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Abstract. Let E,,, be the elliptic curve y2 = x 3 - m, where m is 
a squarefree positive integer and -m = 2, 3 (mod 4). Let Cl(K)[3] 
denote the 3-torsion subgroup of the ideal class group of the quadratic 
field K = Q(,J=m). Let S3 : y2 + mz2 = x 3 be the Pell surface. 
We show that the collection of primitive integral points on S3 coming 
from the elliptic curve £ 111 do not form a group with respect to the binary 
operation given by Hambleton and Lemmenneyer. We also show that 
there is & group homomorphism K from rational points of Em to Cl (K)[3] 
using 3-descent on E,,,, whose kernel contains 3E111 (Q). We also explain 
how our homomorphism K, the homomorphism 1f1 of Hambleton and 
Lemmenneyer and the homomorphism ¢ of Soleng are related. 

2000 Mathematics Subject Classification: Primary I IGOS; Secondary 
-----4-J-R-I·l-;-HR-2.'7-.:--------------------------

1. Introduction 

Let m be a squarefree positive integer and -m - 2, 3(mod 4). Let 
K = <Q( ~) be an imaginary quadratic field. Any element of this field 
is of the form a + bw, where w = ~' a, b E <Q and its norm is 
N (a + bw) = a2 + mb2. Let DK denote the ring of algebraic integers of K. 
An element a E DK is primitive if pf a for every rational prime p E N. 

Let Em : y2 = x 3 - m be the associated elliptic curve. It is well known that 
the set of rational points on it forms a finitely generated abelian group denoted 

~ _ as Em (<Q). Any rational point on Em is of the form (-fi, M where r, s, t E Z 
with gcd(i,-t)-= gco(.f;-t) = -1--:-For ~standard definitions ·and·tesults on elliptic -
curves, we refer to [9] and [10]. 

Let Sn : y2 + mz2 = xn with n :::: 2, a fixed integer, be a Pell surface. 
In an interesting paper [7] by S. Hambleton and F. Lemmermeyer, it is shown 

63 



64 K. J. Manasa and B. R. Shankar 

that with respect to a binary operation defined on the primitive integral points 
of S11 , denoted by S11 (Z), it forms an abelian group. They have also shown that 
there is a surjective homomorphism 1/f: S11 (Z) ~ cz+(F)[n], then-torsion 
subgroup of the narrow class group of the quadratic field F = Q( ,JI), where 
I). is a fundamental discriminant, more generally S11 : y2 +ayz + er·;/ z2 = x 11 

and a is the rerriainder of the discriminant !)._modulo 4. In the case we study 
a = 0 and I). < 0. 

In §2 we quickly recall notations and some results in [7] which will be 
needed later to prove our results in §3. 

In §3 we relate the group E 111 ((Ql), the quadratic field K and the primitive 
integral points on the Pell surface S3 : y2 + mz2 = x3. We define a map 
f : E 111 (Q) ~ S3(Z) by which we obtain primitive integral points on the 
Pell surface S3. Let Sf (Z) denote the collection of all such points. Clearly 
Sf (Z) s; S3 (Z). It is natural to ask the following questions: (1) Is the 
inclusion proper? (2) Does Sf (Z) inherit the group structure from S3(Z)? 
In the same section, we show that the answer is yes to the first question and 
no to the second question. 

In §4 we define a binary operation on sf (Z) under which it becomes a 
group. 

On the other hand some questions about the class number of a quadratic 
field-are related to solutions of Diophantine equations. For example it is well 
known that the study of integer solutions to the Diophantine equation 

x2 - !).Y2 = 4Z11
, gcd(X, Z) = 1, I). = a fundamental discriminant, (1) 

gives rise to a quadratic number field with class number divisible by n. For 

each integral point (X, Y, Z), there is a corresponding ideal a= (x+1;_~, z} 
in the ring of integers of (Ql( ,JI) such that a11 = ( x +t ~}.Hence it generates 
an ideal class of order dividing n. Likewise several authors have related 
rational points on elliptic curves and ideal classes of quadratic fields, see [2], 
[3] and [11]. 

In §3 we define a map g : E111 (Q) ~ DK such that for any fJ E g 
(E111 (Q)), the ideal (/J) is always the cube of an ideal in DK. Using this, later 
in §5, we define a map K : E111 ((Ql) ~ Cl(K)[3], the 3-part of the class 
group of K. In the same section we show that K is a group homomorphism 
whose kernel contains 3E111 (Q) using 3-descent on E 111 • 

Soleng [11] has considered a group homomorphism cp mapping a more 
generally defined elliptic curve to the ideal class group Cl(K). In the last 
section §6 we show that the homomorphisms ,c, 1/f and cp are related for the 
elliptic curve £ 111 • 
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. 2. Preliminaries on Pell surfaces 

A binary quadratic form is a homogeneous polynomial of degree 2 in two 
variables given by Qo(y, z) = ay2 + byz + cz2. If the coefficients a, b, care 
integers, then it is called an integral binary quadratic form. The quadratic form 
Qo(y, z) is said to be primitive if gcd(a, b, c) = 1. Binary quadratic forms 
come naturally from quadratic fields. Let F = (Ql(,J'"'&) be any quadratic field 
of discriminant ti. Then 

l
y2 _ Az2, 

Qo(y, z) = 2 + 4 
1-~ 2 

y yz + -4-z, 

if !:!,,. = 0 (mod 4) 

if ti = 1 (mod 4) 

is the canonical principal binary quadratic fom1 associated with F. 
Thus, the binary quadratic form associated with the. quadratic field 

K = Q(.J=m) with m > 0, - m = 2, 3 (mod 4), 

discriminant : - 4m, m squarefree 

is Qo(Y, z) = y 2 + mz2. 
The Pell surface associated with the quadratic field K will be denoted as 

S11 : Qo(y, z) = x 11
, and in the present article we are interested in the Pell 

surface S3 : y2 + mz2 = x 3. From here on we will always use K to mean 
a quadratic field satisfying the conditions of(*). An integral point (x, y, z) 
satisfying S11 : Qo(y, z) = x 11 is said to be primitive if x, y, z E Z with 
gcd(y, z) = 1. The set S11 (Z) denotes the primitive integral points of the 
surface S11 • A correspondence between integral points in S11 (Z) and integral 

---solutions_to_theJ2iilP-hantine e uation (1 ), which in fact is a bijection, is given 
in [7]: 

( !
(2y,z,x), if li=4m 

X, Y, Z) = 
(2y + z, z, x), if ti = 4m + 1 

Let D} denote the nonzero elements of the ring of integers p K of K. In the 
case of this article, an algebraic integer of K may be written as· y + z~ 
and there is a natural map no : S11 (Z) ➔ D} defined by no(x, y, z) = 
y + z~. Let N11 = {o. 11 such that a E N}. Then"the set D}/N11 forms 

· a group with respect to coset multiplication. The norm map induces a group 
homomorphism N : D7<- /N11 ~ Z* /Z*11 defined as N (aN11

) = N (a )Z*11
, 

where 'l,*11 denotes the set of nonzero integer n-th powers. 
_As we make use of some results from [7] in the course of proving our results 

in §3, they are statea-6elow for th"e-sake-of~claiity=and=c;ompleteness.=. ====c....c=cc:__ 

Lemma 2.1. Let a ED}. If N(a) = a 11 for some n ::: 2, then a is primitive 
if and only if (a)+ (a') = (1). 
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Lemma 2.2. Let a be a primitive element. If aN11 E Ker N, then (a) = a" 
is an n-th ideal power. 

Theorem 2.3. The cosets of primitive elements in the kernel of the nonn 

map N : Dx /N 11 --+ Z* /Z*11 form a subgroup IT11 of DK /N 11
• The map 

n : S11 (Z)--+ IT11 defined by n(x, y, z) = (y + z,J=m)N11 is bijective; thus 
S11 (Z) becomes an abelian_ group by transport of structure. 

Definition 2.4. For (x1, YI, z1 ), (x2, Y2, z2) E Sn (Z) the group law on 

Sn (Z) defined as (x1, YI, ZJ) EB (x2, Y2, z2) = (x3, y3, z3) where 
' 

(x z ) = (XJX2 YIY2 + ~ZIZ2 YIZ2 + Y2ZJ + CTZJZ2) 
3, Y3, 3 2 . , 

11 
, 

11 e e e 

and 

d( !J.-a ) 11 
gc YIY2 + -4-z1z2, YIZ2 + Y2Z] + az1z2 = e . 

In the case tJ. = -4m, the group law is 

( ) _ (XJX2 YIY2 - mz1z2 YJZ2 + Y2ZI) 
X3, Y3, Z3 - -2-, ·, 

e en e 11 

where 
gcd(y1y2 - mz1z2, YIZ2 + Y2Z1) = e 11

• 

Proposition 2.5. The map If/ S11 (Z) ~ c1+(F)[n] given by. 

IJl(X, y, z) = [a] where (y + zcv) = an is a surjective group homomorphism 

where cv = a+:(6 and a E {0, I}. 

For proofs see [7]. 

3. Relation between quadratic fields, 
elliptic curves and Pell surfaces 

As before Em denotes the elliptic curve 

Y2 = x3 - m. (2) 

On the elliptic curve Em, points ({z, fe) and ( ( ~)2, c .=-:)3 ) are the same and 

similarly the points ( {z, ~{) and ( ( ~)2 , ( ~)3 ) are also identical. So, by taking 
s > 0, we see that all rational points on E 111 are considered. Hence 

Em((Q!) 

= { (;i, ;3 ) such thatr, t, s E Z, s > 0, gcd(r, t) = gcd(s, t) = 1} U{O} 

where O is the point at infinity. 
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On substituting ( {z, 'i3) in Em we get, 

s2 + mt6 = r 3
. (3) 

On the Pell surface S3 : y 2 + mz2 = x3 when z 1, we obtain integer 
points of the elliptic curve E 111 • The set of all primitive integral points on S3 
will be denoted by S3(Z). Comparing with equation (3), we see that points on 
the elliptic curve Em correspond to integral points on the Pell surface S3 in a 
natural way, by the map 

f: Em((Q)----+ S3(Z) 

{

(1, 1,0), if P = 0 

f(P)= (r,s,t 3), if P= (fi,'iJ) 

It is clear that this map is well-defined. As gcd(s, t) = 1, integral points 
(r, s, t 3 ) on S3 coming from the elliptic curve are all primitive integral points. 
Denote the image, f(Em((Q)), as sf (Z). Clearly sf (Z) s; S3(Z). Also, any 
point (r, s, t 3

) E sf (Z) gives an integral solution (2s, t 3 , r) of (1) with n = 3. 
Again from (3) we note that r3 = Norm of (s + t3 ~) in DK. So, it is 

natural to consider the map g : Em ((Q) ----+ DK defined by 

{ 

1, 
g(P) = + 3 ~ 

s t -v-m, 

if P = 0 

if P=(iz,'iJ) 

As discussed earlier, by considering s > 0, the map g is also well defined. 
---= 

Denote g(E;;;(QJ)as71~. -------------------
Now we prove that elements in HE are all primitive in DK. For this it is 

sufficient to show that for a E HE, ideals (o.) and (o.') are coprime in DK 
where a' is the conjugate of a. Then, by Lemma 2.1, elements in HE are 
primitive. We prove this below: 

Lemma 3.1. Let P _= ({z, 'iJ) be a rational point on Em for a squarefree 
positive integer m, and -m ¢ l(mod 4). Assume, as before, gcd(r, t) = 
gcd(s, t) = 1. Then the ideals (o.) and (a') are co-prime in Di, where 
a= g(P) = s +t3~ and a'= g(-P) =s -t3~. 

Proof Let o. = s + t 3 ~ and o.' = s - t3 ~- Let p be a prime ideal 
_ such that _ __ 

Hence 
s + t 3✓-m E P, s - t 3✓-m E p. 
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Thus p divides the sum 2s. This implies Pl2 or Pis. Also, 

2t3~ = (s + t 3 .F,n) - (s - t 3~) E p 

and so 
2t\-m) = .F,ii,(2t3~) E p. 

If Pis, as gcd(s, t) = 1, p must divide 2m. Suppose p divides m ands; then it 
also divides r, as s2 + t 6m = r3. Also norm of p divides both r and s. Hence 
the square of the norm divides r3 - s2 = mt6. As gcd(s, t) = 1, the square of 
th~ norm divides m, a contradiction. 

So, the only possibility for the prime ideal p is either it is above 2 or 
p = (l}. Suppose pis an ideal above 2," then PIN(a) = r 3.· Thus 21r; We have 
s 2 = 0, 1 (mod 4), -m = 2, 3 (mod 4). This implies r 3 = s 2 - (-m)t6 = 
1, 2, 3 (mod 4). But r 3 = 1, 3 (mod 4)::::} r = 1 (mod 2). Thus r is odd, 
a contradiction. Hence (a} and (a'} are coprime. □ 

Now we show that a E HE has an interesting property by using Lemma 2.2: 
(a} is a cube of an ideal in DK. 

-
Theorem 3.2. Let m be a squarefree positive integer with -m ¢= 1 (mod 4). 
Let K = (Q)( ~) and E111 : y2 = x 3 - m be the corresponding elliptic 
curve. For any P = ({z, ~) E E111 ({Q)) \ 0, with gcd(r, t) = gcd(s, t) = 1, 

the ideal (s + t 3 ~} is the cube of an ideal, i.e., (s + t 3 ~} = a3. 

Proof Let a = s + t 3 ~ E HE. Then N(a) = r 3 by equation (3). 
As before the n01m map induces a group homo_m_orphism N : D} /N3 ----+ 

Z* //l.,~3 defined as N(aN3) = N(a)'ll.,*3• The kernel of this map is 
. . 

ker N = {aN3 such that N(a)'ll.,*3 = Z*3}, 

= {aN3 such that N(a) E 'll.,*3
}. 

Let rrf = {aN3 such that a E HE}. Clearly rrf ~ ker N. Also by 
Lemmas 3.1 and 2.1, a is primitive, and so by Lemma 2.2, the ideal (a} = a3 

is the cube of an ideal. D 

In [7] it is shown that S3(Z) is an abelian group with respect to the binary 
operation given in Definition 2.4. Observe that the neutral element of S3 (Z) 
is (I, 1, 0). Similarly the inverse of (x, y, z) E S3 ('/l.,) is given as 

{

(x, y, -z), if x > 0 
-(x, y, z) = 

(x, -y, z), if x < 0. 

In fact, the identity (1, 1, 0) E Sf ('ll.,) as this corresponds to the point at 
infinity on the elliptic curve E111 • Also, for (r, s, t 3) E Sf (Z), the inverse point 
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is (r, s, - t3 ), since we must have r > 0, because s 2 = r 3 - mt6 > 0 
and m > 0. This coincides with the inverse (fr, _:: 3 ) of the point ( fe, ~) 
of Em (Q). Thus, the set sf (Z) has the identity, and every element in it has 
an inverse with respect to the binary: operation EB of S3(Z). However, with 
this binary operation the set sf (Z) is not a group. We illustrate it with the 
following example: 

Example 3.3. For m = 26, E26 : y 2 = x 3 - 26. The two points P = 
(3, 1) and Q = (35, 207) on E26 correspond to (3, I, I) and (35, 207, 1) 
respectively in Sf (Z). The discriminant of K = Q( ./=26) is equal to -104. 
Thus the group law on the Pell swface S3 corresponding to this discriminant is 

( -) ( )-(XJX2 Y1Y2-26z1z2 Y1Z2+Y2Z1) 
x1,Y1,s-1 EB x2,Y2,z2 - 2 , 3 , 3 

e e e · 

where 

gcd(y1y2 - 26z1z2, YIZ2 + Y2ZJ) = e3
. 

Therefore 

(3, I, I) EB (35,207, 1) 

_ ( 3 x 35 I x 207 - 26 x 1_ x 1 I x I + 207 x i ) 
- e2 ' e3 . ' e3 

= (105, 181,208) since gcd(l 81,208) = 1. 

This shows that Sf (Z) is not closed under the binary operation EB of S3(Z). 
Clearly (105,181,208) E S3(Z) but (105,181,208) </: S:f(Z). Hence 
sf (Z) £;; S3 (Z). 

·· Let F"6e anfquadraticneld:-7\.n-element1] E F-is said-to-be-totally-positive_ 
if N (/J) > 0. Let Pt be the group of principal fractional ideals (/J) = /JD F 

where N (/J) > 0. The quotient group IF/ Pt is called the narrow class group 
c1+(F) of F. For imaginary quadratic fields, the norm of any element is 
positive, thus the class group and the narrow class group are identical. The 
collection of ideal classes of order dividing n in F forms a subgroup of Cl(F) 
and is called then-part of the ideal class group, denoted as Cl(F)[n]. 

By applying Proposition 2.5 to S3(Z) and the field K we get a surjective 
homomorphism IJI from S3(Z) to Cl(K)[3]. 

Consider the diagram . 

Em(tO!) 

~+~j~~===-~=-=-= J . ,-

S3(Z) 
'Ip 

Cl(K)[3] 
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. Here f is as defined in <•) and I.fl is the surjective homomorphism defined 
in §2 (Proposition 2.5). We note that f is injective but not a homomorphism 
since f(Em(Q)) = Sf (Z) is not a subgroup of S3(Z). Also, the image off 
is not equal to the kernel of I.fl. The following example illustrates it. 

Example 3.4. Let K = Q(.J=TI) and E53 : y2 = x 3 - 53, where -53 ¢= 
I(mod 4). Let P = (29, 156) E E53(Q). Then f(P) = (29, 156, 1) E 

f(Es3(Q)). Howev~r, 1./f(f(P)) = (156 + .J=33) = b3, where b = (29, 
11 +.J=TI). We show that the ideal (29, 11 +.J=TI) in DK is not a principal 
ideal. Say (29, 11 + .J=TI) = (P). Then, since 29 E (29, 1 i + .J=33) we 
have 29 E (P), so P 129 in DK. Writing 29 = Py in DK and taking norms, 
we have 841 = 292 = N(P)N(y) in Z: So, N(P)l841 in Z. Similarly, since 
11 + .J=33 E (P) we get N(P)l174 in Z. Thus N(P) is a common divisor of 
841 and 174 = 29 • 6 in Z. So, N(P) is 1 or 29. Since N(P) = a 2 + 53b2 

where a, b are in Z, N(P) =f=. 29. Therefore N(P) = 1, so p is a unit 
and (1) = (P). Thus 1 E (P.). Hence there exist a and 6 in DK such that 
29a + (11 + .J=33)6 = 1. Multiplying both sides by 11 - ,J=TI, we have 
29{ (I 1 - .J=TI)a + 6J} = 11 - .J=TI, so that 29 divides 11 - .J=33 in DK. 
Thus N(29) = 841 divides N(l l - .J=TI) = 174 which is a contradiction. 
So, (29, 11 + .J=TI) is not a principal ideal in DK. Hence f (P) is not in the 
kemel of I.fl. 

4. A Group law on Sf (Z) from Em (Q) 

By using the binary operation on Em (Q) we define a binary operation on 
sf (Z) with respect to which sf (Z) becomes an abelian group. We recall 
that Em (Q) is an abelian group with respect to the group law given by the · 
following formulae:-

as 
Let P1 = (x1, y1) and P2 = (x2, y2) be rational points on Em and define}, 

!~ if p --1- p 
x2-x1' 1 ' 2 

}. = 3 2 

~ if P1 = P2 2y,' 

Then P3 = P1 +P2 = (x3, y3) withx3 = },2 -x1 -x2, y3 = },(x1 -x3)-y1. 
The map f : Em (Q) --+ Sf (Z) is as defined in ( •) and is given by 

{

(l, 1,0), if P = 0 
f(P) = 3 ( ) (r, s, t ) , if P = fr, -f,J 

This is indeed a bijection. Thus, by transporting the group structure of Em (Q) 
to sf (Z), the set Sf (Z) becomes an abelian group. We now define the binary 
operation on Sf (Z): 
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Let u; = (r;, s;, t;)(i = l, 2) be elements in sf (Z). These elements 
correspond to P; = ( '1", ~) on the elliptic curve Em. We show that the sum 

I; I; 

P3 = P1 + P2 corresponds to an element u3 E sf (Z), with u3 = u1 * u2 
where * is defined using the group law on elliptic curves as follows: 

Case I. 

2 r1 r2 ( s2tf - SJ t] )
2 

_ ~ _ r2 
x

3 = 2 
- tf - t:J = t1t2(r2tf - r1t}) tf t}' 

s2tf - s1 t] (r1 ) s1 
Y3 = },(x1 - x3) - Yl = 2 2 2 - X3 - 3 

t1t2(r2t1 - r1t2) t1 t1 

This enables one to find u3 E sf (Z). 

Defines_ = s2t?-s1t], R_ = r2tf-r1t}, R+ = r2tf +r1t} and T = t1t2. 
On simplification and by using above notations we get 

S2 - R R2 
- + -X3=--~--

R:_T2 

Y3 = 
R:.R+S- + T 2R:_(s2r1t1 - s1r2t2) - S~ 

R~T3 

Hence (r3, s3, fj) is given by 

r3 = S: - R+R: 

s3 = R:R+S- + T2R:(s2r1t1 - s1r2t2) - S~ 

tj = R~T3
, 

C JI !l. - 2 _ r d p _ ( r s ) 1 _ 3r2 
ase . 2 - 2 - 2 , an . - 2 , 3 , /, - 2s1 • 12 12 I I I 

Hence 

9r4 2r 9r4 - 8r s2 

X3=----= 
4s2t2 t2 4s2t2 

13 
= 3t

2
. (!_. _ 9r

4 
- 8rs

2
)- .!.._ = 36r

3
s
2 

.~ 27r
6 

- 8s
4 

) 2st t2 4s2t2 t3 8s3 t3 

Thus for u1 = u2 = (r, s, t 3
) we have (r3, s3, tf) where 

r3 -= .9,:__4_~8rs~_ -- ·- ·- --·-- ---- -

s3 = 36r3 s2 -27r6 
- 8s4 

tj = (2st)3. 
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In both the cases, certainly (r3, s3, t]) satisfies the equation of the Pell surface 
S3, but it need not be primitive. 

Now, if (x, y, z) is any primitive point on the Pell surface S3 then 
(x', y', z') .= (d2 x, d 3 y, d 3 z) will also lie on S3 for any integer d. Thus, if 
(x, y, z) is not a primitive point, then gcd(x, z) = d 2 and gcd(y, z) = d 3 

for some integer d ~ I. Let (r4,s4,t]) = (r3/d2,s3/d3,tifd3). Define 

u3 = (r4, s4, tl), 
With. this binary operation, sf (Z) is an abelian group: the identity element 

is (1, 1, 0), the inverse of (r, s, t3 ) is (r, s, -t3 ). We illustrate it with an 
example: 

Example· 4.1. Let E26 : y 2 = x 3 - 26, u1 = (3, I, 1) and u2 = (35,207, 1) 
be in ?f (Z), which correspond to the elements P = (3, 1) and Q = (35, 207) 
respectively in E26(Q). Thus, we have r1 = _3, s1 = -1, t1 = 1, r2 = 35, 
s2 = 207, t2 = I, ands_ = 206, T = 1, R_ = 32,. R+ = 38. Hence 
r3 = 3524 = 881 · 22 , S3 = -125880 = -23 · 3 · 5 · 1049, lj = 32768 = 
215. As (r3, s3, t]) is not a primitive point, we consider u3 = (r4, s4, t]) = 
(r3/d 2, s3/d3, tjld3) = (881, -15735, 4096). Clearly u3 E sf (Z). Also u3 

corresponds to the rational point P3 = ( ~~~, -JJJJ5
) E E26-

Similarly for u1 = u2 = (3, I, 1) we get r3 = 705 = 3 · 4 · 47, s3 = 
-18719, tf = 23. As (r3, s3, t5) is a primitive point, u3 = (r3, s3, t5) = 
(705, -18719, 8). This corresponds to (7~5, -1r19 ) = 2P E E26(Q), where 
P = (3, 1). 

5. A homomorphism from Em ((Q) to the 3-part 
of the class group of the quadratic field (Q( ~) 

In this section we give a group homomorphism from Em(«J!) to Cl(K)[3] 
using 3-descent on Em ((Q). For the curve_ Em, a 3-torsion point T is 
(0, -✓--iii,). There is a natural norm map N : K* ---+ Q* given by 
N(a + b~) = a 2 +b2m for a, b E (Q. This induces a homomorphism: 
K*/K*3 ---+ (Q*/(Q*3, which will also be denoted by N. Let G3 = 
{y K*3 such that N(y) = t 3 , t E (Q*}. Then ker N = G3. . 

Lemma 5.1. Let m be a squarefree positive integer with -m ¢. 1 (mod 4). 
Let K = (Q)(~) and let E 111 : y 2 = x 3 - m be the corresponding elliptic 
curve. Let P = (fr, ?i) E £ 111 ((Q), with gcd(r, t) = gcd(s, t) = 1, and 

G3 = {y K*3 such that N(y) = t3, t E (Q*}. The map 

a : Em (Q) ---+ K* / K*3, a : (;, t~) ~ (s + t 3 -Fin)K*3 

is a group homomorphism. 
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Proof The 3-descent map, given in [5] (pp. 563), applied to the elliptic curye 
Em is: 

c5: E111 ((Q)--'), K*JK*3 

c5(P) = { (y + ,/=,n)K*3, if P = (x, y) 
K*3 , if P = 0. 

Observe that (s + t 3,/=m)K*3 = (¾ + F,ii)K*3 = (y + Fiii)K*3 . 

Since the 3-descent map c5 is a group homomorphism, it follows that a. is a 
group homomorphism. □ 

Lemma 5.2. Let m be a squarefree positive integer with -m ;/= I (mod 4), 
let K = (Q(.j=m), Em : y 2 = x 3 - m, and E111 : :? = .x3 + 27m. Let 
P = ({z, ¾) E E111 ((Q) with gcd(r, t) = gcd(s, t) = l. There is an exact 
sequence of group homomo17Jhisms 

N 

3 ~ 3 A A• A (;•
3 +108111 \>(x3 -216m)) whereo.: P 1-----+ (s+t v-m)K* and<p: (x, y) 1-----+ A 

9
; 2 , 

27
; 3 . 

3Em ((Q) is a proper subgroup of ¢(Em ((Q)). 

__ _,p,:_.o__of, Clearly there is an exact sequence of group homomorphisms: 

where, Em : y2 = x3_ + 27m and¢ is as given in [5] (pp. 558-559), 

J.(p =(.x
3 + 1. 08m y(.x3 

- 2. 16m)). "' 
~ ) 9.x2 ' 27.x3 

This point satisfies y2 = x 3 - m •since when we replace x with x
3~wsm and 

~-'----'----y-w-itff·i'(x~~;~-6m) in-yL=~xl--+-nL=:=_ 6 a~d factorize the result, we obtain 

(y2 - .x3 - 27m)(x3 - 216m)2 

---~--~-----0 . 729x6 - . 
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Let us compute 3P on £ 111 , where P = (x, y) and 3P f= 0. 

Therefore 

_ (x
4 + 8mx x

6 
- 20mx 3 

- 8m2
) 

3P - (x, y) + 4 2 ' 8 3 ' y . y 

( 

2 x
4 + 8mx · ) = }, - x -

4
y

2 
· , },(x - x3) - y , where 

= 

= 

= 

x6 -20mx3 -Sm2 

Sy3 - )' 

x4 +8mx _ X 
4y2 

x6 -20mx3 -Sm 2 -Sy4 

8y3 

x4+8mx-4xy2 

4y2 

., 

x 6 - 20mx3 - 8m2 - 8y4 

2y(x4 + 8mx - 4xy2) . ' 

x 6 - 20mx3 - 8m2 - 8(x3 - m) 2 

2y(x4 + 8mx - 4x(x3 - m)) ' 

x 6 - 20mx3 - 8m2 - 8x6 + 16mx3 - 8m2 

. 2y(x4 + 8mx -4x4 + 4mx) 

7x6 + 4mx3 + 16m2 

6xy(x 3 - 4m) 

(
x4 + 8mx x 6 - 20mx3 - 8in2

) 

:--' 3P = (x, y) + 4y2 ' . 8y3 ' 

( 

2 x
4 + 8mx ) = 2 - x -

4
y

2 
, },(x - x3) - y , 

-(x9 + 96mx6 + 48m2x
3 - 64m3 

- 9x2(x 3 - 4m)2 ' 

y(x3 + 8m)(x9 -228mx6 + 48m2x 3 - 64m3)) 

27x3 (x3 - 4m)3 ' 

-(p3 + 108m q(p
3 

- 216m)) 
-

2 
, 

3 
, where 

9p 27p 

(x
3 - 4m y(x3 + Sm)) ~ 

(p, q) = x2 , x 3 E E111 (Q) see (5). 
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Since 

ker a. = ¢(Em (Q)) 

{ (
.x3

+108m y(.x3
-216m)) (dl'I) A2 A3 · 27 } 

= p = 9x2 ' 27£3 E E,n ",£. : )' = X + m ' 

This shows that 3Em (Q) £ ker a.. 
Conversely, let P = (x, y) E ker a.. Then there exist p, q E Q satisfying 

q 2 = p 3 + 27m and · 

p 3 + 108m 
x= 9p2 

q(p3 - 216m) 
y = 27p3 

However if we try to solve for p, q wedo not get (p, q) = (x3
~ 2

4111
, y(x

3ssm)). 
This shows that 3 Em (Q) =fa ker a.. □ 

Theorem 5.3. Let m be a squarefree positive integer with -m '!, 1 (mod 4). 
Let K = Q(,J='m), and Em : y2 = x3 - m be the corresponding elliptic 
cun,e. Let P = ({z, -{:i) E Em(Q) \ 0, with gcd(r, t) = gcd(s, t) = 1, 

then (s + t 3 Fin) is the cube of an ideal, i.e., (s + t3 Fm) = a3, where 
a = (r, s + t 3 Fm). There is a group homomorphism K : E 111 (Q) ~ 
Cl(K)[3] defined as K(P) = [a], whose kernel contains 3Em(Q). 

Proof The-first-par-t-is already proved in Theorem 3.2, i.e., 
(s + t 3 ,Fin) = a3. Now, let us prove tlfaCthe-:111ap-,c.._is_a_g[Q!!Q 
homomorphism. Let yp

1 
= si/tf, yp

2 
= s2/ti and )'p

3 
= s3/tj for_--,.. __ 

P1, P2, P3 E Em (Q). Let (s1 + tf w) = a3, (s2 + t?w) = b3 and (s3 + tf w) = 
c3, where w = ,Fm. Then K(P1) = [a], K(P2) = [b] and K(P3) = [c]. ·· 
To show K is a homomorphism we need to prove K(PJ + P2) = [ab] = 
[a][b] = K(P1)K(P2). This is equivalent to proving ,c(P1)K(P2)K(P3) = (1) 
for collinear rational points P1, P2, P3 E Em (Q). We know by Lemma 5.1 
that the map a. : . Em (Q) ~ K* / K*3 is a homomorphism. Hence, · 
a. (P1)a. (P2)a. (P3) E K*3 , i.e., (s1 + ff w)(s2 + tiw)(s3 + t]w) is a cube in K*. 

Hence, (s1 + ff m)(s2 +tiw)(s3 + t]w) = {J3 (say). This gives, a3b3c3 = (/J) 3. 
__ This implies abc = (/J). Hence K(P1)K(P2)K(P3) = (/J), a principal ideal; 
--=-==1:ne=ioerttity~of.°C/{K).[31 ==~ . _ _ . 

We know that 3 P E ker a.. Thus, a. (3'Pn~a-"cdbe,say,,.yl.for~p_me_ y E K*. . ~~-.; 

Hence for any P E E 111 (Q), ,c(3P) = [b] where· b is the principal ideal~---- - -~---

generated by y. Hence 3E111 (Q) £ ker K. □ 
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Example 5.4. Let K = Q(-J=7§) and E19 : y 2 = x 3 - 79, where 
-m = l (mod 4). Then E79 ((Q) is generated by P = (20, 89). The ideal 
{89 + ~) = P1P2q3, where (2) = P1P2 and q is a prime ideal above 5. 
This shows that the condition -m =!- l(mod 4) in the above theorem cannot 
be dropped. 

Example 5.5. Let K = Q( .J=i6) and E26 : y 2 = x 3 - 26, where -m ¢= 
I(mod 4). Then E26(Q) is generated by P = (3, 1) and Q = (35,207). 
Also P + Q_ = (881/256, -15735/4096). Then we have (1 + .J=i6) = p~, 
(207 + .J=i6) = a3, (-15735 + 4096.J=i6) = p~81 . The ideals 
p3 = ((3, ,J=26 + 1)) and Pss1 = ((881, ./=26 + 624)) generate ideal 
classes of order 3, whereas the ideal a = ( ./=26 - 3) is principal. 

6. Conclusion 

Soleng's homomorphism given in [11] applied to E 111 ((Q) is¢ : (-fx, ;'J) i--+ 

[(r,-ks +~)],where kt3 + Zr = 1. Let a = (r,s + t 3~), 

b = (r, -ks + ~) and c = (r, -ks - ,,J='in). Then c ~ a since 

-ks -~ = -l,,/'=m(r) - k(s + t 3 ,./=m). 

Also, since s + t3 ~ = ls(r) - t3(-ks - Fin), a ~ c. It follows that 
a = c. To show that be is principal, observe that the conjugate ideal c = ii of 
c = a is equal to b. It follows that ab = (Na), the principal ideal generated 
by the norm of a, see [6]. It follows that the classes of the ideals a and b are 
inverses in the ideal class group of K. This means that the homomorphism . 
1< and Soleng's homomorphism <p are quite similar. The precise relationship; 
when Soleng's elliptic curve is Em, is · 

1<(P) = (</J(P))- 1. 

But Soleng did not show that when the elliptic curve is Em, the image of <p 
belongs to Cl(K)[3]. 

Similarly there is a relation between the homomorphism lfl given by 
Hambelton and Lemmermeyer and the homomorphism 1< which is given in 
the following diagram: 

As shown towards the end of §3, f is not a homomorphism. However, the 
diagram commutes, i.e., f o If/ = ,c. 

All computations were done using Sage. 
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