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Abstract. Given a prime number p, Bloch and Kato showed how
the p®-Selmer group of an abelian variety A over a number field X is

- determined by the p-adic Tate module. In general, the p™-Selmer group
Sel,m A need not be determined by the mod p™ Galois representation
A[p™]; we show, however, that this is the case if p is large enough. More
precisely, we exhibit a finite explicit set of rational primes Z depending
on K and A, such that Sel,n A is determined by A[p™] for all p ¢ Z.
In the course of the argument we describe the flat cohomology group
Hf’ppf(OK, A[p™]) of the ring of integers of K with coefficients in the
p™ -torsion A[ p™] of the Néron model of A by local conditions for p & Z,
compare them with the local conditions defining Sel,m A, and prove that
A[p™] itself is determined by A[p™] for such p. Our method sharpens
the known relationship between Selp,m A and Hflppf(OK, Alp™]) and con-
tinues to work for other isogenies ¢ between abelian varieties over global
fields provided that deg ¢ is constrained appropriately. To illustrate it, we
exhibit resulting explicit rank predictions for the elliptic curve 11A1 over
certain families of number fields.

2010 Mathematics Subject Classification. Primary 11G10, Secondary
14F20, 14K02, 14L15 :

1. Introduction

Let K be a number field, let A be a g-dimensional abelian vafiety over K, and
let p be a prime number. Fix a separable closuré K S of K. Tate conjectured
[Tat66, p. 134] that the p-adic Tate module ToA := hm A[p™1(K?) deter-
mines-A. up to an isogeny of degree prime to p, and Faltmgs proved this in
[Fal83, §1 b)]. One can ask whether A[ pl.alofie determines A to some extent.
Consideration of the case g = 1, p = 2 shows that for small"p- e
expect much in thls direction. However at least if g =] and K Q for p' . .
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32 Kestutis Cesnavicius

large enough (depending on A) the Frey—Mazur conjecture {Kra99, Conj. 3]
predicts that A[p] should determine A up to an isogeny of degree prime to p.
Consider now the p®-Selmer group

Sel,» A C H' (K, A[p™)),
which consists of the classes of cocycles whose restrictions lie in
A(Ky) ® Qp/Zp C H' (Ko, A[p™))

for every place v of K. Note that A[p®](K’) = V,A/T,A with
VpA = T,A @z, Qp, so T A determines the Galois cohomology groups
appearing in the definition of Sel,c A. Since an isogeny of degree prime
to p induces an isomorphism on p®-Selmer groups, the theorem of
Faltings implies that 7, A determines Selyeo A up to isomorphism. One may
expect, however, a more direct and more explicit description of Sel,eo A
in terms of T,A. For this, it suffices to give definitions of the subgroups
A(Ky) ® Qp/Zp C H'(Ky, A[p™]) in terms of T, A.

" Bloch and Kato found the desired definitions in [BK90, §3]: if v { p, then
A(Ky) ® Qp/Z, = 0;if v | p, then, letting Beris be the crystalline period
ring of Fontaine and working with Galois cohomology groups formed using
continuous cochains in the sense of [Tat76, §2], they define

H}(Ky, VpA) == Ker(H'(K,;VyA) > H'(K,, VpA ®q, Beris)),
and prove that
- AKy) ® Qp/Zp = Im(H (Ko, VyA) = H' (Ky, VpA/TpA)
= H'(K,, A[p™]).

Considering the p-Selmer group Sel, A and A[p] instead of Sel,~ A and
A[p®] (equivalently, Sel,» A and T,A), in the light of the Frey-Mazur
conjecture, one may expect a direct description of Sel, A in terms of A[p]
for large p. We give such a description as a special case of the following
theorem.

Theorem 1.1. Fix an extension of number fields L/K, fix a K-isogeny
¢: A = B between abelian varieties, and let A[¢] and AL[p] be the kernels
of the induced homomorphisms between the Néron models over the rings of
integers O and Oy. Let v (vesp., w) denote a place of K (resp., L). For
v, w 1 00, let e, and p, be the absolute ramification index and the residue
characteristic of v, and let ca,, and cpy, (resp., ca,w and cp ) be the local
Tamagawa factors of A and B.
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(a) (i) (Corollary 4.2, Remark 4.4, and Proposition B3 ) The pu.llbdc_k rﬁap
H},o (O, Alg]) > H'(K, Alg)

is an isomorphism onto the preimage of

[T Hpr(©s, Al c [] H' (%o, Alg)).

0400 v{oo

(i1) (Proposition 5.4 (c).) Assume that A has semiabelian reduction at all
v | deg¢. If deg ¢ is prime to Hu)(oo CAnCB,p and either 2 4 deg ¢ or
A(K,) is connected for all real v, then ’

Hgoi(Ok, Alg]) = Sely A

inside H' (K, A[¢)).

(b) (Proposition 3.3.)If A has good reductionatallv | deg ¢ andife, < pp,—1
for every such v, then the O -group scheme A“[¢) is determined up to
isomorphism by the Gal(L’/K)-module A[¢](L®).

Thus, if

deg¢, H CA,wCB,w | = 1,

wco

the reduction of A is good at all v | deg @, and e, < p, — 1 for every such v
(in particular, 2 4 deg @), then the ¢-Selmer group

Sely AL C -H'(L, Alg])
is determined by the Gal(L* /K)-module A[¢$](L*).

Corollary 1.2. If A has potential good reduction at every finite placé of K
and p is large enough (depending on A), then A[p" ] determines Sel,» Ay for
every finite extension L /K.

Proof. By a theorem of -McCallum [ELL96, pp. 801-802], every prime g
dividing some c4 ,, satisfies g < 2g + 1. Therefore, it suffices to consider
those p with p > max(2g + 1, [K : Q] + 1) for which A has good reduction
at every place of K above p and to apply Theorem 1.1 to the multiplication by
. p™ isogeny. S » . !

Remarks.

1.3. Relaﬁoﬁshiﬁs similar to (ii) betwe_eﬁ Selmer groﬁps and flat cohomo-
logy groups are not new and have been implicitly observed already
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in (Maz72] and subsequently used by Mazur, Schneider, Kato, and
others (often after passing to p*°-Selmer groups as is customary in
Iwasawa theory). However, the description of pr +(Ok, A[¢]) by local
conditions in (i) seems not to have appeared in the literature before, and
consequently (ii) is more precise than what seems to be available.

In a more restrictive setup, the question of the extent to which A[¢]

* determines Sely A has also been discussed in [Grel0].
1.4,

In the case of elliptic curves, Mazur and Rubin find in [MR15, Thm. 3.1
and 6.1] (see also [ASOS, 6.6] for a similar result of Cremona and
Mazur) that under assumptions different from those of Theorem 1.1,
p"-Selmer groups are determined by mod p™ Galois representations
together with additional data including the set of places of potential
multiplicative reduction. It is unclear to us whether their results can be
recovered from the ones presented in this paper.
The Selmer type description as in (i) continues to hold for H élt Ok, A),
where A — Spec Ok is the Néron model of A. This leads to a reproof
of the étale cohomological interpretation of the Shafarevich—Tate group
ITI(A) in Proposition 4.5; such an interpretation is implicit already in
the arguments of [Ray65, I1.§3] and is proved in [Maz72, Appendix].
Our argument seems more direct: in the proof of loc. cit. the absence
of Corollary 4.2 is circumvented with a diagram chase that uses coho-
mology with supports exact sequences.
In Theorem 1.1 (a), it is possible to relate Sels A and fppf(OK, Alol)
under weaker hypotheses than those of (ii) by combining Proposi-
tion 2.5 with Corollary 4.2 as in the proof of Proposition 5.4 (see-also
Remark 5.5).
The interpretation of Selmer groups as flat cohomology groups is useful
beyond the case when ¢ is multiplication by an integer. For an example,
see the last sentence of Remark 5.7.
Theorem 1.1 is stronger than its restriction to the case L = K. Indeed,
the analogue of e, < p, — 1 may fail for L but hold for K. This comes
at the expense of A% [¢] and Sely A being determined by A[¢](L?) as
a Gal(L*/K)-module, rather than as a Gal(L®/L)-module.
Taking L = K and A = B in Theorem 1.1, we get the set £ promised
in the abstract by letting it consist of all primes below a place of bad
reduction for A, all primes dividing a local Tamagawa factor of A, the
prime 2, and all odd primes p rarmﬁed in K for which e, > p —'1 for
some place v of K above p.
In Theorem 1.1, is the subgroup B(L)/¢A(L) (equivalently, the
quotient ITI(A;)[¢]) also determined by A[¢](L*)? The answer is
‘no’. Indeed, in [CMOO, p. 24] Cremona and Mazur report' that the

ICremona and Mazur assume the Birch and Swinnerton-Dyer conjecture to
compute Shafarevich-Tate groups analytically. This is unnecessary for us, since full
2-descent finds provably correct ranks of 2534 E£1,2534G1,4592D1, and 4592G1.
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elliptic curves 2534F1 and 2534G1 over (Q have isomorphic mod 3
representations, but 2534 F1 has rank O, whereas 2534G1 has rank 2.
Since 3 is prime to the conductor 2534 and the local Tamagawa factors
2 =44,¢c7 = 1,c181 = 2 (resp.,, ¢c2 = 13, ¢7 = 2, c187 = 1) of
2534F1 (resp., 2534G1), Theorem 1.1 indeed applies to these curves.
Another example (loc. cit.) is the pair 4592 D1 and 4592G1 with ¢ =5
and ranks O and 2.
For an odd prime p and elliptic curves E and E’ over Q with
E[p] = E’[p] and prime to p conductors and local Tamagawa fac-
tors, Theorem 1.1, expected finiteness of I1I, and Cassels—Tate pairing
predict that tk E(Q) = rk E’(Q) mod 2. Can one prove this directly?
1.11. For the analogue of Theorem 1.1 (a) in the case when the base is a
global function field, one takes a (connected) proper smooth curve §
over a finite field in the references indicated in the statement of Theo-
rem 1.1 (a). Letting K be the function field of S, the analogue of The-
orem 1.1 (b) is Corollary B.6: if char K { deg @, then A[¢] — S is the
Néron model of A[¢] — Spec K (L plays no role); in this case, due to
Proposition 2.7 (b),

Hipor (S, Alg)) C H' (K, Al$))

is the subset of the everywhere unramified cohomology classes. The
final conclusion becomes: if (deg¢, charK [ cascps) = 1 (the
product of the local Tamagawa factors is indexed by the closed s € S),
then A[¢] determines the ¢-Selmer subgroup

Sely A € H'(K, Al¢)),

which, in fact, consists of the everywhere unramified cohomology
classes of H(K, AlP)).

Example 1.12. We illustrate our methods and results by estimating the
5-Selmer group of the base change Ex of the elliptic curve E = 11A1 to
any number field K. This curve has-also been considered by Tom Fisher,
who described in {Fis03, 2.1] the ¢-Selmer groups of Ex for the two degree
5 isogenies ¢ of Ex defined over Q. We restrict to 11A1 for the sake of
concreteness (and to get precise conclusions (a)—(f)); our argument leads to
estimates analogous to (2) for every elliptic curve A over Q and an odd prime

- p of good reduction for A such that A[p] = Z/pZ & pp.

T Iactx f}m,,—}._SpeC Q¥ be the Néron model of E . Since E 51=Z/57Z.& us,
the proof of Proposmon 33 supphcs “an-isemorphism__ :

5"[5] Z/SZ L ® s
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Therefore, the cohomology sequence of 0 — us5 — Gy, 3> G, ~ Otogether
with the isomorphism HE (O, Z/5Z) = Clk[5] gives

dimp prpf(o,(, EXS) = 2d1m1F5 c1K [5] + dlm]FS 0% /0%

where Clg is the ideal class group, rIK and r{( are the numbers of real and
complex places, and

hE = dimg, Clx[5], u¥ := dimp, u5(Ok).

The component groups of Néron models of elliptic curves with split multi-
plicative reduction are cyclic, so (1) and Remark 5.5 give the bounds

2K 4 kK 1+ W o 11y
< dimp, Sels Ex < 2h& 478 + 08 — 1408 1200 111). @

Thus, the obtained estimate is most precise when K has a single place above
11. Also,

dimp, Sels Ex = r{ +rX — 1 +u¥ +#(v ] 11) mod 2, 3)

because the 5-parity conjecture is known for Ex by the results of [DDOS].
When K ranges over the quadratic extensions of QQ, due to (2), the conjectured
unboundedness of the S-ranks hf of the ideal class groups is equivalent to
the unboundedness of dimg, Sels Ex. This equivalence is an instance of a
generalresult [Ces15, 1.5] that gives a precise relation between unboundedness
_questions for Selmer groups and class groups. That a relation of this sort may
be feasible has also been (at least implicitly) observed by other authors, see,
for instance, [Sch96].
- It1s curious to draw some concrete ponclusions from (2) and (3).

(a) As is also well known, tk E(Q) = 0.

(b) If K is imaginary quadratic with 115 = 0and 11 is inert or ramlﬁed in K,
thentk E(K) = 0.

(c) If K is imaginary quadratic with hg( = 0 and 11 splits in KX, then either
tk E(K) =1,orrk E(K) = 0 and corkz; II(Ek)[5°] = 1, because, due
to the Cassels—Tate pairing,

corkz, II(Ex)[5%] = dimp; UI(EK)[S] mod 2.

Mazur in [Maz79, Thm. on p. 237] and Gross in [Gro82, Prop. 3] proved
that tk E(K) = 1.
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(d) If F is a quadratic extension of a K as in (c) in which none of the places
of K above 11 split and hg = 0, then either rk E(F) = 2, or ITI(EF)[5*]
1s infinite (one again uses the Cassels-Tate pairing).

(e) If K is real quadratic with hg( = 0 and 11 is inert or ramified in K, then
either tk E(K) = 1, ortk E(K) = 0 and corkz, III(Ex)[5*°] = 1. In the
latter case LLI(E g )[ p®°] is infinite for every prime p, because the p-parity
conjecture is known for Eg for every p by [DD10, 1.4] (applied to E and
its quadratic twist by K). Gross proved in [Gro82, Prop. 2] that if 11 is
inert, then rk E(K) = 1.

() If X is cubic with a complex place (or quartic totally imaginary), a single
place above 11, and hf = 0, then either tk E(K) = 1, ortk E(K) =0
and corkz, HI(Ex)[5°] = 1.

How can one construct the predicted rational points? In (c) and the inert
case of (e), [Gro82] explains that Heegner point constructions account for the
predicted rank growth.

1.13 The contents of the paper

We begin by restricting to local bases in §2 and comparing the subgroups
B(Ky)/$(A(Ky)), H (O, Alg)), and H) (Ky, Alg]) of H'(K,, A[g])
under appropriate hypotheses. In §3, after recording some standard results on
fpqc descent, we apply them to prove Theorem 1.1 (b) and to reprove the étale
cohomological interpretation of Shafarevich—Tate groups. In §4, exploiting
the descent results of §3, we take up the question of Hflppf with appropriate
coefficients over Dedekind bases being described by local conditions and
prove Theorem 1.1 (). The final §5 uses the local analysis of §2 to compare
Sely A and Hf]ppf(OK, Al¢]) and to complete the proof of Theorem 1.1. The
two appendices collect various results concerning torsors and exact sequences
of Néron models used in the main body of the text.

Some of the results presented in this paper are worked out in somewhat more
general settings in the PhD thesis of the author; we invite a reader interested
in this to consult [Ces14a], which also discusses several tangentially related
questions.

1.14 Conventions

When needed, a choice of a separable closure K* of a field K will be made
implicitly, as will be a choice of anembedding K¥ < L* foran overfield L/K.
_If v is a place of a global field K, then K, is the corresponding completion;
for v { 0o, the Titig of integers-and the residue field of K, are denoted by O,

~and F,,. If K is a number field, Ok is its ring of integers. For s e S-with S

a scheme, Og ¢, ms s, and k(s) are the local ring at s, its maximal ideal, and



38 Kestutis Cesnavicius -

its residue field. For a local ring R, its henselization, strict henselization, and
completion are R", R*", and R. The fppf, big étale, and étale sites of S are
Stppfs Sg;» and Sg; the objects of Sgypf and S, are all S-schemes, while those of
S are all schemes étale over S. The cohomology groups computed in Sg and
Stppf are denoted by H, éit(S » =) and'Hf"ppf(S , —); Galois cohomology merits no
subscript: H (K, —). An fppf torsor is a torsor under the group in question
for the fppf topology. An algebraic group over a field X is a smooth K -group
scheme of finite type. .

2. Images of local Kummer homomorphisms as flat cohomology groups

Let S = Speco for a Henselian discrete valuation ring o with a finite
residue field F, let k¥ = Frac 0, leti: SpecIF — S be the closed point, let
¢: A —> B be a k-isogeny of abelian varieties, let ¢: A — B be the induced
S-homomorphism between the Néron models, which gives rise to the homo-
morphism ¢: ®4 — Dp between the étale F-group schemes of connected
components of A and By. We use various open subgroup schemes of .A and
B discussed in §B.

2.1 The three subgroups
The first subgroup of Hf]ppf(k, AlP]) is

B(0)/$A®K) = Im(B(K) <> Hipye(k, ALBD) C Hipye(l, Al)).

The second subgroup is

Hios(0, Al]) = Im(H (0, AlB1) 5 Hphoo(k, AlpD) C Hiye(k, Alg)),

where the isomorphism results from the injectivity of a supplied by
Proposition B.3, [GMB13, Prop. 3.1], and Proposition A.5 (even though .A[¢]
may fail to be flat, loc. cit. proves that its category of fppf torsors is equivalent
to the category of fppf torsors of the o-flat schematic image of A[¢#] in A, so
Proposition A.5 nevertheless applies).

The third is the unramified subgroup

HY(k, Alg)) := Ker(H'(k, Al¢]) — H'(k*", Alp))) C H(k, Al$)),

where k*# := Fraco**. The unramified subgroup is of most interest in the
case when A[@] is étale (for instance, when char k { deg ¢); beyond this étale
case, the unramified subgroup is often too small in companson to the first two
subgroups: |

While Imxy is used to define the ¢-Selmer group, prpf(o, Al¢]) and

H).(k, A[$]) are easier to study because they depend only on A[¢].
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We investigate Imxy by detallmg its relatlons with i f]pp‘f'(o,:Alqu‘])A and’
H! (k, A[¢]) in Propositions 2.5 and 2.7. e ' '

Lemma 2.2. Fora commutatzve connected algebraic group G — SpecIF
one has

H/(F,G)=0 forjzl.

Proof. Inthe case j = 1, the ¢laimed vanishing is a well-known result of Lang

[Lan56, Thm. 2]. In the case j > 1, the vanishing follows from the facts that

F has cohomological dimension 1 and that G (IF*) is a torsion group (the latter

results from the finiteness of IF). ' O

Lemma 2.3. For an F-subgroup T' C ® 4, pullback induces isomorphisms
Hf{,pf(o, AN = HIE,T) forj>1.

In particular, #Hflppf(o, ADY = #T'(F) and Hf{)pf(o, ANy =0for j > 2.
Proof. By [Gro68, 11.7 2°)], pullback induces isomorphisms
Hff;',pf(o,Ar) ~ H/(F, AL) forj>1,

s it remains to apply Lemma 2.2 to the terms H/(F, A ) in the long exact
cohomology sequence of

0> A > AL 5T 0. O

2.4 The local Tamagawa factors

These are -
ca :=H#D4(F) and cp:=#0g(F).
The sequences
0 = OAPIEF) — PAF*) > (B(@A)(F) — 0,
0 (P @a)F) =» 05 > (05/¢(P4)E) -0
- are exact, so . A _‘ ) _
T < PN ma e <# (S ) ®.

— k#(¢(<1) ANE) ~ #P(@aNT)
We now cofnpare'7t}1e-subgroups Imxgy and prpf(o A[¢]) of prpf(k A[qS])
discussed in n§2. TS
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Proposition 2.5. Suppose that A LA B is flat (e.g., that charF | deg ¢ or
that A has semiabelian reduction,_ see Lemma B.4).

(a) Then

. Hg (0, Al$)) #04F) @
Hior (0, Al$]) NIm iy T #e@AE)

Im ks 4dp(F) @ ( )
# = #
( H 0, A[¢])nlmx¢) HeEn® = \sen)

(b) If deg ¢ is prime to cp, then @ (F) = (#(P4))(F), and hence, by (a),
, Imxy C Hgpe(0, AlgD).

() If deg ¢ is prime 1o cp, then ®4(F) = (¢ (P 4))(F), and hence, by (a),
| Hg (0, Al¢]) C Imxcy.

< #D4[¢1(F),

(d) If deg ¢ is prime to c4cp; then
Imxy = Hf]ppf(o, Al)).

Proof.
(a) The short exact sequence
0—> Algp] - A 4 pres) g

of Corollary B.7 gives

. ’ HL (@)
0 > B#(®4)(0)/p.A0) > Hf‘ppf(o,A[qS]) > Ker <Hflppf(o‘ A) &, H‘Jppf(o’[gqt(dm)) >0

) f

0 —> BH/SAK) —> Hl ok, Alg) —————> HL_((k, A)ig]

0,

where the injectivity of the vertical arrows follows from the Néron property,
the snake lemma, and Corollary A.3. By Lemma 2.3, Hf})pf(qﬁ) identifies
with l

H'(F, 1) = H'(F,¢(®4)

induced by ¢; moreover, A is onto. Since

H}, (0, Alp))
H{ (0, Alg]) N Im kg

= Ker Hy) () = Kerh
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and C o ’
#H'(F, ©4) #0,4(F)

#Kerh = ; = ,

#HI(F, p(Pa))  #p(Pa)EF)
the first claimed equality follows.

On the other hand,
Im x4 ~ _BW/eAl) . B@ g
Hi (0, Alg)) NImxy — BF@D(0)/pA(0) ~ BF®4) (o)

Moreover, Lemma 2.3 and the étale cohomology sequence of the short
exact sequence

0 B?® , B ix(Pp/Pp(Pa)) > 0

from Proposition B.2 give the exact sequence (see [Gro68, 11.7 1°)] for
the identifications between different cohomology theories)

Blo) o5 \ |
0~ BN (@) (¢(¢A)) F) > H(F,¢(Pa))

1 1 o5\ 6
~ H (]F,(I)B)—»H<]F,¢(®A)), (6)

where we have used the exactness of i, for the étale topology to obtain the
last term. By combining (5) and (6), we obtain the remaining equality

# Imp _ #(Pp/p(®a))(F) - #H' (F, ®p)
HY (0, Alp]) NImiy |~ #H'(F, $(@4)) - #H' (F, ©5/$(D4))
_ #Dp((IF) -
#(p(D)(F)’

(b) Let w: B — A be the isogeny with ker y = ¢(A[deg @]), so
wop =dege, andthusalso ¢oy =degd.
If (deg @, #®p(F)) = 1, then |
® g (IF) = (deg $) (P (F)) C ((deg $) (@ p)) ) C ((P))(F) C P (IF),

which gives the desired equality ®5(F) = (¢ (P 4))(F).

(c) We have the inclusion .
Dal¢] C Dafdeg 4], |
soif (deg ¢, #0 4 (F)) = 1, then O [¢}(F) = 0. The resulting injection

04 @

\ -is then lsurjective becaus;a#H‘im[Zﬁ])‘”i #O4[p](F)_due to the
‘ ‘ — 2
N : A

=

. finiteness of F. | | _ i
- @) The claim follows by combining (b) and (c)." m)
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(a) When restricted to the full subcategory of R-schemes, F is an equivalence
onto the full subcategory of triples of schemes that admit a quasi-affine
open covering (see the proof for the deﬁnmon ) The same conclusion holds
with R" and K" replaced by R and K :=FracR.

(b) When restricted to the full subcategory of R-algebraic spaces of finite
presentation, F is an equivalence onto the full subcategory of triples
involving only algebraic spaces of finite presentation.

Proof.

(a) This is proved in [BLR90, §6.2, Prop. D.4 (b)]. A triple of schemes admits
a quasi-affine open covering if

Xg =\ JUi and Xp =]V

iel . iel

for quasi-affine open subschemes U; C Xk and V; C Xgn for which 7
restricts to isomorphisms (U;) g 5 (V) gn-

(b) The method of proof was suggested to me by Brian Conrad. By construc-
tion, R" is a filtered direct limit of local étale R-algebras R’ which are
discrete valuation rings sharing the residue field and a uniformizer with R.
Given a

T =(,Y,1: Ygn — Ygn)

with Y — Spec K and ) — Spec R" of finite presentation, to show that
itis in the essential image of the restricted F, we first use limit consider-
ations (for instance, as in [Ols06, proof of Prop. 2.2]) to descend Y to a
Y’ — Spec R’ for some R’ as above. , ;

Similarly, K" = 11_1)11 K' with K’ := FracR’, so 7 descends to

v Y > Yy after possibly enlarging R’. We transport the
K’/K-descent datum on Y/ along 7’ to.get a.descent datum on ;V;(,,
which, as explained in [BLR90, §6.2, proof of Lemma C.2], extends
uniquely to an R’/R-descent datum on ). By [LMBOO0, 1.6.4], this
descent datum is effective, and we get a quasi-separated R-algebraic
space X; by construction, F(X) = T, and by [SP, 041V], X is of finite
presentation.
 The full faithfulness of F follows from a 51m11ar limit argument
that uses étale descent for morphisms of sheaves on Ry, together with
(LMBO00, 4.18 (i)]. O

Let S be a connected Dedekind scheme (see §A for the definition), let K
be its function field. For s € S, set K5 := Frac Os ;. The purpose of this
convention (note that K5 ; = K) is to clarify the statement of Corollary 3.2
by making Os s and K ; notationally analogous to (’)g,s and K.IS'l,s'
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Corollary 3.2. Let S be a Dedekind scheme, let sy, ...,s, € S be distinct
nongeneric points, and let V = S {s1, ..., 8} be the complementary open
subscheme. The functor :

F: G (Gv,G05, > 905, it (GV)Ks,, - (G054, )ks,s; for 1 <i <n)

is an équivalence of categories from the category of quasi-affine S-group

schemes to the category of tuples consisting of a quasi-affine V -group scheme,

a quasi-affine Og s,-group scheme for each i, and isomorphisms a;, . .., ay

of base changed group schemes as indicated. The same conclusion holds with
p A -

Os s; and K 5, replaced by OS 5 and Kg . orby Os,s; and K s ;.

Proof. For localizations, the claim is a special case of fpqc descent. Thus, for
hénselizations and completions the claim follows from Lemma 3.1. O

Proposition 3.3 (Theorem 1.1 (b)). Let L/K be an extension of number
fields, and let ¢: A — B be a K-isogeny between abelian varieties. Assume
that

(1) A has good reduction at all the places v | deg ¢ of K ;
(ii) For every place v | deg ¢ of K, its absolute ramification index e, satisfies

ey < pyp — 1,
where p, is the residue characteristic of v.

Then the Oy -group scheme AL[¢), defined as the kernel of the homomorphism
induced by ¢ between the Néron models over Oy, is determined up to
isomorphism by the Gal(L* /K )-module A[¢](L*).

______f_[QQf_By_Comllary—B‘6'71L' [?pﬁ] [ \ ] is the Néron model of the finite étale

A[¢]L, and hence is determined by m] By Corollary 3.2, it therefore suffices
to prove that each AL[qﬁ]ow for a place w | deg¢ of L is also determined
by A[¢]. Moreover, if such a w lies above the place » of K, then the good
reduction assumption implies that

ALglo, = (AX[10,)0w,

so it suffices to prove that already AX [¢], is determined by A[¢].

Let p be the residue characteristic of ». By Corollary B.5, AKX [¢lo, is finite
flat, so it uniquely decomposes as a direct product of commutative finite flat
O,-group schemes of prime power order. The prime-to-p factor is finite étale,
so it is the Néron model of the prime-to- p factor. of-A[¢];-and-hence-is sdeter-

f__._mmed by-A{p]=The-p=primary “factor is also determined thanks to Raynaud’s
- result [Ray74, Thm. 3.3.3] on uniqueness of finite flat models over Henselian

. discrete valuatlon rmgs of mixed characteristic and low absolute ramlﬁcatlon
mdex ' : a
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Remark 3.4. Dropping (ii) but keeping (i), the proof continues to give the
same conclusion as long as-one argues that in the situation at hand AX [¢lo,
is determined by A[¢] for each v | deg ¢.

Although the assumption (ii) excludes the cases when 2 | deg ¢, Remark 3.4
can sometimes be used to overcome this, as the following example illustrates.

Example 3.5. Let K be a number field of odd discriminant, and let
A — Spec K be an elliptic curve with good reduction at all v | 2. Assume
that A[21(K,) # (Z/27Z)* for every v | 2, so that A[2]k, has at most one
K,-subgroup of order 2 for every such ». We show that the conclusion of
Proposition 3.3 holds for 2: A — A, so, in particular, if H Ca,p is odd
and K is totally imaginary, then A[2] determines the 2- Selmer group Sely A
by Theorem 1.1.

Remark 3.4 reduces us to proving that A[2]g, determmes AKX [2]p, for
each v | 2. We analyze the ordinary and the supersingular reduction cases
separately. This is permissible because these cases are distinguishable: in the
former, A[2]x, is reducible, whereas in the latter it is not.

In the supersingular case, by [Ser72, p. 275, Prop. 12], A[2] Ksh ‘with
K$h := Frac OS" is irreducible and also an F4-vector space scheme of dimen-
sion 1. By [Ray74, 3.3.2 3°], AX[2]¢ is its unique finite flat O3*-model.
By schematic density considerations, the descent datum on AKX [2]05;, with
respect to O3 /O, i3 uniquely determined by its restriction to the generic
fiber, which in turn is determined by A[2]k,. Fpqc descent along (’)f)h /O,
then implies that A[2], determines AX[2]o, .

In the ordinary case, the connected-étale decomposition shows that AK [2]o,

is an extension of Z/27Z s by (#2)o,. Therefore, since we assumed that

A[2]k, determines its subgroup (u2)k,, it also determines AK [2]p, due to
the injectivity of

Exty, (Z/2Z, 12) = Hyoe(Oy, p2) — Hipe (Ko, u2) = Exty (Z/2Z, p2)

(extensions in the category of fppf sheaves of Z/27Z-modules).

4. Selmer type descriptions of sets of torsors

The main result of this section is Corollary 4.2, which describes certain sets
of torsors by local conditions and proves Theorem 1.1 (i). It leads to a short
reproof of the étale (or fppf) cohomological interpretation of Shafarevich—
Tate groups and also forms the basis of our approach to fppf cohomological
interpretation of Selmer groups.
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Lemma4.1. Let R be a discrete valuation ring, set K := FracR and
K" := Frac R", and let G be a flat R-group algebraic space of finite presen-
tation. If the horizontal arrows are injective in

1 |
prpf(R’ Q)C——> prpf(K> Gk)
HY, o (RP, Gr)——> Hb (K", Gy,
then the square is Cartesian. If G is a quasi-affine R-group scheme, then the

same conclusion holds under analogous assumptions with R* and K" replaced
byRand K.

Proof. We first treat the case of R" and K. We need to show that every
Gk-torsor Tx which, when base changed to K", extends to a Ggx-torsor
Trh, already extends to a G-torsor 7 — Spec R. By Lemma 3.1 (b), Tz
descends to a flat and of finite presentation R-algebraic space 7, and various
diagrams defining the G-action descend, too. To conclude that 7 is a G-torsor,
it remains to note that

GxrT =T xgrT, (g1 (gt,1) ©)

is an isomorphism, as may be checked over R,
In the similar proof for R and K, to apply Lemma 3.1 one recalls that if G
is a quasi-affine scheme, then so are its torsors, see [SP, 0247]. O

Let S be a Dedekind scheme, let K be its functionfield-As-in%§3;10 clarify
analogies-in-Corollary 42 we set K5 ¢ := Frac Og ; for a nongeneric s € S.

Corollary 4.2. Let G be a flat closed S-subgroup scheme of an S-group
scheme that is the Néron model of its generic fiber. Then the square

Hf}pr(Sa g)C—_>'H1}ppf(K, gK) -

| R

IT; Hf},pf(Os,s, Gos,)—I1; Hlppf(KS,Sa Gkss)s

is Cartesian (the products are indexed by the nongeneric s € §), and simi- '
larly with Os s and K s replaced by (9’31 sand K fg’ s (res ( resp., C gJ_at1d X SH# e
G— Sis ' QUAST-Affine)..e—ee—mermmm " T =

i o T -

Proof. The indicated injectivity in (8) results from Proposition A.5 and
from the compatibility of the formation of the Néron model with localiza-
tion, henselization, and completjon (see [BLR9Q, §1.2, Prop:;4 and §7.2,
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Thm. 1 (i1)] for these compatibilities). By Lemma 4.1, the diagram

ITs Hipp(Os.5, Go5, ) T, Hipp(K's,s, Gks,)

| l

H Hg pf(OS 5? gogvs)L—> Hs ppf(KS 5? gKﬁ.s)

is Cartesian, and likewise for 65,5 and Es,s- It remains to argue that (8) is
Cartesian.

We need to show that every G -torsor Tx which extends to a Go, _ -torsor
To;,, forevery nongeneric s € S, already extends to a G-torsor 7 (these torsors
are schemes, see the proof of Proposition A.5). Since Tx — Spec K inherits
finite presentation from Gg, for some open dense U C S it spreads out to a
Ty — U which is faithfully flat, of finite presentation, has a Gy -action, and for
which the analogue of (7) over U is bijective. Consequently, Ty is a Gy -torsor.

Toincrease U by extending 7y over some s € S—U, we spread out 7o  toa
Gw-torsor Ty over some open neighborhood W C § of 5. By Proposition A.5,
the torsors 7y and 7w are isomorphic over U N W, which permits us to glue
them and to increase U. By iterating this process we arrive at"the desired
U=S. a

Relharks.

4.3. The closed subgroup assumption on the flat S-group scheme G is used
only to deduce the indicated injectivity in (8). If one assumes instead that
G is commutative finite flat, then the injectivity follows from the valuative
criterion of properness; consequently, Corollary 4.2 also holds for such
G. For further extensions of Corollary 4.2, see [éesl4a 7.2-7.4).

4.4. The flatness of G is actually not needed for Corollary 4.2 to hold. To justify
this, let G be the schematic image of Gg in G, so that G is S-flat and a
closed S-subgroup scheme of the same Néron model. The formation of G
commutes with flat base change in particular, with base change to Os s,
to Of ;, orto Os. 5. By [Cesl4a, 2.11] (or already by [GMB13, Prop. 3.1]
if G is affine), the change of group maps

prpf(S, G) > prpf(S, Gg) and
H (055, Gos ) > Hiypi(Os,s, G05,.)

are bijective, and likewise with Og ; replaced by C’)’S’ ;or by (/9\553. This
reduces the claim of Corollary 4.2 for G to its claim for G, whichis S-flat.

We now use Corollary 4.2 to give an alternative proof of the results of
[Maz72, Appendix].
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Proposition 4.5.  Suppose that S is a proper smooth curve over a finite field or

that S is the spectrum of the ring of integers of a number field. Let A — Spec K

be an abelian variety, and let A — S be its Néron model. Letting the product
 run over the nongeneric s € S, set

HI(A) := Ker(Hélt(Ss A) — HHgt(és,s’ Aés,x))‘

(@) If ¢s denotes the local Tamagawa factor of A at s (see §2 for the
definition), then
[Hg (S, A) - TI(A)] < [Tes.
s

(b) One has
II(A) = Ker(H' (K,4) - []H'Es,s, A)).

(c) One has
II(A) = Im(H, (S, A%) > Hi(S, A)).
(d) Let III(A) be the Shafarevich-Tate group of A. Then
| III(A) C TI(A)
and .
[I_H(_A) 1II(A)] < #76(A(K,)) < 2#{realv}~d1mA‘
_ In particular, II1(A) is finite if and only if so is H.(S, A).

» Proof.

(a) By Lemma 2.3 (see [Gro68, 11.7 1°)] for the identification between the
étale and the fppf cohomology groups),

#Hélt(@\S,S: ‘Aé\S,s) = CSa

so the claim results from the definition of I11(.A).
(b) By [BLRIO, §3.6, Cor. 10], if an A Kl -torsor has a K -point, then it

already has a K g s-point, i.e., the pullback map
CH'KEL A > H Rs, A)
is injective, and hence, by Proposition A.5, so is the pullback map

Hélt(og’ss Aog’s) - Hélt(OS,S: Aés,s)'
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Therefore, it suffices to prove that

Ker| H} (S, A) - [ H Ok, A 2 ) ) =Ker H'(K,4) - [« ., 4).
ét S, O3 S,s

This equality follows from the fact that the square

Hy(S, A———— H (K, A)

[ Hy (O . Aoy Y—T1, H'(K% ,, A)

is Cartesian by Corollary 4.2.
(c) In the notation of Proposition B.2, we have the exact sequence

00— A°—>A—->'€Bis*(bs—> 0.
S

A segment of its associated long exact cohomology sequence reads
H(S, A% — H(S, Ay — @D Hjk(s), ),
p ;

50 it remains to recall that the pullback maps
H}Os,s, Apy,) = Hiy(k(s), ©5)

are isomorphisms by Lemma 2.3.
(d) The inclusion follows from (b). So does the bound on.the index because
for real v one has

H'(Ky, A) = m0(A(Ky)) and  #rg(A(Ky)) < 294,
for instance, by [GHS81, 1.1 (3) and 1.3]. The last claim also uses (a). o

5. Selmer groups as flat cohomology groups

The main goal of this section is the comparison of Sely A and Hflppf(S ,AlPD
in Proposition 5.4.

5.1 Selmer structures

Lét K be a global field, and let M be a finite discrete Gal(K*/K)-module.
A Selmer structure on M is a choice of a subgroup of H 1(K,, M) for each
place v such that for all v but finitely many, H..(K,, M) ¢ H!(K,, M) is
chosen (compare with the definition [MR07, 1.2] in the number field case).
The Selmer group of a Selmer structure is the subgroup of H!(K, M) obtained
by imposing the chosen local conditions, i.e., it consists of the cohomology
classes whose restrictions to every H! (K,, M ) lie in the chosen subgroups.
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5.2 The setup

If K is a number field, we let § := Spec Ok; if K is a function field, we let S
be a connected proper smooth curve over a finite field with function field XK.
We let
¢ ¢
A>B and A-> B

be a K-isogeny between abelian varieties and the induced S-homomorphism
between their Néron models. For a place v { 0o, we get the induced map

Po: Dy —> G)B,o

between the groups of connected components of the special fibers of A and B
atv. We let :

CA,vl = #(DA,D (Fv) and CByy ‘= #(DB,U (]Fv)
be the local Tamagawa factors.’
5.3 Two sets of subgroups (compare with §2)
The first set of subgroups is

Im(B(K,) —> Hie(Ko, Alg])
= B(K,)/$A(Ko) C Hyy (Ko, Algl) forall o.

Its Selmer group, defined as in §5, is_the.@-Selmer-group

Sely A C Hg o(K, Alg)).
The second set of subgroups is
Hp (0o, Alg]) C Hiy(Ky, Alg)),  ifvfoo, and
H' (Ku,A[¢]) C H'(K,, Alg]), ifv | o0;

the 1ndlcated injectivity for v { oo has been discussed in §2 (even in the case

when A —) B fails to be flat!). By Corollary 4.2 and Remark 4.4 (together
with Proposition B.3), its Selmer group is .

e i (STATY) CH (K AGD.

If A[¢) is étale, then A[¢] is also étale over a sufficiently small 'hor.lempty
open subset of' S, so, by Proposition 2.7 (d), the above sets of subgroups are:
two Selmer structures on A[¢]. o N
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In general, without assuming that A[¢] is étale, the two sets of subgroups
form two sets of Selmer conditions in the sense of [Ces14b, §3.1]; in particular,
by [Cesl14b, 3.2],

Hg, (S, Alg]) s always finite,
even in the case when A[¢] is not étale and A —¢i> B is not flat. (The notion
of Selmer conditions generalizes the notion of a Selmer structure to the case

when M of §5 is an arbitrary commutative finite K-group scheme, i.e., not
necessarily étale.)

Proposition 5.4. Suppose that A f) Bis flat (by Lemma B.4, this assumption
holds if, for example, A has semiabelian reduction at all v { 0o for which
charF, | deg¢).

(a) Ifdeg ¢ is prime to Hufoo CB,v, then
Sely A C Hg (S, Alg])

. inside HY (K, A[$]). .
(b) If deg ¢ is prime to [ 4o Ca,0 and either 2 { deg ¢ or A(K,) equipped
with its archimedean topology is connected for all real v, then

Hg (S, Al¢]) C Selg A

inside Hg,¢(K, Alg)).
(¢) Ifdeg¢ is prime to vaoo_cA’,,cB,,, and either 2 { deg ¢ or A(K,) equipped
with its archimedean topology is connected for all real v, then

H (S, Alg]) = Sely A
inside Hg, (K, Alg)).

Proof. By §5, setting H., (Oy, Alg]) := H'(K,, A[$)) for v | 00, we have
injections

Selg A < H Imxky »
Hy e (S, Alg]) N Sely A H (O, Alg]) NImrg,”

v{oo
€))
HY (S, Alg)) Hg, ¢(Oy, Al$))

> .
Hipoe (S, AIBD NSelg A L1 He o o(O, Alg]) NImicg,

This together with Proposition 2.5 (b), (c), and (d) gives the claim because
under the assumptions of (b) and (c) the factors of (9) for v | co vanish:
HI(K,,, A[¢]) = Ounless 2 | deg¢ and v is real, and also, by [GH81, 1.3],
H(K,, A) = mo(A(K,)). =
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Remarks.

5.5. To compare Sely A and Hf]ppf(S , Al#]1) quantitatively, one may combine
(9) with Proposition 2.5 (a).

5.6. As in Proposition 2.7 (c) and (d), the assumptions on ¢4, and cp, in
Proposition 5.4 (a), (b), and (¢) (and hence also in Theorem 1.1 (ii)) can
be weakened to, respectively,

#(DB,U(FU) = #((]51) (q)A,u))(]Fu) forall v f 00,
#O 4, (Fo) = #(Po (P ,0))(Fy) for all v t co, and
#D 4, (Fy) = #(ho (Pa,0))(Fy) = #Dp ,(F)) for all v { 0.

5.7. In practice it is useful to not restrict Proposition 5.4 to the case when
A has semiabelian reduction at all v { oo with charF, | deg¢. For
Instance, suppose that K is a number field, A is an elliptic curve that
has complex multiplication by an imaginary quadratic field F C K, and
¢ =a € Endg(A) C F C K. Then

a a

RIORED

is flat (even étale) because it induces an automorphism of Lie A o [1],
«l L

which is a line bundle on Spec OK[;};]. On the other hand, deg ¢ need
not be invertible on Spec Ok [é] Proposition 5.4 applied to this example
leads to a different proof of [Rub99, 6.4], which facilitates the analysis of
Selmer groups of elliptic curves with complex multiplication by relating

A. Torsors under a Néron model

A.1 Dedekind schemes and Néron models

A Dedekind scheme S is a connected Noetherian normal scheme of dimension
< 1. The connectedness is not necessary, but it simplifies the notation. We let
K denote the function field of S. An S-group scheme X is a Néron model
(of Xx)ifitis separated, of finite type, smooth, and satisfies the Néron properry:
the restriction to the generic fiber map

Homg(Z, X) — Homg (Zk, Xk)
is bijective for every smooth-S-scheme 2. = 7 " e

Proposition A.2. Every torsor (for the fppf or the étale topology) T — §
under a Néron model X —> § is a scheme that is separated, smooth, and has
the Néron property. :
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Proof. Representability of 7 by a scheme follows from [Ray70, Thm. XI3.1
1)]. Its separatedness and smoothness are inherited from A by descent.
In checking the Néron property, one can restrict to quasi-compact Z. Since

T is separated, S-morphisms Z i» 7 are in bijection with closed subschemes
3‘ CZEZxsT

that are mapped isomorphically to Z by the first projection (3 is the graph
of f), and similarly for K-morphisms Zx — 7k. Such a 3 is determined by
3k, being its schematic image in Z x5 7 by [EGA IV, 2.8.5]. Bijectivity of
the assignment 3 > 3 for any Z as above is equivalent to the sought Néron
property of 7. »

To check this bijectivity, it remains to show that the schematic image
3 ¢ Z xs T of any graph 3x C Zx xg Tk is projected isomorphically
-~ to Z, as can be done étale locally on S (in the case of a Noetherian source,
the formation of the schematic image commutes with flat base change by
[EGA IV3, 11.10.3 (iv), 11.10.5 (i1)]). By [EGA IV4, 17.16.3 (ii)], there is an
étale cover § — S trivializing the torsor 7, so the claim follows from the
Néron property of 7y = X O

Corollary A3. For a Néron model X — S, the pullback map
H4(S, X) > Hi(K, X)=H' (K, Xx) (10)
is injective.

Proof. Indeed, by Proposition A.2, a torsor under X is determined by its
generic fiber. O

If S is local, it is possible to determine the image of (10):

Proposition A4. Suppose that S - Spec R for a discrete valuation ring R,
and let X — S be a Néron model. The image of the injection 1 from (10) is the .
unramified cohomology subset

I :=Ker(H' (K, Xx) = H' (K*", Xyan))

where K" := Frac R°". In other words, an Xx-torsor T extends to an
X-torsor if and only if T (K*") # 0.

Proof. Due to smoothness, every torsor 7 under X trivializes over an étale
cover U — Spec R, and hence over R*", giving Im: C I. The inclusion
I C Imuis a special case of [BLR90, §6.5, Cor. 3]. O

Corollary A.3 can be strengthened as follows.
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Proposition A.5. For an S-flat closed S-subgroup scheme G of a Néron
model X — S, the pullback map

Hi (S, G) = Hip(K, Gk)
is injective.

Proof. In terms of descent data with respect to a trivializing §' — S that is
faithfully flat and locally of finite presentation, a G-torsor 7 is described by
the automorphism of the trivial right Gy, (s/-torsor given by left translation
by a g € G(S' x5 S’). The image of g in X (S’ x5 S’) describes an X -torsor
T¥, and the G-equivariant closed immersion 7 C 7% of (a priori) algebraic
spaces shows that 7 is a scheme, since so is 7 by Proposition A.2.

Let 77, T; be G-torsors, and choose a common trivializing ' — S.Itsuffices
to show that a Gk -torsor isomorphism ag : (7)) g = (77)k extends to a
G-torsor isomorphism o : 7, —s T,. In terms of descent data, ag is
described as left multiplication by a certain h € Q(S’K), whose image in

X (S%) extends ag to an X'x-torsor isomorphism S :- (’Z]X Yk —> (TVk.
By Proposition A.2, Sk extends to an X'-torsor isomorphism f : T]X AN ']'2X ,

which restricts to a desired a due to schematic dominance considerations for
(T x — 7; (one uses [EGA IV, 2.8.5] and [EGA 1, 9.5.5)). a

Remark A.6. The above results continue to hold for Néron Ift models and
without the flatness assumption in Proposition A.5, see [ées]4a, 2.19-2.21,
6.1] (an S-group scheme X is a Néron Ilft model (of Xi) if it is separated,
smooth, and satisfies the Néron property recalled in §A; a Néron Ift model is
— -not.necessarily .of finite-type over S-but-is always locally of finite type due to
smoothness). '

B. Exact sequences involving Néron models of abelian varieties

In this appendix, we gather several standard facts about Néron models of
abelian varieties used in the main body of the paper.

B.1 Open subgroups of Néron models of abelian varieties
Let S be a Dedekind scheme (defined in §A), and let K be its function field. Let
/_4—>-Sp_ecK_ and.A—>S S

be an abelian variety and its Néron model. For s € S, let @, := A,/ .A(s) be the
étale k(s)-group scheme of connected components of .A;. For each nongeneric
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s € S, choose a k(s)-subgroup I's C ®;. Then for all s but finitely many,
I's = @y, and we define the open subgroup

Al cA

by removing for every s the connected components of A not in I'y. Letting
is: Speck(s) — S denote the inclusion of the nongeneric point s, we have

the homomorphism
: AT = @is*r .
s AN

If s = O forevery s, then the resulting .A° is the fiberwise identity component
of A.

Proposition B.2. For all choices I, T, co 5, the sequence

00— Af — Ar 5 @is*(rs/Fs) -0

is exact in Sg, Sg,, and Stppf.

Proof. Left exactness is clear, whereas to check the remaining surjectivity of
a in Sg, on stalks, it sufﬁces to consider’strictly local (O, m) centered at a
nongeneric s € S with I'; # ['s. Let a C m be the ideal generated by the
image of mg ;. In the commutative diagram

AT (0) =L (1, /T, )0 /)

L

AT (O/m) —S= (T /T5)(O/m),

the surjectivity of b follows from Hensel-lifting for the smooth Ag — Spec O
(see [EGA IV4, 18.5.17]), the surjectivity of ¢ follows from the invariance of
the component group of the smooth .A,I:(S)x — Speck(s)® upon passage to
a separably closed overfield, whereas the bijectivity of d is immediate from
Ts/Too /a being finite étale over the Henselianlocal (O/a, m/a). The desired
surjectivity of a(Q) follows. a

Let A LY B be a K-isogeny of abelian varieties, and let A £> B be the
homomorphism induced on Néron models over S.

Proposition B.3. The kernel Al¢p] — S is affine; every fppf torsor under
AlP] is representable.

Proof. Affineness of A[¢] is a special case of [Ana73, 2.3.2]. Effectivity of
fppf descent for affine schemes gives the torsor claim. a
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Lemma B.4. The following are equivalent:

(a) A i B is quasi-finite,
(b) A° f) B0 is surjective (as a morphism of schemes),

© A% Bisflat
and are implied by

(d) A has semiabelian reduction at all the nongeneric s € S for which
chark(s) | deg ¢.

Proof. Due to the fibral criterion of flatness [EGA IV3, 11.3.11] for (¢), the
conditions (a)—(c) can be checked fiberwise on §. We will show that they are
equivalent for the fiber over an s € S.

Since A and B are faithfully flat and locally of finite type over S,
[BLROO, §2.4, Prop. 4] supplies the equalities

dimA; =dimA and dimB; = dim B,

and hence also dim .A; = dim BB;. Moreover, by [SGA 3 new, V1a, 6.7], every
homomorphism between algebraic groups over a field factors through a flat
surjection onto its closed image, so ¢; is surjective on identity components
if and only if it is quasi-finite, i.e., (a)<(b). Furthermore, if ¢ (.A?) = B?,
then ¢@; is flat on identity components, i.e., (b)=(c). Conversely, if ¢; is flat,
then, in addition to being closed, ¢ (.A?) is also open, and hence equals B?,
ie., (©)=().

For the last claim, the consideration of the isogeny y: B — A with the
kernel ¢ (A[deg ¢]) reduces to the case when ¢ is multiplication by an integer n.
For such ¢, the surjectivity of ¢, on the._identity components is clear if the_.
reduction at s is semiabelian and follows by inspection of Lie algebras if
chark(s) { n. a

Corollary B.5. Suppose that A kA B is flat (e.g., that A has semiabelian
reduction at every nongeneric s € S with chark(s) | deg¢). Then Al¢p] — S
is quasi-finite, flat, and affine; it is also finite if A has good reduction at every
nongeneric point of S.

Proof. By Lemma B.4, A f, B is quasi-finite and flat; in the good reduction
case, it is finite due to its properness, see [EGA IV3, 8.11.1]. Affineness results
from Proposition B.3. g

~Corollary B.6. - If chark(s) { deg ¢ for all s € S, then Al¢) is the Néron -
model of Al¢).

Proof. Due to Corollary B.5 and the degree hypothesis, the quasi-finite flat
A[¢$] — S is étale. On the other hand, by [BLR90, §7.1, Cor. 6], the Néron
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model of A[¢] may be obtained as the group smoothening of the schematic
‘image of A[¢] in A. By [EGA IV3, 2.8.5], this schematic image is A[¢], so,
since A[@] — S is étale, no smoothening is needed. my

A choice of k(s)-subgroups I'; C. ®; gives rise to their images ¢(Ts).
These images, in turn, give rise to the open subgroup BT < B as in §B.

Corollary B.7. Suppose that A s, B is flat (e.g., that A has semiabelian
reduction at all the nongeneric s € S with chark(s) | deg¢). Then for every
choice of k(s)-subgroups T's C Dy, the sequence

0 AT[g] - AT & B¥D 0

is exact in Sgypf.

Proof. The S-morphism AT 4, B s faithfully flat and locally of finite
presentation by Lemma B.4, whereas the exactness at the other terms is
immediate from the definitions. . O
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