
J. Ramanujan Math. Soc. -32, No.I (2017) 51-74 

Tame ramification and group cohomology 

Chandan Singh Dalawat1 and Jung-Jo Lee2 ,* 
1 Harish-Chandra Research Institute, Chhatnaf? Road, Jhunsi, Allahabad 211 019, 
lndia 
e-mail: dalawat@gmail.com 

2 Department of Mathematics. Seoul National University, Shillim-dong, Gwanak-gu. 
Seoul 151-742, Korea ..,, 

. e-mail: jungjolee@gniail.com 

· Communicated by: Dipendra Prasad 

Received: January I 3, 20 I 6 

Abstract. We give an intrinsic parametrisation of the set of tamely 
ramified extensions of a local field with finite residue field and bring to 
the fore the role played by group cohomology. We show that two natural 
definitions of the cohomology class of a tamely ramified finite galoisian 
extension coincide, and can be recovered from the parameter. We also 
give an elementary proof of Serre.'s mass formula in the tame case and 
in the simplest wild case, and we classify tame galoisian extensions of 
degree the cube of a prime. 

20 IO Mathematics Subject Classification. I IS 15, 11 S20. 

Let K be a local field with finite residue field k of characteristic p and 
cardinality q. Let e > 0 be an integer such that e f= 0 (mod. p) and let 
f > 0 be an arbitrary integer. Consider the set Te,1(K) of K-isomorphism 
classes of finite (separable) extensions of K of ramification index e and residual 
degree f. This set was investigated by Hasse in Chapter 16 of his treatise [ I 0], 
by Albert in [1 ], by Jwasawa in [ 11] and by Feit in [9] (sometimes with the 
restriction that K be of characteristic 0, or that the extensions be galoisian, or 
that f f= 0 (mod. p)). 

Our purpose here is to give a more intrinsic parametrisation of this set, and 
to bring to the fore the role played by group cohomology~_ocy==-which=had · · · -
not y~e_enJ.u.11¥,,fo1maliscd"'at=t:1iec.time of'Hasse and Albert, although only 

~the first few cohomology groups (which were known under different name~). 
are needed. 

* JJL was supported by NRF grant No. 2012-005700, Republic of Korea. 
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We are able to recover properties of L E 'Te,J (K) directly from its parameter. 
Thes~ properties include those of being galoisian, or abelian, or cyclic over K. 
For every L, the parameter determines the galoisian closure L of L over K. 
When LI K is galoisian, the parameter of LI K determines the cohomology 
class of the extension of groups 

1---+ Gal(LIKt)---+ Gal(LIK) ➔ Gal(KtlK)---+ 1 

corresponding to the tower L I Kt I K, where Kt is the maximal unramified 
extension of K in L; it also determines the smallest extension K J of Kt such 
that the e~tension of groups corresponding to the tower LK J I K J I K be split. 

We also give an easy elementary proof of Serre's mass formula [14] in the 
tame case (and in the case when the degree is divisible by p but not by p 2), 

analogous to ·the recent proof [ 4] in prime degrees l (in both the cases l =I=- p 
and l = p). We explicitly work out all galoisian extensions of K of degree 13 

(for every prime l =f=. p), including the case l = 2 of (tamely ramified) octic 
dihedral or quatemionic extensions. 

Let Kt be the degree- f unramified extension of K, wt : K 1 ---+ Z its 
normalised valuation, kt the residue field of Kt, and Gt = Gal(KtlK). 
We shall show that 'Te,J(K) is in canonical bijection with the set of orbits 
for the action of Gt on set of what we call ramified lines D C K J /KY or 

. equivalently on the set of sections of UJ t : K 1 /KY ---+ Z/ eZ; ramified lines 
are precisely images of sections of wt. 

We begin by recalling some basic facts about cohomology of groups in §1 
and apply them to the cohomology of finite fields in §2, where we verify an 
important compatibility between two different.definitions of the cohomology 
class of an extension cif a :cyclic group by a cyclic group. We then recall in 
§3 some basic properties of the Kummer pairing such as its equivariance. The 
fundamental notion of ramified lines is in_troduced in §4. In §5 we param<::trise • 

. the set Te, 1 (K) and_ give a proof in the spirit of [4] of Serre's mass formula in 
· degree e (and also in degree ep when combined \1/ith the results of [4]). We 
then provide in §6 an analogue in degree e (prime to p) of the orthogonality 
relation in prime degree [4]. In §7, we give the parametrisation of 'Te,J(K) 
and show how the various invariants of an L E 'Te,J(K) can be recovered 
from its parameter. Finally, we work out a number of instructive examples 
in §8. 

1. Cohomology of groups 

Most readers can skip this §, except perhaps (1.8) where we compute the 
·number of G-orbits in a G-module C (when both groups ar cyclic) - this is 
the key to Roquette's determination of the cardinality of 'Te,J(K) (7.1.4). For 
an account ·of group cohomology by one of its creators, see [5]. 
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1.1 The group H2 (G, C)0 

Let G be a group and C a G-module, both written multiplicatively, and 
0 : G -+ Aut( C) the action of G on C. An extension of G by C is a short 
exact sequence 1 -+ C ➔ r ➔ G ➔ I such that the resulting conjugation 
action of G on C is equal to the given action 0. Two extensions r, r' of G by 
C are isomorphic if there is an isomorphism of groups r ➔ r' inducing Ide 
on the common subgroup C and Ide on the common quotient G. Isomorphism 
classes of extensions of G by Care classified by the group H 2(G, C)0. The 
class [r] E H 2 ( G, C)0 vanishes if and only if the extension r is split in the 
sense that the projection r -+ G admits a section, which happens precisely 
when. r is isomorphic to the twisted product C x0 G, the product set C x G 
with the law of composition (c, g)(d, h) = (c0(g)(d), gh). 

1.2 The group H 1 (G, C)0 

The group H 1 (G, C)0 is the set of sections of the projection C xg G ➔ G 
up to C-conjugacy; it can be identified with the set of supplements of C in r 
(subgroups D c C x0 G such that C n D = l, CD= f) up to f-conjugacy 
(or C-conjugacy, which comes to the same). If the action 0 is trivial, then 
H 1 (G, C) 1 = Hom(G, C). 

1.3 The restriction map in general 

Let G be a group and C a G-module. Let <p : G' ➔ G be a morphism of · 
groups; it allows us to view the G-module C as a G' -module via the action 
0 o rp. Let C' be a G' -module (with action 0 1

), and let If/ : C ➔ C' be 
a morphism of G'-modules. For i = l, 2, the pair (rp, If/) induces a map 
Hi (G, C)0 -+ Hi (G', C')g, on cohomology called the restriction map. 

For i = I, it sends the class in H 1 (G, C)e of a section g 1-+ (CT(g), g) 
of the projecti~n C xg G ➔ G to the class in H 1.(G', C')g, of the section 
g' 1-+ (lf/(CT(rp(g'))), g') of the projection C' xg, G' 7 G'. 

For i = 2, the restriction map H 2 (G, C)0 ➔ H 2 (G', C!)0 , coming from 
the pair (rp, lf/J will be defined in two steps. In th~ first step, C' = C and 
If/ = Ide, and in the second step, G' = G and rp = Ide,. 

When C' = C and If/ = Ide, the map H 2 ( G, C)0 ➔ H 2 ( G', C)0 0 rp coming 
from the pair (rp, Ide) sends the class of an extension r of G by C to the class 
of the extension frp,=-QLQ~

0
by~C-c:onsisting~0Hhose=(cy, g'tE r x G1"such fnat --- -· · 

·r;;;·rp-(i'5 in a. . 
When G' = G and <p = Ide1 , the map H 2 (G', C)0 -+ H 2 (G', C')01 

coming from the pair (Ide1 , If/) sends the class of an extension f' of G' by 
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C to the ~lass of the extension vrC = (C' x f')/lfl'(C) of G' by _q', where 
I . -· .. . · ] . . . . . . •.•. -•. -~ 

VI (c) = (lfl{C), C- ). . .. · . . . . . . . _ . _::;:,.;_,. 

Tlie restrictio~- iTiap H. 2 ( G, C')o _; .-fp ( c,;·c')o/coming:•froril ra general .. ,,,, .. 

pair (<p, vi) is_ defined by 'first applying (<p, Ide) and then applying' (Ide,, 'fl) · 
to get the extension \f/(f,p) of G' by C'.ln the special case when <p: G' ➔ G 
is sm:jective and C' = C, the restri_ction map is called the inflation mapi it will 
be of particular relevance in what follows. 

I .4 The case of cyclic groups -

Recall how the groups H 1 ( G, C)o and H 2 ( G, C)o can be computed when G 
is cyclic of order n > 0. Let a be a generator of G, and define the elements 
a - 1 and Nr, = 1 + a + • • • + a 11

-
1 in the group ring Z[G] (over which C 

is a left module via 0). We have Nr,.(a - 1) = 0 and (a - 1).Nr, = 0, and 
therefore we get a complex 

( )"-I ( )Nu ( )"-I 
C---+ C---+ C--➔ C. (1.4.1) 

The cohomology groups of ( I .4.1) are canonically isomorphic to H 1 ( G, C)o 
and H 2 (G, C)o respectively. If 0 is trivial, then H 1(G, C)1 = 11 C and 
H 2 (G, C)1 = C/C'1. . 

Let G' be another cyclic group, <p : G' ➔ G a su,jective morphism of 
groups, and a' a generator of G' such that <p(a') =a. Let C' be a G'-modtile 
and vi : C ➔ C' a morphism of G' -modules. Then the restriction map 
Hi (G, C)o ➔ Hi (G', C')0, is simply given by restriction to subgroups and 

passage to the quotient from the map vi : C ➔ C'. 

1.5 The case of cyclic modules 

S~cialise further to the case when C is also cyclic, of some order m > 0, and 
le(a E Z be such that 0(a) = a in (Z/mZV (so that a11 = 1 (mod. m)). The 
orders of the cyclic groups H 1 ( G, C)a and H 2 ( G, C)a can then_be computed in 
terms-of a,m andn because for every r E Z, theorderofthekemel ,.C (resp. the 
image C'") of the endomorphism ( Y of C is gcd(m, r) (resp. m/ gcd(m, r))., 
Taking r = a - I and r = 1 + a + • • • + a11

-
1 respectively gives the result. 

To get a presentation of the extension r of G by C corresponding to a given 
class in H 2 (G,"C)a, choose generators T EC, a E G and identify the class of 
r with the class of an elements E Z such that (a-:~ 1 }s = 0 (mod. m) (modulo 
those whi~h are ~ ( 1 + a + · . · + a11

-
1 )t for,-~ome·t E: Z); "for a suitable lift 

a E r of a, we then ha~e . . 

(1.5.1) 

For a direct derivation of this presentation, see for example [12, 9.4), 
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Example 1.5.2. Taken= 2 and m = 4. The possibilities for a (mod. 4) are 
1 and -1. When a = 1, we have H 2 (G, C) 1 = C/ C 2, and the two extensions 
r (1.5.1) are the direct product C x G and the one in which the group r is 
cyclic. When a= -1, we have H 2(G, C)-1 = 2C, the split extension is the 
twisted product C x_1 G (I.I) and called the dihedral group '.D4,2, while the 
other is called the quaternionic group D4,2· 

I .6 Commutativity and cyclicity 

Let us determine the order of a in r ( 1.5.1 ), and the conditions for r to be 
commutative or cyclic. 

Remark 1.6.1. Although s E Z is not unique in (l.5.1), r = gcd(m, s) is 
uniquely determined; m/r is the order of Ts in the group r. We claim that the 
order of the element a E r ( I .5 .1) is mn / r. Indeed, the order of a is a multiple 
dn of the order n of its image CJ E G; we have to show that d = m / r. Now, 
from the relation 5 11 = Ts, it follows that 5dn = Tds = 1, sod is a multiple of 
the order m/r of T5

• But conversely, it follows from 5 11111 /r = Tms/r = I that 
d n divides mn / r and therefore d divides m / r. Hence d = m / r, and the order 
ofa ismn/r. 

Remark 1.6.2. Note that the group r (I .5.1) is commutative if and only if 
T and a commute, which happens precisely when a = 1 (mod. m), in view of 
the relations rm= I, rrTa- 1 = Ta. 

Remark 1.6.3. Suppose that a = 1 (mod. m). In this case, the extension 
(1.5.1) of G by C splits if and only ifs = 0 (mod. gcd(m, n)). Indeed, this 
congruence is equivalent to the existence of at E Z such that nt = s (mod. m), 
which is equivalent to s = (] + a + • • • + a 11

·-
1 )t (mod. m) in view of 

a= I (mod. m). 

For a prime l and an integer x -:j=. 0, denote by v, (x) the exponent of l in the 
prime decomposition of x. The following proposition has been extracted from 
[I, Theorem 13) and the proof has been simplified. 

Proposition 1.6.4. Suppose that a= 1 (mod. m). The (commutative) group 
r (I .6.2) is cyclic if and only ifs is prime to gcd(m, n ). 

Proof Suppose first thats is prime to gcd(m, n); we have to find an element of 
order mn in r. The idea is to find an element YI E r of order. lv,C,?711

) forevety 
prime l in ea~!) of thethree(cxhaustive) c·ases V[ (m)v1 (n) > 0, V/ (m) = 0, and 
v1(n) = 0. 

Ifv1(m)v1(n) > 0, then l divides gcd(m, n) and is prime to s, so gcd(m, s) is 
prime to land m/ gcd(m, s) is divisible by zv,(m). Consequently, mn/ gcd(m, s) 



56 Chandan Singh Dalawat and Jung-Jo Lee 

is divisible by 1vi(mn), and hence there is an element YI E r of order zv,(mn), 

in view of the fact that the order of;; E r is mn / gcd(m, s) by ( 1.6.1 ). Even 
if v1(m) = 0 (so .that vi(mn) = v1(n)), the subgroup (of order a multiple 
of n) generated by;; has an element YI of order zv,(mn). Finally, if Vf (n) = 0, 
then the subgroup (of order m) generated by r has an element Yt of order 
zv,(m) = zv,(mn). These Yt are trivial for almost all l (because vz(mn) = 0 for 
almost all /), so their product over all l exists, is independent of the sequence 
of the factors because r is commuative by (1.6.2), and has order mn. 

Conversely, suppose that the group r is cyclic, so that f 1 = r / r 1"'<mn) 
(= r ® Z1) is also cyclic and has order zv,(mn) for every prime l. Suppose 
(if possible) that there is a prime l dividing all three numbers m, s, n; we shall 
get a contradiction by showing that ft would then have order < zv,(mn). This 
follows from the fact that it is generated by the pair r, J E ft (images of r and 
;; respectively) each of which has order< zvi(mn), because v1(m) < vz(mn) 
and v1(mn/ gcd(m, s)) < v1(mn) by hypothesis (recall that the order of;; is 
mn/ gcd(m, s) by (l.6.1)). □ 

l. 7 The inflation map in the bicyclic case 

Let G' be.another cyclic group, of order en for some c > 0, let a' be a generator 
of G', and let <p : G' ➔ G be the surjection such that <p(a') = a. Regard 
C as a G' -module via a' r--+ a r--+ ( )a. As before, the group H 2 

( G', C)a 
can be identified with the kernel a-IC of ( t- 1 : C ➔ C modulo the 
image of ( )1+a+--+acn-t : C ➔ C. Notice that 1 +a·+ · · · + acn-l -
(1 _+a+••• + a 11

-
1 )c (mod. m), Hence there is a commutative diagram 

a-lC 

j j (1.7.1) 

in which the vertical arrows are the passage to the quotient. We claim that the 
lower horizontal arrow - induced by ( t - is the same as the restriction map 
(1.3) coming from the pair (<p, Ide). 

Proposition 1.7.2. The map H 2 (G, C)a ➔ H 2 (G', C)a in the above 
diagram is the inflation map corresponding to the quotient <p : G' ➔ G. 

Proof Let a class in H 2 ( G, C)a be represented by an extension r of G by C 
having the presentation ( 1.5.1 ). The inflated extension r' of G' by C consists of 



Tame ramification and group cohomology 57 

(a.;/J) E rxG'suchthata = <p(/f)inG(].3).Asalifta' E r'ofthegenerator 
a' E G', we choose a' = (a, a'). We then have a' cn = (acn, a' en) = 
( T cs, 1) = Tes and we are done, because f' admits the desired presentation 
r' = (T,17 1 I Tm= 1, a'C/1 = Tes, a'Ta'- 1 = Ta). □ 

I .8 The number of orbits 

The following lemma captures one of the basic ingredients in Roquette's 
computation [l 0, Chapter 16] of the number of tamely ramified extensions of 
given ramification index and residual degree (7 .1.4 ). 

Lemma 1.8.1. Let C be a cyclic group of order m > 0, let a > 0 be prime 
to m, and make Z act on C by l f--+ ( )ll. The number of orbits for this action 
is Ltlm </>(t)/ Xa(t), where Xa (t) denotes the order of a in the group (Z/tZ)x 
of order¢> (t). 

Proof If x, y E C are in the same orbit, then they have the same order in C. 
The possible orders are the divisors of m; for each divisor t of m, there are¢> (t) 
elements of order t. Also, the orbit of an x E C of order t has Xa (t) elements. 

Indeed, if the orbit consists of the r elements x, xa, ... , xar-l, then r is the 
smallest integer > 0 such that xar = x, or equivalently r is the smallest integer 
> 0 such that ar = l (mod. t), so r = Xa(t). □ 

2. Cohomology of finite fields 

We now apply the results of §1 to some galoisian modules arising from finite 
fields. 

Let p be a prime number, k a finite extension of F P with q elements, k f 
the degree-f extension of k (for every f > 0), and G f = Gal(k f lk ). Let 
e > 0 be an integer such that qf = 1 (mod. e). We are interested in the 
groups H 2 (G1,k}/k'?)q and H 2 (GJ, ek})q, where ek} is the group of 

e-th roots of 1 ink}. Every ( Ek} such that (q-l E kt gives rise to a class 

in each of the·se two H 2 ; we prove their compatibility (2.2). For a given class 
in H 2 (G f, k} / k?)q, we also determine (2.3.4) the ·smallest multiple J off 

such that the inflated class vanishes in H 2 ( G
1
•, k':: / k'::e)q: ' 

. . ,. f f 

- --- ----....---- -~- ----..----· --:--~ - -~ 
-Ler( E~k-_r-fftfi~"'i~-;i;-r~-k} / kt is such that ~q-l = I, then it has a 

class[~] E H 2(G1,k}/kt)q- But there is also a way to attach a class in 

H2(G f, ek})q to such ( which was inspired by [8, 6.1]. · 
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Write c;q-l = ae for some a E k1, and put ( = N 1(a), where N f : k1 ➔ 
k X is the ·norm map. We then have 

so ( E ek f. At the same time ( E P (being the N f of something in k f ), 

so (q-l = 1. In other words, ( is in the kernel of ( )q- l : ek f ➔ ek f, 

and so has a class [(] E H 2 ( G f, ek f )q. If now we replace a by ea for some 

c E ek{ then ( gets replaced by N J(c)(. As _N J(c) = 1o 1+q+--+qf-J, the 

class [(] E H 2 (G, ek1)q is uniquely determined by c; and does not depend 
on the choice of a. 

2.2 The compatibility of the two classes 

Recall that qf = 1 (mod.e). The two groups k1/e/, ekf are cyclic of 
the same order e and they are canonically isomorphic as G 1-modules by 

~ 1-+ (Cq 1 -l)/e_ Therefore we get a canonical-isomorphism 

Proposition 2.2.1. Under this isomo,phism, the class [J] of any c; E k f such 

that (q-l E k Y gets mapped to the class [(] of ( = N f (a) for any a E k f 
such that c;q-l = ae. 

Proof Put S = I + q + • • • + qf - I. Notice first that the condition c;q- 1 E k 7 
is equivalent to c;(qf -l)/e E P, because ep (resp. kx = k15 ) is the subgroup 

of order (qf - J)/e (resp: q - 1) of the cyclic group k1 of order·qf - 1. 

Indeed, if OJ is a generator of k f and if c; = wx, then the condition c;q- l E k 7 
is equivalent to x(q - I) = 0 (mod. e), and the condition c;(qf-J)/e E P 
is equiv,a_lent to x(qf - 1)/e = 0 (mod. S). But these two congru~nces are 
equivalent (and are clearly satisfied when c; E k x; they might sometimes be 
satisfied even by some c; ~ k x ). 

Now let ( E k1 be such that c;q-l = ae for some a E kf, or equivalently, 

as we've seen, ((qf -l)/e = J35 for some f3 E k1. We have to show that 

N f (a) = as and J3 5 , which are both in the kernel of the endomorphism 
( )q- l of ek f, define the same class in H 2 ( G, ek f) or equivalently that 

(/Ja- 1) 5 = 17 5 for some 17 E ek1. 
Choose a generator w of k f and write ( = wX, a = 0J1

, f3 = wb with 
x, a, b E Z, so that 
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. (q - l)x = ae + (qf - l)c, ( qf e- I) x = bS + (qf - l)d 

for some c, d E Z. We then have (b - a)S = (qfe-l )(cS - de), so if we take 

(
q.f -1) 

17 = w e C, then 17 E ek f and 175 = ((J a - 1 ) 5 , hence as has the same class 

as f] 5 in H 2 ( G f, ek} ), which was to be proved. D 

2.3 The inflation map 

Let f' > 0 be a multiple off.By our notational convention, kf' is the degree- f 1 

extension of k and G f' = Gal(k f' lk). The inclusion k} --+ k_f' induces a map 

on the quotients k 1 / k? --+ k 1, / k? · The reader may wish to compare the 
following lemma with [7, Satz 3.6]. 

Lemma 2.3.1. For a given c; E k}, the smallest multiple f' off such that 

¢q-l = I in k1,; k';,e is f' = df, where dis the order of ¢q-l in k_f / k°'/. 
Proof Clearly, f' being a multiple off, the relation ¢q-l = I holds in 
kl'/ k';,e if and only if c;q-I E k;,e. The result follows from the fact that the 

degree of the extension k f ( ~) over k f equals d. □ 

. Next, for every divisor c of e, we have kcf = k1(/i:J) and the natural 

map 1 : k} / k? --+ kcf / k;J is "raising to the exponent c" in the sense 
. qc.f -I 

that if we choose a generator We E kef and put w = We ql- 1 (which is a 

generator of k7), then z(w) = w~ in kd/ k;/- Indeed, since qf = I (mod. e), 
we have 

qcf _ 1 
f = q(c-l)f + · · · + qf + 1 = c (mod. e). 

q -1 

Now, the map 1 : k} / k? --+ kefl kcfe is Gc1-equivariant and hence induces 
the inflation map 

H 2 (GJ,kJ/k?)q --+·H2 (Gcf,kd/k;J)q. (2.3.3) 

Lemma 2.3.4. For a given c; E k f such that ¢q- I = 1 in k f / k ?, the 

smallest multiple f off such that[¢]= Oin H 2 (G1,k":/k":e)q is f = cf, 
f f _ C -· • 

wherecistheor~~~_ofJ{]_jn_lf2_(GJ,-k1Ik-;'!}cf-- - - --- · --- --- -----
-- -~ - - - '::" -

· Proof We have seen that for every divisor c of e, 1 : k°'} / k? --+ kd / kde is 
"raising to the exponent c", which is compatible with the inflation map (2.3.3) 
by (l.7.2). ., □ 
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3. Kummerian extensions 

We need to recall some basic facts about abelian extensions of exponent 
dividing d of a field F which contains a primitive d-th root of I and which is 
galoisian of finite degree over some other field F'. 

3.1 Background 

Essentially as a consequence of the Hilbert-Noether vanishing theorem for a 
certain H 1 (Satz 90), the maximal abelian extension of F of exponent dividing 
dis M = F( Wx), and there is a perfect pairing 

- O" (y) d 
(o-, x) = - (y = x) (3.1.1) 

y 

between the profinite group Gal(MIF) and the discrete group Fx/Fxd_ 

For any closed subgroup H c Gal(MIF), we have MH = F(::/D) where 
D C F x / F xd is the orthogonal complement of H for the above pairing. 
Conversely, for every subgroup D c F x / F xd, the orthogonal complement 
H c Gal(MIF) is a closed subgroup and MH-= F(.::/D). Also, for every 
subgroup D C F x / F xd, the pairing (3 .1.1) gives an isomorphism of 
(profinite) groups Gal(F( ~)IF)~ Hom(D, dFx). 

3.2 Equivariant pairings 

Now suppose that F is a galoisian extension of finite degree over some field F', 
of group G = Gal(FIF'). If D C Fx / Fxd is a subgroup such that F( ~) 

is galoisian over F', then the group Gal(F(~)IF) may be considered 
as a G-module for the conjugation action coming from the short exact 
sequence 

(3.2.1) 

Proposition 3.2.2. The extension F( .:!fi5) is galoisian over F' if and only 
if the subgroup D c F x / F xd is G-stable. If so, the isomorphism of groups 

Gal(F(.:!/i5)1F)---+ Hom(D, dFx) is G-equivariant. 

Proof Suppose first that Dis G-stable. We have to show that F( .:!fi5), which 
is clearly separable over F', coincides with all its F' -conjugates. The notation 
F(.:!/i5) stands for F((ffe)xEiJ), where DC Fx is the preimage of D. For 

o- E G, we have CJ (x) = yd x' for some x' E D and some y E F x (because D 

is G-stable), and therefore ¼W = y~ is in F( .:!/i5), so this extension is 
galoisian over F'. 
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Conversely, suppose that F ( :;/D) is galoisian over F', and let a be an 
extension of some u E G to an F'-automorphism of F( :;/D). For every x E D, 
we have a(ffel = a(x) = u(x), so u(x)° E b (because it has the d-th root 
a(ffe) in F(:;/D)), and hence Dis G-stable. 

Finally, to check that the isomorphism Gal(F(:!/D)IF)-+ Hom(D, JFx) 
(when Dis G-stable) is G-equivariant, it is enough to check that the pairing 
cp : Gal(F(:!/D)IF) x b-+ dFx (3.1.1) is G-equivariant in the sense that 
cp(u .r, u .x) = u .cp( r, x). Indeed, for every lift a E Gal(F( :;/D) IF') of a 
u E G, we have a ( ffe)d = u (x) and 

( ) _ a r a - 1 
( a ( ffe)) _ a r ( ffe) _ ( r ( ffe)) _ ( ) 

(fJ O" • T' O" .X - - d tv - - d Iv - O" d Iv - O" •(/J T' X 
u(,vx) u(,vx) ~x 

for every r E Gal(F(:!/D)IF) and every x ED. D 

Remark 3.2.3. When d is prime, F' contains a primitive d-th root of I, 
and G is a cyclic d-group, the class in H 2 of the extension (3.2.1) has been 
computed in [15]. In the case of interest to us, F' is a local field, F is finite 
unramified over F', dis prime to the residual characteristic, and D is a G-stable 
"ramified line" ( 4.1); we will see later (§7) how to compute the class of (3.2.1) 
from D. 

3.3 Orbits and equivalence 

Proposition 3.3.1. The set of cyclic extensions of F of degree d up to 
F' -isomorphisms is in natural bijection with the set of orbits for the action of 
G on the set of cyclic subgroups of Fx / F xd of order d. 

Proof Suppose first that the order-d cyclic subgroups D1, D2 C Fx / Fxd 

are in the same G-orbit, so that D2 = u (D1) for some u E G, and let 
L 1 = F (WI), L2 = F (:!/Di,). Let DI be generated by the image of x E F x , 

so that D2 is generated by the image of u (x); we have 

Consider the (unique) F'-automorphism a of F[T] such that a (a) = u (a) for 
a E F and a (T) = T. Composing it with the projection F[T] -+ L1 induces 
a F'-morphism L1 -+ L2 which is an F'-isomorphism because L1 and L2 
have the same degree over F'. 

Conversely, if L; = F(1;/Xi) for some x; E Fx whose images in px / yxd 

- have order d, and if we have an F' -isomorphism a : L 1 -+ L2, we have 
to show that D2 = u(D1) for some u E G, where D; C Fx / Fxd is the 
subgroup generated by the image of x;. Now, a (F) = F because Fis galoisian 
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over F', and hence a IF = a for some a E G. Also, a (x,} has a d-th root in 
L2 (namely a(,%)) and its image has order din Fx / Fxd, so it generates 
the same subgroup as the image of x2. In other words, D2 = a(D1), and we 
are done. D 

4. Ramified lines 

Let K be a local field with finite residue field k of characteristic· p and 
cardinality q. Denote by o (resp. p) the ring of integers of K (resp. the unique 
maximal ideal of o, so that k = o/p). We have the decomposition ox = U1 .P 
in which U1 = I +pis a Zp-module. As a result, for every integer e > 0 such 
that e ¢= 0 (mod. p), we have the exact sequence 

I ➔ e;kxe ➔ Kx/Kxe ~ Z/eZ ➔ 0 

in which w is induced by the normalised valuation w : K x ➔ Z. 

4.1 The definition of ramified lines 

The set Re (K) of ramified lines consists of subgroups D C K x / K xe such 
that the restriction D ➔ Z/eZ of iv to D is an isomorphism; ramified lines 
are precisely the images of sections of w. As the conjugation action of Z/eZ 
on P / k xe resulting from the above exact sequence is trivial, the number of 

ramified lines is equal to the order g = gcd(q - I, e) of 

H 1 (Z/ez,e;ee)1 =Hom(Z/eZ,e/Fe) =e/ee. 

Every uniformiser n of K gives a bijection of the set Re (K) of ramified lines 
with the group k x / k xe; to the class u E k x / k xe of u E k x corresponds the 

ramified line generated by the image of un in K x / K xe. Notice that the map 

x 1-+ x 9T identifies the group k x / k xe with the kernel ek x of ( t : k x ➔ k x. 
With this identification, to c; E ek x corresponds the ramified line generated 

2.::.l 
by Ulf for any u E kx such that u e = c;. 

4.2 The galoisian action on the set of ramified lines 

For every f > 0, let K f be the unramified extension of K of degree f, k J its 
residue field, and GI = Gal (KI I K). The group GI acts on the set Re (K J) 
of ramified lines in K 1 / K ;e. Indeed, if D is generated by the image of a 
uniformiser w of KI, then a (D) is generated by the image of the uniformiser 
a(w) and hence a(D) is a ramified line. Also, CardRe(Kf) = gJ, where 
gf = gcd(qf - I, e) (4.1). 



Tame ramification and group cohomology 63 

For every uniformiser re of K, the bijection k1 Jk;e ---+ Re(KJ) (4.1) is 

G 1-equivariant. Therefore Card Re(K f )G f = g, where g = gcd(q - 1, e) is 

the order of q-1 (k1 / k7)-

Proposition 4.2.1. The number of orbits for the G 1-action on Re(K f) is 

Lrigi ¢(t)/xq(t) (1.8.1). 

Proof Using a uniformiser of K, this amounts to computing the number of 
orbits for the action of G f on k 1 / k ;e. As the canonical generator of G f acts 

on the cyclic group k 1 / k ;e of order g f by the ~utomorphism ( )q, the result 
follows from (1.8.1). □ 

4.3 The cohomology class of a stable ramified line, first defintion 

Suppose that qf = 1 (mod. e) (if not, replace e by gf = gcd(e, qf - 1)). 
Denote the canonical generator of G f by u, let re be a uniformiser of K and 
let D C K 1 / K ;e be the ramified line generated by .; re for some i; E k 1. 
If Dis G 1-stable, which amounts to u(D) = D, then (i;qrc)(i;rc)- 1 Ek? or 

equivalently ~q-I = I in k1 / k;e. 

If we replace re by re' = urc (u E F), then ~ is replaced by ~' = ~u. 
But the norm map NJ : k1 ---+ kx is surjective, sou = a 1+q+-·+qf-i for 

some a E k1, and hence[.;]= [i;'] in H 2(Gi,k1/k;'1)q- Thus, the map 

Re(K f )Gf ---+ H 2 (G f, k1 / k?)q does not depend on the choice of re. This 

defines the class D in H 2
( G f, k 1 / k ;11)q-

4.4 The cohomology class of a stable ramified line, second defintion 

We assigns a class in H 2 (Gf, ekj)q to DE Re(KJ)Gl following [8, 6.1]. 

If D is generated by .;re, then ;;q-l = o.e for some o. E k j; put ( = N 1(0.). 

We have seen (2.J) that ( defines a class in H 2 (G f, ek_f)q which does not 

depend on the choice of o.. Moreover, if we replace re by re'= urc (u E kx), 
then i; gets replaced by.;'= .;u-1, and then .;'q-l = .;q-I (u- 1)q-l = o.e, so 
we may use the same o. for re' as for re. In other words, the class [(] depends 
only on D. We thus get a similar map Re(K f )G f ---+ H 2(G f, ek f )q-

4.5 The compatibility of the two definitions 

Recall that we have an isomorphism H 2 (G f, kj / k?)q ---+ H 2 (G f, ek f )q 

(2.2); let us show that it is compatible with the two maps from Re(K ff f. 
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Proposition 4.5.1. When qf = 1 (mod. e), the two definitions of the 
cohomology class of D E Re(KJ )G f · are compatible with the above 
iso,iw rph ism. 

Proof This follows from the preceding constructions and (2.2.1 ). D 

4.6 The restriction map 

Let J' > ·o be a multiple of f. If D E Re (K f) is a ramified line, generated 
by the image of some uniformiser w- of K f, then the image of w- in 
K 1,/ K 1,e generates a ramified line, defining the map Re(K f) ---+ Re(K f' ). 

It sends G 1-stable ramified lines to Gr-stable ones; so we get the following 
diagram in which the lower horizontal arrow is the restriction map (2.3.3) 

Re(KJ )GI ----+ Re(Kf')°1' 

1 1 (4.6.1) 

H2 (G kx/ee) f, f f q ----+ H2 (Gr, k;,;e;,e)q-

Prop_osition 4.6.2. The diagram (4.6.1) is commutative. 

Proof This follows from (1.7.2) upon choosing a uniformiser of K. □ 

5. Totally tamely ramified extensions 

Let e > 0 be an integer ¢ 0 (mod. p). Let us first study the set Te,, (K) of 
(K -isomorphism classes of) totally ramified extensions of K of degree e. 

5. I The parametrisation of Te,, (K) 

Proposition 5.1.1. The set Te, 1 (K) of totally ramified extensions of K of 
degree e is in canonical bijection with the set Re(K) of ramified lines in 
K x / K xe_ In particula1; the cardinality o.fTe,, (K) is g = gcd(q - 1, e). 

Proof For every uniformiser 7r of K, the polynomial ye - 7r is iITeducible 
(Eisenstein's criterion) and the extension F(..;/ii) is totally ramified of degree e. 
Conversely, let LIK be a totally ramified extension of degree e (so that the 
residue field of Lisk), let 7r be a uniformiser of K, and write 7r = uc;w-e, 
where u (resp. w-) is a I-unit (resp. unifom1iser) in L, and c; E k x. Since the 
group of I-units of Lis a Zp-module and e E Z~, there is a (unique) I-unit v 

of L such that u = ve. so the uniformisei- c=- 1
7[ of K has the e-th root v w- in 

Land theref9re L = K({!c;- 11r). · 
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For any two uniformisers 7rJ, 7r2 of K, the extensions K ({/iiJ), K ({[iiz) 
are K -isomorphic if and only if the unit 7r 1 / 7r2 E ox is in o xe, which happens 
precisely when 7r 1 and 7r2 generate the same ramified line in K x / K xe. This 
completes the proof. D 

Proposition S.1.4. For L E Te, 1 (K), the group AutK (L) is canonically 
isomorphic to ek x and hence it is cyclic of order g = gcd(q - I, e ). 

Proof Indeed, L = K ( ffe) for some uniformiser 7r of K, and the 
K-conjugates of ffe in L are precisely <; ffe, where<; is an e-th root of 1 in 
K. The map a 1--+ a ( ffe) / ffe is thus an isomorphism AutK ( L) ~ ek x. 

This isomorphism is independant of the choice of 7r. Indeed, every other 
uniformiser 7r' of K such that L = K ( ffe') is of the form 7r' = E:e 7r for some 
c E k x (ignoring I-units of K, which we can). We may thus take c ffe for 
::fir', and we have 

w(ffe). 

E:,vl[ 

for every a E AutK(L), which was to be proved. D 

Corollary S.1.5. Some L E Te, 1 (K) is galoisian over K (f and only if e 
divides q - 1. If so, then every L E Te, 1 (K) is galoisian ( and indeed cyclic) 
over K. 

Proof A finite separable extension L of K is galoisian over K if and only if 
AutK (L) has order [L : K]. For an L E Te, 1 (K), this happens precisely when 
gcd(q - 1, e) = e (5.1.4!, or equivalently when e divides q - I. D 

5.2 Serre's mass formula in tame degrees 

For the next corollary, we need to recall the statement of Serre's mass formula 
[14]. Let n > 0 be any integer and denote by T,1, 1 (K) the set of K -isomorphism 
classes of finite (separable) totally ramified extensions of K of ramification 
indexn.ForeveryL E T,1,1(K),putcK(L) = w(<h1K)-(n-l),whereJLIK 
is the discriminant of LI K. The mass formula asserts that 

(5.2.1) 

where I AutK-(-L}I is the-order" of fhe .gi;:oup of K -automorphisms of L. 

Corollary 5.2.2. Serre's massfonnula (5.2.1) holds over Kin every tame 
degree e (prime to p ). 
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Proof Indeed, for every L E 'Te,1 (K), we have CK(L) = 0, I AutK(L)I = g 
(5.1.4) and there are g such L (5.1.1), where g = _gcd(q - l, e). □ 

In fact we can do slightly better if we use the results of [ 4] where a new 
proof of Serre's mass formula in degree p was given. Let k be a separable 
algebraic closure of K, and let E c k run through totally ramified extensions 
of degree n over K, which we express by [ £] E T,1, 1 ( K). Serre [ 14] shows 
that (5.2.1) is equivalent to 

(5.2.3) 

ECK, [E]ET,,_i(K) 

Proposition 5.2.4. Serre's mass formula (5.2.3) holds over K in degree 
n = ep (withe¢= 0 (mod. p)). 

Proof Let E C k be a totally ramified extension of degree ep over K, and let 
L be the maximal tamely ramified extension of Kin£; we have [L : K] = e. 
By the formula for the transitivity of the discriminant, we have 

where w (resp. w L) is the normalised valuation of K (resp. L ). It follows 
that cK(E) = q(E). Next, notice that there are precisely e totally ramified 
extensions of K in k of degree e over K, since there are g = gcd(q - 1, e) 
isomorphism classes in-'Te,1(K) (5.1.1), and each class [L] is represented by 
e/ g extensions L C k, because g = I AutK (L)I (5.1.4). Now, by decomposing 

the sum L[E:KJ=ep (5.2.3) as L[L:K]=e L[E:L]=p' we have 

L q-cK(E) = L L q-cK(E) = L L q-cL(E)_ 

[E:K]=ep [L:K]=e [E:L]=p [L:K]=e [E:L]=p 

But L[E:L]=p q-ci(E) = p by [4, th. 35], and hence L[E:K]=ep q-cK(E) = ep, 
as was to be proved. D 

Remark 5.2.5. The same devissage reduces the proof of (5.2.3) for arbitray n 
to the case n =pr.Note that a proof of (5.2.1) for n prime can also be found 
in [ 4 ]. 

6. The orthogonality relation 

Let us make some remarks about the special case q = l (mod. e). More 
precisely, suppose that the (cyclic) group e K x c K x of e-th roots of 1 in K 
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has order e, and let M = K ( ,;:/ifx) be the maximal abelian extension of K of 
exponent dividing e. We have the perfect pairing (3.1.1) 

Gal(MIK) X (Kx/Kxe)-+ eKx 

of free rank-2 (Z/ eZ)-modules, defined by (a, i) == 11 (y) / y for any y E ·M x 

such that ye = x. 

Proposition 6.0.1. The orthogonal complement of the inertia subgroup r o 
ofGal(MIK) is the subgroup P / pe of K x / K xe (and conversely). 

Proof Indeed, the fixed field Mr O of the inertia subgroup is the maximal 
unramified extension Mo of K in M. It is easy to see that, w being a generator 
of k x, the extension K ( ~) of K in M is unramified and of degree e over K. 

At the same time, the ramification index of MI K is at least e, as it contains 
K(,1,r) for any uniformiser ;r of K. As [M : K] e2 , we must have 
Mo= K(-v'/0), which was to be proved. □ 

Proposition 6.0.2. For every subgroup D C K x / K xe, the maximal 
unramified extension of K in K ( v'f5) is K (-%a), with Do = D n (P / pe). 

Proof Let L = K(v'f5), and let Lo be the.maximal unramified extension of 
Kin L; it is clear that K(.{/I5o) c Lo. Conversely, if C c P /Pe is the 
subgroup such that Lo = K ( ,1c), then C C D and hence C c Do. It follows 
that C = Do. □ 

Remark 6.0.3. As a corollary, L = K ( v'f5) is totally ramified over K if and 
only if D n (k x / k xe) = { 1}. The analogue of (6.0. l) in degree p can be found 
in [3] (§ 1) if K has characteristic O and in [3] (§5) if K has characteristic p. 

7. The parametrisation of Te ,1 ( K) 

Recall that Te,1 (K) is the set of K -isomorphism classes of separable extensions 
of K oframification index e (¢ 0 (mod. p )) and residual degree f. We will see 
that it can be identified with the set oforbits for the action ofG f = 9"al(K1 IK) 
on the set Re(K f) of ramified lines in K f /KY. . , . , . 

There is a canonical surjection Te,1(K1) ➔ Te,J(K), and a canonical 
bijection Te,1(K1) ➔ Re(Kf) (by (5.1.1), applied to '[(1), so the question 
is: When are the extensions defined by two distinct ramified.lines in K 1 / K';e 
isomorphic as extensions of K (although they are not K 1-isomorphic)? 

7.1 Thepararnetri§ationpf7;,,1(K)- - ·· 
- - - - - - -~ -

' ' . 

Proposition 7.1.1. · The extensions L, L' corresponsing to two ramified lines 
D, D' C K f /KY are K -isomorphic if and only if D' = a (D) for some 

a E G f· 
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Proof The proof is similar to that of (3.3.1 ), although there the extensions 
L, L' were kum'merian whereas here they need not even be galoisian 
(over K f ). Suppose first that D' = a (D), and let w be a uniformiser of k f 
whose image generates D, so that the image of a ( w) generates D', and 

L = K r[T]/(Te - w), L' = K J[T]/(Te - a (w)). 

Consider the (unique) K -automorphism rJ of Kt [T] such that a (a) = a (a) for 
every a E Kt and a (T) = T. Composing it with the projection K J[T] ➔ L' 
induces a K -morphism L ➔ L' which is a K -isomorphism. 

Conversely, if L = K tU/iii) for some uniformiser w of Kt, and if we have 
a K-isomorphism rJ : L ➔ L', then its restriction to the maximal unramified 
extensions of K in L and L' is a K -automorphism a : Kt ➔ K f, and the 
uniformisera(w) of Kt has thee-th root5 (,ifiii) in L', so L' = K t(v"a(w)). 
In other words, D' = a(D). □ 

Corollary 7.1.2. The set Te.t(K) is in natural bijection with the set of orbits 

Re(K J )//G J for the action of Gt on Re(Kt)- □ 

Corollary 7.1.3. An extension L E . Te., (K f) is galoisian over K if and 
only if the corresponding Gt-orbit consists of a single D E Re(Kt) and 
qt = I (mod. e). · 

Proof Indeed, for L to be galoisian over K it must be galoisian over Kt, 
which is equivalent to qf = 1 (mod. e) (5.1.5), and all K-conjugates of L 
must coincide, which is equivalent to D E Re (Kt )G f (3.2.2). D 

Remark 7.1.4. It follows from the parametrisation (7 .1.2) that the set 
Te.t(K) has Lrlgf cp(t)/Xq(t) elements, in the notation of (4.2.1), where 

gt = gcd(qf - 1, e). If qt = 1 (mod. e) (in which case g.r = e), precisely 
g = gcd(q - I, e) of these are galoisian over K, by (7 .1.3) and ( 4.2). 
If q = 1 (mod. e) (in which case gJ = g = e), the Gt-action on the 
set Re(Kt) is trivial, so Te.j(K) contains e extensions and all of them 
are abelian over K (1.6.2). These are the only galoisian or abelian cases. 
Cf. [ 10, Chapter 16]. 

Remark 7.1.5. For L E Te.t(K) galoisian of group G = Gal(LIK) and 
inertia subgroup Go, the short exact sequence I ➔ Go ➔ G ➔ G / Go ➔ I 
splits if and only if L = K 1(ffe) for some uniformiser 1r of K. Indeed, 
suppose first that L = K tCffe), and let E = K (ffe). As Eis totally ramified 
of degree e over K, the extension L of E is unramified (and hence cyclic) of 
degree f; it can be seen that Gal(LI £) is a supplement of Go in G. Conversely, 
if Go has a supplement S in G, then the extension Ls of K is totally ramified 
of degree e and hence of the form K ( ffe) for some uniformiser 1r of K; and 
L = Kt(ffe). □ 
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7 .2 The presentation of the group 

Suppose that qf = I (mod. e) and let D E Re(K f )Cf, so that the extension 

L = KJ(~) is in Te,1(K) and galoisian over K (7.1.3). The inertia 
subgroup fo = Gal(LIKJ) of r = Gal(LIK) is canonically isomorphic to 
Hom(D, eKJ) = eKr (because Dis isomorphic to Z/eZ by w), or more 

simply by (5.1.4 )), and the identification r o = e Kr is G 1-equivariant (3.2.2). 
We thus have an extension 

(7.2.1) 

and we would like to compute its class in H 2 (GJ, eK_r)q in terms of_the 
parameter D of L. 

Proposition 7.2.2. The class of the extension (7 .2.1) is the same as the class 

[DJ E H 2 (Gf, ek_r)q of D (4.5.1). 

Proof We will actually compute a presentation of the group r (as in [8] and 
observe that it is the extension corresponding to the class of D as defined in 
(4.4). 

Let 1r be a uniformiser of K and suppose that the G1-stable ramified line 
D is generated by (the image of) (7r for some ( E k_f (such that ;;q-l = ae 

for some a E kr), so that L = K1(ffe). 

Choose a generator r of r o, so that r ( ffe) = ( ffe for a certain 
(generator) ( E eK_r· Notice that NJ(C:)q-l = 1, so N1(at = I, and 

hence N 1(a) = ('' for some s (mod. e). As Nr(a) E F, we must have 
(q - l)s = 0 (mod. e). 

Also choose a lift a E r of the canonical generator CJ E G f. Now, 

so that a ( ffe) = ( i a ffe for some j (rhod. e). Replacing a by r '-i a, we 
may assume that a(ffe) = affe. We then have a- 2 (ffe) = a(a)a.ffe 

and so\on, hence 

al(~)= N1(a)~ =(''~=rs(~). 

It follows that a- f = rs. Finally, 

rlfa(~) = rlf(a~) = c;Cfa~ =a((~)= o-r(~), 

~nd J1e_ri_c:~ .. a_r_ii_-_ l__=c=_.r~.- We have found -that the-group-F·{of-order-ef) is-··· 
generated by ( r, a), and the relations 
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hold. But we have seen that the group (1.5.]) with ·this presentation has ef _ 
elements, SQ this is indeed a presentation for r. So the class of D is the same 
as the class of the extension (7 .2.1 ): □ 

7 .3 The invariants of an orbit 

We are now going to review a certain number of invariants of a G 1-orbit in 
R-eC!(.r). which recover the invariants of the corresponding LE Te..r(K) such 

as the galoisian closure L of L over K, or the smallest extension K j of K1 
for which the exact sequence I -+ r 0 -+ r -+ r / r 0 -+ 1 splits, where 
r = Gal(LK11K) and r 0 is the inertia subgroup of r. 

(7.3.1) In general, let L E Te..r(K), and let L be the galoisi'an closure of L · 
over K. It is clear that L is tamely ramified over K, so L E · Te.c.f (K) for some 
multiple e of e and some c > 0. Ase (and hence e) divides qcf - I (7. 1.3), c is 
a multiple of the order r of qf in (Z/eZ)x, and therefore K,-J C L. Replacing 
L by LK,f, we assume that qI = I (mod. e). 

Le( D E Re(KJ) be a ramified line representing the G 1-orbit co1Tespo'nding 
to L and let c;' E k J be such that Dis generated by c;' 7r (so that L = K J ( {/[ir)'). 

Th·e order d of ¢q-l in k 1 / k ;e depends only on L, not on the choices of 

D and 7r, and the galoisian closure of L over K is L = Kdf(~) (2.3.1 ). 
In particular, e == e. 

Indeed, if we replace 7r by 7r' = u 7r for some u E k x and D by a (D) 
for some a E. GJ, then¢ gets replaced by a(¢ii- 1). But then ¢q-l and 
o:(¢ii-_1)q~I have the same order because a is an automorphism of k1/k? 
arid uq...:. 1, = I. .- ·· · . · · 

.~ ,. ~ :· ..... •• • 4 ; ;·. - :" • • 

(7.3.2) Now suppose that L E Te..r(K) is galoisian over K. What is the 

smalle;st c > __ 0 such that the extension L = L Kc J splits over K · in the 

sense· that L ·~ KciU/ir) for some uniformiser rr of K ? This is equivalent 

to the extension G;il(LIK) of Gcf by eK(1 being split. Now, the class in 

H 2 (G1_, eK_r)q of the extension I -+ eK J -+ Gal(LIK) ➔ G J -+ I is the 

sam~ as the ciass of its parameter D E Re(K r )G f (4.5.1 ), (7.2.2), and hence 
c is the,order of this class (2.3.4). · · 

8. Examples 

Recall the notation in force: K is a local field with finite residue field k of 
characteristic p and cardinality q. For f > 0, K J is the unramified extension 
of K of degree f, kJ is its residue field, and G J = Gal(K JIK). In order to 
write down extensions of K explicitly, we choose a uniformiser rr of K and 
a compatible system of generators WJ of the cyclic groups k1. For e > 0 



Tame ramification and group cohomology 71 

such that e ¢= 0 (mod. p), Te,J(K) is the set of K-isomorphism classes of 
extensions of K of ramification index e and residual degree f. The choice of 
7C allows us to identify Te,J(K) with the set of orbits for the action of G J on 

k1 /k;e. 
We compute all 63-extensions of K (p =I=- 3), all tame 63-extensions of K 

(p = 3) and, for every prime / =I=- p, all galoisian extensions of K of degree 
/3 which are not abelian over K. We also analyse all extensions L in YJ,2 (K) 
(p =I=- 3) (8.2) or 'L..2(K) (p =I=- 2) (8.6) by determining their galoisian closure 
Lover Kand the smallest J such that LK I splits over Kin the sense of (7.3.2). 

Proposition 8.1. ff q = -1 (mod. 3), then K has a unique 63-extension, 
namely K ( --YT, ffe). If q = 1 (mod. 3), then K has no 63-extensions, and if 
p = 3, then K has no tamely ramified 63-extensions. 

Proof Let L be an 63-extension of K. If p =I=- 3, we have (e, f) = (3, 2) 
(so L is tame even when p = 2) : for in all other cases 63 would have to 
have a quotient of order 3. A similar reasoning shows that if p = 3, then 
e = 0 (mod. 3), making L wildly ramified over K. 

So assume that p =I=- 3. If q = 1 (mod. 3), then every L E YJ,2(K) is 
abelian over K, so K doesn't have any 63-extensions. If q = -1 (mod. 3), 
then the only extension in YJ.2 (K) which is galoisian is L = K ( ✓!, ffe), and 
Gal(LIK) = 63. D 

Remark 8.2. When p = 3, 63-extensions of K con-espond bijectively to 
separable cubic extensions which are not cyclic over K; they are classified in 
[4]. (More generally, for any p, all separable extensions of degree p over Kare 
parametrised, and the ones which are cyclic have been characterised). Suppose 
now that p =I=- 3. If q = 1 (mod. 3), then YJ,2 (K) consists of three extensions, 
all three ~belian (in fact cyclic) and split over K. If q · = -1 (mod. 3), then 
YJ,2 (K) consists of two extensions, the 63-extension K (--YT, ffe) and the 
extension L = K 2 (~ which is not galoisian over K. The galoisian closure 

of Lover K is L = K6(ffe) which is split over K. T_he special case K = Q2, 
7C = 2 is treated in [7, Beispiel 3.1 ]. ' 

l • 

(8.3) Let I be a prime. Recall that there are exactly two groups r of order 
!3 which is not commutative; see for example [2]. The centre Z c r of both 
these groups has order l, and the quotient r / Z is commutative of exponent l 
(and order /2). For l = 2, they are the dihedral group '.D4,2 and the·quatemion'i'c 1 

group .Q4,2 (] .5.2). When l =I=- 2, oner has exponent l (the HHeisenberg group" 
.fJ,3) and the other has exponent /2. The latter is the twisted product (Z/ l 2Z) x, 
(V, / U2), where I is the natural_ action of Aut(Z/ tiz) = (Z/ l'.Z)~ = zr / U; 
{with VT== 1~+ 1 j Z1). -we~denote·this group by·'.D ff 77(More generall ytone;has·---

the twisted p;oduct '.D 111 ['•-r = (Z/ 1nz). x, (Ur/ Un) of order ·1 21!-r for every 
n > 0 ·and every r E [ I ,' n].) . 

,, 
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Lemma 8.4. If K has a galoisian extension of degree 13 (I =j=. p) which is 
not abelian, then (e, f) = (1 2 , l) and v1(q - 1) = 1. 

Proo.f If K has such an extension L, then K has an abelian extension of degree 
!2 and exponent l (8.1), so we must have v1(q - 1) > 0 (7.2.4). Next, we 
must have (e, f) = (12, l) because L IK is not abelian. For the same reason, 
q ¢= 1 (mod. 12), so v1(q - 1) = 1. □ 

Proposition 8.5. If p =/=- 2, then K has a ':D4,2-extension or a D,4,2-extension 
(f and only (f q = -1 (mod. 4). If so, K has a unique ':D4,2-extension and a 
unique D,4,2-extension. 

Proof If K has an extension of degree 23 which is galoisian but not abelian, 
then we must have v2(q - 1) = 1 (or equivalently q = -I (mod. 4)) and 
(e, f) = (4, 2), by (8.4). 

Suppose that q = -1 (mod. 4). There are three orbits for the action of G2 
on k{/k{4, namely {l}, {w~}, and {w2,w21

}. So there are two extensions 
in h+,2(K) which are galoisian over K, namely L(O) = K2(rn) and 

L(2) = K2(~)- Of these, L(O) is split over K, so Gal(L(OllK) is the 

'dihedral group ':D4,2 (1.5.2), whereas L(2) is not split over K, so Gal(L(2)1K) 
is the quaternionic group D4,2 (1.5.2). This concludes the proof. □ 

Remark 8.6. An explicit generation of the D,4,2-extension when K = Qp 
(and p = - 1 (mod.4)) can be found in [6]. Let us analyse the set 'L.,2(K) 

when p =j=. 2. If q = I (mod. 4), then it consists of four extensions, and all 
four are abelian over K, but only two of them are split over K; the other two 
(which are cyclic) split in 14,4(K). If q = -1 (mod. 4), then Tti,2(K) has only 
three extensions, only two of which are galoisian over K ,-and only one of them 
(the '.D4,2-extension, namely K ( ~' rnn is split; the other (the D,4,2-
extension) splits in 4,4 (K). The galoisian closure of the third L E 14,2 (K) is 
L = LK4, and L splits only in 7:i,s(K). 

Proposition 8.7. If l =j=. 2, p, then K has a galoisian extension L of degree !3 

which is not abelian (f and only !f v1 (q-1) = 1. If so, there are l such extensions 
L, and the group Gal(LIK) is isomorphic to ':D 12,1 = (Z/l2Z) x 1 (U1/U2) 
(8.3) for each L. 

Proof If K has such an extension, then VJ (q - 1) = l and (e, f) = (12, l) 

(8.4 ). Conversely, suppose that VJ (q - 1) = 1. Extensions in Ti2 ,I (K) which are 

galoisian over K correspond to the fixed points for the action of GI on k( / k(1
2

• 

This group is cyclic oforderl2 because q1 = 1 (mod. !2). As gcd(q-1, 12) = l, 
there are l fixed points, so there are l extensions L E Ti2 1 (K) galoisian over 

K; none of them is abelian over K because !2 does not divide q - I. For each 
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such L, the group r = Gal (LI K) has order 13 and contains the cyclic subgroup 
Gal (LI K1) of order /2 , so r is isomorphic to '.D 12 .I (8.3). The same conclusion 

can also be arrived at by showing that H 2 (G1, k( /k('
2
)q vanishes. D 

Corollary 8.8. For l =/= 2, the Heisenberg group 5)13 (8. I) does not occur as 
Gal(LIK)for any local.field K of residual characteristic p =/= l. □ 

The reader may wish to analyse the set T,2 .I (K) in the same way as we 
analysed Ti2.2 (K) 1n (8.6). 

Example 8.9. Consider the case q = I (mod. 22). We have seen that every 
galoisian extension in Ti2.2(K) is in fact abelian. But for some 111 > 2, there 
might be galoisian extensions in Tim.2(K) which are not abelian. A necessary 
and sufficient condition for that to happen is that 2111 divide q 2 - I but not q - ·1. 
In view of v2(q + I) = I, this condition is equivalent to v2 (q - I) = m - I. 

When v2 (q - I) = m - 1, there are 2111
-

1 extensions L E Tim .2 (K) which are 
galoisian but not abelian; for every such L, the resulting short exact sequence 
(7.2.1) 

I - 2"' K{ - Gal(LIK)--+ G2--+ 1 

2 2111 

splits because the group H (G2, k{ / k{ )q vanishes. For some related 
results, see [13, 1.2]. 

Remark 8.10. It is possible to determine all galoisian extensions of K of 
degree /11 (for any prime l =I= p and any n > 0) by fixing f = zb and considering 
e = za (such that a + b = n ). Feit [9] counts the number of G-extensions of K 
when G has order prime to p; one should be able to recover his results from 
the foregoing. 
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