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Abstract. The classical theory of monstrous moonshine describes
the unexpected connection between the representation theory of the
monster group M, the largest of the sporadic simple groups, and certain
modular functions, called Hauptmoduln. In particular, the n-th Fourier
coefficient of Klein’s j-function is the dimension of the grade n part of
a special infinite dimensional representation V! of the monster group.
More generally the coefﬁc1ents of Hauptmoduln are graded traces T, of
g € M acting on V. Similar phenomena have been shown to hold for
the Mathieu group Ma4, but instead of modular functions, mock modular
forms must be used. This has been conjecturally generalized even further,
to umbral moonshine, which associates to each of the 23 Niemeier lattices
a finite group, infinite dimensional representation, and mock modular

form. We use generalized Borcherds products to relate monstrous moon-

‘shine and umbral moonshine. Namely, we use mock modular forms from
umbral moonshine to construct via generalized Borcherds products ratio-
nal functions of the Hauptmoduln 7, from monstrous moonshine. This
allows us to associate to each pure A-type Niemeier lattice a conjugacy
class g of the monster group, and gives rise to identities relating dimen-
sions of representations from umbral moonshine to values of 7,. We also
show that the logarithmic derivatives of the Borcherds products are p-adic
______modular forms for certain primes p and describe some of the resulting

properties of theircoefficients:modulo.p..__.__

2010 Mathematics Subject.Classiﬁcdrion. 11F30, 11F33, 11F37.
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1. Introduction

. Monstrous moonshine begins with the surprising connection between the
coefficients of the modular function

(] +2403021 > 40 d 3q")3
an 1(1 _qn)24 )

1.
= + 1968844 + 21493760g% + . ..

— 744

J(r) = j(r) — 744 =

-and the representation theory of the monster group M, which is the largest
of the simple sporadic groups. Here g := ez’” fandt € H := {z € C:
Sz > 0}. McKay noticed that 196884, the ¢! coefficient of J(z), can be
expressed as a linear combination of dlmensmns of irreducible representatlons
of the monster group M. Namely,

196884 = 196883 + 1.

McKay saw that the same was true for other Fourier coefficients of J (z). For

example, _
21493760 = 21296876 + 196883 + 1.

In [28], McKay and Thompson conjectured that the n-th Fourier coefficient
of J(z) js the dimension of the grade n part of a special infinite-dimensional
graded representation Viof M.

This was later expanded into the full monstrous moonshine conjecture by
Thompson, Conway, and Norton [11,27]. Since the graded dimension is just
the graded trace of the identity element, they looked at the graded traces T, (1)
of nontrivial elements g of M acting on V! afid conjectured that they were
all expansions of principal moduli, or Hauptmoduln, for certain genus zero
- congruence groups I'y commensurable with SL(Z). Note that these T, are
* constant on each of the 194 conjugacy classes of M, and therefore are class
functions, which automatically have coefficients which are C-linear combi-
nations of irreducible characters of M. Part of the task of proving monstrous
moonshine was showing that they were in fact Z>g-linear combinations.

By way of computer calculation, Atkin, Fong, and Smith [26] verified the
existence of a virtual representation of M. Then using vertex-operator theory,
Frenkel, Lepowsky, and Meurman [16] finally constructed a representation
VY% of M thereby providing a beautiful algebraic explanation for the origi-
nal numerical observations of McKay and Thompson. Borcherds {1] further
developed the theory of vertex-operator algebras, which he then used in [2] to
prove the full conjectures as given by Conway and Norton.

Monstrous moonshine provides an example of coefficients of modular func-
tions enjoying (iiistinguished properties. Moreover, their values at Heegner
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points have also been considered important. A Heegner point t of discrimant

— 2 _ .
E%ﬂ with a, b, c € Z,

gcd(a, b, c) = 1, and d = b? — 4ac. The values of principal moduli at such
points are called singular moduli. As an example of their importance, it is
a classical fact that the singular moduli of j(7) generate Hilbert class fields
of imaginary quadratic fields. Moreover, the other McKay-Thompson series
arising in monstrous moonshine satisfy analogous properties [7]. It is natural
to ask what other interesting properties the values of the Hauptmoduln T, (7)
could possess. We show that some of these values are related to another kind
of moonshine, called umbral moonshine.

Recently, it was shown that phenomena similar to monstrous moonshine
occur for other g-series and groups. In particular, the Mathieu group Mo4
exhibits moonshine [15,19], with the role of the j-invariant played by a mock
modular form of weight 1/2, denoted H@ (7). A mock modular form is
the holomorphic part of a harmonic weak Maass form. Cheng, Duncan, and
Harvey conjecture in [10] that this is a special case of a more general pheno-
menon, which they call umbral moonshine. For each of the 23 Niemeier
" lattices X they associate a vector-valued mock modular form H*(z), a group
G*, and an infinite-dimensional graded representation K* of G¥X such that
the Fourier coefficients of H¥ encode the dimensions of the graded compo-
nents of KX. .

In particular, if ¢X (n, k) is the n-th Fourier coefficient of the A-th compo-
nent of HX, then

d < 0 1is a complex number of the form 7 =

aX dim KXo if n = —D/4m where
cX(n, h) = ' DeZ D=~h? (mod4m), (1)
0 otherwise,

where a* € {1,1/3} and

X _ X
K¥X= D D Kioum
h (mod 2m) DeZ
D=hZ  (mod 4m)

- For more information on umbral moonshine see Section 2 and for a definition
of HX see Section 4.

Using generalized Borcherds products (see [6]), we describe a connec-
tion between the mock modular forms HX(z) of umbral moonshine and
the McKay-Thompson series Tp(z) of monstrous moonshine. Generalized
Borcherds products are a method to produce modular functions as infinite
products of rational functions: whose exponents come from the coefficients
of mock modular forms, and they can be viewed as generalizations of the
automorphic products in Theorem 13.3 of [3].
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Table 1. Pure A-type root systems.

Root S_y‘stem X | Coxeter Number m(X) | Mock Modular Form HX
AP 2 ' H® ()
A2 3 H®(1)
AS 4 H®(z)
AS 5 HO) (1)
A} 7. HDN()
A§ 9 H(9)(,)
A2, 13 H13(r)
Al 25 - H®3(1)

We focus on the Niemeier lattices X whose root systems are of pure
A-type according to the ADE classification. They are listed in Table 1, along -
with their Coxeter numbers m (X) and the notation we will use for the mock
modular form HX .

Table 2 gives the monstrous moonshine dictionary for the conjugacy classes
g which correspond to pure 'A—typc cases of umbral moonshine'. Note that
n(t) is the Dedekind eta function, defined by

n() =" [J(1 - ¢").

n=I

All of our Hauptmoduln are normalized so that they have the form ¢ ' 40O (q),
which is why all of the 7-quotients in the table have a constant added to them.

There is an evident correspondence between the pure A-type lattices X in
Table 1 and the conjugacy classes g in Table 2. We give this correspondence
in Table 3.

We show that for a pure A-type Niemeier lattice X and its corresponding
conjugacy class g := g(X), the “Galois (twisted) traces” of the CM values of
the McKay-Thompson series T, (z) are the coefficients of the mock modular
form HX. To more precisely state this, we set up the following notation.

Let X be a pure A-type Niemeier lattice with Coxeter number 22 = m{X
and corresponding conjugacy class g = g(X). We call a pair (A,r
admissible if A is a negative fundamental discriminant and r? =
(mod 4m). We also let e(a) := 271

DV\/

IThe case X = A4 corresponds to g(X) = (25Z), which is what Conway
and Norton call a “ghost element”. This means that I'g(25) is the only genus zero
T'o(N) that does not correspond to a conjugacy class of the monster group. The
parentheses are used to indicate a ghost element.
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Table 2. The dictionary of monstrous moonshine.

Monster Congruence McKay-Thomspon
Conjugacy Class g | Subgroup I'y Series Tg(7)
2B To(2) ()2 /n(20)* +24
3B To(3) ()12 /G012 + 12
ac To(4) n(0)¥/n@0)® +8
5B To(5) ()8 /n(50)° + 6
7B To(7) 77(1)4/17(71)4 +4
9B To(9) n(z)%/n(97) +3
13B To(13) 7(0)2/n(131)2 +2
2572) Ip(25) n(z)/n(25t) + 1

Theorem1.1. Let ct(n,h) be the n-th Fourier coéfficient of the h-th
component of HX. Let (A, r) be an admissible pair for X. Then the twisted
generalized Borcherds product

ad -+ lAIﬁ rn
lyA’r(‘[, HX) = H PA(qn)c ( 4m -'Z?)’

n=|

where

Pax) =[] [1—e(b/A)x](%)

beZ/|A|Z

is a rational function in Ty () with a discriminant A Heegner divisor.

Remark 1.2. We consider only the pure A-type cases, because these are
the ones for which the -harmonic Maass form transforms under the Weil
representation. See Section 4 for more information.

The next result gives a pfecise description of the rational functions in
Theorem 1.1. In particular)it gives a “twisted” trace function for the values
of T, at points in the divisor and the coefficients ¢t of the mock modular
" forms HX. It is often the case that coefficients of automorphic forms can be
expressed in teérms of singular moduli (see e.g., [4,5,13,29]).

Corollarygl 3.ABy;Theorem ol =we:can write_

¥a,r(r, HY) = H(Tgu) - Tg(a,»"
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Table 3. Correspondence between umbral
and monstrous moonshine.

Root System X | Conjugacy Class g(X)

A 2B

A2 3B

AS 4C

AS 5B

At 7B

A} . 9B

A2, 13B
Al (252)

for some discriminant A Heegner points a;. Then we have that

(1Al Yy, 1
s T = ;- T i)
(4m 27’}1) GAIZ% g(az)
where”

= e(b/A)-(%).’

beZ/|A|Z

Remark 1.4. Assuming the umbral moonshine conjecture, the previous
corollary implies the following “degree” formula in traces of singular moduli
for classical moonshine functions:

[A] 7 X .
_ Z vi - Telai) =c¢ (4m 5] =a dlmKrX,IA|/4m . ()
In the case where m = 2, the relationship between the coefficients

of the mock-modular form and the dimensions of the graded components of
the representation has been proven by Gannon [19], and so our work implies
the following:

1 % Al r
o Zl: vi - Taplai) = c* (%, 4_1) =dimge . 3)

r.1Al/8

Example 1.5. Let X = A2, so m(X) = 2 and g(X) = 2B. Then the
corresponding McKay-Thompson series is

)24

T,(c) = n(t

1
W+Z4=g+276q+....
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We pick the admissible pair (A, f) = (=7, 1). In Section 5, we will show that

o 2
_ @ -1y _ (0 - =55)

¥a,(z, HY)

- _ 2 2
(Tg(z) — To(a2)) (Tg(r) _ |+452J:7)
— 14+ 90v/—7q + (28350 + 45/~ T)g2 +...,
where a) = l]':—ﬁ and ay = Iiz/—:—-/ Note that Tg(a1) and Ty(a2)

are algebraic integers of degree 2 which form a full set of conjugates. Their
twisted trace is

20Ty (o) — Tg(a2)] = —90v=7,

which matches the q' Fourier coefficient above. To check Corollary 1.3, we

note that ‘
€r = Z e(—b/7) - (_77) =—/=7

beZ/1Z
and .
1
— > 1iTy(@;) =90 = c* (7/8,1/4) = dim 1 .
€A : 1,7/8
Example 1.6. As a second example, again consider X = A%“, s0

m(X) = 2 and g(X) = 2B. We pick the admissible pair (A, r) = (=15, 1).
Let py, p2, p3, pa be the roots of

x* — 47x3 +192489x% — 9012848x + 122529840,
with py, p2 having positive imaginary parts. Then

¥_is, = T = p)*Te ) - p2)?
T () = 52T (1) — pa)?

We get that -

e_15 = =15,
and

1 , ,
— > piTy(a;) = 462 = c* (15/8,1/4) = dim .
€A - RN Y

In_view of this correspondence, it is clear that the mock modular forms of .

. umbral moonshine have important properties. The congruence properties of
their coefficients have just begun to be studied. For. example, [12] examines

the parity of the coefficients of the McKay-Thompson series for Mathieu’
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moonshine in refation to a certain conjecturé in [9], which in our case corres-
pondsto X = A%“. Congruences modulo higher primes were also considered
in [22]. '

" Let ® = q% = %j—r. Given the product expansion of a generalized
Borcherds product, it is natural to consider its logarithmic derivative. It turns
out that this logarithmic derivative has nice arithmetic properties. This idea
was also used in [6] and [23].

Theorem 1.7. Fix a pure A-type Niemeier lattice X with Coxeter number m.
Let (A, r) be an admissible pair. Consider the logarithmic derivative

2
far@) = VEY an, 00" =VEY ’”('i: , 2—’2) (3) 7"

n ij:n ‘]

of ¥p,r(r) = ‘I"A’,(n HX). Then fa ,(z) is a meromorphic weight 2
modular form. ’ '

When p is inert or ramified in Q(«/K), it turns out that f4 () is more than
just a meromorphic modular form; it is a p-adic modular form. Essentially,
a p-adic modular form is a g-series which is congruent modulo any power of
p to a holomorphic modular form; we refer the reader to Section 6.1 for the
definition. '

Theorem 1.8. Let X be a pure A-type Niemeier lattice with Coxeter
“number m. Let (A, r) be admissible and suppose p is inert or ramified in
Q(V/A). Then fa , is a p-adic modular form of weight 2.

We will use this result to study the p-divisibility of the coefficients aa ,(n).
Corollary 1.9. Let X, A, r, p be as above. Then for all k > 1 there exists

oy > 0 such that

#n<x:ian,(n)£0 (mod ph)}=0 (—x-) .
(log x)%

In particular, if we let
A (x; pk) =#n<x:ap,(n)=0 (mod pk)},

then .
T A, (x; p)
im ——————— =

X 00 X

1.

Remark 1.10. Corollary 1.9 also applies to any constant multiple of fa
with integral coefficients. In the example below, we consider the coefficients

of
Cfra(z)

JoLINT 2
S0 —7 g+ 0(q").
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Table 4. Divisibility of a_7,1(n) by p =2,3.

x mp(x)/x m3(x)/x
50 0.38 0.64
100 0.45 0.68
- 150 0.47 0.69
200 0.49 0.71
250 0.48 0.71
300 0.49 0.72
00 57 i

However, it is not always the case that the analogous normalization has
integral coefficients.

Example 1.11. We illustrate Corollary 1.9 for X = A%“, A = -7,
= 1. Note that this is the same case considered in Example 1.5. The first
few coefficients of the normalized logarithmic derivative are given by

J;Bi/‘_(t) > a_1(n)g" = q +q> —4371g> + ¢* +17773755¢° + ..
n>1

The prime p = 2 is split in Q(«/—7), and so Theorem 1.8 and Corollary 1.9
do not apply. Therefore, we expect the coefficients a_7,1(n) to be equally dis-
tributed modulo 2, but cannot prove anything about them. The prime p = 3
is inert, so Corollary 1.9 tell us that, asymptotically, 100% of the coefficients
a_7,-1(n) are divisible by 3. We illustrate this behavior in Table 1.1].

2. Umbral moonshine

In this section, we summarize the main objects and conjectures of umbral -
moonshine. However, we first briefly describe Mathieu moonshme which
umbral moonshine generalized.

2.1 Mathieu moonshine

In 2010, the study of a new form of moonshine commenced, called Mathieu
moonshine. Let u(z, 7) := u(z, z, ) be Zwegers’ famous function from his
‘thesis [30] Wh]Ch is deﬁned in the appendlx Let H (2)(1) be the q senes

H(z)(r) = -8 Z ,u(cu 9 =2g" 1/8( 14+45¢ +231¢% +. )
we{l 1—‘5—' '}
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which occurs in the decomposition of the elliptic genus of a K3 surface into
irreducible characters of the N = 4 superconformal algebra. This is a mock-
modular form, and plays the role of J(r) in Mathieu moonshine. Eguchi,
Ooguri, and Tachikawa conjectured that the Fourier coefficients encode
dimensions of irreducible representations of the Mathieu group M4 [15].
This was extended to the full Mathieu moonshine conjecture by [8,14,17,18],
which included providing mock modular forms Héz) for every g € M.
The existence of an infinite dimensional M4 module underlying the mock
modular forms was shown by Gannon in 2012 [19].

2.2 The objects of umbral moonshine

Cheng, Duncan, and Harvey generalized even further — conjecturing that
Mathieu moonshine is but one example of a more general phenomenon which
they call umbral moonshine [10]. : _

For each of the 23 Niemeier root systems X, which are unions of irreducible
simply-laced root systems with the same Coxéter number, they associate many
objects, including a group G* (playing the role of M), a mock modular form
H X(z) (playing the role of j(z)), and an infinite dimensional graded GX

module KX (playing the role of the M-module V) Table 5 gives a more
complete list of the associated objects.

The ADE classification of simply laced Dynkin diagrams allows us
to classify the irreducible components of the Niemeier root systems X.
* We will focus on the simplest cases — the root systems of pure A-type, i.e.
X — A24/(m 1
integer and equals m, and X = T[y(m). The case X = A24 corresponds to
Mathiéu moonshine, with GX *= Moy and HX = H®_ a5 defined above.
We will generally refer to HX SX, X and TX as H(’"), S(’”), z//(m), and
Jm respectively. These are the main quantities from Table 5 that we will work
with, and we will only define them for pure A-type. This is done in Section 4.

, where (m — 1) | 24. In these cases, the lambency £ is an

2.3 The conjectures of umbral moonshine

The main conjectures of umbral moonshine are as follows:

1. The mock modular form H¥ encodes the graded super-dimension of a
certain infinite-dimensional, Z/2mZ x Q-graded GX-module K X.

2. The graded super-characters H X arising from the action of GX o
KX are vector-valued mock modular forms with concretely spec1ﬁed
shadows S} ‘

3. The umbral McKay-Thompson series H gX are uniquely determined by an
optimal growth property which is directly analogous to the genus zero
property of monstrous moonshine. '
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Table 5. This table gives the objects associated to a Niemeier root system X.

LX The Niemeier lattice corresponding to X
m The Coxeter number of all irreducible components of X
wX The Wey! group of X
GX := Aut(LX)/WX | The umbral group corresponding to X

X The (formal) product of Frame shapes of Coxeter elements
of irreducible components of X

rX The genus zero subgroup attached to X

TX The normalized Hauptmodul of TX, whose eta-product
expansion corresponds to X

£ The lambency. A symbol that encodes the genus zero
group IT'X, Sometimes used instead of X to denote which
case of umbral moonshine is being considered.

u/X The unique meromorphic Jacobi form of weight 1 and
index m satisfying certain conditions.

HX The vector-valued mock modular form of weight 1/2
whose 2m components furnish the theta expansion of the
finite part of y X Called the umbral mock modular form.

sX The vector-valued cusp form of weight 3/2 which is the
shadow of HX. Called the umbral shadow.

H gX The umbral McKay-Thompson series attached to g € GX.
It is a vector-valued mock modular form of weight 1/2,
and equals H X when g is the identity.

Sé( The vector-valued cusp form conjectured to be the shadow
of HgX .

KX The conjectural infinite dimensional graded GX-module
whose graded super-dimension is encoded by HX .

3. Vector-valued modular forms

In this section, we follow [6] in giving the needed background on vector-
valued modular forms, though we state results in less generality.

3.1 A lattice related to To(m)

We will define a lattice L and a dual lattice L’ related to I'g(m) such that the
components of our vector-valued modular forms are labeled by the elements
of L'/L. = . . . L

We consider the quadratic space

V:={X e Matz (Q) : tr(X) = 0}



146 : Ken Ono, Larry Rolen and Sarah Trebat-Leder

with the quadratic form P(X) := m det(X).2 The correéponding bilinear form
is then (X, Y) := —m tr(XY). Let L be the lattice '

L= [(b —a/m); a,b,ce Z] .
¢ —b

The dual lattice is then given by

b/ZI'n —a/m Y
r_ .
L = [( . —b/Zm)’ a,b,ceZ],

We will switch between viewing elements of L’ as matrices an:d as quadratic
forms, with the matrix
~ (b/2m —ajm’
X = [2m —a/m) -
c —=b/2m

corresponding to the integral binary quadratic form
Q = [me, b, a] = mex? + bxy + ay>.

Note that then P(X) = — Disc(Q)/4m.

We identify- L’'/L with (2372) /Z, and the quadratic form P with the
quadratic form 21,',; - ;T,,,lz on Q/Z. We will also occasionally identify

L ¢ Q/Z with h € Z/2mZ.
For a fundamental discriminant D and r/2m € L’/L with i
(mod 4N), let

2 =

Op,r :={Q =[mc,b,al:a,b,c € Z,Disc(Q) = D,b=r (mod 2m)}.

' @
The action of I'g(m) on this set is given by the usual action of congruence
subgroups on binary quadratic forms. We will later be working with

QD,)‘/ I'o (m)-
3.2 The Weil representation

By Mp,(Z) we denote the integral metaplectic group. It consists of pairs
(y,¢), where y = (9%) € SL2(Z) and ¢ : H — C is a holomorphic
function with ¢2(z) = cz + d. The group T := Mp,(Z) is generated by
5= ((°9), /A mdT = ((41).1).

We consider the Weil representation p;, of Mp,(Z) corresponding to the
discriminant form L’/L. We denote the standard basis elements of C[L’/L]

ZNote that this corrects a typo in [6].
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by ey, h/2m € L'/L. Then the Weil representation py, associated with the dis-
criminant form L’/L is the unitary representation of I' on C[L’/L] defined by

pL(T)ey = e(h?/4m)ep,
and

PL(S)U::e(—_]—/i) Z e(hh'/2m)ey: .

Zm heZ/2mZ

3.3 Harmonic weak maass forms

If f: H — C[{L'/L]is a function, we write

f= Z fnen

heZ/2mZ

for its decomposition into components. For k € %Z, let M,i, p, denote the
space of C[L’/L] valued weakly holomorphic modular forms of weight k and
type pr. for the group I'. The subspaces of holomorphic modular forms (resp.
cusp forms) are denoted by My ,, (resp. Sk ;). Now, assume that k < 1.
A twice continuously differentiable function f : H — C[L’/L] is called
a harmonic weak Maass form (of weight k with respect to T and pp) if it
satisfies: '

1. f(Mz) = ¢(2)*pr(M, ¢)f(f) forall (M, ¢) € T;
2. A f=0;
3. There is a polynomial

Py(r) = Z Z ct(n, he(nt)e,

heZ/2mZ .Z 2

4m
—ocokn=<0

such that
f(@)— Pr=0("*")
forsomee > Qasv — +o0.

Note here that

A o =+ o + ik 9 +1i 9
= —p?2 - iko | —+i=—
e k 6u2 dv? du lav

is the usual weight k hyperbolic Laplace operator and that T = u+iv.
We denote the vector space of these harmonic weak Maass forms by Hi,p, -



148 . -Ken Ono, Larry Rolen ancé Sarah Treba;—Leder

The Fourier expansion of any f € Hy oL gives a unique decomposmon
f= f + + f~, where -

fFfoy= > D ctmhenode, )
’ heZ/ZmZ e o v
4m
- —ookn
f (@)= Z ZC (n, YW (2rnov)e(nt)ey, (6)
-heL'/L neQ, o
n<0

and W(x) := [ e't7*dt = T(1—k,2|x]) forx <0.Then f+ iscalled the
holomorphic part and f~ the nonholomorphic part of f. The polynomial Pr
is-also uniquely determined by f and is called its principal part. We define a
maock modular form of weight k to be the holomorphic part £+ of a harmonic
" weak Maass form f of weight k which has f~ # 0. Its weight is just the
weight of the harmonic weak Maass form.

Recall that there is an antilinear differential 0perat01 defined by -

6
&t Hip, = Somipr, f(2) > &) (@) = 2iy* P

where p; is the complex conjugate representation. The Fourier expansion of
i (f) is-given by

&(f)=— Z Z (47511)]_"0"(—11, h)q"ep.

heZ/2mZ neQ,n>0

The kernel of ¢ is equal to M,iﬁL , and we have the following exact sequence:
0 - Mli’,ﬁL - Hk:ﬁL - Sz"'k,IJL - O

We call & (f) the shadow of f. Note that & (f) uniquely determines f~,
but the f* is only determined up to the addition of a weakly holomorphic
modular form.

4. Defining the umbral mock modular forms

In this section we define the mock modular forms H ) from umbral moon-
shine, as well as their shadows S and non-holomorphic parts. Note that we
only give definitions for the pure A-type cases — see [10] for a more detailed
and general definition. We also refer the reader to the appendix for definitions

of 9 (2,2), m0(z, 2), 6, (7, 2), and R(u; 7).

\
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For each lambency m e {2,3,4,5,7,9, 13,25}, which correspond to the
pure A-type cases, define the Jacobi form y ) by
W, 2) = e (2, D ,0(, 2),

where ¢;,, = 2 form = 2,3,4,5,7,13and ¢, = 1 form = 9,25. We can
break up w ™ into a finite part y/(F j and a polar part y/f, ") The polar part is
given by

vp(z,0) =

1 Um,0(7, 2).

Then the mock modular form H (’") is defined by ~
M (,2) =y, 2) - (e, 2) = > HI (0)0p (2, 2), (D
heZ/2mZ

2 g
em,h(‘l', Z) = Z C]" /4m yk.

n=h (mod 2m)

where

Note that ://(’") satisfies an optimal growth condition, which is that
g Hif (1) = 0(1) ®)

ast — jooforall h € Z/2mZ.

We also define the shadow S (’")(r) the non-holomorphic part £™(r), and
the harmonic weak Maass form H®) (z) corresponding to the mock modular
form H %) via their components:

S,(,m) ()= Z nq"2/4'", ')
n=h (mod 2m)

ico S}S’")( )

(m)( _ (10
) 7 =iz +7) )
I 1
= —2;11q_("—”')2/4’"R ( 12 -(2m1) + = 2mr) , and
. ﬁ(m)(T) = H(m)(‘l') + F(m)(‘t) ) . ’ Rt an

Note that by definition, S,('")(r) = S('")(r) Therefore S('") sim — o,
The same is true of H, (") We can write this in terms of Shimura’s theta

functions. as S('")(r) = 6(z;h,2m,2m,x) [25] Then using the trans-
formation laws for his #-functions, we get that S transforms as follows:

e S +1) —e(h /4m)S'")(t), and

z‘/"

S,S’")( 1/:) 3/2"( 79) .. elkh2m)S ==
: Vz”_‘ k (mod 2m)
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Thus, we have
ST (z + 1) = p(T)S™(z), and
S (=1/7) = 2 pL($)S™ (7).

From these transformations, we see that S('i‘)(r) : H — C{L'/L] is
a weight 3/2 vector-valued modular form transforming under the Weil
representation pr, i.€. an element of the space M3/2 , . From [10], we know
that H™ is a mock modular form with shadow S 3 This gives us the
following theorem. ' g

Theorem 4.1. We have that ?I(m)(‘r) : H - C[L//L] is a weight
172 vector-valued harmonic weak Maass form transforming under the
Weil representation py, i.e., it is an element of Hy2,5,. Moreover, it has
shadow S(m)(r), non-holomorphic part F', and principal part P(zr) =
—2g7 14 (01 — egp—1).

The reason we focus on the lattices of pure A-type is because this theorem
is not true for the other cases — the vector-valued harmonic weak Maass forms
no longer transform under the Weil representation.

5. Relating umbral and monstrous moonshine

In this section, we explain the relationship between the mock modular forms
H from umbral moonshine and the Hauptmoduln T, from monstrous
moonshine.

5.1 Twisted generalized Borcherds products

We begin by giving the theorem of Bruinier and Ono we will use.

Let ¢t (n, k) be the n-th Fourier coefficient of H}fm). Let (A,r) be an
admissible pair, so that A is a negative fundamental discriminant and 72 = A
(mod 4m). Let ¥a (7, ﬁ’”) be the twisted generalized Borcherds product
defined in Theorem 1.1. '

Theorem 5.1 (Theorem 6.1 in [6]). We have that ¥p (7, H (’”)) is a
weight 0 meromorphic modular function on T'o(m) with divisor Zx ,(H (m)),

31n fact, it is the only vector-valued mock modular form with shadow §m
satisfying the optimal growth condition in 8.
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For this theorem to make sense, we need to define the twisted Heegner
divisor Za ,(H (m) associated to H"™. It is defined by

Za,H™) = 3 >t h)Zarn, ).

heZ/2mZ n<0

Since the principal part of H is —2q ~h?/4m (e; — e2m—1), this means that

~ -1 -1 -1 1
z my =27 —, — -2z —,—).
ar(HT) ar (4m’ Zm) ar (4m’ Zm)

Now, we just have to compute the divisors Zx , (%, 2’—’m) They are defined as

follows. (
-1 h xa(Q)
ZA,I‘ (—5 _) = Z ———0aq,
2/ e Tom P9

where w(Q) = 2 for A < —4, y, is the generalized genus character defined
in Gross-Kohnen-Zagier, and a ¢ is the unique root of Q(x, 1) in H.

5.2 Proofs of Theorem 1.1 and Corollary 1.3

Proof of Theorem 1.1. Theorem 5.1 gives us that ¥ (7, fl('”)) is a weight 0
meromorphic modular function on T'g(mm) with specified divisor, which is a
discriminant A Heegner divisor. For all of our m, T'g(m) has genus zero.
Therefore, ¥ (7, H ()} is a rational function in the Hauptmodul for I'g(m).
The normalized Hauptmodul, which we call j,, (1), is defined by

0(1)24/(171—1) 24

n(mey2 oD+ (12)

Jm(z) == 71

But using Table 1, we see that j, () is equal to Ty(x)(7), the graded trace of -
gXYeMonV. O .

Proof of Corollary 1.3. From Theorem 1.1, we have that

[T Pata™ (5 5) = T(Tee) - Teta)y?
n=1 i

We equate the ¢! Fourier coefficients of each side, using Table 2 to get the
Fourier expansion : :

- o
Ty(r) = 7 + 0(q). O
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Table 6. Quadratic forms ﬁeeded form=2,4=-7r =1 case.
Quadratic form = Q ag xa (D) Ja2lag)
01=[2,1,11 |aj=ZT 1 1 | = YT
0, =[-2,1,-1] ay = 1+4——7\~ -1 Y2 = %’l‘
-2 az 1 2
-0 « —1 71

5.3 Examples

For each pure A-type case X with coxeter number m, we illustrate how to
write ¥ , (7, H (m)) as a rational function in j,,. Note that here A < O is a
fundamental discriminant and r € Z is such that A = r2 (mod 4m).

First we work out an example for m = 2 in some detail, then list one
example for each m. In Section 5.4, we explain how to find representatives of
Qa,r/ To(m) using a method of Gross, Kohen, and Zagier.

Consider the casem = 2, A = —7,r = 1. Using the method of Section 5.4,
. we compute that Q_7;/T0(2) = {Q1,Q2} and that Q_7_1/Tp(2) =
{—Q1, —Q»}, where the quadratic forms Q, their Heenger points ag, and
their generalized genus characters ya(Q) are given in Table 6. We also
include the value of j, at each Heegner point.

Using the table, the divisor of W_7 1 (7) is given by:

(—a1 + az) — (a1 — az) = 202 — 2a1.

Therefore, -

(ja(z) = y2)*

(2(z) = y1)*

Similarly, for each value of m corresponding to a pure A-type case,

"we demonstrate in Table 7 how to write W ,(z, H (’")) as a rational function
in j, for some nice choice of A, r. In all the examples we consider,

¥o7,1(r, H?) =

(m () — 72)2
(m(r) — 71)2

for some y1, 72 € OQ( JB) Note that W4 , will not always be‘ a rational
function of this particular form — we always picked A with class number 1.

\PA,r(r, ﬁ(M)) =

5.4 Computing the elements in Qa ,/To(m)

In this section, we explain how to compute Qa -/ Io(m), following [20].
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Table 7. Examples.

=== —=arises*becauseQ% A “alSO Comtaifis Tiegative semi-definite’ Torms.

m A r ?1 y2
y 14+45/=7 1-454/=7
2| -711 > >
31 -111(1 174+ 8/-11 17 - 8/-11
—1543J/=7 —15-3/-7
4 -713 5 —
S| -11 3] -34+2/-11 | =3 -2J/-11
343419 3-3/-19
7| -19]3 Y Y
—11 15 -1+ J-11 -1 --11
13| -43|3| I8 I8
—19 —/=19
25 | -19 | 9 ¥ 3

Let Q% , be the subset of primitive forms. Then we have a I'g(m)-invariant
bijection of sets :

Qar= U U gQA/l?Zh ’

£21a \heS(®)

where S(¢) := (h € Z/2mZ : h* = A /£? (mod 4m), h = r (mod 2m)}.
Since we pick A to be a fundamental discriminant, the only possible prime we
need to worry about is £ = 2. In our examples, we always choose A, r such
that $(2) = @. In this case we just need to work with QO

Now, let n := (m,r, 4’, Z=2). Then for Q = [mc, b, a] € QA ,» define
ny = (m,b,a),ny = (m,b,c), which are coprime and have product n.
We have the following result:

Lemma 5.2 (Section 1.1 of [20]). Define n as above and fix a decom-
position n = niny with ny,ny positive and relatively prime. Then there
isal:l correspondence between the To(m)-equivalence classes of forms
[em, b, a] € Q Ay satisfying (m, b, a) = ny, (m, b, ¢) = ny and the SL»(Z)
equivalence classes of forms in Q% given by Q = [me,b,a] — 0 =
{emy, b, am2a], where my-my is any decomposition of m into coprime positive
factors satisfying (n1, mp) = (n2, m1) = 1. In particular, 'IQOA’,/ To(m)| =
27| Q% /SLa(Z)|, where v is the number of prime factors of n.

Note that IQ /SL2(Z)| equals 2h(A) for A < 0, where the factor of 2

In our examples, we always choose A,r such that n = 1, so that
|Q%’r/ To(m)| = |Q0A/SL2(Z)| =.2h(A), where h(A) is the class number
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of Q(x/Z).' The theory of reduced forms allows us to easily compute
Q% /SL2(2).

6. p-adic properties of the logarithmic derivative

6.1 p-adic modular forms

Foreach i € N, let fi = > a;(n)q" be a modular form of weight k; with
a;(n) € Q.If for each n, the a;(n) converge p-adically to a(n) € Q,, then
f = D a(n)q" is called a p-adic modular form. For p # 2, we define the
weight space

W= 1(izr_nZ/¢(pt)Z =2Zp x L/(p — 1)L

For p = 2, we define
| W :=1imZ/2' 7 = Zs.
<

t

Then the k; converge to an element £ € W, which we call the weight of f.
We identify integers by their image in Z, x {0}.

6.2 Proof of Theorem 1.7

Proof of Theorem 1.7. By Theorem 1.1, ¥4 ,(7) is a meromorphic modular
function, so that @ (¥ (7)) is'a weight 2 meromorphic modular form on
To(m). Thus, the logarithmic derivative %\I;A—r”(g)) is a weight 2 meromorphic
modular form on 'p(m) whose poles are simple and are supported on Heegner

points of discriminant A. O
6.3 Proof of Theorem 1.8 and its Corollary

Proof of Theorem 1.8. We show that if (A, r) is an admissible pair and p is
inert or ramified in Q(+/A), that

. ®(TA,r ()
fay =m0
‘PA,r(T)
is a p-adic modular form of weight 2. Say f has poles at ay, ..., a,, all of

which are CM points of discriminant A. For each a;, there is some zero f; of
E,_y suchthat j(r)—j(a;) = j(r)— j(B:) (see Theorem 1 of [21]). Then let

(J(z) — j(a:))
g —_
Ep- 1H(J(r)—J(ﬂ,))
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“This has weight p — 1, is congruent to 1 modulo p, has zeros at aj, ..., Gy,
and has no poles. Let f; := fEP). Then f; = f (mod p') and is a modular
form of weightk, = 2 + (p — 1)p' = 2 (mod ¢(p'*1)), so f is a p-adic
modular form of weight 2. o

Proof of Corollary 1.9. This corollary follows directly for the coefficients of
any p-adic modular form using the following beautiful result, proven by Serre
[24] using the theory of Galois representations.

Lemma 6.1 (Serre [24] Theorem 4.7 (I)). Let K be a number field and Ok
the ring of integers of K. Suppose f(r) = ano anq" € Okllgll is a
modular form of integer weight k > 1 on a congruence subgroup. For any
prime p, let p be a prime above p in Ok. Let m > 1. Then there exists a
positive constant a,, such that ‘

‘ X
#n < X: 0 dp)"}=0——]).
0= X0, 20 (mod ") =0 (G5 )
7. Appendix: Definitions of Jacobi forms, Theta functions, etc.
We define the Jacobi theta functions 8;(z, z) as follows for g := e(r) and

y = e(z).

o0
Oz, 2) = "By P T = gD+ yg") (1 +y7'g" ™)

n=1

O3(z, 2) = [ [(1 = gHA + yg" (1 +y71g" )

n=1
o0

O4(z, 2) := H(l — g™ - yq'1—1/2)(1 _ y—lqn—l/z)
n=1

We use them to define weight zero index m — 1 weak Jacobi forms go( m)
follows. Let

o2 =42+ 2+ 1D, |
oD = 20272+ 212+ 121D,
oD = af}rsl,

5 4 3
(0]( ). . ((ﬂ( ) (2) ((0( ))2)
o (3) ©) '

= 9Pl (¢(4))
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9 3 7 5

where f;(t, z) := 0;(t, 2)/6i(z,0) fori = 2,3, 4.

For the remaining positive integers m with 'm < 25 we define 2
recursively.:

For (12,m — 1) = 1and m > 5 we set

(m)

(m) =(12,m— 5)(p1m—4) S) +12,m— 3)¢(m 2) (3)
—2(12, 7 — 4)¢"" Do,

For (12, m —/]) =2andm > 10 we set
¢](m) ((12 m— 5)(01'"_4) &) 4 (12 m— 3)(p(m 2) (3)
—2(12,m — 4)p" DMy, |
For (12,m — 1) =3 and m > 9, we set
('") (12 m — 4)(p(m 3) (4) + = (12 m— 7)(p('" 6) (7)
—(12,m = 5)p" Yy,
For (12, m — 1) =4 and m > 16 we set
o™ = —((12 m —13)p{" P p{1?
+(12,m —5)p" DO — (12, m — 9)p" V@)
| For (12, m— 14) =6and m > 18 we set
(p(m) (12 m— t4)qo§m_3)g0§4) + é(]Z, m— 7)(0("' 6 (7)
- 5(1:2, m—5)p" ).
For m = 25, we set

25 1 o 19) (7 (13
(of) 2()() ¢]()()+((p))2'

See the appendix of [10] for more information on the space of weight zero
Jacobi forms. '



R e L R =

Classical and umbral moonshine: Connections and p-adic properties 157

We use two versions of an Appell-Lerch sum. The first is the generalized
Appell-Lerch sum uy, g, defined as in [10]. It is given by

. 2 1 +'y k
ﬂm,O(T, 7) = — Zq'"k y2mk1___q_k,
: keZ —¥yq

and is the holomorphic part of a weight 1 index m “real-analytic Jacobi form”.
Zwegers [30] uses a slightly different version of the Appell-Lerch sum.
He first defines the theta function - .

9(z, 1) = z q"z/zy”e(v/?.).

vel/2+Z

Then he defines

. e(u/2) ('-1)"q("2+")/ze(nv)
# 0 1) = 9 (v; r)z 1—gre(w)

neZ

This is completed to a “real-analytic Jacobi form” z(u, v; 7) of weight 1/2 by

- letting

au,v;1) = u(u,v; 1)+ %R(u —-0;7),
where

Rz, 1) = > {sgn(v) — E +a)W2)(~1)"~ 1212y,

vel /2+Z

i=9(e),a = §4,and EQz) =2 [} e
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2. Actions of Z; on finite dimensional real C*-algebras

In this section, we describe all possible actions of Zj, the group with two
elements, on finite dimensional real C*-algebras. Our complete list is given
by the following theorem.

Theorem 1. Let (Ay, Zs, a) be a real C*-dynamical system with A finite
dimensional. Then (A, Z3, &) is equivariantly isomorphic to a direct sum of
C*-dynamical Z, systems of the following special forms (we déscribe the non-
identity automorphism).

alt® M, (R) - M,(R), given by x > Adu(x) whereu = I & (=1
and n =k+1
aé’i i MuR) — My,(R), given by x +— Ad D,(x), where

D, = diag(D, ..., D) (n times) and D is the rotation matrix (_0] (1));

agg : Ma(R) ® Mp(R) > M, (R) & M, (R), given by (x, y) = (v, x);

algnk} M,(H) - M, (H), given by x — Ad u(x), whereu = I, ® (—1))
andn =k +1;

ogps - Mn(H) - M, (H), given by x Ad u(x), where u = ily;

a]’I?II]HI : M, (H) © My (H) - M, (H) & M, (H), given by (x, y) = (y, x);

ag]k} M, (C) - M,(C), given by x > Adu(x), whereu = I & (—1I))

andn =k +1;
agy ¢ My(C) - M, (C), given by x +—> i, where X denotes the matrix
derived from x by taking the complex conjugates of all the entries;

aé’é My, (C) —» M3, (C), given by x +— Ad D,(x), where D, is as
above;

agc : Ma(C) & My (C) — M, (C) & M, (C), given by (x, y) = (y, x).

Furthermore, the special forms described above are pairwise non-
isomorphic, so the expression of a given dynamical system as a direct sum of
them is unique up to reordering the summands.

Proof. Let (A,,Z, o) be a real C*-dynamical system with A finite dimen-
sional. Then a restricts to a period two permutation of the set of minimal
central projections of A. It follows that the minimal central projections are
either fixed or switched in pairs. Hence we may write A = A| & - - - & Ax,
where each A; is either a simple summand of A that is left globally invariant
by a, or is a direct sum of two simple summands whose minimal central
projections are interchanged by a. In the latter case, since o maps one
summand to the other, the two summands must be isomorphic. We shall
now determine all of the possible 1somorph1sm classes for the’sub-systems
(Al s Z2 s a)
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Suppose first that A; = M, (R). It follows from [4] that o : M,(R) —

“M,(R) is given by a(x) = Adu(x) for some orthogonal matrix u.
Since a gives an action of Zj, it follows that u? lies in the centre of
M,(R), so u?> = 1 or u> = —1. If u?> = 1, then u is conjugate within
the orthogonal matrices to Iy & (—1;) for some k,l with k +1 = n,
giving us the form a]g’lk]. The equation u2 = —1 can only hold for an

orthogonal matrix with even dimension, and in this case i is conjugate
within the orthogonal matrices to one of the form D,, giving us form
a]%{'z.

Suppose next that A; = M,(H). Again it follows from [4] that
o : M,(H) - M,(H) is given by a(x) = Ad u(x) for some unitary matrix
u, and, since the centre of M, (H) is also R/7,, we have ut =1oru?=-1.
It follows from the spectral theorem for quaternionic matrices (cf [3]) that
u is conjugate within the unitary group of M, (H) to a diagonal matrix with
entries in the closed upper half plane of C. If u? = 1, then the diagonal entries
are 1 or —1, and we have form a]g]’lk}. If u2 = —1, then we have i I,,, and form
Ay

Suppose next that A; = M, (C). Consider the restriction of a to the centre
of A;. This is either the identity map, or complex conjugation. If it is the
identity map, then it follows from [4] that & : M, (C) — M, (C) is given by
a(x) = Ad u(x) for some unitary matrix u, and since i lies in the centre of A;,
we have only the one case, u? = 1, to consider. It follows that if the action on
the centre is trivial, we have form a(g’]k}. If the action on the centre is complex
conjugation, then it follows from [4] that a is given by a(x) = Ad u(x) for
some unitary matrix u. We have a?(x) = u(uzu*)u* = @i)xun)* = x,
for all x, so ui = y I, for some y € T. We have u = yu*, and since u is
unitary, # commutes with ¥ and utt = uu = yl,,s0y =9y andy = 1or
y = -1

Consider first the case where y = 1. In this case, u = u*, so u is a sym-
metric matrix. It follows that there exists a symmetric matrix w in the func-
tional calculus of u such that wu = uw and w? = u. We then have w*u = 1.
It follows that @ o Ad w = Ad w o 3, where f(x) = x. Thus, in this case we
have form ag,. ‘

Now consider the case where y = —1. In this case, we have u = —u”,
where the superscript 7 denotes the transpose, so considering determinants
shows we must have n even. We have that u” has the same spectral projec-
tions as u, so taking the transpose, which for projections is the same as
taking their complex conjugates, induces a period two permutation of them.

-Since the_eigenvalues are multiplied by —1, none of the projections is fixed

by taking the transpose. Thus we may write u” = (a1 P;— a1 Q1) + - S S

(ax P, — ar Qi) where P;, Q; are the spe_ctral projections of u, a’s and —a’s
are its eigenvalues, and Q; = PiT = P; for each i. Since taking complex
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conjugates is a *-automorphism, it follows that the rank of P; is the same as
that of Q; for each i. If P; is not of rank one, we may write P; = pi1t+--+pij
for a set of pairwise orthogonal sub-projections pi1 + --- + p;j. If we let
Cqil = p,.TI , it follows that in our decomposition of u above, we may assume

that all of the P;, Q; are rank one, although the a’s may no longer be distinct.
Assuming we have done this, consider the projection E; = P; + Q;. We have
E; = E;, so E; is arank two projection in M, (R). It follows that there exists
a real orthogonal matrix M such that MTuM is a block diagonal matrix
with two by two blocks on the diagonal, MTuM = diag(uy, ... ugm/2)
say, where each uy satisfies u,{ = —uy. For a two by two unitary matrix,

it is easy to see that this implies uy = byD, for some by € T. Letting
¢ € T be such that ck = by, and lettmg C = diag(cila, ..., cp 1),
we have C = CT and u = (MC)D,(MC)”. Let w = (MC). Then
af o Ad w*(x) = Ad (D,,u)T)(i) and Ad w* o a(x) = Ad (w*u)(x),

but w*u = D,,wT, so we have that our system is isomorphic to form
2n - .

acs-
Suppose next that A, = M,(F)® M,(F), where F = RorF = H.

Then, from [4] there exist umtarles u,v in M,(F) such that a(x,y) =

(Ad u(y), Ad v(x)). Since a? = id, it follows that uv = 1 or uv = —1,
and we may take v = u*. Now let w = (v, v?). We have a o Ad w(x, y) =
a(xv*, v2y(02)*) = wo(yv*)o*u*, v(z);w*)v*) = (vyv*, (v2)x(1)2))

Let B(x,y) = (y,x). Then we have Adw o f(x,y) = Adw(y,x) =
(yv*, 0)x(©v%)* = a o Adw(x,y). Thus we have the forms agg and
O

Finally, suppose next that A; = M,(C) & M,(C). We have a(x,y) =
(0(y), y (x)), Where ¢ and y are either of the form x — uxu™ or of the
form x > ovXxo* for unitaries u,v. If both are of the form x +— wuxu*,
then the same argument as in the case of R or H shows that we have the
form ago. It is not possible to have a(x,y) = (Adu(y), Ado(x)) or
a(x,y) = (Ad u(y), Adv (X)), since this would result in a? failing to be
the identity action on the centre. T hus it remains to consider a(x,y) =
(Ad u(¥), Ad v(x)). We have that o2 = id gwes uvp = )1 for some A € T, so
* replacing u with Au if necessary, we may assume v = u”. Letw = (1, uT)
andlet #7(x, y) = (¥, x). Thenao Ad w(x, y) = (u(u*yu)u*, ,T(x)(uT)*) =
&, u” (X)WT)*) = Ad w o n(x, y), so a and # are inner conjugate. We com-
plete this part of the proof by noticing that # is outer conjugate to a ¢ by the
outer automorphism (x, y) — (%, y).

That the above special forms are pairwise non-isomorphic follows from
considering their fixed point sub-algebras. Elementary calculations show that:
for a{l k} , we have AZ2 = M;(R) @ My (R); for aé”z, we have A% = M, (C);
for ahp, we have AZ2 = M,(R); for aHlk , we have AZ = M;(H) @
My (H); for afy,, we have AZ2 = M, (C); for ol we have AZ2 = M, (H);
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for a(g’lk}, we have AZ2 = M;(C) ® My (C); for ag,, we have Al = M, (R);

for aé’é, we have AZ2 = M, (H); and for a¢c, we have AL = M, (C).
It follows that for every pair, either the algebras are non-isomorphic, or the
fixed point sub-algebras are non-isomorphic. : O

Remark 1. Inspecting the crossed products of the basic building blocks
above shows that two of them are cocycle conjugate (exterior equivalent) if,
and only if, they are isomorphic.

3. Homomorphisms between building blocks

In this section, we describe possible unital equivariant *-homomorphisms
between our basic building blocks. We shall need these for the existence
theorem in section 5.

We consider first the equivariant unital maps between simple building
blocks isomorphic to M,(R) or M,(H). In these cases, the embedding
w : A — B gives a tensor product decomposition of B = w(A) ®r (A’N B),
so the action on B is a tensor product action. We have the following combi-

nations:
aé{l,}k} ® aI{é‘;s] ~ algll'+ks,kr+ls} a]{HII,]k} ® alg,ls} ~ a]{l;](lr+ks),4(kr+ls)]
B@ady 2ol sy @af, 2o
a]g,lk} ® a]g,]s] ~ aI{HII;+ks:kr+ls) a%{z ®a1§{[1’]k} ~ a]}};](;c+l)
agi’ ® afpy = oy ags ® affy = gy

It should be noticed that, with these building blocks, in no case do we have
more than one kind of embedding from one type of building block into
another. » .
Next, we consider the case where the target algebra is non-simple.
We have y : A = B; x +— (w1(x), w2(x)), where wq and y; are unital
*_homomorphisms. Equivariance implies that y = 1 o a, and there are no
‘other restrictions. v _
‘Next, we consider the case of a non-simple building block mapped to a
simple one. Suppose v : AB A — B; (x,y) = wi(x) + w2(y). Then
e WUAX, 0) = y1(x) = ¥(a(0, x)) = B(y (0, x)) = B o y2(x), so we must have
y = ﬁ~?$f’1’"He"r‘efafefno-other,-restri,.gt_ifcg_pgL so we will have an equivariant
unital *-homomorphism from A& A — B if,?r?cﬁiﬁl?iff there-exist-projec=.______
tions p1, p2 € B suchthat p;+ pa = 1, (p1) = p2, and there exists a unital
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*-homomorphism y : A — p1Bpi. A straightforward inspection shows that

projections pi, p» € B with p; + p2 = 1 and S(p1) = p; exists if, and only

if, n is even and, in the case that the target algebra’s action is one of a{”},

agf] or a]{;f}, we have r = s.

. It remains to consider those cases where both building blocks are simple,
and one or both of them are of the form M,,(C).
Consider the case where both building blocks are complex matrices. If both
actions restrict to complex conjugation on the centre, then the actions respect

the tensor product decomposition of B as y(A) ®c (w(A) N B), and we

have the combinations ag, ®c af, = aly, al, ®c a2 = oZy", and

"‘c3 ®c a?c”; = aé”z’" If both actions are trivial on the centre, then both must

} {r s} (rk+ls sk+rl)

be type aC] , and we have the complex case a{l M &c o¢ ac)

from [4].
It is clear that there is no equivariant’ *-homomorphism from o

acz, however, afcl]’ol embeds into alg‘l’O} with the standard embeddmg, and

alg'lm embeds into aéz, with the standard embedding. Using this, we get

the following: al;” = af o al¥ — a]m} ®r af, = aé(zkw)

Using a tensor product w1th one of our actions found above, we get:

a([:llk} i, {IL} R a“ 0 _, aé(3k+1) ORr é:llO} ~ ([2:(3k+[) @ a 2(A+[) Thus we

get an embeddmg from a&” into az(k+l) In the other dlrectlon, we have

2 {2,2} {2,2} 2 2 ~ {22} (2,2}
agy —> Og; —> agy , and ozc2 — (JLR2 —> Apy OR Oy S op]” = agy .

Tensoring with a standard embedding from M,(R) to M, (R), with the
identity actions, gives higher multiplicities.

Consider an embedding ¢ : M,(R) — M,;(C). Here we have
B = y(A) ®r (w(4)Y N B), and our action on B decomposes as a
tensor product action. We have the following possible co‘mbinationS'

{1 0} to

a]g]k} R a {rs} ~ aé:[;-l-ks,kr-i-ls] 2,, ® a{r,s} ~ a(2:t;1(r+s) {1, k} R «a ~
"("H\) 2n m o g 2nm {1k} 2m ~ 2’71(1+k) 2n 2m ~ 4,""
oc2 2Qa acsy > Ogj ® ac3 = ,and ap ®ac3 =acy -

th the embedddmg v o M,(H) —> Mznk (C), we again have
B = y(A) ®r (w(A) N B), and our action on B decomposes as a tensor
product action. We have the following possible combinations: a t, “ ®a{r s}

2{lr+ks,kr+is} {r s} ~ {2nr,2ns) {I k) 2 2n(l+k)
acy ; %k‘;‘ = a(&:l(l b’ oy ® agy = agy s
n m o~ 2/1m 2m ~ 4m(i-+ 2m ~ _4nm
agp ®ags = ogy s o) ®agy Sagy 7, and ogyy @ agy Zagy -

Finally, we have to consider maps from M, ((C) into My, (R) and
M, i (H). In these cases, we no longer have B = w (A) ®r (v (A) N B), as
w(A) N (w (A) N B) contains more than the scalars. '

It is straightforward to check that there exists a unital equivariant embed-
ding from C with complex conjugation to M2 (R) with action given by the
unitary ((1) (])), which is conjugate to type aR’]]. However, a simple calcula-
tion shows that if Ad u implements complex conjugation on the image of
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C under the standard embedding, then the determinant of u# must be —1,
so there does not exist an embedding of C into M>(R) with action of type
anzm.' We do get an equivariant inclusion from C into M4(R) with action
aﬁ‘m = 1%2{11’1} RRr 05112u given by x > st(x) ® 1, where st denotes the standard
embedding above. One can check that conjugation by j € H gives com-
plex conjugation on the embedded copy of C, and that this action on H is

conjugate to a]%m. Proceeding as above, we get the following embeddings:
aly = ofg, Or 0y Zoygi ), ady = oy, R oy — oy, Orafy, Zag;
aly = afy, Oral, > ofp, Or ag ) = af,, ol = ol Gral, >
ol ®R af, = oi'), and oy = ay, ®x al, > aly, @ aly;’) = oy,
Tensoring with the standard embedding of M, (R) into M,,;(R) gives embed-
dings ag, — al}i’{’"l}, and so on.

That these are, up to conjugacy, all of the possibilities for the given pairs of

algebras will follow from the uniqueness theorem in section 5.

4. The Invariant

In this section, we define our invariant, and describe it for each of the special
building blocks from the first section. '

Definition 1. Given a real C*-dynamical system (A, a,Zs), let S(A, a)
denote the subset of Ko(A)t consisting of the classes of projections p in
some matrix algebra A @r M, (R) such that there exists a unital equi-
variant *-homomorphism from aéz to (A ®Qr M, (R), a ® id) taking the unit
to p.

Definition 2. Given an action a of Z; on a real C*-algebra A,, our
invariant for o, to be denoted Inv(A,, a) shall consist of the commutative
diagram

KO(A(a)' Ko(A) ————~——>K0(A¢ R H)

5 | l

Ko(Ap xR (Z,)) — Ko(A x4 (Z2)) —> Ko(A, xR (Z2) ®p H),

where each map is induced by the canonical inclusion, along with the the
positive cones of all of the Ko groups, the classes of the identity elements
in all the K groups, the class of the special element [(1 + g)/2], where g
is the nonidentity element of Z, in the middle Ko group in the bottom row,
the period two automorphisms_induced by a on the top row, the period two
automorphisms induced by & on K¢ groups of the crossed products in the. .
bottom row, and the distinguished sub-semigroup S(A, a.).
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Given two such systems, G and H say, a morphism of invariants from G to
H shall consist of six group homomorphisms v,, VeVh, fr, e, un such that
the following diagram

G, - Gy G3
A NN
H; l > Hy — » ‘ H3
G4 l Gs \ Ge
Hj Hs — He

commutes, each of the six maps respects the positive cones, specified elements,
and distinguished sub-semigroup, and all of the maps intertwine the 7
actions on their domains and ranges.

Next, we describe the invariants for each of the basic forms from the
preceding section. Below, Z always has its usual ordering, and Z @ Z has
positive cone {(n, m) | n, m > 0}. We only describe S(A, ) for the case we
shall need it in forthe existence theorem below.

For algik} we have:

Z Z— Z
Z®LZL—2DZL——ZDZ,

where each horizontal map is the identity map, and each vertical map is
x . (x, x). In each case, a, is the identity and a, flips the two summands.
The class of the identity in each group in the top row is n, in the bottom row
itis (n, n) and the class of the special element is (k, [).

For aR2 we have:

Z Z Z
ZOZL—Z2ZdZ——Z DL,

where the horizontal maps in the top row are the identity, in the bottom row
they are x — (x, x) and (x, y) — x + y, the first vertical map is the identity,
the second is x > (x, x), and the third is multiplication by two. In each case,
a, is the identity, and @, is the identity on the outside groups and flips the two
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summands on the middle one. The class of the identity in each group in the
top row is 2n, along the bottom row it is 2rn, (2n, 2n) and 4n respectively, and
the special element is (n, ). The sub-semigroup S(A, a) is {4k k > 1}.

For app we have:

Z Z Z
2®L—7O7L—=1LL,

where each horizontal map is the identity and each vertical map is
(x,y) + x + y. In each case, a, flips the two summands and &, is the
identity. The class of the unit in each group in the top row is (r, n), in each
group in the bottom row it is 2x, and the special element is n.

{1k} .
For ag . we have:

Z Z Z

L

Z—>2®L—1Z,

where the horizontal maps are each two times the identity map, the vertical
maps are each x > (x, x), the classes of the unit in the groups along the
top are n, 2n, and 4n respectively, and they are (n, n), (2n, 2n), and (4n, 4n)
along the bottom row. In each case a, is the identity and a, flips the two
summands. The class of the special element is (2%, 2I).

For ayy,, notice that the crossed product is isomorphic to M2, (C). We have:

Z ~ 7, Z
7 — 7867 —>1,

where in the top row the maps are both multiplication by two, along the
bottom the maps are x — (x, x) and (x, y) — x + y, The first vertical map is
multiplication by two, the second is x — (x, x), and the third is the identity.
The classes of the units in the top row are n, 2n, and 4n, while in the bottom
row they are 2n, (2n, 2rn) and 4n. The special element is (n, n), and a. is the
identity on the outside terms and flips the two summands on the middle one.
In each case, a, is the identity.
For a gy we have:

LY L—LOL— LODL

M

>
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where the horizontal maps are each two times the identity, the vertical maps
are each (x,y) = x + y, the classes of the identity in the top row are (n, n),
(2n, 2n), and (4n, 4n), while on the bottom they are 2n, 4n, and 8n. In each
case a, flips the two summands, and a, is the identity. The special element is

2n.
For ag]k} we have:

72— 2L ———>1Z

1 Lo

7202—>L2OLPLOL—=1LDZ,

where the horizontal maps along the top are x — (x,x) and (x,y) —
x + y; along the bottom they are (x, y) > (x,y,x,y) and (a,b,c,d) —
(a + b, ¢ + d); the vertical maps are x — (x, x), (x,y) — (x,x, y,y), and
x — (x,x); the classes of the identity in the top row are n, (n,n), and n;
in the bottom row they are (1, n), (i, n, n, n), and (n, n); the a, maps are
the identity on the outside groups and the flip in the middle; the maps &, are
the flip, (a, b, ¢,d) — (b, a,d, c); and the flip respectively, and the special
elementis (I, k, 1, k). -
For a¢, we have:.

L

> 7,

Z——17
Z

where the maps along the top row are x +> (x, x) and (x, y) — x + y; along

the bottom row they are the identity; the vertical maps from left to right are

multiplication by two, (x, y) — x + y, and the identity; the classes of the

identity are n, (n,n) and 2n along the top row, and 2#n in each case along

the bottom; the a, maps are the identity, the flip, and the identity; a. is the
identity in each case; and the special element is 7.

Z
Z
where the maps along the top row are x — (x, x) and (x, ¥) — x + y; along

the bottom row they are multiplication by two; the vertical maps from left to
right are the identity, (x, ¥) > x + y, and multiplication by two; the classes

For aé’g we have:

7Z—17Z

L

z,

—> 7




. Classification of actions 73 on real AF algebras 171

of the identity are n, (n,n) and 2n along the top row, 72, 2n, and 4n along -

the bottom; the a, maps are the identity, the flip, and the 1dent1ty, Oy is the
identity in each case; and the special e]ement 1s n.
.For ag¢ we have:

2OZL—2DZBLOL—ZDZ

| |

Z 2oL ——>17

where the maps along the top row are (x, y) — (x, y,x, y)and (a, b, ¢, d) —
{(a+b, c+d); along the bottom row they are x — (x, x) and (x, y) — x+y;
the vertical maps are (x,y) — x + y, (a,b,c,d) — (@ + b,c + d), and
(x, ¥) > x + y; the classes of the units along the top are (1, n), (n, r, n, n),
and (i, n); along the bottom they are 2n, (2n,2n), and 4n; the a, maps
are the flip, (a, b, ¢, d) — (b,a,d, ¢) and the flip; @, is the identity on the
outside terms and the flip in the middle; and the special element is (n, n).

Remark 2. The diagrams above are able to distinguish between the types
of basic building blocks, so that if we cut down one of our basic types by an
invariant projection, the resulting sub-system is of the same type.

5. Existence and uniqueness theorems

Inthis section, we prove the existence and uniqueness theorems we shall need
for our intertwining argument in the next section. We begin with the existence
theorem.

Theorem 2. Let (A,, Zo, a) and (B, Z3, ) be two finite dimensional real
C*-dynamical systems and let M = (v, v¢, Vi, fir, fc, i) be a morphism
of invariants from Inv(A, a) to Inv(B, ). Then there exists a unital equi-
variant *-homomorphism n : A¢ - Bq, such that Ko(n) = vy, Kolen) = v,

Ko(hn) = vi, Ko(@) = pr, Ko((cm) = pe, and Ko((hn)) = pn, where
denotes the canonical extension to the crossed product.

Proof. Since the invariant respects the decomposition of B, into a direct sum
of our basic building blocks, it will suffice to consider the case where B,
is a single one of these. Furthermore, since the invariant is compatible with
direct sums of homomorphisms, it will suffice to consider the case where A,
is a single building block as well.

__We consider the possible combinations of building blocks in the same order
“as in section’ thiree; beginning.with.those where both A and B are isomorphic
to M,(R) or M, (H). With A of type a“ 4 and B of type’a'{'" "Lwe ‘have.the.
diagram

.
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SOST
ZG)ZX[_ Z@le Z@N

ZoZ - ZBZL ZBZ

Our conditions imply v,(x) = rx, where m + n = (I + k); ve(x) = tx;
vp(x) = tx; p, is given by a matrix of the form (7 ), with r and s positive
integers with Ir + ks = m, ls + kr = nand t = r + s; and u. and uj are
given by the same matrix as #,. This is exactly the invariant of the embedding
X > x ® 1,4, in the decomposition a]g’lk} ® a]gf} = algﬁks’kﬂrm, $0
the desired *-homomorphism exists. The other fifteen combinations with
these building blocks are handled similarly. We leave verifying the details
to the reader. Notice that in these cases we do not need to use the sub-
semigroup S. v

Next, we consider the case where the target algebra is non-simple.
Suppose vy : Inv(A,a) — Inv(B, ) is a morphism of invariants, with
we = (Vr, Ve, Vis r, lic, 11). Projecting onto the first summand along the
top row of Inv(B, f), we see that (x] o v,, m] 0 V¢, T1 © Vp) is a morphism
for the invariant for finite dimensional real C*-algebras from [9], so there
exists a unital real *-homomorphism w! : A — z(B) giving rise to it.
Lety : A — Bbegivenby y(x) = (y'(x),y! oa(x)). Then y is a
unital equivariant *-homomorphism, and it is straightforward to verify that
Inv(y) = .. In these cases, we also do not need to use the sub-semigroup S.

Next, we examine the case of a non-simple building block mapped into a

simple one. Consider the case of mapping agyy to a]gf}. We have the diagram:

G T N
Sl

ZDZL ZDZL VASY/

Z

Our conditions imply: v,(x,y) = kx + ky, where 2kn = m = r + s,
Ur(x) = (kx, kx); ve(x,y) = tx + ty, where k = 2¢; uc.(x) = (¢tx, tx);
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vp(x,y) = jx + jy, where 8jn = m, sot = 2j; and up(x) = (jx, jx).
We have that the special element is (k,[) = (2tn, 2tn). Since the multiplicity
of the embedding from M, (IH) into M,,(R) is a multiple of 8, and the special
element is symmetrical, the orthogonal projections required for the existence
of an equivariant *-homomorphism exist.

If we look at mapping oy to ag,, we have the diagram:

Z®Z A=Y/ ZZ
Z l ZBZ l Z
Z Z Z
N oo
Z Z Z,
and our conditions give: v,(x,y) = rx + ry, where 2rn = m, and

Ur(x) = 2rx. Commuting with the flips gives vc.(x, y) = (jx +ky, kx+ jy),
for positive integers j, k with (j + k)n = m. Following the element (n, 0)
around the first square in the top face shows (2nj,2nk) = (rn,rn), so
r = 2j = 2k. We also have u.(x) = rx; vp(x,y) = kx + ky; and
1n(x) = kx. Since the multiplicity of the mapping from M, (H) to M,,(C) is
a multiple of 4, the required orthogonal projections exist, and we have a map
with this invariant as shown in section three. The other cases in this group can
be handled in a similar fashion.

Consider now embeddings of M, (C) into M,;(C). In the cases where the
actions on the centre are the same, straightforward inspections of the diagrams
show that the maps described in section three suffice to give all possible
morphisms of the invariants.

For ag’f} to ag., we have the diagram:

Z ZDL Z

T

Z3Z IOZLOLZDL— l Z®ZL
V/

ST
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Commutativity of the diagfam, and the maps all being unital and intert-
wining the a, and &, maps, implies that we have: v,(x) = kx for some
positive integer k, vo(x,y) = (kx, ky) vp(x) = k(x) p,(x,y) = kx + ky
tela, b, c,d) = sa + sb+ sc+sd, and up(x,y) = sx + sy, where s is a
positive integer with k = 2s. It follows that k is even, and we have exactly
the invariant of the morphism shown to exist in section three.

For ag;” to a2} we have a similar diagram as for agis} to ag,, but with
different maps. The conditions on the diagram imply that the multiplicity of
the map from Ko(A) to Ko(B) must be even, and a map giving the required
morphism of invariants was shown to exist in section three.

For the mappings from M,(R) or M,(H) to M,;(C), straightforward
. inspection of the diagrams show that the embeddings described in section
- three give all possible values of the invariant. We leave verifying the details
to the reader. ‘ .

Finally, we consider maps from M, (C) to M2,z (R) and M, (H).

For ag., to a]g’f} we have the diagram:

Z ZOZL Z

Z \ZEBZ Z
T

ZDZL YACYACYVA YA YA YA
Z Z Z

Commutativity of the diagram, and the maps all being unital and intertwining
to a, and G, maps implies that we have: v,(x) = kx, where m = kn;
v, y) = kx + ky; vp(x) = (2kx,2ky); pr(x,y) = (Ix,ly), where
2l = k; uc(x) = (kx,ky), and (2r,2s) = (m, m), so (r,s) = (In,In); and
un(x) = (2kx,2kx). Equivariant *-homomorphisms with these invariants

were constructed in section three.
\

2 we have the diagram:
l Z
Z

v Vi

n
For agc, to agpy

Z Z®Z Z

N 1\

N

N
&
N
N
&
N
N
3]
N
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Commutativity of the diagram, and the maps all being unital and intertwining
to a, and 4, maps implies that we have: u,(x) = kx, where m = kn;
te(x) = (kx, kx); pn(x) = 2kx; v (x) = 2kx; ve(x,y) = kr + ky; and
vp(x) = kx. It follows from this alone that the multiplicity of the embedding
from M, (C) into My, (R) must be even. That this is insufficient to ensure
the existence of an equivariant *-homomorphism was discussed in section
three. The requirement that S(a¢,) be mapped into S(a 2’”) ensures that it be
a multiple of four, which is sufficient.

For aé’g to aé’g we have a similar diagram to the one above, but with dif-
ferent order units and maps on the back face. Here the only restrictions on
the multiplicity of the embedding we get is that coming from embeddings of
matrix algebras over C into ones over R, and all of these are achieved by the
maps found in section three.

The other cases in this group are handled similarly. O

Remark 3. Note that we only require the inclusion of the semi-group S in
our invariant for the case ag, mapping into “1%5'21

Next, we prove our uniqueness theorem.

Theorem 3. Let (Ay, Zo,0) and (By, 7, ) be two finite dimensional
real C*-dynamical systems and let y and { be two unital equivariant
*-homomorphisms from Ay to By, such that Inv(y) = Inv({). Then there
exists a unitary u € Bﬂ suchthatf = Aduo y.

Proof. Let (Ay, Z2, a), (B¢,, Za, B), v, and ¢ be as in the statement of the
theorem, and let w, ¢ : Ay, X R7, - By x B Zz be the canonical extensions
of w, .

It will suffice to consider the case where B is one of the basic building
blocks.

Consider first the case where £ is of the form f(x) = Adv(x) for some
unitary v. By the uniqueness result of [9] applied to the bottom face of the
diagram for the morphlsm of invariants Inv(y) = Inv(¢), there exists a uni-
tary W € B, xﬁzzsuchthat( AdW o y. Write W = w, + w,gg.

Since £(g) = w(g) = g, we have that Wg = gW. Thus Wg = weg +
we = gw, + gwgg = a(w,)g + a(wg), and we have w, = a(w,) and
wg = a(wg). Forall x € A, we have {(x) = Wy (x)W* = (w, + wgg)y (x)
(e + weg)* = (wey (I} + we(Bly (W) + (weBly(x)w? +
wey (X)we)g = (wey (Xw; + we(B(y(x))wy), and (weB(y (x))wy +
wey (x)wg) = 0. Now consider the element © = w. + wgv. Then
u is in the fixed point sub-algebra of B and, for all x € A, we have
uy ()" = (et g0y (¥) (w+1g0)" = (e (W)W} +ug By (x)w)+
(we By (N wF + wey (Xw)u = (Weypx)w; + W (B(y (X))w}) = C(X),
SO U is a unitary meeting our requ1rements
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