) and (a, b, c, d) 1-+ 

(a+b,c+d); theverticalmapsarex i-+ (x,x), (x,y) i-+ (x,x,y,y), and 
x i-+ . (x, x); the classes of the identity in the top row are n, (n, n), and n; 
in the bottom row they are (n, n), (n, n, n, n), and (n, n); the a* maps are 
the identity on the outside groups and the flip in the middle; the maps a* are 
the flip, (a, b, c, d) i-+ (b, a, d, c); and the flip respectively, and the special 
element is (l, k, l, k). 

For ac2 we have: 

z-ZEBZ-z 

l l l 
where the maps along the top row are x 1-+ (x, x) and (x, y) i-+ x + y; along 
the bottom row they are the identity; the vertical maps from left to right are 
multiplication by two, (x, y) i-+ x + y, and the identity; the classes of the 
identity are n, (n, n) and 2n along the top row, and 2n in each case along 
the bottom; the a* maps are the identity, the flip, and the identity; a* is the 
identity in each case; and the special element is n. 

For a~3 we have: 

Z---+ZEBZ-z 

l l l · 
where the maps along the top row are x 1-+ (x, x) and (x, y) 1-+ x + y; along 
the bottom row they are multiplication by two; the vertical maps from left to 
right are the identity, (x, y) 1-+ x + y, and multiplication by two; the classes 
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of the identity are n, (n, n) and 2n along the top row, h, 2n,· and 4n along 
the bottom; the a~ maps are the identity, the flip, and the identity; a* is the 
identity in each case; and the special element is n . 

. For ace we have: 

where the maps along the top row are (x, y) ~ (x, y, x, y) and (a, b, c, d) ~ 
(a+b,c+d); alongthebottomrowtheyarex ~ (x,x)and(x,y) ~ x+y; 
the vertical maps are (x, y) ~ x + y, (a, b, c, d) ~ (a+ b, c + d), and 
(x, y) ~ x + y; the classes of the units along the top are (n, n), (n, n, n, n), 
and (n, n); along the bottom they are 211, (211, 2n), and 4n; the a* maps 
are the flip, (a, b, c, d) ~ (b, a, d, c) and the flip; a* is the identity on the 
outside terms and the flip in the middle; and the special element is (n, n). · 

Remark 2. The diagrams above are able to distinguish between the types 
of basic building blocks, so that if we cut down one of our basic types by an 
invariant projection, the resulting sub-system is of the same type. 

5. Existence and uniqueness theorems 

In this section, we prove the existence and uniqueness theorems we shall need 
for our intertwining argument in the next section. We begin with the existence 
theorem. 

Theorem 2. Let (Aq.,, Z2, a) and (Bq.,, Z2, /J) be two finite dimensional real 
C*-dynamical systems and let M = (v,., Ve, v1,, µ,., Jle, p1,) be a morphism 
of invariants from Inv(A, a) to Inv(B, /J). Then there exists a unital equi­

variant *-homomorphism 1J : Aqi ➔ Bq., such that Ko(17) = v,., Ko(C17) = Ve, 

Ko(h17) = v1,, KoCiJ) = µ,., Ko((c~7)) = µe, and Ko((h-11)) = µ11, where 
- denotes the canonical extension to the crossed pmduct. 

Proof Since the invariant respects the decomposition of Bqi into a direct sum 
of our basic building blocks, it will suffice to consider the case where Bqi 
is a single one of these. Furthermore, since the invariant is compatible with 
direct sums of homomorphisms, it will suffice to consider the case where Aqi 
is a single building block as well. 

= Vje consider the possible combinations of building blocks in the same order 
as in section tnree-;a-beginning,with}tiose where both A and B are isomorphic 

to Mn OR) or M11 (]HI). With A of type a~{1 and B oftype-a~~• 11 l~we 0haveTthe~-~ 
diagram · 
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z z z 1~, ~ -~ 
z z 

zmz . I ZEBZ ZEB Z 

~ ~ ~ 
ZEBZ Z EB Z Z EB Z 

Our conditions imply vr(x) = tx, where m + n = t(l + k); ve(x) = tx; 
Vh (x) = tx; µr is given by a matrix of the form C :) , with r and s positive 
integers with lr + ks = m, ls + kr = nand t = r + s; and µe and µh are 
given by the same matrix as µr. This is exactly the invariant of the embedding 

. . . {l,k) {r,s) ~ {lr+ks,kr+ls) 
x f-+ x ® lr+s m the decompos1t1on alR.1 ® alR.1 = alR.1 , so 
the desired *-homomorphism exists. The other fifteen combinations with 
these building blocks are handled similarly. We leave verifying the details 
to the reader. Notice that in these cases we do not need to use the sub­
semigroup S. 

Next, we consider the case where the target algebra is non-simple. 
Suppose If/* : Inv(A, a) ➔ Inv(B, /J) is a morphism of invariants, with 
lfl* = (vr, Ve, Vh, µr, µe, µh), Projecting onto the first summand along the 
top row of Inv(B, /J), we see that (n1 o Vr, n1 o Ve, n1 o vh) is a morphism 
for the invariant for finite dimensional real C*-algebras from [9], so there 
exists a unital real *-homomorphism lf/ 1 : A ➔ n1 (B) giving rise to it. 
Let 1/f : A ➔ B be given by lfl(x) = (1j1 1(x), lf/ 1 o a(x)). Then If/ is a 
unital equivariant *-homomorphism, and it is straightforward to verify that 
Inv(IJI) = If/*• In these cases, we also do not need to use the sub-semigroup S. 

Next, we examine the case of a non-simple building block mapped into a 
simple one. Consider the case of mapping alli!IHI to a~t). We have the diagram: 

Our conditions imply: vr(x, y) = kx + ky, where 2kn = m = r + s; 
µ 7 (x) = (kx, kx); Ve(x, y) = tx + ty, where k = 2t; µe(x) = (tx, tx); 
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vh(x, y) = jx + jy, where 8jn = m, sot = 2}; and µh(x) = (jx, jx). 
We have that the special element is (k, l) = (2tn, 2tn). Since the multiplicity 
of the embedding from Mn (llil) into Mm (IR) is a multiple of 8, and the special 
element is symmetrical, the orthogonal projections required for the existence 
of an equivariant *-homomorphism exist. 

If we look at mapping a8lHI to a!c2 , we have the diagram: 

ZEBZ ZEBZ ZEBZ 

~ ~ ~ 
z ZEBZ z 

z z z 

~ ~ ~ 
z z z, 

and our conditions give: vr(x, y) = rx + ry, where 2rn = m, and 
µr(x) = 2rx. Commuting with the flips gives Vc(x, y) = (jx +ky, kx + jy), 
for positive integers j, k with (j + k )n = m. Following the element (n, 0) 
around the first square in the top face shows (2nj, 2nk) = (rn, rn), so 
r = 2) = 2k. We also have µc(x) = rx; vh(x, y) = kx + ky; and 
µh (x) = kx. Since the multiplicity of the mapping from Mn (llil) to Mm (C) is 
a multiple of 4, the required orthogonal projections exist, and we have a map 
with this invariant as shown in section three. The other cases in this group can 
be handled in a similar fashion. 

Consider now embeddings of Mn(C) into Mnk(C). In the cases where the 
actions on the centre are the same, straightforward inspections of the diagrams 
show that the maps described in section three suffice to give all possible 
morphisms of the invariants. 

For at() to ac2 we have the diagram: 

z ZEBZ z 

~ ~ ~ 
z ZEBZ z 

ZEBZ ZEBZEBZEBZ ZEBZ 

~ ~ ~ 
z z z 
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Commutativity of the diagram, and the maps all being unital and intert­
wining the a* and a* maps, implies that we have: Vr(x) = kx for some 
positive integer k, vc(x, y) = (kx, ky) v1i(x) = k(x) µr(x, y) = kx + ky 
µc(a, b, c, d) = sa + sb + sc __ + sd, and µ1i (x, y) = sx + sy, wheres is a 
positive integer with k = 2s. It follows that k is even, and we have exactly 
the invariant of the morphism shown to exist in section three. 

For at(1 to at; we have a similar diagram as for a~/l to ac2 , but with 
different maps. The conditions on the diagram imply that the multiplicity of 
the map from Ko(A) to Ko(B) must be even, and a map giving the required 
morphism of invariants was shown to exist in section three. 

For the mappings from M11 (JR) or M11 (]HI) to Mnk (C), straightforward 
inspection of the diagrams show that the embeddings described in section 
three give all possible values of the invariant. We leave verifying the details 
to the reader. 

Finally, we consider maps from M11 (C) to M211k (JR) and Mnk (]HI). 
For a 11 to a{r,s) we have the diagram· 

C2 RI - · 

z ZEBZ z 

~ ~ ~ z ZEBZ 

Z EBZ ZEBZEBZEBZ ZEBZ 

~ ~ -~ 

z z 

z 

z 
Commutativity of the diagram, and the maps all being unital and intertwining 
to a* and a* maps implies that we have: v,.(x) = kx, where m = kn; 
Vc(X, y) = kx + ky; v1i(x) = (2kx, 2ky); µ,.(x, y) = (Ix, ly), where 
21 = k; µc(x) = (kx,ky), and (2r,2s) = (m,m), so (r,s) = (ln,ln); and 
µ1i(x) = (2kx, 2kx). Equivariant *-homomorphisms with these invariants 
were constructed in section three. 

For a 11 to a 2111 we have the diagram· c2 nu · 

Z------➔ZEBZ------➔ Z i~z ~z ~z 
z ~ z~---µ-c ----z ~ 

ZEBZ------➔ ZEBZ ZEBZ 
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Commutativity of the diagram, and the maps all being unital and intertwining 
to a* and a* maps implies that we have: µ,.(x) = kx, where m = kn;' 
µc(x) = (kx, kx); µh(x) = 2kx; v,.(x) = 2kx; vc(x, y) = kr + ky; and 
vh (x) = kx. It follows from this alone that the multiplicity of the embedding 
from M11 (C) into M2111 (IR) must be even. That this is insufficient to ensure 
the existence of an equivariant *-homomorphism was discussed in section 
three. The requirement that S(ac2) be mapped into S(a~2) ensures that it be 
a multiple of four, which is sufficient. 

For at~ to a~2 we have a similar diagram to the one above, but with dif­
ferent order units and maps on the back face. Here the only restrictions on 
the multiplicity of the embedding we get is that coming from embeddings of 
matrix algebras over C into ones over IR, and all of these are achieved by the 
maps found in section three. 

The other cases in this group are handled similarly. D 

Remark 3. Note that we only require the inclusion of the semi-group S in 
our invariant for the case ac2 mapping into a~2. 

Next, we prove our uniqueness theorem. 

Theorem 3. Let (A<p, Z2, a) and (B<p, Z2, /J) be two finite dimensional 
real C* -dynamical systems and let I.JI and t; be two unital equivariant 
*-homomorphisms from A<p to B'P such that Inv(I.JI) = Inv((). Then there 

exists a unitary u E Bf such that t; = Adu o I.JI. 

Proof Let (A<p, Z2, a), (B<p, Z2, /J), I.JI, and t; be as in the statement of the 
theorem, and let VJ, 'f; : A'P :xi: Z2 -+ B'P :xiJ Z2 be the canonical extensions 
of I.JI, t;. 

It will suffice to consider the case where B is one of the basic building 
blocks. 

Consider first the case where /J is of the form /J(x) = Ad v(x) for some 
unitary v. By the uniqueness result of [9] applied to the bottom face of the 
diagram for the morphism of invariants Inv(I.JI) = Inv((), there exists a uni-

~ - - . 
tary W E B'P ><Ip Z2 such that t; = AdW o I.JI· Wnte W = We+ Wg8· 

Since ((g) = VJ(g) = g, we have that Wg = gW. Thus Wg = weg + 
w8 = gwe + gwgg = a(we)g + a(w8 ), and we have We = a(we) and 
w8 = a(w8 ). For all x EA, wehavet;(x) ·= WI.Jl(x)W* = (we+w8 g)I.Jl(x) 
(we + Wgg)* = (Wel.Jl(x)w; + w8 (/J(1.j1(x))w;) + (w8 /J(1.j1(x))w; + 
Wel.Jl(x)w;)g = (wel.fl(x)w; + wg(/J(I.Jl(x))w;), and (w8 /J(1.J1(x))w; + 
Wel.Jl(x)w;) = 0. Now consider the element u = We + WgV. Then 
u is in the fixed point sub-algebra of B and, for all x E A, we have 
UI.Jl'(x)u""= =-(we+w8 v)1.J1(x)(we+w8 v)* = (We1.J1(x)w;+w8 (/J(1.J1(x))w;)+ 
(wg/J(I.Jl(x))w; + Wel.Jl(x)w;)u· =· (Wel.Jl{x)w;+,wg(/J(I.Jl(~))w;) = ((x), 
so u is a unitary meeting- our requirements. 
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