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Abstract. In this article we show multiple ways of constructing 

sublagrangians of symmetric forms <p : t:. ~ t:! in the bounded 
derived category Vb(1/(X)) of complexes of locally free sheaves over 
quasi-projective regular (sometimes without regularity) schemes X, over 
noetherian affine schemes Spec(A). By application of the sublagrangian 
theorem of Balmer, for Witt theory of triangulated categories, we prove 
some results regarding structure of forms in the Witt groups wn(.~k(X)) 
of the filtered subcategories. 
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1. Introduction 

Suppose (K, #, w-) is a triangulated category with c5-duality #, containing 1 /2 
and satisfying (TR4+) (see [B2]). Suppose (£, <p) is a symmetric form in K 
and (£,, v) is a sublagrangian of (£, <p ), meaning v. : ·e, ·--+ £ is a mor­
phism with v#<pv = 0. Given this data, Balmer's· Sub-Lagrangian theorem 
([B2, 4.20]), gives a method of constructing another symmetric form (R, If/), 
which is Witt equivalent to(£, <p). First, we recall the Sub-Lagrangian theo­
rem ([B2, 4.20]) and the method. Embed v in an exact triangle and consider 
the following diagram of exact triangles 

VQ V VJ 
T- 1N-£--£-N 

-===~=~======~. ~f =TI µ5fz1 ~iµo . . -r~ -- 1~=µz,s;,,, =-="""~~. e=(la=e) = 

T- 1 £# - N# - £# - £# 
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where N is the cone of v, the second line is the dual of the first line and 
µo is assumed to be a very good morphism (see [B2]). Let n be the cone 
of µo. Then· the Sub-Lagrangian theorem ([B2, 4.20]) asserts that there is a 
symmetric form If/ : n ~ R# such that[(£, <p)] = [(R, 1/1)] in the Witt 
group W(K, #, w). 

The Sub-Lagrangian theorem has numerous applications that led to many 
interesting results (e.g. ([Bl,B3,BW] and others). This tool was developed 
([B2]), mainly with the intent, to be applied to Witt theory of Derived cate­
gories of various exact subcategories of the category Coh(X) of coherent 
sheaves over noetherian schemes. (Apparently, the examples of triangu­
lated categories that are not derived categories are not there in abundance). 
Obviously, replacing one symmetric space (£, <p) by another one (R, If/) 
would not bring any extra milage. What kind of dividend the Sub-Lagrangian 
theorem will bring depends entirely on smart construction of sublagrangians 
(£, v) of the form (£, <p) that yields Witt equivalent forms (R, 1./f) with fur­
ther desirable properties. The examples of sublagrangians in the literature 
could be classified in to two group. The first group of constructions are fully 

. formal, wi~hin the realm of triangulated categories with duality. Such a con­
struction was used to establish the twelve term exact seg·uence ([B2]), which. 
is omnipresent in the literature of Derived Witt theory and eventually led 
to the proof of exactness of the Gersten-Witt complex ([BW,B4,Bet]), for 
regular local rings containing a field. 

The second set of examples belong to, down to earth, paradigm of derived 
categories. However, there were only limited amount of_ efforts to construct 
sublagrangians that are beyond routine. The existing exp.mples are given 
by complexes £, concentrated at a single degree, in spite of their important 
consequences. In this article, we show multiple ways of constructing sub­
lagrangians, which also lead· to other consequences. Recall that other such 
constructions were given in [M 1,MS]. (For the rest of this introduction, the 
readers are referred to (2.3)for notations, as needed.) 

We consider quasi-projective schemes X over affine schemes Spec(A). 
Let f!#k(X) £;; Vb("f/(X)) denote the filtration, by grade of the homolo­
gies, of the bounded derived category Vb("f/(X)) of complexes£. of locally 
free sheaves over X. For-elements x E wn(~k(X)), we obtain symmetric 
forms ( £., <p) with interesting structures, representing x, i.e. x = [ ( £., <p)]. 
Two sets of results are obtained. Either set provide information on the range 
/%(£.) of degrees, where £. resides (see 2.3(7)). The first set of results pro­
vide further structure regarding the vanishing of the homologies Hi(£.), 
at certain _degrees i, when X is regular. We obtain representations with 
length(/%(£.)) :::: min{dimX,2k}. We have exactly similar results with 
skew duality, as well. These groups wn(~k(X)) were studied extensively 

. in ([B2,B3,BW]). Recall, for k = d these groups were computed in ([BW]) 
when Xis regular and subsequently in ([Ml,MS]) in the non-regular case. 
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Now we will introduce the results in this article. Due to 4-periodicity, we 
need to state the results on four groups wr(9Jk(X)), for r,+= k - l, k, k + l, 
k + 2 only. However, in this introduction, we state the results only on 
Wk (9Jk (X)), and the other three will be stated later (§3.1). 

Theorem 1.1. Let X be a regular quasi-projective scheme over a noetherian 
affine scheme Spec(A), with dim X = d, as in (2.3 f Let x = [(£., cp )l E 

Wk (9Jk (X)) or x = [(£., cp )] E W~ (9Jk (X)). Then (£., cp) is Witt equivalent 
to aform (R., 1/1) with the following properties: 

1. Hi (R.) = 0 V i > 0 and grade(Ho(R.)) = k, -unless Ho(R.) = 0. 
2. Further, 

/ { [k + d2k, _ d2k] 

5£(R., 'II) ~ [ k + d-~-1, _ d-~-1] 

if d - k is even 

if d - k is odd 

ln particula1; the total length of the range :::: d. 

In Section 4, we use an extension ([M2]) of a method of constructing cer­
tain chain complex maps, originally due to Foxby ([F]), to construct another 
sublagrangian, for quasi-projective schemes X over noetherian affine schemes 
Spec(A), without any regularity condition. This gives another bound of the 
range of the symmetric· forms. For example, for a quasi-projective scheme X, 
any element X E wkc~;(X)) or X E W~(9J;(x)) can be represented by a 
symmetric form (£., cp) such that -

{ 
(k + ~' -~] if k is even 

§£(£., 1/1) C [ ] 
- k + k21, _k21 if k is odd. 

where 9J;(x) denotes the filtration by grade of the homologies (see §4). 
In §5, we comment on the implications of the main theorems, for the 

Witt groups wr(93d-1 (X)) and W~(9Jd-I(X)). We prove (see (2.3) of 
notations) there are surjective homomorphisms W(J.?l(X, d - 1)) - wd-l 
(9)d-l (X)) ~ w~-3 (9)d-l (X)) of Witt groups, and wd-2 (9)d-:-I (X)) = 0. 
However, Wd(9)d-I(X)) = 0-<===} Hd(X, W) = 0, which is standard. 

The article is organized as follows. In §2, we prove some preliminary 
lemmas. In §3, we prove Theorem 1.1. The results on the other three groups 
wk-I (9)k(X)), wk+1 (93*(X)), wk+2 (9Jk(X)) are stated in §3.1. In §4, we 
state and prove second set of results, using the extension of Foxby's con­
struction. In §5 we discuss some of the co_r:1se.9J!enc_es. _ = ·== ~~-~ -~ ~ ·-~- --= -, _ _ ~ . 

=--,,,~-- I woula-uk[lo HwiikJean-Fas~I Jo;-~eading parts of an earlier version of 
this article, pointing to some errors and to the Remark 5.4. I would also like 
to thank Charles A. Weibel for his suggestions regarding the introduction of 
this article and for alerting me about standard notations. 
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2. Preliminaries 

In this section, we develop some preliminary lemmas and introduce some 
notations. First, we recall the definition of grade. 

Definition 2.1. For a coherent sheaf :F over noetherian schemes (X, Ox), 
define grade(:F) = min {r : £xtr (:F, Ox) =/. O}. For facts about grade 
of a module, readers are referred to any standard textbook (e.g. [Mh]). 
For a module M over a Cohen-Macaulay local ring A, the grade(M) = 
height(ann(M)). 

We also record the following easy lemma. 

'Lemma 2~2. Suppose A is a commutative noetherian ring, with dim A = d. 
Let C, N are two A-modules, with proj dim(C) < oo. Then, for n :::. ·o, 
height(ann(Extn(c, M)) :::, n. More precisely, for ga E Spec(A), 
depth(Aio) < n ~ Extn(c, M)p = 0. 

Now we set up some notations. 

Notations 2.3. The readers may be better advised to refer to these notations, 
as needed. For unexplained notations, readers are referred to ([Ml,MS, WJ). 

1. Unless stated otherwise, (X, Ox) will denote a noetherian scheme with 
dim X = d and 1/2 E Ox. Without exception, we assume that all coher­
ent sheaves over x· are quotient of a locally free sheaf. In fact, for our 
final results, we assume X is a quasi-projective scheme over a noetherian 
affine scheme Spec(A). The category of coherent Ox-modules will be 
denoted by Coh(X). The category of locally free Ox-modules will be 
denoted by "f/ = "f/(X). For :F E Coh(X), dim-r(F) will denote the 
"f/-dimention of :F. Denote lHI(X) = {FE Coh(X) : dim-r(F) < oo}. 
As usual, Vb("f/(X)) will denote the bounded derived category of the 

. complexes of locally free Ox-modules and T will denote the translation 
functor. 

2. For complexes £. E 1)b("f/(X)), the homologies will be denoted by 
1t; (£.), as usual. 

3. Also, recall (see [Ml]) the resolution functor (k : lHI(X) -+ 1)b("f/(X)) 
sending :F to a finite "//-resolution, placing the only nonzero homology 
at degree -k. 

4. For integers k :::. 0, let Coh(X, k) £; Coh(X) denote the full sub­
category of objects :F E Coh(X) such that grade((Supp(:F)) :::. k 
(see 2.1). Also, let lHik(X) = {FE Coh(X, k) : dim-r(.r) = k}. This 
is the category of locally Cohen-Macaulay Ox-modules F, with finite 
locally free dimension and grade(Supp(:F)) = k. Note that lHik(X) is 
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an exact category. For F E IHik(X), denote ;:v = Exrk(F, Ox). The 
association F r--+ ;:v defines a duality on IHik(X). Denote A(X, k) = 
( 

k(k-1) 
IHik(X),v, (-1) 2 Wk), where w =vv. (Consult([BW])forstandard 

sign conventions.) 
5. For integers k ?: 0, denote ~k = ~k(X) = {E. E 1)h("f/(X)) : 

'<Ii Hi(£.) E Coh(X, k)}. Accordingly, we obtain the usual filtration of 
1)h("f/(X)), by derived subcategories with dualities 1)h("f/(X)) = ~o 2 
~l 2 · · · 2 ~r 2 · · · 2 ~d 2 0. 

6. Given an exact category d with duality W(d) or W+(d) (resp. 
W _ ( d)) will denote the Witt groups, with respect to plus (resp. skew) 
duality. Likewise, for triangulated categories fY with duality, wn ( !Y) 
or W~(..?) (resp. W~(!Y)) denote then-shifted Witt groups with plus 
duality (resp. with skew duality). 

7. For a complex E. E 1)h("f/(X)), denote !!l(E.) = [mo, no] if Ei = 0 
unless mo ?: i ?: no and Emo i= 0 and Eno i= 0. For integers m ?: n, we 
also write !fl(£.) s;; [m, nj, m ?: mo ?: no ?: n. (Note that we write m, n 
in decreasing order.) !!l(E.) will be called the "range" of E., which was 
referred to as "support" in [B3]. 

The following is a key lemma that will be used numerous times, sub­
sequently. 

Lemma 2.4. Let A be a noetherian commutative ring with dim A = d. Let 

~ ~ 
0 - Qk -- Qk-1 - · · · -- Q1 -- Qo - Q-1 -- · · · 

be a complex of projective A-modules such that(]) Hi(Q.) = 0 for i -
1, ... k, and (2) Ho(Q.) i= 0 with grade(Ho(Q.)) = ro. Then, k?: ro. 

Proof We can assume that A is local. Write I = Ann(Ho(Q.)) and M =. 
~- Let g;; E Supp(Ho(Q.)) = V(J) be minimal. Then Ho(Q.)r,o has 
finite length. Since Ho(Q.) s;; M, we have depth(Mr,o) = 0. Therefore, 
dim1-'(Mr,o) = depthAr,o ?: depth1ioAffJ ?: ro. Since (Q.)r,o provides a projec­
tive resolution of Mr,o, we have k ?: dim,,,(Mr,o) ?: ro. The proof is complete. 

D 

The following is an immediate extension of ([Ml, 5.3]). 

Lemma 2.5. Suppose X is a noetherian scheme, as in (2. 3 ). Assume any 
object FE Coh(X) is quotient of a locally free sheaf on X (as in [MI, 2.1]): 
Let£., 9. E Chb("f/(X)) be complexes and 17. : £. --+ 9. be a morphism 
such that Hr(9.) = 0 Vr ?: 0 and Hr(£.) ~ 0 \fr < 0. Then, 17. = 0 in 
1)h ("f/ (X)). 
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Proof First, we can assume 1'/• is denominator free. By replacing £. by 
a quasi-isomorphic complex, we assume, £i = 0 Vi < 0. The functor 
Vb("f/(X)) ~ 1)b(IHI(X)) is an equivalence of categories. We will prove 
1'/• = 0 in 1)b(]HI(X)). Now define Fi = 9i Vi :::: 1, Fo = ker(Qo ~ 9-1) 
and Fi = 0 Vi ::::: 0. Then, 1'/• factors.through a morphism 11: : £. ~ F •. 
Since F. is acyclic, ,.,: = 0 and hence 1'/• = 0. The proof is complete. D 

The Following are extensions of ([Ml, 3.3, 3.4]). To provide a flavor, unlike 
in ([Ml]), we state an4 prove the formal versions. 

Lemma 2.6. Suppose C is an abelian category. Let g : F ~ 9 be a 
morphism in C. Let F., 9. be bounded complexes in Ch?.0(C) such that 9. 
is a resolution of 9 and 1to(F.) = F. Then, there is a bounded complex 

r. E Chb(C) and a diagram F. ~ r. ~ 9. of morphisms, where t. 

is a quasi-isomorphism, and 1to(g.) = g. In particular, g lifts to a morphism 
F. ~ 9. ·of complexes in the bounded derived category Vb (C). 

Proof We represent the complexes and g as follows: 

to ro - -»- Fo 

and Jet go l ! gdo 

Qo -------- g ao 

be the pullback. Since, 80 is surjective, so is to. So, c5o := doto : fo - F 
is surjective. We constr:uct fn by induction. We denote Z~ = ker(dn), B~ = 
image(dn+I) and Bn = ker(8n) = image(8n+J). Also, as we construct fn, 
by induction, the differentials will be denoted by c5n : r n ~ r n-1 . 

·Write pgo = ker(c5o), and gb, tb be the restrictior. maps. Define f1 by com­
bining following two pullbacks: 

In this diagram fi is the pullback of 81 and gb and· r I is the pullback of 
d1, tbp'. The maps t1, g1 are defined as in the diagram. It follows, t1 is sur-

jective. By the properties of pullback diagram, the restriction t1 : ker(p) ....:::::+ 
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Z~ is an ·isomorphism. So, t1 induces a surjective morphism .2; .­
ker(c51) -» z;. It follows h'.o(r .) = F. 

Now suppose r n, tn, 8n, c511 has been defined such that the restriction t11 : 
2:1 := kerc5n - z;l is surjective. Define rn+I, f11+1, 811+.1, as in the diagram: 

here r~+I is the pullback of 811+1 and g;1 and rn+J is the pullback of 
d11+1, r:ip'. The maps t11+1, 8n+1 are defined as in the diagram. It follows, 
t,1+1 is surjective. By the properties of pullback, tJ:ie restriction t11 +1 : 

ker(p) ---2'.+ z;
1
+ 1 is an isomorphism. So, t11+ 1 induces a surjective morphism 

2:1+1 := ker(c5n+1) - z;i+I· By construction, h'.11 (r.) = h'.11(F.). The 
proof is complete. □ 

A version of (2.6) for derived categories of resolving subcategories follows 
similarly. Consult ([Ml]), for a definition of a resolving subcategory of an 
abelian category. 

Lemma 2.7. Suppose 11 is a resolving subcategory of an abelian cate­
gory C. Further assume (as in [Ml]), if (R., d.) is a "//-resolution of 
h'.o(R.) E C and if h'.o(R.) has finite 11 -dimension, ker(d11 ) E "// for all 
n » 0. 

Let g : F ---+ g be a morphism in C. Let£., Q. be two bounded complexes 
in Ch?::.0 (C) such that Q. is a resolution of 9 and Ho(£.) = F. Then, there 

is a bounded complex£. E Chb("//) and a diagram £. ~ £. ~ Q. 
of morphisms, where t. is a quasi-isommphism, and h'.o(g.) = g. !n parti­
cula,; g lifts to a mmphism £. ---+ Q. of complexes in the bounded derived 
catego,y Vb("//). 

Proof By (2.6), there is a digram £. ~ r. ~ Q. where r. is a 

bounded complex in Ch?::.0(C) and r. is a quasi-isomorphism. By resolving 
category version of ([Ml, 3.2]), there is a quasi-isomorphism 17. : £. ---+J ., 

_ ~c,- ~he~e_ .£. i_~_in _ 0!:,.JtL ~-o~1h_~_pro~f _ is --~qn1ple~e __ ~ith ~_;...=.--2!:17_• _an_cL~ --- __ --
g. = y.17.. □ 

We underscore that (2.7) applies to the subcategory "//(X) £ Coh(X), 
when Xis a noetherian scheme, as in (2.3). 
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Lemma 2.8. Suppose X is a noetherian scheme with dim X = d, as in 
(2.3). Suppose (E., <p) is a symmetric form in Tk'Db(X), and Hi(E.) = 0 
Vi < -n for some integer n ::: 0. Then, (E., <p) is isometric, to a symmetric 
form (E~, <p1

) such that the range ~(E~, <p 1
) ~ [n + k, -n]. 

Proof The proof is same as that of [M 1, Lemma 5 .3]. □ 

Remark. A version of Lemma 2.8, for resolving subcategories 1/, with 
w-duality structure as in the set up ([Ml, 7.1]), of an abelian category C can 
be formulated and would be valid. Exactly the same proof of (2.8) would go 
through. The following elementary lemma will be of some use for us. 

Lemma 2.9. Suppose X is quasi~projective scheme over a no;therian affine 
scheme SpecA. Let Z be a closed subscheme with grade(Oz) ::: r. Then, 
there is a complete intersection closed subscheme Y, containing Z, with 
codim(Y) = r. 

Remark. Barring this Lemma (2.9), most of our arguments in the paper 
would go through for regular noetherian schemes X, as in (2.3). 

3. The proof of Theorem 1.1 

In this _section, we prove Theorem 1.1. We give the proof for plus duli~y only. 
We restate and prove the (1) of ( 1. 1), as follows. 

Theorem 3.1 .. Let X be a regular noetherian scheme, as in (2.3). Let x = 
[(E., <p)] E Wk(E1k(X)). Then (E., <p) is Witt equivalent to a form (R., If/) 
such that 

1. Hi(R.) =0 Vi> Oand 
2. grade(Ho(R.)) = k, unless 1-lo(R.) = 0. 

Proof Suppose (E., <p) is a symmetric form in the shifted category Tk E1k(X). 
Let the range ~(E., <p) ~ [n +k, -n]. We can assume 2n +k ::: d + 1, n ::: l. 
Assume, for some v ::: 1, Hi(£.) = 0 'v i > v and Hv (E.) =/=- 0. 
Our goal is to knock off 1-lv (£.). Write the form (E., <p) as follows: 

d d · · 
En+k -----+- ... -- En ~ ... -- Ev --"---,.. ... -- E-n' 1gnonng 

zeros on two sides. We prove (1) first. Write t = k + n - v. By (2.4), there 
are two cases, 

1. grade (1-lv(E.)) = t. 
2. grade (1-lv(E.)) < t. 
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In either case, we want to construct a symmetric form (R., If/) with the 
properties that (1) (R., 1/1) is Witt equivalent to (£., <p), (2) H;(R.) = 
0 Vi :::: v, and (3) the range ~(R., ·If/) s;; [n + k, -n]. The rest of the proof 
of (3.1) follows from Proposition 3.4 below. D 

The following proposition establishes the point (1) for (3.1). 

Proposition 3.2. Let X be a regular noetherian scheme, as in (2.3 ). Suppose 
(£., <p) is a symmetricfonn in Tk!!Jk, such that (a)~(£.) s;; [n + k, -n]for 
some integer n » 0, (b) there are u, v with n + k :::: u :::: v :::: l such that 
H; (£.) = 0 Vi :::: v, i =fa u, and (c) grade(Hu(E.)) ·= n + k - u =: .-. 

Then, there is a symmetric fonn ('R., If/) such that (I) ('R., <p) is Witt equi­
valent to (£., <p), (2) the range ~('R.) s;; [n + k, -n], and (3) H;(R.) = 
OVi:::: v. (4)Further, Ho(R.) = Ho(£.). lnfact, H;('R.) = H;(£.)forall 
(n + k) - d > i :::: -(n - I). 

Proof Write the form(£., <p) .as: 

ignoring zeros on two sides. Denote Zn := Zn(£.) .- ker(dn), Bn -. 
Bn(E.) := Image(dn+J). Consider the exact sequence 

0 - Hu(£.) - ~•: - Bu-I - 0 (2) 

Denote Hi := H; (£~). Then, grade(Hu)) = r and dimJ/ (l) :::: r. There­
fore, from the ext-sequence of (2), we obtain the exact sequence: 

Extr (i, Ox)~ &xtr (Hu, Ox) -Extr+l(Bu-1, Ox) -o 

With C = /J ( Ext r ( i, Ox)), we obtain the ex tct sequence: 
(3) 

o-c--► £xtr(Hu,Ox)--;..£x(+l(Bu-1, Ox)-0 (4) 

Since grade(Hu (£.)) = r, grade( C) :::: r. I- !nce'Exti ( C, Ox) = 0 for all . , 

i < r. Let O - £!+k-d - · · · - j:~+k ---- C be a resolution 

. : :_ of C:,.»'ith_.Ci_E.,;,.%(X},_ofJength,at.mosLd_(_we,,choose£7.,_=ccHom{£;-,-O,x-)=-.-:~---­

for some£; e Y(X)). Denote the complex by£!. By Lemma 2,7, the sur-

jective homomorphism £xtr (k-, Ox) - C induces a map of complexes 

v# : £! ---+ £!, in the derived category 1Jb(Y(X), which we denote by v#. 
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Dualizirig, in Tk :?Jk, we obtain a map of complexes v : £. --+ £. in 
Vb(Y(X). We summarize all ofit in the following diagram: 

£n+k - · · · - £u - · · ·---+ £n+k-d ---- Extd(C, Ox) 

~+kl 1~ 
En+k __:____,.. · · · --➔ Eu --➔ • · · -. -- E-n ---➔ 1-l-n (£) 

~~+kl l ~u l ~-n l I 
E'!_n --➔ •.. ---➔ [k-u ---+ ... --➔ E;+k --➔ Ext' (~:'Ox) 

l v!+k 1P 
£,~+k-d---+ · · ·---+ lZ-u - · · · - L~+k ----➔ C 

This diagram resides in 7Jb("//(X)). 
Since n + k - d > -n and 1-i;(.C!) = 0 \/ i I- -n, it follows from (2.5) 

that v#<pv = 0 in 7Jh("//(X)). That means, vis a· sublangrangian. Consider the 
following diagram: 

(5) 

where N. is the cone of v, the second line is the dual of the first line, µo 
is a very good morphism (consult [B2]) and R. is the cone of µo. Since£! 
has only one nonzero homology, at degree -n, it follows that Ji; (N:) = 
1i; (£!) = Ji;(£.). for all i > -n. Further, consider the right tail of the 
homology sequence of the dual triangle: 

0---+ H-n(N:) -H-n(E!) ----- C - H-(n+I)(N:) - o. 

Therefore, 1ij(N":) = 0 \/ j < -n. Now, 1i;(.C.) = £xtn+k-i(C, Ox)\/ i. 
From grade consideration, V i > u, Ji;(£.) = £xtn+k-i (C, Ox) = 0 
because n + k - i < r. Incorporating this information in the homology 
sequence of the vertical triangle in (5), we obtain the following: 
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1. First, Hi(R.) = 0 Vis -(n + 1). 
2. So, by Lemma 2.8, we can cut the range of n. to [n + k, -n] i.e. 

&l(R.) 5_; [n + k, -n]. 
3. Now, Hu+1(R.) 5_; [xt'(C, Ox)- Hence grade(Hu+1(R.)) ~ -r. 

By Lemma 2.4, Hu+! (R.) = 0, which we check locally. 
4. Claim. grade(Hu(R.)) ~ r + l. To see this, we can assume X = 

Spec(A) is affine. Let p E Spec(A) with height(p) = r. Localizing 
the long exact sequence, we get an exact sequence 

O-----+ Ext' (C, Ox)sa - Hu(E.)sa -Hu(R.)so - 0. 

We will prove Hu(R.)p = 0. IfHu(E.)sa = 0 then Hu(R.)ffJ = 0. So, 
assume Hu(E.)sa -:fa 0. Since grade(Hu(E.)sa) = r, Hu(E.)sa has finite 
length and dim-r(Hu(f.)so) = r. From the exact sequence (4), we have 
Csa ~ Ext' (Hu(E.), Ox)sa- So, 

Ext'(C, Ox)sa = Ext'([xt'(Hu(E.), Ox), Ox)sa ~ Hu(E.)sa­

Now, it follows from the above exact sequence that Hu(R.)sa = 0. This 
establishes the claim. 

Since grade(Hu(R.)) ~ T + 1, by Lemma 2.4, Hu(R.) = 0. 
5. Now Hi(R.) ~ [xtr+i+l(C, Ox) V u - I ~ i > v. Also since 

Hv(E.) = 0, we have Hv(R.) 5_; [xt'+u-v+I (C, Ox) 

By downward induction, and by Lemma 2.4, Hi(R.) = 0 for all i ~ v. 
It follows from the sublagrangian theorem ([B2, 4.20]) that there is a symmet­

ric form If/ : R. ~ R! such that[(£., q1)] = [(R., q1)] in Wk(~k). The 
proof is complete. D 

Now we clean up homologies on positive degrees. 

Proposition 3.3. Let X be a regular quasi-projective scheme over an 
affine scheme Spec(A), as in (1.1). Suppose ([., q1) is a symmetric form in 
Tk ~k(X), such that the range 8€(£.) 5_; [n + k, -n]for some integer n » 0. 
Then, there is a symmetric form (R., If/) such that 

1. (R., If/) is Witt equivalent to ( £., qJ) 
2. The range !!lt(R., If/) 5_; [n + k, -n]. 
3. Hi(R.) = 0 Vi ~ 1. 
4. Further, Ho(R.) = Ho(£.). 

Proof We use all the notations in the proof of P_roposition 3.2: Let v ~ I such 
that Hv(E.) -:fa O and Hi([.)= 0 Vi > v. We show that there is a symmetric 
form (R., If/) such that 

1. (R., If/) is Witt equivalent to ( £., <p). 
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2. The range !!l(R., 111) s; [n + k, -n]. 
3. 'Hi (R.) = 0 Vi ~ V. 

If grade('Hv(E.)) = (n + k) - v =: t, then, by Proposition 3.2, there is 
such a symmetric form (R., 111). Now assume s := grade('Hv(E.)) < t. 
We have co dim (Supp ('Hv(E.)) = grade('Hv(E.)) = s ~ k. By (2.9) 
there is a locally complete intersection subscheme Y with co dim Y = _k and 
Supp (Hv(E.)) s; Y. There is a surjective morphism Lv - 'Hv(E.), where 
Lv E Y(X). It follows that this homomorphism factors through .C

0
1y -

'Hv(E.). Write F := .C
0
1y. Then, dim1"(F) = k and Exti(F, Ox) = 0 

V i =I= k. Further, the surjection Lv - F extends to a resolution 

o-.Cv+k - ... -.cv -F-o. 

Denote this complex by£., with Li = 0 unless v + k ~ i ~ v. The compo- · 
sition homomorphism Lv - 'Hv(E.)--+ d t~: ) induces, by Lemma 2.7, 

n+I v+I 

a map of complexes v : £. --+ £. in the derived category 'Db("f/(X)). Now, 
£! has only one nonzero homology, at degree -v. Since, v ~ 1, by (2.5), 
v# ({JV = 0 in Tk t:gk. Hence v is a sublagrangian. Consider the sublagrangian 
diagram, as above (5), and use the same notations. 

Consider the homology sequence of the dual triangle of (5). It follows that, 
for all i =I= -v, -(v + 1), 'Hi (N!) ~'Hi(£!) ~'Hi(£.) and 

is exact. In particular, 'Hi(N!) = 0 unless v ~ i ~ -n. Now, consider 
the homology sequence of the vertical triangle of (5). Since £. has only one 
nonzero homology 'Hv (£.) = F, at degree v, it follows that, for i =I= v, v - 1, 
'Hi(R.) = 'Hi(N:), and 

0 - 'Hv+I (R.) - F - Hv (N:) - Hv (R.) - 0 

is exact. Since 'Hv(N!) ~ 'Hv(E.), the middle arrow is surjective. 
So, 'HvCR.) = O. Also, 'Hi(R.) = 0 for all i ~ v + 2 and i ::::: -(n + 1). 
So, we have the following: 

1. By lemms 2.8, we can cut the range of R. to [n + k, -n] i.e. !!l(R.) s; 
[n + k, -n]. 

2. 'Hi (R.) = 0 Vi = v, i ~ v + 2. 
3. grade('Hv+I (R.)) ~ k. 
4. In fact, Hi (R.) = 'Hi ( E.) if i =I= ±v, ± ( v + 1). In particular, Ho (R.) = 

'Ho(E.). 

Again, by ([B2, 4.20]), (R., 111) is Witt equivalent to (£., (f)). We repeat the 
process which must stop, latest when v = n. Finally, proof of (3.3) is com­
plete, by another application of Proposition 3.2. D 
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To establish (2) of Theorem 3.1, we further adjust so that 
grade(Ho(R.)) = k. 

Proposition 3.4. Let X be a regular quasi-projective scheme over Spec(A), 
as in (].]). Suppose (£., <p) is a symmetric form in Tk:(gk(X), such that 
the range GP(£.) ~ [n + k, -n] with n » 0. Then, there is a symmet­
ric form (R., !fl), such that (a) (R., 1./f) is Witt equivalent to (£., <p), (b) 
the range !Jli(R., 1./f) ~ [n + k, -n], and (c) Hi(R.) = 0 Vi > 1 and 
grade(Ho(R.)) = k, unless Ho(R.) = 0. 

Proof By (3.3), we can assume Hi(£.)) = 0 V i ?: 1. Now, assume 
grade(Ho(£.)) ?: k + 1. As in (3.3), we can construct (a) a coher­
ent sheaf F, with dim;,-(F) = k + 1 and £xti (F, Ox) = 0 V i #­
k + 1, (b) a surjective homomorphism F - Ho(£.), (c) a resolution 
0---'► Lk+I--'► •••--'► Lo--'► F--'► 0, with Li E "f/(X). 

Denote the complex .C •. The composition homomorphism .Co - Ho(£.) ---+ 
di7~i) induces, by Lemma 2.7, a map of complexes v : .C. ---+ £. in the 

derived category 1)b ( "f/ ( X)). 
The dual .C! has only one nonzero homology, at degree -1. Again, by (2.5), 

v# <pv = 0 in Tk ::gk. Consider the diagram (5) and use the same notations. 
Now consider the homology sequence of the dual triangle in (5). We obtain 
Hi (N:) = Hi ( £!) = Hi ( £.) V i #- -1, - 2 and the sequence 

O - H-1 (N:) - H-1 (£!) - £xrk+1 (F, Ox) 

-H-2(N!) - H-2(£!) - O 

is exact. Since n » 0, we have Hi(N:) = 0 Vi .. -=: -(n + 1). Now consider 
the homology sequence for the vertical triangle in (2.5). Since, .C. has only 
one nonzero homology, at degree zero, Hi (R.) = Hi (I'.) Vi f 0, 1 and 

is exact. Since Ho(N:) ~ Ho(£.), the middle arrow is surjective. 
So, Ho(R.) = 0. Also, Hi(R.) = 0 Vi -=: -(n + 1) and Vi ?: 0, i #- 1. 
Therefore, by (2.8), we can cut the range of R. to [n + k, -n], i.e ... 
!Jli(R.) ~ [n + k, -n]. Again, by ([B2, 4.20]), there is a symmetric form 

1./f : n. ~ R! such that (R., 1./f) is Witt equivalent to(£., <p). To readjust 
the non-zero homology at degree one, api:·y (3.3) one more time. The proof 

~-·is complete.-·- """"·--c --"'-----'--'--. - - . - '' -- -=-· . .;.__, --- .. '' -□ 

Completing the proof of Theorem 3.1. As was stated before·, the proof ~f 
Theorem 3.1 follows directly from Proposition 3.4. □ 
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Completing the proof of Theorem 1.1. The point (1) of (1.1) was established in 
_Theorem 3.1. We will prove point (2) regarding the range. We will assume that ' 
(£., <p) satisfies assertion (1) of the theorem. Sup:;.mse the range f!l(E., <p) s;; -
[k + r + m, -(r + m)], where m::: 1 and 

r = { d-;/ if d - k is even 

d-k-l "fd k. dd - 2- 1 - ISO 

We use downward induction on m. In either case, the total length of the range 
= k + 2r + 2m::: d + 1. The form looks like: 

ignoring the zeros on both ends. With Bo= image(d1), the nonnegative part 
of £. is a resolution of ~~ . Hence, 

has grade ::: k + r + m. Take a resolution, of width at most d: 

"* I'* · c k+(r+m) ( Eo A) 0 - 1..,k+(r+m)-d - · · · - ,__,k+(r+m) ------- e,Xt Bo, 

where ,q = Hom(l;, Ox) for some£; E Y'(X). Denote this complex by 
£!, with l; = 0 unless k + (r + m) ::: i ::: k + (r + m) - d. By (2.7), 

the isomorphism H-(r+m) (£~) --=:'.+ Extk+(r+m) ( ~~, A) in_duces a morphism 

v# : £! --+ £! in the derived category Db(Y'(X)), which we denote by v#. 

Now, dualizing, we get a morphism v : £. --+ £ •. It follows, by (2.5), that 
v<pv# = 0 in yk pk. Consider the diagram (5) and use the same notations. 

Consider the homology exact sequence of the dual triangle in (5). Since l! 
has only one nonzero homology, at degree -(r + m), we obtain 1i;(N:) ~ 
Hi(£!) ~ Ji;(£.), Vi =I- -(r + m), -(r + m) - 1 and the sequence 

# # ~ # 
0 - H-(r+m) (N.) - 1-t-(r+m) (£.) - H-(r+m) (£.) 

- H-(r+m)-1 (N:) - 0 

is exact. Since the miC:Jle arrow is an isomorphism, we have 1-t-(r+m)-1 

(N:) = H-(r+m)(N:) = 0. It follows, H;(N:) = 0 unless O :=: i > 
-(r + m). 

Write 
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Since grade(E) :=:: k + r + m, Hi (,C.) = £xtk+(r+m)-i (E, A) = 0, Vi ~ 1 
and V i .::: - (r + m). Incorporating this information in the homology exact 
sequence of the vertical triangle in (5), we obtain Hi (R.) ~ Hi (N:) unless 
1 :=:: i :=:: -(r + m) + 1 and the sequence 

0 - H1 (R.) - £xik+(r+m) (E, Ox) - Ho(N:) 

- Ho(R.) - £xtk+(r+m)+l (E, Ox) 

is exact. Now it follows that Hi(R.) = 0 for i :=:: 2 and i .::: -(r + m). 
By (2.8), we cut the range of R. to [k + (r + m) - 1, -((r + m) -
1)]. Since H1 (R.) s; Ho(£.) = £xtk+(r+m) (E, Ox), it follows that 
grade(H1 (R.)) :=:: (r + m) + k, which is bigger thank+ (r + m) - 1. 
So, by Lemma 2.4, H1 (R.) = 0. If Ho(£.) = Ho(N:) = 0, by the 
same argument Ho(R.) = 0. Now, suppose Ho(£.) = Ho(N:) =I= 0. 
In this case, grade(Ho(£.)) = k. We prove grade(Ho(R)) = k, by check­
ing locally. So, we assume X = Spec(A) is affine. For tJ E Spec(A), 
with height(ty) = k - 1, localizing the above exact sequence we have 
Ho(R.)g:; = 0. Hence, grade(Ho(R)) = k, in this case. Again, by ([B2, 
4.20]) the proof is complete. D 

In this section, we state all the results from the first set, describing the forms in 
all the shifted Witt groups wr ( ~k ( X)). First, we restate Theorem 1. 1, in this 
list, for the convenience of the readers and completeness. 

Theorem 3.5. Let X be a regular quasi-projective scheme over an affine 
scheme Spec(A), with dimX = d, as in (2.3). Let x = [(£., ip)] E Wk(~k) 
or x = [(£., ip)] E W~(~k). Then (£., ip) is Witt equivalent to a form 
(R., lfl) with the following properties: 

1. Hi(R.) = 0 V i > 0 and grade(Ho(R.)) = k, unless Ho(R.) = 0. 
2. Further, the range 

I [k+d-/,-d2k] 
&£(R., lfl) s; [ k + d-~-I, _d-~-I] 

In particular, the total length of the range :s d. 

if d - k is even 

if d - k is odd 

With shift rk+2 ; the structure of the forms is given by the following 
theorem. 
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Theorem 3.6. Let X _be a regular quasi-projective scheme over an affine 
scheme Spec(A), with dimX = d. Let x = [(£., q;)] E wk+2(.g?k) or x = 
[(£.,, q;)] E w~+2(E?k). Then(£,,, q;) is Witt equivalent to a form (R., !fl) 
with the following properties: 

1. Hi (R.) = 0 Vi ::::: 2 and grade(H1 (R.)) = k, unless H1 (R.,) = 0. 
2. Further, the range 

{ 

[(k + 2) + d-~-Z, _d-~-2 ] if d - k is even 
~(R., 1/f) <; [ ] 

(k + 2) + d-~- 3 , _d-~-3 if d - k is odd 

Proof The theorem follows from Theorem 3.5, by a shift T. □ 

The following theorem conesponds to the shift rk-l _ 

Theorem 3.7. Let X be a regular quasi-projective scheme over an affine 
scheme Spec(A). with dimX = d. Let x = [(£., q;)] E wk-1(.91k) or x = 
[(£.,q;)] E w~- 1(.91k). Then (£.,q;) is Witt equivalent to a form (R., !fl) 
with the following pmperties: ' 

J._ H;(R.) = 0 V i :::: 0 and grade(H-1 (R,.)) = k + 1, unless 
H-1CR.) = o. 

2. Further; the range 

{ 
[k _ l + d-~+1, _d-~+l] 

~(R., !fl) <; 
[k -1 + d-:/, _d/] 

In particular, the total length of the range :S d. 

Proof_ The proof_is similar to that of Theorem 3.5. 

With shift Tk+ 1 the following is obtained. 

if d - k is odd 

if d - k is even 

□ 

Theorem 3.8. Let X be a regular quasi-projective scheme over an affine 
scheme Spec(A), with dimX = d. Let x = [(£., q;)] E wk+ 1(§k) or x = 
[(£., <p)] E w~+1(.91k). Then (£0 , q;) is Witt equivalent to a form (R.,, I.ff) 
with the following properties: 

1. Hi(R.) = 0 Vi :::=: 1 and grade(Ho(R,,)) = k+ 1, unless Ho(R.) = 0. 
2. Further, the range 

{ 

[ k + l + d-(~+1), -:- d-(~+l)] 

~(R., !fl)<; 
[ (k + l) + d-~-2, _d-~-21 

In particular, the total length of the range :S d. 

if d - k is odd 

if d - k is even 

Proof The theorem follows from Theorem 3.7, by a shift T. □ 
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4. Foxby Sublagrangian 

In this section, we drop the regularity condition and assume that X is a 
quasi-projective scheme over an affine scheme Spec(A). Here we employ an 
extension of a construction of a morphism of chain complexes of modules, 
originally due to Foxby (see [F,FH]), to construct sublagrangians and reduce 
the length of the range of the symmetric forms. For our purposes, a version of 
Foxby's construction, for quasi-projective schemes was completed in ([M2]), 
which we quote below. '· 

Theorem 4.1. Suppose X is a noetherian quasi-projective scheme over a 
noetherian affine scheme Spec(A), with dim X = d. Let 

be a complex of coherent Ox-modules. Assume Vi grade(()y;) 2': k, where 
Y; = Supp(1ti(9.)) ~ X. Then, there is a morphism v. : £. ~ 9. where 
£.: 

is in Chb("f/(X)) such that 

1. 1t;(£.) = 0 Vi I= 0 and 7-io(v) : 7-io(£.) - 7-io(Q.) is swjective.' · 
2. Ext; (7-io(£.), Ox) = 0 Vi I= 0 and dim-,,/ (7-io(£.)) = k. In fact,£. 

would be a direct sum of twisted Koszul complexes that resolves 'Ho(£.). 

Before the statement of the main results in the section, define 

9J;(X) = {£. E Db("f/(X)): grade(7-i;(£.)) 2': k Vi}. 

Then, 9J; (X) is a filtration of 9Jb ("f/ (X)), by grade of the homologies. When 
X is not Cohen-Macaulay, this filtration differs from the usual filtration 

· 9Jk (X), by co-dimension of support of the homologies, as defined in (2.3). 

Theorem 4.2. Suppose X is a quasi-projective scheme over an affine 
scheme Spec(A), with dim X = d.· 

1. Suppose x· E Wk(9J;(x)) or x E w.~c~;cx)), Then, x = [(£., qi)]for 
some symmetric form(£., qi) with the range · 
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2. Suppo~e X E wk+2 (9;(x)) or X E w~+2 (9;(x)). Then, X = [(£., q,)] 
· for s01ne symmetricfonn_ (£., <p) with the range 

{ 

[ (k + 2) + k-;i,2, - k22 ] if k is even 
~(£., 1/1) C [ ] 

,. _ - (k + 2) + k23 , _:_k23 if k is odd. 

3. Suppose X E wk-] (9;(x)) or X E w~-1·cE?;(x)). Then, X = [(£., q,)] 
for some symmetricfonn (£., q,) with the range 

. { [(k - 1) + ½, -½] (fk is even 
~(£.,1/f)C [. ] 

, - (k - 1) + k!I, _k!l if k is odd . 

. 4. Suppose x E wk+1 (9;(x)) or x E w~+l (E?;(x)). Then, x = [(£., q,)] 
for some symmetric form(£., q,) with the range 

{ 

[(k + 1) + k22
, _k22 ] ifk is even 

M(~,1/f)c [ ] 
. - (k + 1) + k21 , _k21 ifk is odd. 

Proof We will only prove (1), for plus duality. Suppose (£., ~) is a sym­
metric form in Tk9;(x). Assume that M(l'.) ~ [n + k, -n], 2n > k and 
H_n(l'.) i=- 0. By (4.1), there is a chain complex morphism v : £. ---+ £. 
such that (1) £. is a locally free resolution of 1t-n (£.) and Li = 0 unless 
-n + k ::::: i ::::: -n, (2) v induces a surjective homomorphism H~n (£.) -
H-n (£.), an4 (3) l'xti CH-~(£.), Ox) = 0 for all i i=- k. 

Since 2n > k, it follows that v#q,v = 0. So, vis a sublagrangian. Consider 
the diagram (5) of triangles and use the same notations. By going through 
the same methods of reduction of length of symmetric forms, as in section 3, 
we obtain a symmetric- form (R., 1/f) which is Witt equivalent to ( £., q,) in 
!'J;(X) and ~(R.) ~ [(n - 1) + k, -(n - 1)]. The process can be repeated, 
while 2n > k. This completes the proof. D 

Corollary 4.3. The corresponding version of (4.2) for 9~(X),/X) would 

also be valid, where 9~(X),g(X) denotes the subcategory of 9;(x) consisting 
of complexes with homologies in JHI(X). 

Proof As in the proof of (4.2), consider the diagram (5). Arguing locally, 
by ([Ml, 4.4]) it follows, grade(Hn(N:)) ::::: k + 1 and hence by (2.4) 
Hn (Ni!) = 0. Now, it follows 'Hi (N:) E lHI(X) V i. Now it also varifies that 
'Hi('R.) e JHI(X) Vi. The proof is complete. o 
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Remark 4.4. It would be interesting to point out that, for k = 0, the sub­
lagrangian used in the proof of (4.2) coincides with that used in ([BJ, 4.1]) 
designed to kill homologies of the symmetric forms, starting from right tail of 
the form. 

5. Some consequences 

As an immediate consequence we obtain the following. 

Corollary 5.1. Let X be a quasi-projective regular scheme over an affine 
scheme Spec(A). The twelve term exact sequence ([B2]) corresponding to the 
inclusion £1k+I s; £1k splits into two six term exact sequences terminating, 
for integers k :::: 0, at the surjective homomorphims 

{ 

wH1 (£?k+I) - wH1 (£1k), 

wk+3(£?k+I) _ wk+3(£1k). 

The same holds for skew duality. 

Proof Immediate from 3.5, 3.7, 3.8, 3.6. □ 

While we obtain (5.1) by elementary methods, in deed by [BW], the follow­

ing terms in the twelve term sequence wk+1 (~~:1 ) = wk+3(J:1 ) = 0 and 
they are five term exact sequences. Next, we would like to interpret the main 
theorems for k = d - 1. Before that, we record the following homomorphisms. 

Proposition 5.2. Let X be a noetherian scheme X and k, r :::: 0 be integers. 
(We are mainly interested in the case r = 0.) There are natural homomor­
phisms of Witt groups, 

W (A(X, k + 2r))---+ Wk(£?;(X)) induced by (r, 

W_(A(X,k+2r))---+ W~(£?;(X)) inducedby(r 

W (A(X, k + 2r + 1)) ---+ wk-I (£?;(x)) induced by (r+I 

W_ (A(X, k + 2r + 1))---+ W_(£?;(X)) induced by (r+I 

where (n = T-n(o, with the standard signed translation T. 

Proof Obvious. □ 

The Witt groups wr (£1d (X)) were computed in ([BW]) in the regular case, 
which was extended to non-regular situation in ([Ml,MS]). The following is 
some comments on the groups wr (£?d-I (X)). 
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Corollary 5.3. Let X be a quasi-projective regular scheme over a noetherian 
affine scheme Spec(A), with dim X = d. Then, 

{ 

W(A(X,d- 1)) - wd-~(§d-1(X)) is_surj~cti~e, 

. W_(-A(X, d - 1)) - W~ 1 (§d-1(X)) 1s surJective and, 
wd-2(§d-I (X)) = 0. 

Proof The surjectivity of these homomorphisms follow from Theorem 3 .5 
and Lemma 2.4. To prove the vanishing statement, consider .the exact 
sequence corresponding to the inclusion 

§d-.I s;; t})d : wd-2(tj)d) --wd-2(tj)d-l) -- wd-2 ( 9;~1
). 

Since the first and the last term are zero ([BW, 6.1]; the middle term 
wd-2(~d-1) = 0. The proof is complete. D 

Remark 5.4. In fact, because of the the exact sequence 

wd-1 ( ~;~
1

) ~ wd (t}}d) - wd (§d-1) - wd ( 9;~1
) 

and since the.last term is zero ([BW]), Wd (§d-l) = 0 only when a is surjec­
tive, which means when Hd(X, W) = 0. □ 

The following are some comments on Wk(tj)d-2(X)). 

Corollary 5.5. Let X be as in (5.3). Then, 

{ 
W(d(X, d - 1)) - wd-1 (§d-2(X)) 
W_(af(X, d - 1))---» w~-l (§d-2(X)) 

Proof Follows from (3.8) and (2.4). 

is surjective, 

is surjective. 

□ 

In a similar way, we can apply Theorem 4.2 for the Witt groups 
wr(t}}f(X)) and wr(.~](X)), as follows. 

Corollary 5.6. Let X be quasi-projective scheme over a noetherian affine 
scheme Spec(A), as in (4.2). Then, 

1. We have the following: 

~ 0 0 ~ 0 0 W(d(X, 0))-* W (§IHicx/X), g)-* W (§8 (X)) 
are isomorphisms. 

~ 2 I ~ 2 0 W_(af(X, 0))-* W (§IHI(X),g(X))-* W (§
8

(X)) 
are isomorphisms. 

w0 (§](X)) = o and 

w0 (§}(X)) = o. 



2. Also, 

Sublagmngian constructions 

{ 
W(d(X, 1))-.. W1(~](X)) 
W_(d(X, 1)-.. W3(~](X)) 

is smjective, and 
is surjective. 
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Proof In fact ~~(X) = 1)h("f/(X)). To see the first isomorphisms of (1), note 
that the composition of these two map is an isomorphism (([B3]). So, the first 

homomorphism W(d(X, 0)) ~ W0(~~(X),/X)) is injective. The surjec­
tivity of this homomorphism follows from Corollary 4.3. So, it is an isomor­
phism. The second isomorphism is the skew duality version of the first one. 
The last two statements of (1) on vanishing follow from Theorem 4.2. The 
surjectivity of the first homomorphism of (2) follows from Theorem 4.2 and 
(2.4). The latter homomorphism is the skew duality version of the first one. 

D 

Remark 5.7. The structure of the forms in wr(~k(X)) is likely to have 
some use in the context of Gersten-Witt complexes (see [B4,BW,Bet]) of 
regular quasi-projective schemes over affine schemes Spec(A). In particular, 
the first term of the exact sequence 

is given by the surjective map W(d(X, d-1))-.. wd-l(~d-l). If and when 
W ( d ( X, d - I)) is generated by Koszul complexes, so is wd- I ( ~d- I ( X)). 
In this case, one can prove that wd-J (~d-2 (X)) = 0. This would suffice to 
establish the exactness of the Gersten-Witt complex at codimension d - I. 
Likewise, one can make a similar statement for codimension d - 2. There are 
similar results in K -theory (see [Mo, 0.3]) in this direction. 
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