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Abstract. We study the problem of when a topological vector bundle on a 
smooth complex affine variety admits an algebraic structure. We prove that 
all rank 2 topological complex vector bundles on smooth affine quadrics 
of dimension 11 over the complex numbers admit algebraic structures. 

1. Introduction 

If X is a smooth complex algebraic variety, write o/,1 (X) for the set of 
isomorphism classes of rank n algebraic vector bundles on X, and 'v',;0

P (X) for 
the set of isomorphism classes of rank n complex topological vector bundles 
on xan := X(<C) viewed as a complex manifold. There is a function "forget 
the algebraic structure" · 

A complex topological vector bundle of rank n on xan is called algebraizable 
if it lies in the image of9{n,X• 

It is a classical (and difficult) problem to .construct indecomposable vector 
bundles of low rank on "simple':_.smooth algebraic varieties. Rather .than·--~~ 
attempting to make the notion of "simple" precise, we focus on an example. 
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Let Q2n-l be the smooth quadric hypersurfacein A.211 cut out by the equation 
L7=i Xi Yi = 1. The underlying complex manifold Q2~_ 1 is homotopy 
equivalent to the spher~ sin-I_ The goal of this note is to establish the 
following result. 

Theorem 1. The map 9'2,Q;, is swjective, i.e., every rank 2 topological 
vector bundle on Q 11 admits an algebfaic structure. In particular, there exist 
indecomposable rank 2 vector bundles on Q 11-

Remark 2. With some additional analysis, it is possible to prove that 
9lr,Q2._1 is actually surjective for arbitrary r and n ::::: 6. "Stable." versions 
ofresults like Theorem 1 are classical [Fos69]. There are also some unstable 
results for spheres of small dimension [Moo71]. From a modem point of view, 
all of these results are easy to establish; see fdr\ example the introduction1of 
[AFHJ15] for a discussion of the algebraizability problem for arbitrary smooth 
varieties of small dim•ension. 

. , I' \ , ' 

Remark 3. For a general smooth complex affine X the map 9lr,X need not be 
either injective or surjective: injectivity can fail for r = l on smooth complex 
affine curves, and- surje9tivity can fail for r = 1 on smooth complex affine 
surfaces. Indeed, by Grauert's Oka-principle [Gra58], the classifications of 
analytic and topological vector bundles on a Stein manifold, e.g., a smooth 
complex affine variety, coincide. bn the other hand, it f~llows from the long 
exact sequence in cohomology attached to the exponential sheaf sequence that 
smooth affine curves of positive genus have no non-trivial analytic line bundles, 
even though they have plenty of non-trivial algebraic line bundles; 

Remark 4. One reason why the case r = 2 and n = 6 is especially 
interesting is as follows. It is an open problem to determine whether, wheri 
X = IP'11

, n,::: 4, al!'rank 2 vector bundles are algebraizable (see, e.g., [OSS 11, 
Chapter 1 §6.5]). There is ·a smooth surjective morphism Qin-I .::+ ·wm-l _ 
While we do not know, e.g., whether all rank 2 vector bundles on JP>5 are 
algebraizable, Theorem 1 implies that any rank 2 topological complex vector 
bundle on JP>5 becomes algebraic after pullback to Qu. The problem of 
whether the original bundle on IP'5 is algebraizable can then be viewed as a 
question in descent theory. 

The set 'll,! 0
P (Q2n-d is, by means of the homotopy equivalence Q2~_ 1 ~ 

sin-I, in bijection with the set of free homotopy classes of maps [S211 - 1, 

BU (r)]. Because BU (r) is simply connected, the. canonical map from pointed 
to free homotopy classes of maps is a bijection, i.e., 1l'2n-1 (BU(r)) -+ 
[S211 - 1 ,' BU(r)] is a bijection. On the other hand, for n ::: 3, the map 
1l'2n-1(BSU(r)) -+ 1l'2n-1(BU(r)) is ah isomorphism. In the special case 
where r = 2 we ~ow that1l'2n-l (B SU(2)) ~ 1l'211-2(SU(2)) ~ 1l'211-2(S3~. _ 
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Fix a field k and write :J-{(k) for the Morel-Voevodsky A,.1-homotopy 
category of k-schemes. F. Morel gave an algebraic analog of Steenrod's 
celebrated homotopy classification of vector bundles: there is an A 1-homotopy 
classification of algebraic vector bundles on smooth affine schemes; see 
[ AHW 17, Theorem 1] for a precise statement. As explained in the introduction 
to [AF14a], by a procedure analogous to that described in the previous 
paragraph, there is a canonical bijection 

'7/,,o(Qzn-1) ;:,: n:,~l,n+l (SLr ), 

where '11,,0 (X) is the set of isomorphism classes of oriented vector bundl~s-on 
a smooth scheme X (see also [AHW15, Theorem 4.1.1]), i.e., vector bundles 
with a chosen trivialization of the determinant. 

The comparison between the results of the previous two paragraphs 
is facilitated by "complex realization," which provides a homomorphism 

n:,~l,n+I (SL2)(C) ➔ n2n(S3). To establish the result above, it suffices 
to prove the displayed homomorphism is surjective. Thus, the above 
algebraizability question boils down to a question regarding A 1-homotopy 
sheaves of SL2. Theorem 1 is then a consequence of the following result. 

Theorem 5 (See Theorem 3.2.1). The homomorphism 

is surjective. 

The above result suggests the following question (which has a positive 
answer for primes p ::: 5)i 

Question 6. If p is a prime number, is the homomorphism 
I 

Al I 3 
n p-l,p+I (SL2)((C) --+ n2p(S ) 

surjective on p-components? · 

That n10(S3) ;:;: Z/15 is classical (see, e.g., [Tod62]), so to establish 
The~m 5 it suffices simply to produce a lift of a generator. The group 
n1o(S3) is especially interesting because it is the first place where 5-torsion 
appears in homotopy groups of S3 . To prove the main result, we introduce a 
spectral sequence whose E.1 -pageinyolves A 1-ho!llotopy sheaves of punctured 
affine spaces and that converges to the AJ-homot~py sheaves of the ·stable 
symplectic group; this is achieved in Subsection 2.2. In Section 3, we analyze 
the "symplectic spectral sequence" constructed above to produce the lift of 
a generator of n1o(S3). Finally, Section 4 begins to study the problem of 

I, . 
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explicitly constructing the rank 2 algebraic vector bundle whose existence is 
guaranteed by Theorem 1. We show that any rank 2 algebraic vector bundle 
whose associated classifying map corresponds to an element of 7r/~(SL2)(C) 
not lying in the kernel of the map in Theorem 5, remains non-trivial after 
adding a trivial bundle of rank::: 3, but btcomes trivial after adding a trivial 
summand ofrank 4. 

Notation/Preliminaries 

Throughout we fix a base-field k. This note uses much notation from 
[AF14a,AF14b] and [AF15], and our conventions and notation will follow 
those papers. We write Smk for the category of schemes that are separated, 
finite \type and smooth over Speck, and Spck for the category of simplicial 
presheaves on Smk (objects of this category will be called k-spaces). As 
usual, given X E Smk we view X as a simplicial presheaf by considering the 
simplicially constant object associated with representable presheaf on Smk 
defined by X. We write :1-{. (k) for the Morel-Voevodsky pointed A 1-homotopy 
category; this category is obtained as a Bousfield localization of Spck. 

We write Si for the constant presheaf defined by the usual simplicial 
i-sphere. It will be useful to remember that the quadric Q2n- l c A Zn defined 
by Li XiYi = 1 is isomorphic in :1-{.(k) to An\0 by projection onto the 
x-variables. It follows, for example, that the map SL2 ➔ A2 \0_corresponding 
to projection onto the first column is an A. 1-weak equivalence. Moreover, 
A_n\0 is ALweakly equiv~lent toSn-lAG;;;77. Also, 1?1 ~ S1AGm, and thus 
(A_n- 1\0)AlP'1 ~ A_n\o as-irell. ·. 1 

If (X, x) is a pointed simplicial Nisnevich sheaf on Smk, we define 

7ri~J (X, x) as the Nisnevich sheaf on Smk associated with the presheaf 

. /\) u ~ Hom.14(k><s;/\Gm AU+, (X, x)). 

We write Kf for the Nisnevich sheafification of the Quillen K-theory 

presheaves U i--+ Ki (U), and GW{ for the Nisnevich sheafification of the 

Grothendieck-Witt groups G w( (U, Ou), Kf'1 for the unramified Milnor 
K-theory sheaves and Kf'1w for the unramified Milnor-Witt K-theory sheaves 
(see [Mor12, Chapter 3] for a detailed discussion of the latter notions). We 

freely use the identification 7r 1~i,J (An\ 0) ~ K~~ [Mor12, Corollary 6.43]. 
If z : k <-+ (C is a fixed embedding, then there is an induced "complex 

realization" functor ITT:1 : 3-f.(k) ➔ 2{,_ where J-{ is the usual homotopy 
category. For a more detailed discussion of this construction, we refer the 
reader to [MV99, §3.3.2] or [Dil0]. 
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2. Some spectral sequences 

The goal of this section is to describe some spectral sequences whose E 1-pages 
ar~homotopy sheaves of punctured affine spaces and that converge to algebraic 
K-theory sheaves or Grothendieck-Witt sheaves. These spectral sequences are 
the algebro-geometric cousins of the "orthogonal spectral sequence" studied 
by Mahowald (seethe discussion just subsequent to [Rav86, Diagram 1.5 .14 ]). 

I 

2.1 The linear spectral sequence 

for any integer n ::: 2 consider the inclusion G L n-1 ~ G L,, sending a matrix 
X to the block-matrix diag(X, 1). We write GL = colim,, GLn with respect 
to these inclusions. The quotients GL,,/GLn-1 are isomorphic to Q2n-1 by 
the map sending an n x n-matrix to its first row and the first column of its 
inverse. Since Q2n-1 is A 1-weakly equivalent to A"\0, one deduces that there 
are ..it.1-fiber sequences of the form 

GLn-1 ----+ GLn ----+ A"\0. 

For any integer j ::: 0, these A 1 -fiber sequences induce long exact sequences 
in A. 1-homotopy sheaves of the form 

A 1 - - A 1 A1 11 A1 
· · ·----+ 7[. • (GLn_i)----+ 7[. · (GL,,)----+ 7[. • (A \0)----+ 7f._ 1 -(GL,,_1)----+ · · ·. l,J . l,J l,J l ,J 

Putting these sequences together yields an exact couple of the form 

EBn::,:l,i::,:O 7fG (A"\O) 

Since taking homotopy groups commutes with filtered coiiinits (this is classical 

for simplicial sets), we conclude that colim,, n-~'. (GL,,) = n-
1
~

1
'.(GL). Using 

Z,J ' 
this fact, we summarize the structure of the associated spectral se¢Iuence in the 
next result. 
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Proposition 2'.1.1. For any integer j ::=: 0, there is a spectral sequence with 

Et,qU) := n-:~q
1
,/.1V\0) 

. . \ . I Q 
and conve~ging to n-:-lrq ,J ( G L) = _K p+q-1r I. 

Proof Since we observed· colim11 n-!l>-\GLn) == n-
1
!l>-

1
\GL), and since 

. . 1,1 I , 
n-i~J (A..P\0) vanishes for i ~ p - I, the convergence statement follows 
immediately from the classical convergence statement for exact couples 
[Wei94, Theorem 5.9. 7]. The identification of the homotopy sheaves of the 
stable general linear group with Quillen K-theory sheaves follows from 
A..1-representability of algebraic K-theory [MV99, §4 Theorem 3.13]. □ 

2.2 The symplectic spectral sequence 

We now analyze a variant of the above spectral sequence replacing the 
general linear group by the symplectic group. As before, there are standard 
"stabilization" embeddings Sp2n-2 '-+ Sp211 •• Write Sp := colim11 Sp211 

with respect to these embeddings. The quotients Sp211 / Sp211 -2 exist and are 
isomorphic to Q4n-l· As a consequence, for any integer n ::=: 1, there,are 
A.1-fiber sequences of the form \ 

Sp2~-2---+ Sp211 ---+ A.211 \0. 

For any integer j ::: 0, these ~)-fiber sequences induce long exact sequences 
in A 1-homotopy sheaves of the form 

Putting these sequences together, we get an exact couple 

Once again, colimn n-i~J (Sp211 ) = n-i~J (Sp). Using this fact, we may analyze 
the spectral sequence associated with the above exact couple. We deduce the 
following result, whose proof is formally identical to that of Proposition 2.1.1. 

Proposition 2:2.1. Assume j ::=: 0 is an integer. 
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1. There is a spectral sequence with 

Et,qU) := 7[:~q,j(J;/P\O) 

d · A.1 ( . 2-j 
an convergzngtonp+q,j Sp)= GWp+q-j+l· 

2. For any j :::: 0, E 1q U) = 0 for i) p < 0, and ii) q ::: p - 2. 

Proof Convergence is established exactly as in Proposition 2.1.1. The 
identification of the .A1-homotopy sheaves of the stable symplectic group with 
the higher Grothendieck-Witt sheaves follows from the Schlichting-Tripathi 
representability theorem for Hermitian K-theory [ST15, Theorem 8.2]. The 
second statement is an immediate consequence of [Morl2, Corollary 6.39]. 

D 

The above vanishing statement, together with the identification n f 1 
(A 2 \ 0) ~ 

Kf w immediately implies the following result. 

Corollary 2.2.2. There are low-dimensional isomorphisms GWy ~ 0 and 
Gw2 :::::KMW 

2 - 2 · 

Remark 2.2.3. This sheaf GW~ is by definition the second symplectic 

K-theory sheaf Kf P. That this sheaf is identified with Kfw is essentially a 
result of Suslin [Sus87]; see [AFl 7, Theorem 4.1.2] for more details. 

2.3 The anti-symmetric spectral sequence 

Consider the inclusion map Sp211 4 G L211 • The quotients G L211 / Sp211 exist as 
smooth schemes and we set X 11 = GL211 / Sp211 • There are evident stabilization 
maps X 11 -+ X 11+1 induced by the stabilization maps GL2n-2 -+ GL211 and 
Sp2n-2-+ Sp211 .\We set GL/Sp := colim11 X 11 ~ 

For any integer n :::: 1, the stabilization maps fit into A 1-fiber sequences of 
the form 

Xn ---+ Xn+l ---+ A211+1\0; 

(see [AF15, Proposition 4.2.2] and note the same argument works when one 
replaces the special linear group by the general linear group). These A 1-fiber 
sequences yield, for any integer j :::: 0, long exact sequences in A 1-homotopy 
-sheaves.of the.form _ . . . ______ . _ _ __ _ 

... -+ n-A~ (Xn)-+ n-A~ (Xn+l)-+ n-A'c.4.211+1\0)-+ 7Z"~l -(Xn)-+ ... . 
l,J l,J l,J l ,J 

One can put these sequences together to obtain an exact couple, and regarding 
the associated spectral sequence, one has the following result. 
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Proposition 2.3.1. Assume j ::: 0 is an integer. 

I. There is a spectral sequence with 

E l (j') ._ A1 ("'2p-1\0) p,q .- 7r: p+q,j fl 

/ 
d · ,-Al (G /S ) G 3-J an convergzngto1ep+q,j L p = Wp+q-j+I· 

• 2. For any j ::: 0, E1,q (j) = 0 for i) q ~ p - 3, ii) p < 0, and iii) p = 1 
andq > O.· 

Proof Again, the proof is essentially identical to Proposition 2.1.1, though 
this time the identification of the higher A 1-homotopy sheaves of G L / Sp with 
higher Grothendieck-Witt sheaves follows from [ST15, Theorem 8.3]. D 

The above result, together with 1rf (Gm) ~ Gm, and Morel's computation 

1rf (A3\0) immediately implies the following result. 

Corollary 2.3.2. There are low-dimensional isomo,phisms GWi -
GW~ ~ 0 and GW~ ~ Kf w. 

Remark 2.3.3. The identification GW~ ~ Kf w is that analyzed in [AFl 7, 
Theorem 4.3.1]. 

3. Some results on odd primary torsion in A1-homotopy groups 

Serre showed [Ser53] that, if p is a prime, then the first p-torsion in the higher 
homotopy groups of 53 appears in 1r2p(53). The classical proof of this result 
relies on an analysis ·of th€'Serre spectral sequence fovthe fibration B S1 ➔ 
53 (3) ➔ S3 and Serre clas}theory. The goal of this section is to begin to 
lift this computation.to unstable A 1-homotopy theory, in which, at the time of 
writing, neither of the two tools just mentioned are available. 

3.1 Odd primary torsion and the: t2pological symplectic spectral sequence 

If 8p(2n )"is the compact real form of the symplectic group, there are topological 
.,/' 

fiber sequences of the form 
i 

Sp(2n - 2)-➔ Sp(2n)-➔ s4n-l. 

"-
Putting the long exact sequences in homotopy groups associated with these 
fibrations together yields an exact couple and an associated spectral sequence 
with . --~ 

E~,q = 7ip+q(s4P-I) ===> tr:*(8p(oo)). 
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By analogy with the "orthogonal spectral sequence" mentioned before, we 
· will refer to this spectral sequence as the topological symplectic spectral 

sequence. The differentials appearing in this spectral sequence will bear a 
superscript "top" to distinguish them from those appearing in the spectral 
sequence constructed in Subsection 2.2. The homotopy groups of Sp(oo) are 
known by Bott periodicity and we now use this to interpret the p-torsion in 
1l'2p (S3) in terms of differentials in this spectral sequence. 

Proposition 3.1.1. Suppose£ is an odd prime. The generator of the £-torsion 
of ,r2e(S3) is the image of an element of n2e+1 (S2£+ 1) under the differential 
d~?~-l)/2 in the topological symplectic spectral sequence. 

Proof First, note that if F ➔ E ➔ B is a Serre fibration, then there is a 
corresponding long exact sequence in homotopy groups mod n for any integer n 
[Nei80, Proposition 1.6]. In particular, the exact couple associated with the long 
exact sequence in homotopy of the fiber sequences Sp(2n - 2) ➔ Sp(2n) ➔ 
54n-l yields a mod n topological symplectic spectral sequence: 

E~,q = np+q(S4
P-

1
; 'll/f'll) ====} n*(Sp(oo); 'll.,/t'll). 

Classical results allow us to completely describe the E 1-page in a range and 
Bott periodicity allows us to understand precisely to what the spectral sequence 
converges. 

In more detail, 7r4p-1 (S4P- 1, 'll.,/£'1!.,) = 'll.,/f'll. On the other hand, if n is 
an odd number and k > 0, the first non-trivial £-torsion in nn+k(Sn) appears 
in degree k = 2f - 3 [Ser53, Proposition 11 on p. 285]. In particular, the 
E 1 ,-page of the mod£ symplectic spectral sequence takes a rather simple form. 
On the other hand, since£ is an odd prime, Bott periodicity [Bot59, Corollary 
to Theorem II] implies that the £-completion of ni (Sp(oo )) is non-trivial if and 
only ifi is congruent to 3 mod 4. In particular, nu(Sp(oo), 'll.,/£) = 0 since2£ 
is even. Combining these observations, we deduce that the mod f topological 
symplectic spectral sequence is particularly degenerate: the only non-trivial 
differential that lands on nu(S3) is d~;~I)/2 , and this differential is necessarily 
an isomorphism since n2p(Sp(oo ), 'll.,/ p) is trivial. D 

Lemma 3.1L2. The map 

dtop -. 

ker(irll(S11
) ➔ n10(S7

)) --2.+ n10(S3)/im(nu(S7
)) 

' ' 
is- swjective: Moreover; c.n1o(S~) is generated by~dtp(241), where J_ is. a 
generator of nu ( S ll). · . 

Proof The proof of this fact amounts to recalling some classical computations 
of homotopy groups of spheres. Let vtop : S7 ➔ S4 be the usual Hopf 
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map. We abuse terminol~gy and also write v10P : sn+3 ➔ sn for any n ::::: 
4 for the maps- obtained-by iterated suspension. It is well known that for · 
n ::::: 5, if 0P generates 1tn+3 (S11

) ~-·Z/24. Likewise, following Toda,'we 
write (v')10P : S6 ➔ S3 for the class obtained from the classifying map 
of S7 = Sp(4)/ Sp(2) -➔. BSp(2) by adj-unction. Serre observed in [Ser53, 
p. 285 Remarques (2)] that the generator of ft9(S3) is precisely\he composite 
of a 2-fold suspension of the Hopf map v10P, generating n-9(S6), and (v'rP : 
S6 ➔- S3. By (Tod62, Proposition 5.15] and [Ser53, p. 285 Corollaire] one 
knows that n-10(S3) ~ Z/15 and by [Tod62, Proposition 5.8] 1r11 (S7) = 0. 

Granted the computations mentioned in the previous paragraph, to establish 
the result, it suffices to show that d[op is ,surjective after reduction modulo. 
3 and reduction modulo 5. The statement after reduction modulo 5 follows 
immediately from Proposition 3 .1.1. After reduction modulo 3, observe that 

· ·d1 : nio(S7, Z/3) ➔ _n-9(S3, Z/3) is a map Z/3 ➔- ~/3. Since the d1 
differential at this stage i's by construction of the symplectic spectral sequence 
induced by composition with the connecting map, it follows that d1 is an:· 
isomorphism after reduction modulo 3. -Therefore, it follows that the -induced 
map n-11 (S11 ) ➔ n-10(S3) is'surjective after reduction modulo 3 as well. □ 

Remark 3.1.3. The group n- 14 (S3) ~ Z/84 x z;2x2 is not cyclic; see, e.g., 
[Tod62, Theorem 7.4] for the computation of the 2-component. Therefore the 
differential d~op cannot be surjective integrally. · 

3.2 Lifting some odd primary torsio_n from top?logy to A.1-homotopy 

Complex realization ~does not, in -general, preserve fiber sequences. 
~ - . . 

Nevertheless, since a) Sp~i is homotopy-equivalent to the compact symplectic 
group Sp(2n) and b) the Q~;;_ 1 is homotopy equivalent to S411 - 1, the complex 

realization of the A.1-fiber sequence Sp2n-2 ➔ Sp2n ➔ Q4n-1· is the 
topological fiber sequence Sp(2n - 2) ➔ Sp(2n) ➔ s4n-J. Therefore, 
complex realization determines a morphism from the exact couple giving rise 
to the symplectic spectral sequence we considered in Subsection 2.2 evaluated 
on complex points to the exact couple that gives rise to the topological 
symplectic spectral sequence described in Subsection 3 .1. As a consequence, 
there is an induced morphism of spectral sequences. By the discussion of the 
introduction, the next result implies Theorem 1 from the introduction. 

Theorem 3.2.1. If p = 3, 5, then the homom01phism n-:~ 1 ,p+ 1 (Ai.2 \ 0) (C) ➔ 
n-2p(S3) is surjective. 

Proof For p = 3, this is worked out in [AF14b, Theorem 7.5] (taken = 1 
and observe that Sp2(C) = SL2(C) is homotopy equivalenuo S3). We treat 



Algebraic vs. topological vector bundles. OYJ spheres · 211 

the case p = 5. We study the map from the E2-page of the symplectic spectral 
sequence to the E2-page of the topological symplectic spectral sequence whose 
existence is guaranteed by the discussion just prior to the theorem statement. 
In particular, there is a commutative diagram of the form 

ker(irt~(A6\0)(C) ➔ irf,~(A4\0)(C)) ~ irf,~(A2\0)(C)/ im(irt~(A4 \0)(C)) 

! ~ ! 
ker(ir11 (S11 ) ➔ ir1o(S7)) ---

2
--- ir10(S3)/ im(ir11 (S7)). 

We now analyze this diagram. 
Observe that d;op is surjective (with a precise generator identified) by 

Lemma 3.1.2. It follows from [Morl2, Corollary 6.39] that for any integer 

n
1 

:::: 1, n::+l (A,_n+l \0)(CC) ~ ~w (CC) ~ Z and a generator of the group 

n~:+1(An-+l\O)(C) is sent to a generator of 1r2n+1(S2n+l) under complex 
realization, so the left vertical map is an injection. We will show that it is split 
injective. 

Now, recall that the connecting homomorphism in the long exact 
sequence in homotopy sheaves associated with the A 1 -fiber sequence 
SL4/Sp4 ➔ SL6/Sp6 ➔ A.5 \0 determines a morphism of sheaves 

n,f'~(.45 \0) ➔ nf ~(A3\0); equivalently, this is the d1-differential in the 
anti-symmetric spebtral sequence of Section 2.3. Now, by construction, the 
connecting homomorphism is induced by a map Q(A.5\0) --+ A.3\0. The unit 
of the loop-suspension adjunction determines a map L 3G~5 ➔ Q(A.5\0); 

this morphism is an isomorphism on 1r f so the map on homotopy sheaves 

we consider is induced by applying nf~(-) to a morphism L 3G~5 ➔ A3\0. 
Taking the ? 1-suspension of this morphism, we obtain a commutative diagram 
~~form: · · 

where the top morphism coincides with the d1,-differential in the anti-symmetric 

spectral sequence under the isomorphism nf~C; 3G~5)(CC) ~ n-t~(A.5\0). 
The left hand vertical map is ari isomorphism by appeal to [Mor12, 

-~- ·- ··corollary -6~39]. 0E>n-the-other-hand,-1rf~(A~\O)(CL~ J,/~11 _generated by 
a class <5 by [AF15, Proposition 5.2.1]. Moreover, by analyzing the~proofor~ - - -
[AF15, Proposition 5.1], one observes that J is the image of a generator z of 

nt~(:E 3G~5)(CC) as a GW(CC) = Z-module under the top horizontal map; 
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in other words, z is sent to a generator of Z/24. Now r5 is stably non-trivial: 
i~deed, complex realization sends r5 to a generator of n8 (S5) = Z/24 and 
thus <5 differs from I: v, which is classically known to be stably non-trivial, by 

a unit in Z/24. It follows that I:IP1r5 is non-zero in nf~(A..4 \0)(C)) under the 
right vertical map and commutativity shows that I:IP1 <5 is the image of I:IP1 z. 

We also observed in [AF15, Corollary 5.3.l]that r5 is sent to the suspension 
of vtop under complex realization, and by compatibility of complex realization 
and suspension, it follows that complex realization sends the IP'1-suspension 
of r5 to a threefold suspension of vtop. This provides the splitting mentioned 
in the previous paragraph. Combining these two observations, we obtain the 
splitting mentioned two paragraphs above. 

The generator 24I:JP>1z of 242: c nf~(I:4G~6)(C) is sent to a generator 

of 24.Z c nio(S10) under complex ~ealization. Under the isomorphis~ 
1r 10(S10) ➔ n 11 (S11 ), the latter is sent by d;op in the topological symplectic 
spectral sequence to a generator of 1r1o(S3), it follows that d2(24I:IP1z) lifts 

this generator in nt~(A..2\0). - □ 

3.3 Complements 

It is possible to establish a result like Theorem 3.2.1 using the anti-symmetric 
spectral sequence. Since the proof is essentially identical to proof of 
Theorem 3,2.l it will only be sketched. 

Theorem:3.3.1. 
surjective. 

. . 

Proof If r n := U(2n)/ Sp(2n), then there are fiber sequences of the form 
- fn ➔ r:n+I ➔ s2n+I. The long exact sequences in homotopy fit together 
to yield an exact couple that is the topological analog of the anti-symmetric 
spectral sequence considered in Subsection 2.3. This spectral sequence 
converges to the homotopy groups of U / Sp, which are known by Bott 
periodicity. Observe that n2i (U /Sp) ~ 7Z°2i-2 (Sp) and so- vanishes by 
explicit computation. Again, complex realization yields a morphism from the 
anti-symmetric spectral sequence to its topological counterpart. 

Consider then the commutative diagram: 

ker(irf;(A.7\0)(<C) ➔ irf,;(.A5\0)(_<C)) ~ irf,;(A3\0)(<C)/im(irf;(A5\0)(<C)) 

l drop l 
ker(ir13 (S13) ➔ ir12 (S9)) 

2 
ir12 (S5)/ im(ir13 (s9)), 
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Again, n- 13 (S9) = 0 and one observes that d~0
P is surjective in a fashion 

identical to Lemma 3 .1.2. The remainder of the analysis is analogous to the 
end of the proof of Theorem 3 .2.1. □ 

4. Building explicit representatives 

Given the existence of at least 15 non-isomorphic rank 2 algebraic vector 
bundles on Q11 it would be interesting to construct explicit representatives 
of these bundles. It follows from the results of [AF14a],',which we review 
below, that all such bundles are stably trivial. Corollary 4.2.2 demonstrates 
that non-trivial rank. 2 algebraic vector bundles on Q 11 whose associated 
topological bundles are non-trivial, remain algebraically non-trivial after 
forming the direct sum with trivial bundles of rank :S 3. 

4.1 Stable triviality results 

The inclusion of ME SLn (R) in SLn+I (R) as block diagonal matrices of the 
form diag(M, 1) gives a morphism of spaces BSLn --+ BSLn+l· If Xis a 
smooth affine scheme, then the induced map 

corresponds to the operation of adding a trivial rank 1 bundle. By means of 
the identifications mentioned in the introduction, when X = Q21 -I, the above 
function corresponds to a morphism 

'----._ 

Write cDm,n for the composite morphism cD1,n+m-l o · · · o cD1,n+l o cD1,n-

To answer the question of whether a bundle on Q11 becomes trivial after 
successively adding trivial bundles of rank 1 amounts to studying whether a 

. I 
class~ E n-f6 (BSL2)(C) is sent to O under cDm,2• The next result shows that 
cDm,2 is the zernmap form ::::: 4. 

Lemma 4.1.1 ([AF14a, Corollary 4.7)). If n > 1, and m > n, 
'Vm(Q2n-l) = *· 

The topological analog of the sequence of homomorphisms considered in the 
previous section can be analyzed using classical results. Precisely, we have the 
following result. 
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Proposition 4.2.1. The ho~omorphisms n-11 (BSU(2)) ➔ n-11 (BSU(m)) 
are injective for 3 ::: m ::: 5. 

Proof We begin by recalling various computations of homotopy groups of 
special unitary groups. One knows that n-11 (BSU(2)) = n-10(SU(2)) = 
n-10(S3) ~ Z/15 [Tod62,p. 186], n-11 (BSU(3)) ~ Z/30 [MT64, Theorem 6.1], 
n-11(BSU(4)) ~Z/2E9Z/5! (Ker60,Lemmal.6],andn-11(BSU(5)) ~ Z/5! 
[Bot58, Theorem 5]. For injectivity when m = 3, consider the portion of the 
long exact sequence in homotopy groups associated with S5 ➔ BSU(2) ➔ 
BSU(3) 

n-11 (S5) -+ n-11 (BSU(2)) -+;n-11 (BSU(3)). 

We know that n-11 (S5) ~ Z/2 [Tod62, p. 186], so the left hand map is zero. 
Therefore, the map n-11 (BSU(2)) ➔ n-11 (BSU(3)) must be injective. 

Next, consider the long exact sequence in homotopy groups associated with 
S7 ➔ BSU(3) ➔ BSU(4). In that case, we have 

n-11 (S7) -+ n-11 (BSU(3)) -+ n-11 (BSU(4)) -+ n-10(S7). 

In this case, n-11(S7) = 0 [Tod62, p. 186], so the map n-11(BSU(3)) ➔ 
n-11(BSU(4)) is injective. Combining with the conclusion of the previous 
paragraph, injectivity form = 4 is settled. 

For the case m = 5, first observe that since n-11 (BSU(2)) ~ Z/15 its 
image in n-11 (B SU(4)) is necessarily contained in the summand isomorphic to 
Z/5!. Kervaire's computation of n-11 (BSU(4)) mentioned above proceeds by 
analysis of the long exact sequence in homotopy attached to the fiber sequence 
S9 = SU(5)/SU(4) ➔ BSU(4) ➔ BSU(5). Indeed, this exact sequence 
takes the form: - · 

, 9 . 
n-11 (S ) -+ n-11 (BSU(4))-+ n-11 (BSU(5))-+ 0, 

where the left hand grotip is Z/2 and so the map n-n (BSU(4)) ➔ 
n-11(BSU(5)) is the projection onto the summand isomorphic to Z/5!. The 
result follows. D 

The next result is a straightforward consequence of Lemma 4.1.1, 
Proposition 4.2.1, Theorem 3.2.1 and the functoriality of complex realization. 

Corollary 4.2.2. lf c; is an element of n-f ~(BSL2)(C) that does not lie in 

the kernel of the (surjective) complex realization map n-f~(BSL2)(C) ➔ 
n-11 (BSU(2)), then the image of c; under the homomorphism 

is non-trivial for 3 ::: m :S 5. 
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