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Abstract. In this article we show multiple ways of constructing

sublagrangians of symmetric forms ¢ : £, —> £# in the bounded
derived category D (7 (X)) of complexes of locally free sheaves over
quasi-projective regular (sometimes without regularity) schemes X, over
noetherian affine schemes Spec(A). By application of the sublagrangian
theorem of Balmer, for Witt theory of triangulated categories, we prove
some results regarding structure of forms in the Witt groups W"(2X (X))
of the filtered subcategories.
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1. Introduction

Suppose (K, #, w) is a triangulated category with §-duality #, containing 1/2
and satisfying (TR4+) (see [B2]). Suppose (£, ¢) is a symmetric form in K
and (L, v) is a sublagrangian of (£, ¢), meaning v.: L —> & is a mor-
phism with v¥gv = 0. Given this data, Balmer’s' Sub-Lagrangian theorem
([B2, 4.201), gives a method of constructing another symmetric form (R, v),
“which is Witt equivalent to (£, ¢). First, we recall the Sub-Lagrangian theo-
rem ([B2, 4.20]) and the method. Embed v in an exact triangle and consider
the following diagram of exact triangles
vo

TN L—>—>N

S . - s T—rﬂgl = 2 ll;o T l(l’ N #g » . ) (1)
' 710 A £ — > r# "
*Partially supported by a General Research Grant from KU

309



310 - Satya Mandal

where A is the cone of v, the second line is the dual of the first line and
Lo is assumed to be a very géod morphism (see [B2]). Let R be the cone
of uo. Then the Sub-Lagrangian theorem ([B2, 4.20]) asserts that there is a
symmetric form y : R —> R¥ such that [(£, ¢)] = [(R, )] in the Witt .
group W (K, #, ). _

The Sub-Lagrangian theorem has numerous applications that led to many
interesting results (e.g. ([B1,B3,BW] and others). This tool was developed
([B2]), mainly with the intent, to be applied to Witt theory of Derived cate-
gories of various exact subcategories of the category Coh(X) of coherent
sheaves over noetherian schemes. (Apparently, the examples of triangu-
lated categories that are not derived categories are not there in abundance).
Obviously, replacing one symmetric space (£, ¢) by another one (R, y)
would not bring any extra milage. What kind of dividend the Sub-Lagrangian
theorem will bring depends entirely on smart construction of sublagrangians
(L, v) of the form (£, ¢) that yields Witt equivalent forms (R, ) with fur-
ther desirable properties. The examples of sublagrangians in the literature
could be classified in to two group. The first group of constructions are fully
formal, within the realm of triangulated categories with duality. Such a con-
" struction was used to establish the twelve term exact sequence ([B2]), which.

is omnipresent in the literature of Derived Witt theory and eventually led
to the proof of exactness of the Gersten-Witt complex ([BW,B4,Bet]), for
regular local rings containing a field.

The second set of examples belong to, down to earth, paradigm of derived
categories. However, there were only limited amount of efforts to construct
sublagrangians that are beyond routine. The existing examples are given
by complexes £ concentrated at a single degree, in spite of their important
consequences. In this article, we show multiple ways of constructing sub-
lagrangians, which also lead to other consequences. Recall that other such
constructions were given in [M1,MS]. (For the rest of this introduction, the
readers are referred to (2.3) for notations, as needed.)

We consider quasi-projective schemes X over affine schemes Spec(A).
Let 2%(X) < DP(¥ (X)) denote the filtration, by grade of the homolo-
gies, of the bounded derived category D?(¥ (X)) of complexes &, of locally
free sheaves over X. For-elements x € W"(2*(X)), we obtain symmetric
forms (&,, ¢) with interesting structures, representing x, i.e. x = [(&,, ¢)].
Two sets of results are obtained. Either set provide information on the range
Z(€.) of degrees, where &, resides (see 2.3(7)). The first set of results pro-
vide further structure regarding the vanishing of the homologies H;(E,),
at certain degrees i, when X is regular. We obtain representations with
length(%Z(£,)) < min{dim X, 2k}. We have exactly similar results with
skew duality, as well. These groups W"(2*(X)) were studied extensively

“in ([B2,B3,BW]). Recall, for k = d these groups were computed in ((BW])
when X is regular and subsequently in ((M1,MS]) in the non-regular case.
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Now we will introduce the results in this article. Due to 4-periodicity, we
need to state the results on four groups W" (2% (X)), for r=k — 1,k, k + 1,
k + 2 only. However, in this introduction, we state the results only on
WX (2* (X)), and the other three will be stated later (§3.1).

Theorem 1.1. Let X be a regular quasi-projective scheme over a noetherian
affine scheme Spec(A), with dimX = d, as in (2.3). Let x = [(E,, ¢))- €
W*(D* (X)) or x = [(E., 0)] € WE(D*(X)). Then (£., ) is Witt equivalent
" to a form (R, y) with the following properties:

1. Hi(Ry) =0V i > 0andgrade(Ho(R,)) = k, -unless Hpo(Re) =0
2. Further,

/ [k %,—4—2——] ifd —k is even
Z(R., v)
[+ 4==L, —4=4=1] ird — kis odd

In particular; the total length of the range < d.

In Section 4, we use an extension ([M2]) of a method of constructing cer-
tain chain complex maps, originally due to Foxby ([F]), to construct another
sublagrangian, for quasi-projective schemes X over noetherian affine schemes
Spec(A), without any regularity condition. This gives another bound of the
range of the symmetric forms. For example, for a quasi-projective scheme X,
any element x € W* (@g (X)) orx € Wk (.@;‘ (X)) can be represented by a
symmetric form (&,, ) such that ~

[x+%, %] if k is even

'%(En l//) c
[+ 55, =551 it ks odd.

where @g’,‘ (X) denotes the filtration by grade of the homologies (see §4).

In §5, we comment on the implications of the main theorems, for the
Witt groups W’ (29-1(X)) and W’ (29-1(X)). We prove (see (2.3) of
notations) there are surjective homomorphisms W (7 (X,d — 1)) —» W41
(29-1(x)) = Wi=3(99-1(X)) of Witt groups, and W=2(24~1(X)) = 0.
However, W¢(2971(X)) = 0 <= H?(X, W) = 0, which is standard.

The article is organized as follows. In §2, we prove some preliminary .
lemmas. In §3, we prove Theorem 1.1. The results on the other three groups
Wk=1(9* (X)), Wkt (9% (X)), Wk+2(D*(X)) are stated in §3.1. In §4, we
state and prove second set of results, using the extension of Foxby’s con-
struction. In §5 we discuss some of Eh(_a_consequences e .
=] would 1iké 1o thank Jean Fasel for reading parts of an earller version of
this article, pointing to some errors and to the Remark 5.4. I would also like
to thank Charles A. Weibel for his suggestions regarding the mtroductzon of
this article and for alerting me about standard notations.
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2. Preliminaries

In this section, we develop some preliminary lemmas and introduce some
notations. First, we recall the definition of grade.

Definition 2.1. For a coherent sheaf F over noetherian schemes (X, Ox),
define grade(F) = min{r : Ext"(F,Ox) # 0}. For facts about grade
of a module, readers are referred to any standard textbook (e.g. [Mh]).
For a module M over a Cohen-Macaulay local ring A, the grade(M) =

height (ann(M)).

We also record the following easy leMa.

Lemma 2:2. Suppose A is a commutative noetherian ring, with dim A = d.
Let C, N are two A-modules, with projdim(C) < oo. Then, forn > 0,
height(ann(Ext™(C, M)) = n. More precisely, for @ € Spec(A),
depth(Ag,) <n = Ext"(C, M), = 0.

Now we set up some notations.

Notations 2.3. The readers may be better advised to refer to these notations,
as needed. For unexplained notations, readers are referred to ([MI1,MS,W]).

1. Unless stated otherwise, (X, Ox) will denote a noetherian scheme with
dim X = d and 1/2 € Ox. Without exception, we assume that all coher-
ent sheaves over X" are quotient of a locally free sheaf. In fact, for our
final results, we assume X is a quasi-projective scheme over a noetherian
affine scheme Spec(A). The category of coherent Ox-modules will be
denoted by Coh(X). The category of locally free Ox-modules will be
denoted by ¥ = ¥ (X). For F € Coh(X), dimy (F) will denote the
¥ -dimention of F. Denote H(X) = {F € Coh(X) : dimy(F) < oo}.
As usual, D?(¥ (X)) will denote the bounded derived category of the

. complexes of locally free Ox-modules and T will denote the translation
functor. ‘

2. For complexes £ € DP(¥ (X)), the homologies will be denoted by
H; (&), as usual.

3. Also, recall (see [M1]) the resolution functor ¢ : H(X) — D?(¥ (X))
sending F to a finite ¥ -resolution, placing the only nonzero homology
at degree —k.

4. For integers k > 0, let Coh(X,k) € Coh(X) denote the full sub-
category of objects F € Coh(X) such that grade((Supp(F)) = k
(see 2.1). Also, let Hy(X) = {F € Coh(X,k) : dimy(F) = k}. This
is the category of locally Cohen-Macaulay Ox-modules F, with finite
locally free dimension and grade(Supp(F)) = k. Note that H (X) is
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an exact category. For F € H(X), denote FV = Ext*(F, Ox). The
association F — FV defines a duality on H(X). Denote A(X, k) =

(]HIk xX),Y, (- 1)ﬁ?2 wy), where w ="V. (Consult ((BW)) for standard
sign conventions.)

5. For integers k > 0, denote 2% = P%(X) = {£. € DY(¥ (X)) :
Vi H;(&) € Coh(X, k)}. Accordingly, we obtain the usual filtration of
Db (¥ (X)), by derived subcategories with dualities D? (¥ (X)) = 2° 2
2'>...09" >...29420.

6. Given an exact category &/ with duality W(&) or W, (&) (resp.
W_(&)) will denote the Witt groups, with respect to plus (resp. skew)
duality. Likewise, for triangulated categories & with duality, W"(7)
or WE(T) (resp. WI(T)) denote the n-shifted Witt groups with plus
duality (resp. with skew duality).

7. For a complex £, € D?(¥ (X)), denote Z(E,) = [mo,nol if & = 0
unless mg > i > ng and &, # 0 and &,, 7#* 0. For integers m > n, we
also write Z(E,) € [m, n], m > mg > ng > n. (Note that we write m, n
in decreasing order.) Z(E,) will be called the “range” of £,, which was
referred to as “support” in [B3].

The following is a key lemma that will be used numerous times, sub-
sequently.

Lemma 2.4. Let A be a noetherian commutative ring with dim A = d. Let

di d

Qk-1 01 Qo Q-1

0 Ok

be a complex of projective A-modules such that (1) H;(Q.) = 0 fori =
1,...k,and (2) Ho(Q.) # O with grade(Ho(Q4)) = ro. Then, k > ro.

Proof. We can assume that A is local. Write I = Ann(Hp(Q,)) and M =
E‘(Q—Qol—).'Let @ € Supp(Hp(Q.)) = V(I) be minimal. Then Hyp(Q,),, has
finite length. Since Ho(Q.) S M, we have depth(My,) = 0. Therefore,
dimy (M) = depthAp > depthy,Ap > ro. Since (Q.), provides a projec-
tive resolution of M,, we have k > dimy (My,) > ro. The proof is complete.

: O

The following is an immediate extension of ((M1, 5.3]).

Lemma 2.5. Suppose X is a noetherian scheme, as in (2.3). Assume any
object F € Coh(X) is quotient of a locally free sheaf on X {(as in [M1, 2.1]).
" Let Lo, Go € Ch?(¥ (X)) be complexes and 11 - Lo —> Go be a morphism
such that H,(Gs) = 0Vr = 0and H,(L,) = 0 V¥r < 0. Then, 77. = 0in
D (¥ (X))
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Proof. First, we can assume 7, is denominator free. By replacing L, by
a quasi-isomorphic complex, we assume, £; = 0 Vi < 0. The functor
DP(¥ (X)) —> DP(H(X)) is an equivalence of categories. We will prove
e = 0in DP(H(X)). Now define F; = G; Vi > 1, Fy = ker(Go — G_1)
and F; = 0V i < 0. Then, », factors through a morphism %, : L, —> F,.
Since F, is acyclic, 7, = 0'and hence 5, = 0. The proof is complete. O

The Followmg are extensions of ([M1, 3.3, 3.4]). To provide a flavor, unlike
in ([M1]), we state and prove the formal versxons

Lemma 2.6. Suppose C is an abelian category. Let g : F —> G be a
morphism in C. Let F,, G, be bounded complexes in ChZ%C) such that G.
is a resolution of G and Ho(F,) = F. Then, there is a bounded complex

Ts € Ch®(C) and a diagram Fe <7— T ——> Ge of morphisms, where t,
is a quasi-isomorphism, and Ho(ge) = g. In particular, g lifts to a morphism
Fo —> G, of complexes in the bounded derived category D?(C).

Proof. We represent the complexés and g as follows:

) dn 10
0 Fr Fn-1 e Fo F To— =» Fo
- |
lg and let 8ol lgdo
Y
0 Gr o gn—l s gO g gO ’? G

be the pullback. Since, 9y is surjective, so is tg. So, dy := doto : T'g = F
is surjective. We construct I', by induction. We denote Z; = ker(d,), B, =
image(dy+1) and B, = Xer(9,) = image(8,+1)- Also, as we construct Iy,
by induction, the differentials will be denoted by d,, : I', —> I'p1.

“Write By = ker(dp), and gy, t, be the restrictior. maps. Define I'; by com-
bining following two pullbacks:

d d
Fi : By —> Fo—>F
T, P I“{ d PBo T F

NI

Gi By Go—>G

60.

a1

In this diagram I'j is the pullback of &, and g, and T is the pullback of
dy,t,p’. The maps t1, g1 are defined as in the diagram. It follows, #; is sur-

jective. By the properties of pullback diagram, the restriction #1 : ker(p) =

%
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Z7 is an ‘isomorphism. So, f; induces a surjective morphism 2§ =
ker(dy) — Z;. It follows Ho(T,) = F.

Now suppose 'y, 2, gn, On has been defined such that the restriction ¢, :
Z, := ker§, — Z] is surjective. Define I'y41, th+1, gn+1, as in the diagram:

d"
Z:H_] - };1+1 * B,II( Z;I( ] ‘7:11
In4l T / Ttrll T’n Tfn
ker (p) Fnt1 l—‘;1+1 7 tn_] (Blll)c—__> Z"C—_% En

4

N

gn+l —— B, —— Bnc_’ gn

an—{-l .

here T 41 is the pullback of 3,41 and g, and I,y is the pullback of
dnt1, 1, p’. The maps t,41, gnt1 are defined as in the diagram. It follows,
th+1 is surjective. By the properties of pullback, the restriction #,41

ker(p) = 7 | 18 an isomorphism. So, #,+; induces a surjective morphism

n+
Zn+1 = ker(dp41) = Z; . By construction, H,(I's) = Hn(F,). The
proof is complete. a

A version of (2.6) for derived categories of resolving subcategories follows
similarly. Consult ((M1]), for a definition of a resolving subcategory of an
abelian category.

Lemma 2.7. Suppose ¥V is a resolving subcategory of an abelian cate-
gory C. Further assume (as in [M1)), if (R.,d,) is a ¥ -resolution of
Ho(R.) € C and if Ho(R,.) has finite ¥ -dimension, ker(d,) € ¥ for all
n> 0.

Letg : F —> G be amorphisminC. Let&,, Qo be two bounded complexes
in ChZ%(C) such that Q. is a resolution of G and Ho(E.) = F. Then, there
is a bounded complex L, € Ch(¥) and a diagram E. < L. N Q.
of morphisms, where t, is a quasi-isomorphism, and Ho(g.) = g. In parti-
cular, g lifts to a morphism E, —> Q, of complexes in the bounded derived
category DY (¥).

Proof By (2.6), there is a digram & ~—TI. 7‘* Q. where T, is a

bounded complex in Ch=%(C) and z, is a quasi-isomorphism. By resolving
category version of ([M1, 3.2]), there is a quasi-isomorphism 7, : L, — T,

‘ e = Yelle- O

We underscore that (2.7) applies to the subcategory ¥ (X) c Coh(X),
when X is a noetherian scheme, as in (2.3).
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Lemma 2.8. Suppose X is a noetherian scheme with dimX = d, as in
(2.3). Suppose (E.,0) is a symmetric form in T*D?(X), and H;(E,) = 0
Vi < —n for some integer n > 0. Then, (€., @) is isometric, to a symmetric
form (E., @") such that the range Z(E., ¢') < [n + k, —n].

Proof. The proof is same as that of [M1, Lemma 5.3]. 0O

Remark. A version of Lemma 2.8, for resolving subcategories ¥, with
w-duality stiucture as in the set up (M1, 7.11), of an abelian category C can
be formulated and would be valid. Exactly the same proof of (2.8) would go
through. The following elementary lemma will be of some use for us.

Lemma 2.9. Suppose X is quasi-projective scheme over a noetherian affine
scheme SpecA. Let Z be a closed subscheme with grade(QOz) > r. Then,
there is a complete intersection closed subscheme Y, containing Z, wzth
codim(Y) =r.

Remark. Barring this Lemma (2.9), most of our arguments in the paper
would go through for regular noetherian schemes X, as in (2.3).

3. The proof of Theorem 1.1

In this section, we prove Theorem 1.1. We give the proof for plus dulity only.
We restate and prove the (1) of (1.1), as follows.

Theorem 3.1. Let X be a regular noetherian scheme, as mr(2 3). Let x =
[(Ees p)] € Wk(@k(X)) Then (&,, q)) is Witt equivalent to a form (R, v)
such that

1. Hi{(R) =0V i>0and
2. grade(’Ho(’R )) =k, unless 'HO(R )y=0.

Proof. Suppose (€,, ¢) is a symmetric form in the shifted category T* 2*(X).
Let the range Z(&,, ¢) C [n+k, —n]. Wecanassume 2n+k > d+1,n > 1.
Assume, for some v > 1, H;(&) = 0V i > o and H,(&,) # 0.
Our goal is to knock off H,(&,). Write the form (&,, ¢) as follows:

dy dy . .
Enti e En &y £_,, ignoring
zeros on two sides. We prove (1) first. Write 1 = k 4+ n — v. By (2.4), there
are two cases,

1. grade (Hy(E,)) =t.
2. grade (Hy(&,)) < t.
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In either case, we want to construct a symmetric form (R,, w) with the
properties that (1) (R., y) is Witt equivalent to (£,, ¢), 2) Hi(R.) =
0V i > v, and (3) the range Z(R., ) C [n + k, —n). The rest of the proof
of (3.1) follows from Proposition 3.4 below. a

The following proposition establishes the point (1) for (3.1).

Proposition 3.2. Let X be a regular noetherian scheme, as in (2.3). Suppose
(., @) is a symmetric form in T* DX, such that (a) Z(E.) < [n + k, —n] for
some integer n > 0, (b) there are u,v withn+k > u > v > 1 such that
Hi(E) =0Vi>v,i #u,and(c) grade(H,(E)) =n+k—u=:1.

" Then, there is a symmetric form (R, ) such that (1) (R, @) is Witt equi-
valent to (E,, ¢), (2) the range Z(R,) < [n + k, —n), and (3) Hi(R,) =
0Vi > v. (4) Further, Ho(R.) = Ho(&E,). In fact, H; ('R.) = H;(&,) for all
n+k)—d>i> (n—l)

Proof. Write the form (&,, ¢) as:

dn dy

gn-{—k s gn 50 g—n,
ignoring zeros on two sides. Denote Z, = Z,(&,) := ker(d,), B, =:
B, (&,) := Image(dy+1). Consider the exact sequence

0 — Hu(£) S By 0 )

Denote H; := H;(E). Then, grade(H,)) = t and dimy (%‘l‘:) < 7. There-
fore, from the ext-sequence of (2), we obtain the exact sequence:

Ext* (§, Ox) —> Ext” (Hu, Ox) — £x171 (B, Ox) — 0

_ _ y 3)

With C = B (Ext? (%’j, Ox)), we obtain the ex ict sequence: :
0 —— C —> Ext*(Hy, Ox) — Ext *1(B,_1,Ox) —>0 (@)

Since grade(H,(£.)) = 7, grade(C) > t.} 'nce’€xt' (C, Ox) = 0 for all
i <t.Let 0—=L} ;4 Lok C be a resolution

_._.of Q,_rvyith_,C,-,__e:/é(rXA),,.of.]ength;att-most-.-d_(.w.e,;choose;AC.;."-.-'.=:Hom(~£-,-~,-(9§f-);?—A—Q

for some £; € ¥(X)). Denote the complex by £¥. By Lemma 2.7, the sur-
jective homomorphism Sxt'( ,Ox) —» C induces a map of complexes
v 1 &% 5 [* in the derived category DP(¥(X), which we denote by v¥.
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Dualizing, in T¥2*, we obtain a map of complexes v : Lo —> &, in
Db (¥ (X). We summarize all of it in the following diagram: '

Lotk e L aE Lntk—d — Ext4(C, Ox)
Vn+kl ) . lvu
Engke — - Eu . En H_n(&)
wn'+kl Ja).; j‘/’—n 2
&z, & E ik ExtT (%f,@x)
l"»’f«»k B
E:+k—d. e Lk o _ Lok c

This diagram resides in D? (¥ (X)).

Since n +k —d > —n and H;(L¥) = 0 Vi 3 —n, it follows from (2.5)
that v*pv = 0in D?(¥ (X)). That means, v is a sublangrangian. Consider the
following diagram:

V1

TN, = L, —— &, N,

T_l,ugl Ho l(ﬁ lﬂg

71t NE o ct

| — ®
) |
H2

TL,.

where N, is the cone of v, the second line is the dual of the first line, ug
is a very good morphism (consult [B2]) and R, is the cone of up. Since ct
has only one nonzero homology, at degree —n, it follows that H; (N¥) =
H;(EH = H;(E,). for all i > —n. Further, consider the right tail of the
homology sequence of the dual triangle:

0 —> HonNH) —>H_,(£H) —> C —> H_(ur1yWH —0.

Therefore, H;(N¥) = 0 V j < —n. Now, H; (L) = Ext"H—I(C, Ox) V i.
From grade consideration, ¥ i > u, H;(L.,) = Ext"1(C,0x) = 0
because n + k — i < 7. Incorporating this information in the homology
sequence of the vertical triangle in (5), we obtain the following:
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1. First, H;(R) =0 Vi < —(n+1).

2. So, by Lemma 2.8, we can cut the range of R, to [n + k, —n] ie.
Z(Re) S [n+k,—nl.

3. Now, Hy+1(Re) € Ext™(C, Ox). Hence grade(H,+1(R.)) = t.
By Lemma 2.4, H,,+1 (R.) = 0, which we check locally.

4. Claim. grade(H,(Rs)) = 7 + 1. To see this, we can assume X =
Spec(A) is affine. Let gp € Spec(A) with height () = 7. Localizing
the long exact sequence, we get an exact sequence

00— (c:XlT(C, OX)go —_— Hu(go)go —H, (Ro)go —0.

We will prove H,(Ra)p, = 0. If H, (E,)p = 0 then H,(Ra)p = 0. So,

assume Hy(E.)p # 0. Since grade(H,(£.)p) = 1, Hu(&,)p has finite

length and dimy (H,(£.)p) = 7. From the exact sequence (4), we have
~ Ext'(Hy (&), Ox)p- So,

8xtT(C, OX)go = Sxtr(gxtT(Hu(g.), Ox), OX)go ~H, (5.)54;.

Now, it follows from the above exact sequence that ,(R.), = 0. This
establishes the claim.
Since grade(H,(R,)) = t + 1, by Lemma 2.4, H,(R,) = 0.
5. Now H;(Rs) =~ Ext*H+1(C,O0x) Yu—1 > i > v. Also since
Hy(E,) = 0, we have Hy(Re) € Ext™T472+1(C, Ox)

By downward induction, and by Lemma 2.4, H;(R,) = Oforall i > v.
It follows from the sublagrangian theorem ([B2, 4.20]) that there is a symmet-
ric form y : R, — R¥ such that [(&,, ¢)] = [(R., ¢)] in WX(2¥). The
proof is complete. a

Now we clean up homologies on positive degrees.

Proposition 3.3, Let X be a regular quasi-projective scheme over an
affine scheme Spec(A), as in (1.1). Suppose (£,, p) is a symmetric form in
T*D*(X), such that the range Z(E,) C [n + k, —n] for some integer n > 0.
Then, there is a symmetric form (Ro, ) such that

1. (R, y) is Witt equivalent to (E,, ¢)
2. Therange Z(Rs, v) C [n + k, —n].
3. Hi(R) =0Vi > 1.

4. Further, Ho(Rds) = Ho(E,W).

Proof. We use all the notations in the proof of Proposition 3.2. Letv > 1 such
that H, (E,) # 0 and H;(£,) =0V i > v. We show that there is a symmetric
form (R, y) such that

1. (R., y) is Witt equivalent to (£,, ¢).
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2. The range Z(Ra, y) < [n + k, —n].
3. Hi(RJ) =0Viz>o.

If grade(H,(E,)) = (n + k) — v =: t, then, by Proposition 3.2, there is
such a symmetric form (R,, w). Now assume s := grade(H,(E,)) < t.
We have codim (Supp (H,(&,)) = grade(Hy(E)) = s > k. By (2.9)
there is a locally complete intersection subscheme ¥ with codimY = k and
Supp (H,(&,)) C Y. There is a surjective morphism £, —» H,(&,), where
L, € Y (X). It follows that this homomorphism factors through £ jy —
Hy(E,). Write F := L,y. Then, dimy (F) = k and Ext'(F,Ox) = 0
Vi # k. Further, the surjection £, — F extends to a resolution

Denote this complex by L,, with £; = O unless v + k > i > v. The compo-
sition homomorphism L, —» H,(&,) — m—ﬁ‘m induces, by Lemma 2.7,

a map of complexes v : £, —> &, in the derived category D?(¥ (X)). Now,
L¥ has only one nonzero homology, at degree —v. Since, v > 1, by (2.5),
v¥pu = 0in T*2*. Hence v is a sublagrangian. Consider the sublagrangian

diagram, as above (5), and use the same notations.
Consider the homology sequence of the dual triangle of (5). It follows that,

foralli # —v, —(v + 1), H; V¥ = H;(E¥) = H;(E,) and

0 —> H_y(NV¥) —— H_p () — £xtb(F, A) —> H_(p4 ) WF) —>0.

is exact. In particular, H;(N¥) = O unless v > i > —n. Now, consider
the homology sequence of the vertical triangle of (5). Since £, has only one
nonzero homology H, (L,) = F, at degree v, it follows that, fori # v, v — 1,
Hi(Rs) = Hi(Nf), and

0—)Hv+1(RO) “_>fh_>Hv(Nf) —>H0(R0) —0

is exact. Since Ho(N¥) = H, (&), the middle arrow is surjective.
So, Hy(R.) = 0. Also, H;(R,) =0foralli >v+2andi < —(n+ 1).
So, we have the following:

1. By lemms 2.8, we can cut the range of R, to [n + k, —n]li.e. Z(R.) <
[n+k,—nl.

2. Hi(R) =0Vi=10,i >v+2.

3. grade(Hy+1(Ra)) = k.

4. Infact, H; (Re) = Hi (&) if i % Lo, (v + 1). In particular, Ho(R,.) =
Ho (&)

Again, by ([B2, 4.20]), (R., y) is Witt equivalent to (€., ¢). We repeat the
process which must stop, latest when v = n. Finally, proof of (3.3) is com-
plete, by another application of Proposition 3.2. 0
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To establish (2) of Theorem 3.1, we further adjust so that
grade(Ho(R.)) = k.

Proposition 3.4. Let X be a regular quasi-projective scheme over Spec(A),
as in (1.1). Suppose (E., @) is a symmetric form in T*D*(X), such that
the range Z(E,) < [(n + k; —n] with n > 0. Then, there is a symmet-
ric form (Re, ), such that (a) (Re, ) is Witt equivalent to (€., @), (b)
the range Z(Re, w) C [n + k, —nl], and (c) Hi(R,) = 0Vi > 1 and
grade(Ho(R.)) = k, unless Ho(R.) = 0.

Proof. By (3.3), we can assume Hi(S.)j = 0V i > 1. Now, assume
grade(Ho(€)) = k + 1. As in (3.3), we can construct (a) a coher-
ent sheaf F, with dimy(F) = k + 1 and Ext' (F,0x) = 0V i #
k + 1, (b) a surjective homomorphism F —» Hp(&,), (c) a resolution
0 Liy1 Lo F 0, with £; e 7#(X).
Denote the complex £,. The composition homomorphism Lo —» Ho(E,) —>
fiil_) induces, by Lemma 2.7, a map of complexes v : L, —> &, in the
derived category D? (¥ (X)). ’

The dual £¥ has only one nonzero homology, at degree —1. Again, by (2.5),
v#(pv = 0 in T*9*. Consider the diagram (5) and use the same notations.
Now consider the homology sequence of the dual triangle in (5). We obtain
Hi (V¥ = Hi(EF) = Hi(E)V i # —1, —2 and the sequence

0 — Ho W) — H_1(EH) — ExH1(F, Ox)
—H_ o WNH —H 2(EH —0

is exact. Since n > 0, we have H; (N¥) = 0V i,< —(n +1). Now consider
the homology sequence for the vertical triangle in (2.5). Since, £, has only
one nonzero homology, at degree zero, H;(R,) = H;(F¥) Vi # 0, 1 and

0 — Hi(Re) — F — HoW{) — Ho(Rs) —> 0

is exact. Since Ho(NF) = Ho(£,), the middle arrow is surjective.
So, Ho(Re) = 0. Also, Hi(R.) =0Vi < —(n+ 1D andVi > 0,i # 1.
Therefore, by (2.8), we can cut the range of R, to [n + k,—n], ie.._
Z(R.) C [n + k, —n]. Again, by ([B2, 4.20]), there is a symmetric form

W Re —> R¥ such that (R., w) is Witt equivalent to (E,, ¢). To readjust
the non-zero homology at degree one, apgp’y (3.3) one more time. The proof
=g complete ST e O I S L S SE s e N

Completing the proof of Theorem 3.1. As was stated befor‘é; the proof of
Theorem 3.1 follows directly from Proposition 3.4. : a
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Completing the proof of Theorem 1.1. The point (1) of (1.1) was established in
Theorem 3.1. We will prove point (2) regarding the range. We will assume that
(€., @) satisfies assertion (1) of the theorem. Suppose the range Z(,, ¢) C -
tk +r +m, —(r + m)], where m > 1 and

% if d — k is even
2X=1 if d — kis odd

We use downward induction on m. In either case, the total length of the range
=k+ 2r + 2m > d + 1. The form looks like:

dop

.gk+r+m o 80 5_, cot g—(r+m) '

ignoring the zeros on both ends. With By = image(d)), the nonnegative part
of &, is aresolution of g—‘(’]. Hence,

H_rm)(€e) = He(ram) (gf) x ExpktCrtm) (%, A)
0

has grade > k + r + m. Take a resolution, of width at most 4:
k : S
00— £Z+(V+m)—d — > Elt—}-(r-f—m) > Expkttm) (B%’ A)

where L = Hom (Ei, (’)X) for some L£; € ¥ (X). Denote this complex by
L¥ with £; = Ounlessk + (r +m) > i > k+ (r + m) — d. By (2.7),
the isomorphism H _(4m) (E¥) s Extktrm) ( g—‘(’), A) induces a morphism
v¥ €% 5 [ in the derived category D’ (¥ (X)), which we denote by v¥.
Now, dualizing, we get a morphism v : £, —> &,. It follows, by (2.5), that
vev? = 0in T*9*. Consider the diagram (5) and use the same notations.
Consider the homology exact sequence of the dual triangle in (5). Since £#
has only one nonzero homology, at degree —(r + m), we obtain H; (NF¥) =
H(EH =Hi(E,), Yi # —(r +m), —(r +m) — 1 and the sequence

0 —> H(ram)WNF) — H_(rimy (EH) —— H_(r4m) (LF)
- H—(r+m)—] (Nf) —=0

is exact. Since the middle arrow is an isomorphism, we have H_(r4m)-1
WNH = Ho(pmyWNVH = 0. It follows, H;(N¥) = O unless 0 > i >
—(r +m).
Write
&o

£ = £t (22,01 ) 2 Hegim (€2, On),
0
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Since grade(E) > k +r +m, H;(La) = Ext*T0TM—iI(E A)=0,Vi > 1
and Vi < —(r + m). Incorporating this information in the homology exact
sequence of the vertical triangle in (5), we obtain H;(R.) = H;(NF) unless
1 > i > —(r + m) + 1 and the sequence

0 — Hi(Re) — Extkttm (B Ox) — HoNF)
— Ho(Ra) — Ext*tr+m+1(E Ox)

is exact. Now it follows that H;(R,) = Ofori > 2andi < —(r 4+ m).
By (2.8), we cut the range of R, to [k + (r + m) — 1, —((r + m) —
D]. Since H1(Re) C Ho(Ls) = Ext**t0+m(E Oy), it follows that
grade(H1(R,)) = (r + m) + k, which is bigger than k + (r + m) — 1.
So, by Lemma 2.4, Hi(R.) = 0. If Ho(E,) = HoN¥) = 0, by the
same argument Ho(R.) = 0. Now, suppose Ho(E,) = HoN¥) # 0.
In this case, grade(Ho(&,)) = k. We prove grade(Hp(R)) = k, by check-
. ing locally. So, we assume X = Spec(A) is affine. For o € Spec(A),

with height(p) = k — 1, localizing the above exact sequence we have
Ho(Ras)p = 0. Hence, grade(Ho(R)) = k, in this case. Again, by ([B2,
4.20]) the proof is complete. a

3.1 The Witt groups W" (2*(X))

In this section, we state all the results from the first set, describing the forms in
all the shifted Witt groups W’ (2% (X)). First, we restate Theorem 1.1, in this
list, for the convenience of the readers and completeness.

Theorem 3.5. Let X be a regular quasi-projective scheme over an affine
scheme Spec(A), with dim X = d, as in (2.3). Let x = [(E., 9)] € WK(2F)
or x = [(E.,9)] € WK(D¥). Then (E., ) is Witt equivalent to a form
(R, W) with the following properties:

1. Hi(Rs) =0V i > 0and grade(Ho(R)) = k, unless Ho(R.) = 0.
2. Further, the range

2 [k+%,—%] ifd —k is even
(Re, ) €
[l + 4=k=1, —2=4=1] ifd — k is odd

In particular, the total length of the range < d.

With shift 7512, the structure of the forms is given by the following
theorem. :
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Theorem 3.6. Let X be a regular quasi-projective scheme over an affine
scheme Spec(A), with dimX = d. Let x = [(E., )] € W*2(Z¥) or x =
[(Ee, )] € wht? (D%). Then (., 9) is Witt equivalent to a form (R, l//)
with the following properties:

1. Hi(Re) =0 Vi>2and grade('Hl('R.)) = k, unless 'H1(R,) =0
2. Further, the range

[(k-l—Z)-i—9’—:'5"—2,—‘1_’2C 2] ifd — kis even
Z(Ra, y) €
[(k+2)+d:§—"3,—f’ d=k-3 3] ifd — k is odd

Proof. The theorem follows from Theorem 3.5, by a shift T'. O
The following theorem corresponds to the shift 71,

Theorem 3.7. Let X be a regular quasi-projective scheme over an aﬁ‘ine
scheme Spec(A), with dim X = d. Let x = [(&., ¢)] € W 1(ZK) or x =
[(Ea, )] € WETH(DK). Then (&, (0) is Witt equivalent to a form (R, ¥)
with the followmg properties:

I. Hi(R) = 0 Vi = 0 and grade(H-_1(R.)) = k + 1, unless
H_1(R.) = 0.
2. Further, the range
k — 1+4“—"+—1,—d—ﬂ—1] ifd — k is odd
AR, v) C [ 2 i ,
[k——l—}-d%k,—‘—i—gﬁ] ifd — k is even

In particular, the total length of the range < d.
Proof. The proof is similar to that of Theorem 3.5. o
With shift 7+ the following is obtained.

Theorem 3.8. Let X be a regular quasi-projective scheme over an gffine
scheme Spec(A), with dim X = d. Let x = [(Ea, 9)] € WEI(D%) or x =
[(Ee, )] € Wf“(@k). Then (&, @) is Witt equivalent to a form (Ra, ¥)
with the following properties:
1. Hi(Re) =0 Vi = 1land grade(Hp(R.)) = k+1, unless Hp(R,) =0
2. Further, the range

v [k 414 4=l —_"‘Ug“)} ifd — k is odd
® i// g

[(k + 1) + d—12<—2, _d_-g_-_z] ifd —kis even
In particular, the total length of the range < d.

Proof.. The theorem follows from Theorem 3.7, by a shift T'. O
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4. Foxby Sublagrangian

In this section, we drop the regularity condition and assume that X is a
quasi-projective scheme over an affine scheme Spec(A). Here we employ an
extension of a construction of a morphism of chain complexes of modules,
originally due to Foxby (see [F,FH]), to construct sublagrangians and reduce
the length of the range of the symmetric forms. For our purposes, a version of
Foxby’s construction, for quasi-projective schemes was completed in ([M2]),
which we quote below. N

Theorem 4.1. Suppose X is a noetherian quasi-projective scheme over a
noetherian affine scheme Spec(A), with dim X = d. Let

Gr+1 —> Gk e G, Gr-1 X Go G_1

Ok O

bea complex. of coherent Ox-modules. Assume N i grade(Oy,) = k, where
Y: = Supp(Hi(G,)) € X. Then, there is a morphism v, : Lo —> G, Where
L,:

0 ['k e Lr Lr—l e L:O 0

is in Ch® (¥ (X)) such that

1. Hi(L) =0 Vi #0and Ho(v) : Ho(Le) — HolG,) is surjective.
2. Ext' (Ho(L.), Ox) =0 Vi # 0and dimy (Ho(L,)) = k. Infact, L,
would be a direct sum of twisted Koszul complexes that resolves Ho(L,).

Before the statement of the main results in the section, define
Di(X) = (€. € DY (¥ (X)) : grade(Hi(£,)) > k Vi).

" Then, 9&'," (X) is a filtration of 9 (¥ (X )), by grade of the homologies. When
X is not Cohen-Macaulay, this filtration differs from the usual filtration
" 9k (X), by co-dimension of support of the homologies, as defined in (2.3).

Theorem 4.2. Suppose X is a quasi-projective scheme over an dffine
scheme Spec(A), withdim X =d.

1. Suppose x € W"'(@é‘(X)) orx € Wk (@Z,‘ (X)). Then, x = [(E., ¢)] for
some symmetric form (E,, @) with the range ~

e e

[’k:+‘§, —-{]’ = ifkiseven——-

[+ 558, —551] ik is odd.




326 © Satya Mandal

2. Suppose x € Wk+2(@k(X)) orx € Wk+2(@k(X)) Then, x = [(5., )]
" for some symmetric form (., @) with the range

B ) [(k +2)+ — —k—] ifk is even
o ¥) S _
- v [(k +2) + 453 ——] if k is odd.

3. Suppose x € Wk"l(gl,‘(X)) orx € Wf_l(gg(X)). Then, x = [(E., 9)]
for some symmetric form (E,, @) with the range

2 : [(k -+ %,'—-’5] ifk is even
: o> g ) .
> V) [(k — 1)+ 52, -5 ] ifkis odd.

4. Suppose x € Wk+1 (QE(X)) orx € Wktl (Qé‘(X)). Then, x = [(E,, ¢)]
for some symmetric form (€., @) with the range ‘

[(k—i— 1+ %, —’-‘%2-] ifk is even

R, v) S
. [Ge+ 1)+ 552, =551 ] ks odd.

Proof We will only prove (1), for plus duality. Suppose (&, ¢) is a sym-
metric form in T"@é’,‘(X)‘ Assume that Z(&,) C [n + k, —n], 2n > k and
H_,(£,) # 0. By (4.1), there is a chain complex morphism v : £, —> &,
such that (1) £, is a locally free resolution of H_,(L,) and £; = 0 unless
—n+k >i > —n, (2) v induces a surjective homomorphism H_,(L,) —»
H_n(E), and (3) Ext! (H_(L,), Ox) = Oforalli # k.

Since 21 > k, it follows that v¥pv = 0. So, v is a sublagrangian. Consider
the diagram (5) of triangles and use the same notations. By going through
the same methods of reduction of length of symmetric forms, as in section 3,
we obtain a symmetric- form (R,, ) which is Witt equivalent to (£,, ¢) in
Qg(X) and Z(R,) C [(n — 1) + k, —(n — 1)]. The process can be repeated,
while 2n > k. This completes the proof. m

Corollary 4.3. The corresponding version of (4.2) for @ﬁ(x) (X) would

also be valid, where @]HI(X) 2 (X) denotes the subcategory of @k (X) consisting
of complexes with homologies in H(X).

Proof. As in the proof of (4.2), consider the diagram (5). Arguing locally,
by ((M1, 4.4]) it follows, grade(H,(N¥#)) > k + 1 and hence by (2.4)
H,(N¥) = 0. Now, it follows H; (N¥) € H(X) V i. Now it also varifies that
H:(R.) € H(X) V i. The proof is complete. A a
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Remark 4.4. It would be interesting to point out that, for k = 0, the sub-
lagrangian used in the proof of (4.2) coincides with that used in ([Bl, 4.1])
designed to kiil homologies of the symmetric forms, starting from right tail of
the form.

5. Some consequences

As an immediate consequence we obtain the following.

Corollary 5.1. Let X be a quasi-projective regular scheme over an affine
scheme Spec(A). The twelve term exact sequence ([B2]) corresponding to the
inclusion %1 < @k splits into two six term exact sequences terminating,
for integers k > 0, at the surjective homomorphims

Wk-H (@k+l) — Wk+] (@k)’
[ Wk+3(@k+1) s Wk+3(@k).
The same holds for skew duality.
Proof. Immediate from 3.5, 3.7, 3.8, 3.6. O

While we obtain (5.1) by elementary methods, in deed by [BW], the follow-
ing terms in the twelve term sequence W*+1 (@%—1) = Wk+3(—.f—i1) = 0 and
they are five term exact sequences. Next, we would like to interpret the main
theorems for k = d —1. Before that, we record the following homomorphisms.

Proposition 5.2. Let X be a noetherian scheme X and k,r > 0 be integers.
(We are mainly interested in the case r = 0.) There are natural homomor-
phisms of Witt groups,

W (A(X, k + 2r)) — W*(Z{ (X)) induced by Cr»
W_ (A(X, k +2r)) — WE(Z{(X)) induced by Cr
W (AX, k +2r +1)) — W NFE(X) induced by (r+1
W_ (AX, k+2r + 1)) — W_ (@,if (X)) induced by {r+1
where , = T ™" (0, with the standard signed translation T.
Proof. Obvious. O
The Witt groups W" (2(X)) were computed in ((BW1) in the regular case,

which was extended to non-regular situation in ((M1,MS]). The following is
some comments on the groups W’ (29-1(X)).
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Corollary 5.3. Let X bea qudsi-projective regular scheme over a noetherian
affine scheme Spec(A), with dim X = d. Then,
W(A(X,d — 1)) - Wé1(29-1(X)) is surjective,
W_(AX,d — 1)) - Wi (29-1(X)) is surjective and,
we2(24-1(X)) = 0.
Proof. The surjectivity of these homomofphisms follow from Theorem 3.5

and Lemma 2.4. To prove the vanishing statement, consider .the exact
sequence corresponding to the inclusion

7't < 27 w9 — wi-x(@0-h) —= w2 (L),

Since the first and the last term are zero ([BW, 6.1]; the middle term
wd-2(z4 __1) = 0. The proof is complete. 0

Remark 5.4. In fact, because of the the exact sequence

W= 1(9_;,, ) W (94) — W (P~ 1)——>Wd(9" ‘)

and since the last term is zero ((BWY), w4 (@d hy=0 only when a is surjec-
tive, which mearis when H4(X, W) = 0. : O

The following are some comments on W*(29-%(X)).
Corollary 5.5. Let X be as in (5.3). Then,
W(eZ (X,d — 1)) - W H(2972(X)) is surjective,
[ W_((X,d — 1)y » W H(2972(X)) is surjective.
Proof. Follows from (3.8) and (2.4). ' a

In a similar way, we can apply Theorem 4.2 for the Witt groups
W (29(X)) and W' (2, (X)), as follows.

Corollary 5.6. Let X be quasi-projective scheme over a noetherian affine
scheme Spec(A), as in (4.2). Then,

1. We have the following:

[ W( (X, 0)) — WOFx,(X), &) — WOZI(X))
are isomorphisms.
| oz (X, 0) = WH(P}
are isomorphisms.
Wo(Z;(X))=0 and
| W2 (X)) =0

3,6 — WHZ(X))
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2. Also,

W (X, 1)) —» Wl(@g1 (X is surjective, and
W_(f (X, 1) —» W3 (@g] 0.9)] is surjective.

Proof. Infact @g (X) = DP(¥(X)). To see the first isomorphisms of (1), note
that the composition of these two map is an isomorphism (([B3]). So, the first
homomorphism W (&7 (X, 0)) —- WO(@]?II(X), g(X )) is injective. The surjec-
tivity of this homomorphism follows from Corollary 4.3. So, it is an isomor-
phism. The second isomorphism is the skew duality version of the first one.
The last two statements of (1) on vanishing follow from Theorem 4.2. The
surjectivity of the first homomorphism of (2) follows from Theorem 4.2 and
(2.4). The latter homomorphism is the skew duality version of the first one.
0

Remark 5.7. The structure of the forms in W’ (2%(X)) is likely to have
some use in the context of Gersten-Witt complexes (see [B4,BW Bet]) of
regular quasi-projective schemes over affine schemes Spec(A). In particular,
the first term of the exact sequence

0—= Wi1 (@91 () — W (Grzy ) —— W@ ()

is given by the surjective map W (&7 (X, d—1)) —» W2~1(29-1).If and when
W (2 (X, d — 1)) is generated by Koszul complexes, so is W¢~1(29-1(X)).
In this case, one can prove that W¢~!(29-2(X)) = 0. This would suffice to
establish the exactness of the Gersten-Witt complex at codimension d — 1.
Likewise, one can make a similar statement for codimension d — 2. There are
similar results in K -theory (see {Mo, 0.3]) in this direction.
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