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1. Introduction 

Understanding when an £-function's central value is non-zero is a problem of 
great significance and long history in analytic number theory. Understanding 
when two or more £-functions are simultaneously non-zero is also a popular 
topic and can have important applications. For example, the problems 
considered in [10] and [13] have a bearing on the Landau-Siegel zero problem 
and the Birch-Swinnerton~Dyer conjecture respectively. Recently there 
has been some. interest in the simultaneous non-vanishing of £-functions 
in the family of primitive Dirichlet characters .. Blomer and Milicevic [2] 
proved that given two fixed Hecke-Maass forms J1 and h which satisfy the 
R.amanujan-Petersson conjecture, and a sufficiently large integer r subject 

~-'to"'a"'technical"'co11c,Ution. that does not permit integers such as primes and the 
product of two primes ofaimosfequalsize~th'ete=ex-istsc;a=pr-imitiye_Dirichlet 
f haracter x of !llodulus r such that L (1 /2, Ji ® x) and L (1 /2, h ® x) _ar=e=n""'o"""t ==. ="=== 

zero. This improved the work of Hoffstein and Lee [7], who studied the same 
kind of non-vanishing problem, but were not able to specify the modulus of 
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the character. Our goal is to add to the literature on a simpler problem: ~at 
of the simultaneous non-vanishing L(l/2, f ® x) and L(l/2, x) for a fixed 
Hecke-Maass form f for SL(2, Z). Unfortunately; at the moment we do not 
know of any immediate application of this result 
· This paper is motivated by a recent result of Liu [12], who showed that for 

R large enough, there exists a Dirichlet character modulo r with R < r < 4R 
such that L(l/2, f ® x) and L(l/2, x) are non-vanishing. Actually· Liu 
considers more general automorphic forms, but the point is that the modulus 
of the desired Dirichlet character is not specified by his work. Liu's result 
follows by showing that 

""' ""'* 1 ""' 15 L. L. L(I/2, f ® x)L(l/2, x) = 2 L. r T O(Rs+€) 
re'.!) x mod r re'.!) 

(1) 

x(-1)=1 

for some subset '.D of the integers between R and 4R of size l'.D I » 
R/(Iog R)2, where * indicates that the sum is restricted to the primitive 
characters. Liu notes that since the right hand side is non-zero, at least one 
of the summands on the left hand side must be non-zero. The main difficulty 
in Liu's analysis seems to be in dealing with Gauss sums, which arise from 
approximate functional equations. 

We will prove the following result. 

Theorem 1.1. Let f be a Hecke-Maass form for SL(2, Z). For prime values 
of q, we have that 

. ""'* q - 2 7 0 L. L(½, f ~ x)L(½, x) = -2-L(l, f) + O(qs+ +€), 
xmodq - -
x(-1)=1 · 

(2) 

where € > 0 is arbitrarily small. The implied constbnt depends on f and €. 

In the exponent, 0 represents the best bound towards the Ramanujan-Petersson 
conjecture for f, which can currently be taken to be 0 = 7 /64. 

By considering such a mean value with a complex conjugate, we avoid some 
of the difficulties with Gauss sums and do not need to average over the 
modulus as in Liu's work. By this we mean that because the root number (see 
(9, chapt 5.1] and (5)) of the product of £-functions in (2) is proportional to 
the Gauss sum of x, it is simpler to understand than the root number of the 
product of £-functions in (1), which is proportional to the cube of the Gauss 
sum of x. Since L(l, f) is non-zero (see (9, Lemma 5.9]), we get 

Corollary 1.2. Fi.x f a Hecke-Maass form for SL(2, Z). For every large 
enough prime q, there exists a primitive Dirichlet character x of conductor q 
such that the central L-values L ( ½, f ® x) and L ( ½, x) do not vanish. 
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Thus in our work, the modulus of the desired Dirichlet character is known. 
Although Corollary 1.2 would follow from any asymptotic for the left hand 
side of (2), it is important to have a power saving error term in these kinds 
of problems (see [14] and [5], in which a power saving error term remains 
elusive). 

:Slomer, Fouvry, Kowalski, Michel, and Milicevic [1] have proven1, 

conditionally on the Ramanujan-Petersson conjecture for f, the impressive 
asymptotic 

"* L(-21,f®x)L(-21,x)2 = (q-2)L(l,f)2 +O(ql-c5) 
~ ((2) ' 

X modq 

(3) 

for q prime and some <5 > 0. Although the mean value we consider is more 
modest, it is not clear whether (2) can be expected from (3). Firstly, our 
asymptotic is unconditional and secondly, on a more technical level, the 
approximate functional equations needed for (3) are set up without Gauss 
sums [1, sec. 3, para. 2] while for (2), Gauss sums cannot be avoided. 

Finally we remark that the problem we are considering is analytic in nature. 
For comparision, we mention that. Chinta [3] has shown that for a fixed elliptic 
curve E over Q and q a large prime, the central value L ( 1 /2, E ® x) is 
non-zero for all but O(q 7 /S+«) Dirichlet characters x modulo q. Given this 
powerful result, the simultaneous non-vanishing problems discussed above 
are almost trivial when posed for weight two holomorphic Hecke-cusp forms. 
For Hecke-Maass forms however, the algebraic methods used in [3] are not 
applicable. 
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Bangalore and Texas A&M University at Qatar, where this work was done, 
for their hospitalities. The first author acknowledges the financial support 
in parts by the UGC centre for Advanced Studies, DST (India) and IISc., 
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2. Preliminaries 

We give the proof of Theorem 1.1 for even Hecke-Maass forms, the details for 
odd forms being entirely similar. Thus throughout, q will denote a prime and 

1 At the time this paper was submitted for publication, [l, Theorem 1.2] was 
conditional on the Ramanujan-Petersson conjecture, but now it is unconditional 
according to the remarks following their theorem. 



240 · Soumya bas and Rizwanur Khan 

fan even Hecke-Maass cusp form for the full modular group with Laplacian 
eigenvalue ¼ + Tj, where Tt is real. Let }, f (n) denote the eigenvalue of the 
n-th Hecke· operator corresponding to f. For more details on Maass forms, 
we refer the reader to [8]. 

· For an even Dirichlet character x modulo q, we define t,he L-functions 

00 00 

L(s, x) = ~x(n)n-s, L(s, .f ® x) = L2t(n)x(n)n-s (4) 
n=l n=l 

for m (s) > 1, with analytic continuation to entire functions having the 
functional equations 

r(f) r(x)2 

A(s, x) = ,jq A(l - s, x), A(s, f ® x) = -q-A(I -·s, .f ® x), 

(5) 

where 

(
q)s/2 (s) ('i.(s,x) := ; r 2 L(s,x), (6) 

( q)s (s+iTt) (s-iTJ) A(s,f®x):=; 1 
2 

r 
2 

L(s,f®x). (7) 

The second functional equation may be found in [14, pg 3). 
We will use the convention that E denotes an arbitrarily small positive 

constant, but not nec.~ssarily the same constant from one occurrence to the 
next. All implied constants may depend implicitly on E and .f. 

' ' 

2.1 Orthogonality of characters 

We will need the following basic identity. This and more on Dirichlet 
characters!can be found in [ 4]. 

' 
Lemma ~.1. For q prime and (nm, q) = 1, we have 

L x(n)x(m) = * . lq - 2 

x mod q -l 

ifn = m mod q 

otherwise. 

2.2 Approximate functional equations 

(8) 

We will need the following expressions for the central values of L(s, x) and 
L(s, f 0 x). These can be derived in a standard way from [9, Theorem 5.3) 
and the functional equations of these L-functions. 
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Lemma 2.2. For x an even primitive character of modulus q, we have 

L(l ) = L(l -) ="'""' x(m)V (.!!!_) + r(:f) "'""'x(m)V (.!!!_) 
2,X 2,X L., 'm 1 1n 1n L., 'm I 1n , 

mc:::l v"' vq '\lq mc:::I '\I"' vq 

(9) 

where for x, c > 0, 

f (2s+l) 
1 1. s 4 ds 

V1(x) = -. (,Jn"x)- ( ) 
2n l (c) f' _!_ S 

4 

(10) 

We have that the £-th derivative v?\x) «e,c min{l, x-c-e}forany C > 0, 
and V1 (x) ~ 1 for x < q-E. Thus the sums in (9) are essentially supported 
on m < ql/2+E. 

Note that the first equality in (9) follows by applying the second equality to 
L(½, x) and taking complex conjugates. 

Lemma 2.3. For x an even primitive character' of modulus q, we have 

( 1 "'""'J1(n)x(n) (n) r(x)
2

"'""' J1(n)x(n) (n)· 
L z,f®x)= L., .jn V2 - +--L., .jn V2 - , 

nc:::I n q q nc:::1 n q 

(11) 

where for x, c > 0, 

l 1. s 1 (2s+lri2TJ) 1 (2s+l~i2Tr) ds 
V2(x) = - (nx)- _ . 

2ni (c) r(l+JT1)r(1-1;T1) s 
(12) 

We have that the £-th deri1;ative v?\x) «e.c min{l, x-c-e}for any C > 0, 
and V2(x) ~ I for x < q--E. Thus the sums in (11) are essentially supported 
on n < q1+E_ 

2.3 Sums of Fourier coefficients 

The Ramanujan conjecture for the Fourier coefficients off is true on average, 
__ by Rankin-Selberg theory. Namely, we have 
·:--=-- - - --- - ----' --- - - -- - , 

-~ --~ - --~- - ~-~-- - . -~--T/2~--~ -----

LIA J (n) j «x112(Ll),1(n)12) «_x . . - -----(13)--o 
n~ _ n~ _ 
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Individually, we have Kim and Sarnak's [11] bound 

ll1(n)I « n°+E, 

where 0 = 7 /64. 

(14) 

We will also encounter sums of Fourier coefficients twisted by additive 
characters. In this context, let us recall the Voronoi summation formula, 

Lemma 2.4 ([6, Theorem 4.21). Let lfl be a fixed smooth function with 
compact support on the positive reals. Let d, d E Z with (q, d) = 1 and 
dd = 1 (mod q ). Then 

_ ~ l1(n) (nd) (nN) ~ l1(n) (-nd) (nN) - q L...- --e - '¥ + -2 + q L...- --e -- '¥ - -2 ' 
n:::l n q q n:::l n · q q 

where for a > -1, 

'P±(X) = 21
. { (n 2x)-SG±(s);(-s)ds, 

7rl J(a) 

;cs) is the Mellin transform of '!f(X) and 

(15) 

(16) 

r (l+s;iTr) r c+s~iTf) r c+s+~Tr+l) r (l+s-~Tr+l) 
2
nG±(s) = f (-s~iTJ) r (-s~iTJ) ± r (-s+i:r+l) r (-s-i;t+l) 

(17) 

The following result says that Fourier coefficients are orthogonal to additive 
characters on average. 

Lemma 2.5 ([8, Theorem 8.11). For any real number a, we have that 

LA 1(n)e(an) « N 1/2+E. 

n":':.!f 

The implied constant does not depend on a. 

3. Proof of Theorem 1.1 

(18) 

Using the approximate functional equations and by picking out even 
characters using the factor x (-i)+ 1 which equals 1 when x ( -1) = 1 and 0 
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otherwise, we have that the left hand side of (2) equals 

1 ""'* 2 L. (x ( -1) + 1) 
x modq 

which we write as 

~ L* (x (-1) + l)(S1 + S2)(S3 + S4). 
x modq 

(20) 

Multiplying out the suillllJ_and above leads to several cross terms, which we 
now analyze one by one. 

3 .1 Cross terms with no Gauss sum 

In this section we consider 

! I:* L },1(n)x(n)x(m)Vi ( .!!!.._) V2 (~) 
2 x modqn,m2:.I ,./nm ,.jq q 

+! I:* I: 21(n)x(-n)x(m)v1(~)v2(~)-
2 x mod q n,m2:.1 ,./nm_ .Jq q 

(21) 

Lemma3.1. 

""'* ""' Aj(n)x(-n)x(m) ( m) (n) 3/4+0+E L.,, L.,, . V1 - V2 - « q ' . 
X mod q n,mc::I ,./nm ,Jq q 

(22) 

Proof By Lemma 2.1 and (14), it suffices to bound by q3/4+0+E the sum 
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Writing n = kq - m, we see from the ranges of n and m that we must have 
1 :::: k < q0

• Thus (23) is bounded by 

(24) 

D 

The next result gives the main term of Theorem 1.1. 

Lemma3.2. 

~ ""* "" },1(n)x(n)x(m)V1 (.!!!._) V2 (~) 
2 L.. L.. ..jniii 'q q 

x mod q n,mc::l 'V '1 

(25) 

Proof By Lemma 2.1 and (13), the left hand side of (25) equals 

q -
2 L AJ(n)V1 (.!!!._) V2 (~) + O(q3!4+0 ). (26) 

2 ..jniii ,lq q 
n,mc::l 

n=m mod q 
(nm,q)=l 

By a similar argument as that used to prove Lemma 3.1, we see that up to 
an error of O(q314+0+0

), the main term in (26) consists of those terms with 
n =m: 

q - 2 L AJ(n) V1 (_!!__) V2 (~) 
2 n>l n . ,./q q 

(11,q)=l 

_ q - 2"" },1(n) ( n ). (n) O( -100) ---L..--V1 - V2 - + q . . 
2 n~1 n. ,lq q 

. (27) 

The equality above holds because V1 (..jq) is very small unless n < q 1/2+E, 

in which case (n, q) = 1 is automatic. Using the definitions of V1 and V2, 
we get 

q - 2"" },1(n) ( n ) (n) --L..--V1 - V2 -
2 n ,lq q 

nc::l 
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Then-sum inside the integral equals L(1 + s1 + s2, f). Shifting the lines of 
integration to m (s1) = m (s2) = -1 /2 + E, we pick up the residue L (1, f) at 
s1 = s2 = 0. The integral on the new lines can be bounded in a standard way 
by q-l/4+<'. This completes the proof. D 

3.2 Cross terms with one Gauss sum 

In this section we consider 

x mod q 

Lemma3.3. 

x mod q 

2 L* (x(-1) +I). r(x) L ),1(n)x(n) V2 (~) 

x mod q q n~I ,Jn q 

. r(f) L x(m) Vi (.!!!._) « q3/4+<'' 
,Jq fa ,Jq 

m~l 

L* (x(-1) +I). L ?,1(n)x(n) V2 (~) 
,Jn q 

x mod q n~I 

. r(f) L x(m) Vi ( .!!2._) « q3/4+<'. 

,Jq m~I fa ,Jq 

(29) 

(30) 

Proof The proofs of (29) and (30) are similar, so we show only the former. 
For even primitive characters we have that r (x )r (x) = q. Thus to prove (29)­
we need to bound by q314+<' the sum 

I " ?-1(11) ( m ) (n) "* 1/2 ~ -y'rim Vi r;:; V2 - ~ r(x)f(±n)x(m). 
q n,m~I - .,_,q q xmodq 

(31) 

(11111,q)=I 

· Writing r(x) = I:*a modq x(a)e(a/q), the innermost sum of (31) equals 

L* r(x)_x(±n)x<m)= L* e(~} L* x(±n)x(ma). ·(32) 
x mod q . a mod q q x mod q 

Now using Lemma 2.1, we have that (31) equals 

q - 1 " 1 ( m ·) " ),1(n) (±nm) (n) -- ~ -Vi - ~ --e -- V2 -
ql/

2 
m>I fa ,Jq n>I ,Jri . q - . q 

(33) 

(m_,q)=I (11,q)=I 
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The innermost a-sum of (34) is a Ramanujan sum which equals -1, so that 
(34) is trivially bounded by q 114+". As for (33), removing the condition 
(n, q) = 1 and using (14), we have that it equals 

q - l L _l_Vi (.!!!_) L AJ(n) e (±nm) V2 (~) + O(ql/4+0+"). 
q 112 rm ,.jq Jn q q 

. m?;l · n?;l 
(m,q)=l 

(35) 

Now by Lemma 2.5 and partial summation, we get that the n-sum in (35) is 
bounded by q", them-sum by q 114 . Hence (35) is bounded by q3/4+€. □ 

3.3 Cross terms with two Gauss sums 

In this section we consider 

(36) 

x modq 

Lemma3.4. 

L* (x(-1)+1)· r(x)2 L AJ(n)x(n)v2(~) 
xmodq q n?;l ./nm, q 

. L x(m) Vi (.!!!_) « q 7 /8+0+" 
m?;I ,Jm, ,_/q 

(37) 

Proof By taking a smooth partition of unity, we may consider the n and m 
sums in dyadic intervals. Thus it suffices to bound by q 7 / 8+0+" the sum 

1 ~* r(x)2 
(M N)l/2 ~ q 

x modq 

x L Jc1(n)x(±nm)V1(.!!!_)w1(;)v2(~)w2(;), (38) 
n,m?;l ,./q q 

for any fixed smooth functions Wi(x) supported on x E [1, 2], N < qi+" 
and M < q 1/2+E. Writing r(x) = L*a mod q x(a)e(a/q), we have that (38) 
equals 

q(M~)l/2 n~I AJ(n)Vi (~) W1 (:) V2 (;) W2 (;) 

(nm,q)=l 

"°'* (a+ b) ""'* · L.i e --· ~ x(±nm)x(ab). 
a,bmodq q x modq 

(39) 
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The innermost sum can be evaluated using Lemma 2.1. Thus (39) equals 

q(~~;112 n~I 21(n)V1(~)w1(:)v2(~)w2(;) 
(nm,q)=l 

(40) 

""* (a+ b) . XL., e--
a,b mod q q. 

(41) 

The innermost a, b-sum of (41) is a product of two Ramanujan sums and 
equals 1. Thus (41) is bounded absolutely by q-l/4+c. As for (40), we proceed 
according to the sizes of N. and M. □ 

Case I. N < q 112 , M < q 114 . We note that the innermost a-sum of ( 40) is 
a Kloosterman sum, which is less than 2q 112 by Weil's bound. Using this and 
(13), we get that (40) is bounded by 

qE(qMN)l/2 « q7/8+E_ (42) 

Case II. M ::::_ q 114 . We first note that them-sum in (40) equals 

L e (±nma) Vi (.!!!._) W1 (:) 
mc:l q ,Jq 

(m,q)=I 

= ~ e ( ±n;a) Vi(~) w1 (:) + O(q-
100

), (43) 

because V1 (Jq) is very small unless m < q 112+E, in which case (m, q) = 1 

is automatic. By Poisson summation, we have that 



248 Soumya Das and Rizwanur Khan 

Joo (yM) (-mMy) x -oo V1 ,J'q W1 (y)e q dy. (44) 

Repeated integration by parts shows that the integral above is bounded by 
(ql+E /lmlMl for any B ::: 0. Thus we may restrict them-sum in the last 
line to 1ml < ql+E /M, up to an error of q-100 say. The b-sum equals q if 
±na = m mod q, and 0 otherwise. Thus (40) is bounded by 

Ml/2 

I: Nl/2 
O<lml <qi+,/ M 

(m,q)=l 

Afl/2 

Nl/2 L 
0<lml<ql+' /M 

(m,q)=I 

+ O(ql/4+0+E). 

(45) 

. (46) 

Above, (46) was obtained from (45) by bounding absolutely the contributing 
of the integers n divisible by q, of which there are at most qE. By Lemma 2.5 
and partial summation, we find that then-sum in (46) is bounded by N1/2+E 

and so ( 46) is bounded .by 

l+E 
_q_ « q7/8+€ 
Afl/2 

(47) 

Case III. N ::: q 112 , M < q 114 . By removing the condition (n, q) = 1, 
we note that ( 40) equals 

q(~~;112 L v1(~)w1(:) I:* e(~) 
m::::I amodq 

(m,q)=I 

x L .Jc f(n)V2 (~) W2 (;) e (±nma) + O(q-114+0+E). (48) 
n::::1 q q 
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Applying Voronoi summation to the innermost n-sum, we get that (48) equals 

q(~~;J/2 L Vi(~) W1 (Z) L* e(~) 
m::::I · a mod q· 

(m,q)=l 

. q L },1,;n) e ci=n;na) q,_ (:~) + O(q-1/4+0+€) 

n::::I . 

(49) 

plus a similar sum involving q, +, where 

'P±(x) = - 1
-. f (n 2x)-SG±(s) {''° V2(tN /q)W2(t)t-s- 1dt ds. (50) 

2n 1 ./co) lo 
The a-sum in ( 49) equals q - 1 if n = ::pn mod q and - 1 otherw,.ise, so that 
(49) equals 

q(q - 1) 

(MN)l/2 
""""' (m.) (m) ~ V1 - W1 -
m::::1 ..jq M 

(m,q)=I 
11::::I 

ll='flll mod q 

(q - 1) """"' 
(MN)l/2 ~ 

m::::J 
( 

m. ) ( m.)""""' }, 1(11) (nN) Vi - W1 - ~--'¥_ -
..jq M n q 2 

112::J 
(m,q)=l 

+ O(q-l/4+0+E). 

We now explain how to truncate the 11-sum. We first note that 

(51) 

(52) 

G±(s)° r)O V2(tN/q)W2(t)t-_s- 1dt « (1 + lsl) 291 (s)+I (_1__) 8

, (53) 
Jo .. 1 ~ Isl 

by Stirling's approximation for the gamma function. and by integrating by 
parts several times the t-integral, for any B ::::: 0, where the implied constant 
depends on !H(s), Band of course f, Using this estimate, by shifting the line 
of integration in (50) right to !Jt(s) = C, we have that 'P ± (x) « qE x-c for 
any C > 0. Thus we may restrict (51) and (52) ton < q2+<c /N, up to an 
error of O(q-100) say. Also, we may shift the line of integration in (50) left 
to ffi(s) = -1 + E to get that that q, ±Cx) « qE x. 

Now restricting to n < q 2+E / N and bounding absolutely we find that that 
(51) is bounded by 

ll='flll mod q 

The same oound holds for (52). Since the sum invlolving 'P + can be treated · 
in exactly the same way, this completes the proof. · 
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