Lifting congruences to weight $\mathbf{3 / 2}$

Neil Dummigan ${ }^{1}$ and Srilakshmi Krishnamoorthy ${ }^{2}$.
${ }^{1}$ University of Sheffield, School of Mathematics and Statistics, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, U.K.
e-mail: n.p.dummigan@shef.ac.uk
${ }^{2}$ Department of Mathematics, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura 695 551, Kerala, India e-mail: srilakshmi@iisertvm.ac.in
Communicated by: Prof. Raghuram

Received: November 21, 2016

Abstract

Given a congruence of Hecke eigenvalues between newforms of weight 2 , we prove, under certain conditions, a congruence between corresponding weight- $3 / 2$ forms.

1. Introduction

Let $f=\sum_{n=1}^{\infty} a_{n}(f) q^{n}$ and $g=\sum_{n=1}^{\infty} a_{n}(g) q^{n}$ be normalised newforms of weight 2 for $\Gamma_{0}(N)$, where N is square-free. For each prime $p \mid N$, let $w_{p}(f)$ and $w_{p}(g)$ be the eigenvalues of the Atkin-Lehner involution W_{p} acting on f and g, respectively. Write $N=D M$, where $w_{p}(f)=w_{p}(g)=-1$ for primes $p \mid D$ and $w_{p}(f)=w_{p}(g)=1$ for primes $p \mid M$. We suppose that the number of primes dividing D is odd. (In particular, the signs in $\therefore \quad$ the functional equations of $L(f, s)$ and $L(g, s)$ are both +1 .) Let B be the quaternion algebra over \mathbb{Q} ramified at ∞ and at the primes dividing D, with canonical anti-involution $x \mapsto \bar{x}, \operatorname{tr}(x):=x+\bar{x}$ and $\operatorname{Nm}(x):=x \bar{x}$. Let R be a fixed Eichler order of level N in a maximal order of B. Let ϕ_{f}, ϕ_{g} (determined up to non-zero scalars) be (\mathbb{C}-valued) functions on the finite set $B^{\times}(\mathbb{Q}) \backslash B^{\times}\left(\mathbb{A}_{f}\right) / \hat{R}$ corresponding to f and g via the Jacquet-Langlands correspondence, where \mathbb{A}_{f} is the "finite" part of the adele ring of \mathbb{Q} and $\hat{R}=\bar{R} \otimes_{\mathbb{Z}} \mathbb{Z}$. Let $\left\{y_{i}\right\}_{i=1}^{h}$ be a set of representatives in $B^{\times}\left(\mathbb{A}_{f}\right)$ of $B^{\times}(\mathbb{Q}) \backslash B^{\times}\left(\mathbb{A}_{f}\right) / \hat{R}, R_{i}:=B^{\times}(\mathbb{Q}) \cap\left(y_{i} \hat{R} y_{i}^{-1}\right)$ and $w_{i}:=\left|R_{i}^{\times}\right|$. Let $L_{i}:=\left\{x \in \mathbb{Z}+2 R_{i}: \operatorname{tr}(x)=0\right\}$, and $\theta_{i}:=\sum_{x \in L_{i}} q^{\mathrm{Nm}(x)}$, where $q=e^{2 \pi i z}$,
for z in the complex upper half-plane. For $\phi=\dot{\phi}_{f}$ or ϕ_{g}, let

$$
\mathcal{W}(\phi):=\sum_{i=1}^{h} \phi\left(y_{i}\right) \theta_{i}
$$

This is Waldspurger's theta-lift [Wa1], and the Shimura correspondence [Sh] takes $\mathcal{W}\left(\phi_{f}\right)$ and $\mathcal{W}\left(\phi_{g}\right)$, which are cusp forms of weight $3 / 2$ for $\Gamma_{0}(4 N)$, to f and g, respectively (if $\mathcal{W}\left(\phi_{f}\right)$ and $\mathcal{W}\left(\phi_{g}\right)$ are non-zero). In the case that N is odd (and square-free), $\mathcal{W}\left(\phi_{f}\right)$ and $\mathcal{W}\left(\phi_{g}\right)$ are, if non-zero, the unique (up to scaling) elements of Kohnen's space $S_{3 / 2}^{+}\left(\Gamma_{0}(4 N)\right.$) mapping to f and g under the Shimura correspondence $[\mathrm{K}]$. Still in the case that N is odd, $\mathcal{W}\left(\phi_{f}\right) \neq 0$ if and only if $L(f, 1) \neq 0$, by a theorem of Böcherer and Schulze-Pillot [BS1, Corollary, p.379], proved by Gross in the case that N is prime [G1, §13].

Böcherer and Schulze-Pillot's version of Waldspurger's Theorem [Wa2], [BS2, Theorem 3.2] is that for any fundamental discriminant $-d<0$,

$$
\begin{aligned}
& \sqrt{d}\left(\prod_{p \left\lvert\, \frac{N}{\operatorname{gcd}(N, d)}\right.}\left(1+\left(\frac{-d}{p}\right) w_{p}(f)\right)\right) L(f, 1) L(f, \chi-d, 1) \\
& \quad=\frac{4 \pi^{2}\langle f, f\rangle}{\left\langle\phi_{f}, \phi_{f}\right\rangle}\left(a\left(\mathcal{W}\left(\phi_{f}\right), d\right)\right)^{2},
\end{aligned}
$$

and similarly for g, where $\mathcal{W}\left(\phi_{f}\right)=\sum_{n=1}^{\infty} a\left(\mathcal{W}\left(\phi_{f}\right), n\right) q^{n},\langle f, f\rangle$ is the Petersson norm and $\left\langle\phi_{f}, \phi_{f}\right\rangle=\sum_{i=1}^{h} w_{i}\left|\phi_{f}\left(y_{i}\right)\right|^{2}$. (They scale ϕ_{f} in such a way that $\left\langle\phi_{f}, \phi_{f}\right\rangle=1$, so it does not appear in their formula.)

The main goal of this paper is to prove the following.
Theorem 1.1. Let $f, g, \mathcal{W}\left(\phi_{f}\right), \mathcal{W}\left(\phi_{g}\right), N=D M$ be as above (with N square-free but not necessarily odd). Suppose now that $D=q$ is prime. Let ℓ be a prime such that $\ell \nmid 2 M(q-1)$. Suppose that, for some unramified divisor $\lambda \mid \ell$ in a sufficiently large number field,

$$
a_{p}(f) \equiv a_{p}(g) \quad(\bmod \lambda) \quad \forall \text { primes } p
$$

and that the residual Galois representation $\bar{\rho}_{f, \lambda}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\lambda}\right)$ is irreducible. Then (with a suitable choice of scaling, such that ϕ_{f} and ϕ_{g} are integral but not divisible by λ)

$$
a\left(\mathcal{W}\left(\phi_{f}\right), n\right) \equiv a\left(\mathcal{W}\left(\phi_{g}\right), n\right) \quad(\bmod \lambda) \quad \forall n
$$

Remarks.

(1) Note that $a\left(\mathcal{W}\left(\phi_{f}\right), d\right)=0$ unless $\left(\frac{-d}{p}\right)=w_{p}(f)$ for all primes $p \left\lvert\, \frac{N}{\operatorname{gcd}(N, d)}\right.$, in fact this is implied by the above formula. When N is odd
and square-free, for each subset S of the set of primes dividing N, Baruch and Mao [BM, Theorem 10.1] provide a weight-3/2 form satisfying a similar relation, for discriminants such that $\left(\frac{-d}{p}\right)=-w_{p}(f)$ precisely for $p \in S$, and of sign determined by the parity of $\# S$, the above being the case $S=\emptyset$. One might ask whether one can prove similar congruences for these forms in place of $\mathcal{W}\left(\phi_{f}\right)$ and $\mathcal{W}\left(\phi_{g}\right)$. In the case that N is prime, one sees in [MRT] how to express the form for $S=\{N\}$ as a linear combination of generalised ternary theta series, with coefficients in the linear combination coming from values of ϕ, so the same proof (based on a congruence between ϕ_{f} and ϕ_{g}) should work. Moreover, the examples in [PT], with similar linear combinations of generalised ternary theta series in cases where N is not even square-free, suggest that something much more general may be possible.
(2) Though ϕ_{f} and ϕ_{g} are not divisible by λ, we can still imagine that $\mathcal{W}\left(\phi_{f}\right)=\sum_{i=1}^{h} \phi_{f}\left(y_{i}\right) \theta_{i}$ and $\mathcal{W}\left(\phi_{g}\right)=\sum_{i=1}^{h} \phi_{g}\left(y_{i}\right) \theta_{i}$ could have all their Fourier coefficients divisible by λ, so the congruence could be just $0 \equiv 0(\bmod \lambda)$ for all n. However, unless $\mathcal{W}\left(\phi_{f}\right)=\mathcal{W}\left(\phi_{g}\right)=0$, this kind of $\bmod \ell$ linear dependence of the θ_{i} seems unlikely, and one might guess that it never happens. This seems related to a conjecture of Kolyvagin, about non-divisibility of orders of Shafarevich-Tate groups of quadratic twists, discussed by Prasanna [P].
(3) The discussion in $[P, \S \S 5.2,5.3]$ is also relevant to the subject of this paper. In particular, our congruence may be viewed as a square root of a cengruence between algebraic parts of L-values. Such congruences may be proved in greater generality, as in [V, Theorem 0.2], but do not imply ours, since square roots are determined only up to sign. The idea for Theorem 1.1 came in fact from work of Quattrini [Q, §3], who proved something similar for congruences between cusp forms and Eisenstein series at prime level, using results of Mazur [M] and Emerton [Em] on the Eisenstein ideal. See Theorem 3.6, and the discussion following Proposition 3.3, in [Q].
(4) Here we are looking at congruences between modular forms of the same weight (i.e. 2), and how to transfer them to half-integral weight. For work on the analogous question for congruences between forms of different weights, see [D] (which uses work of Stevens [Ste] to go beyond special cases), and [MO, Theorem 1.4] for a different approach by McGraw and Ono.
(5) We could have got away with assuming the congruence only for all but finitely many p. The Hecke eigenvalue $a_{p}(f)$, for a prime $p \nmid N \ell, \cdots=-$ is the trace of $\rho_{f, \lambda}\left(\operatorname{Frob}_{p}^{-1}\right)$, where $\rho_{f, \lambda}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(K_{\lambda}\right)$ is the λ-adic Galois representation attached to f and $\operatorname{Frob}_{p} \in \operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}\right)$
lifts the automorphism $x \mapsto x^{p}$ in $\operatorname{Gal}\left(\overline{\mathbb{F}}_{p} / \mathbb{F}_{p}\right)$. Since the Frob_{p}^{-1} topologically generate $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$, the congruence for almost all p implies an isomorphism of residual representations $\bar{\rho}_{f, \lambda}$ and $\bar{\rho}_{g, \lambda}$, hence the congruence at least for all $p \nmid N \ell$. For $p \mid N, a_{p}(f)$ can again be recovered from $\rho_{f, \lambda}$, this time as the scalar by which Frob ${ }_{p}^{-1}$ acts on the unramified quotient of the restriction to $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$, by a theorem of Deligne and Langlands [L]. For $p=\ell$ this also applies in the ordinary case, by a theorem of Deligne [Ed, Theorem 2.5], and in the supersingular case $a_{\ell}(f) \equiv a_{\ell}(g) \equiv 0(\bmod \lambda)$. Since $\bar{\rho}_{f, \lambda} \simeq \bar{\rho}_{g, \lambda}$, it follows that $a_{p}(f) \equiv a_{p}(g)(\bmod \lambda)$ even for $p \mid N \ell$. Since $w_{p}=-a_{p}$ for $p \mid N$ and ℓ is odd, we find that if we didn't impose the condition that $w_{p}(f)=w_{p}(g)$ for all $p \mid N$, it would follow anyway. But note that we have actually imposed a stronger condition, not just that $w_{p}(f)$ and $w_{p}(g)$ are equal, but that they equal -1 for $p=q$ and +1 for $p \mid M$. (In the kind of generalisation envisaged in Remark (1), presumably this condition would be removed.)
(6) The formula for $\mathcal{W}(\phi)$ used by Böcherer and Schulze-Pillot has coefficient of θ_{i} equal to $\frac{\phi\left(y_{i}\right)}{\omega_{i}}$ rather than just $\phi\left(y_{i}\right)$, and their $\langle\phi, \phi\rangle$ has w_{i} in the denominator (as in [$\left.\mathrm{G} 2,(6,2)\right]$) rather than in the numerator. This is because our $\phi\left(y_{i}\right)$ is the same as their $\phi\left(y_{i}\right) / w_{i}$. Their ϕ is an eigenvector for standard Hecke operators T_{p} defined using right translation by double cosets (as in [G2, (6.6)]), which are represented by Brandt matrices, and are self-adjoint for their inner product. The Hecke operators we use below are represented by the transposes of Brandt matrices (as in [G2, Proposition 4.4]), and are self-adjoint for the inner product we use here (see the final remark). This accounts for the adjustment in the eigenvectors.

2. Modular curves and the Jacquet-Langlands correspondence

In this section we work in greater generality than in the statement of Theorem 1.1. First we briefly collect some facts explained in greater detail in [R]. Let N be any positive integer of the form $N=q M$, not necessarily square-free, but with q prime and $(q, M)=1$. Since $q \mid N$ but $q \nmid M$, the prime q is of bad reduction for the modular curve $X_{0}(N)$, but good reduction for $X_{0}(M)$. There exists a regular model over \mathbb{Z}_{q} of the modular curve $X_{0}(N)$, whose special fibre (referred to here as $X_{0}(N) / \mathbb{F}_{q}$) is two copies of the nonsingular curve $X_{0}(M) / \mathbb{F}_{q}$, crossing at points representing supersingular elliptic curves with cyclic subgroups of order M ("enhanced" supersingular elliptic curves in the language of Ribet). For $\Gamma_{0}(N)$-level structure, each point of $X_{0}(N)\left(\overline{\mathbb{F}}_{q}\right)$ must also come with a cyclic subgroup scheme of order q.

On one copy of $X_{0}(M) / \mathbb{F}_{q}$ this is $\operatorname{ker} F$, on the other it is $\operatorname{ker} V$ (F and V being the Frobenius isogeny and its dual), and at supersingular points $\operatorname{ker} F$ and ker V coincide. This finite set of supersingular points is naturally in bijection with $B^{\times}(\mathbb{Q}) \backslash B^{\times}\left(\mathbb{A}_{f}\right) / \hat{R}$, where B is the quaternion algebra over \mathbb{Q} ramified at q and ∞ and R is an Eichler order of level N. If, as above, $\left\{y_{i}\right\}_{i=1}^{h}$ is a set of representatives in $B^{\times}\left(\mathbb{A}_{f}\right)$ of $B^{\times}(\mathbb{Q}) \backslash B^{\times}\left(\mathbb{A}_{f}\right) / \hat{R}$, and $R_{i}:=B^{\times}(\mathbb{Q}) \cap\left(y_{i} \hat{R} y_{i}^{-1}\right)$, then the bijection is such that y_{i} corresponds to an enhanced supersingular elliptic curve with endomorphism ring R_{i} (i.e. endomorphisms of the curve preserving the given cyclic subgroup of order M).

The Jacobian $J_{0}(N) / \mathbb{Q}_{q}$ of $X_{0}(N) / \mathbb{Q}_{q}$ has a Néron model, a certain group scheme over \mathbb{Z}_{p}. The connected component of the identity in its special fibre has an abelian variety quotient $\left(J_{0}(M) / \mathbb{F}_{q}\right)^{2}$, the projection maps to the two factors corresponding to pullback of divisor classes via the two inclusions of $X_{0}(M) / \mathbb{F}_{q}$ in $X_{0}(N) / \mathbb{F}_{q}$. The kernel of the projection to $\left(J_{0}(M) / \mathbb{F}_{q}\right)^{2}$ is the toric part T, which is connected with the intersection points of the two copies of $X_{0}(M)$. To be precise, the character group $X:=\operatorname{Hom}\left(T, \mathbb{G}_{m}\right)$ is naturally identified with the set of divisors of degree zero (i.e \mathbb{Z}-valued functions summing to 0) on this finite set, hence on $B^{\times}(\mathbb{Q}) \backslash B^{\times}\left(\mathbb{A}_{f}\right) / \hat{R}$.

Let \mathbb{T} be the \mathbb{Z}-algebra generated by the linear operators T_{p} (for primes $p \nmid N$) and U_{p} (for primes $p \mid N$) on the q-new subspace $S_{2}\left(\Gamma_{0}(N)\right)^{q \text {-new }}$ (the orthogonal complement of the subspace of those old forms coming from $S_{2}\left(\Gamma_{0}(M)\right)$). Let f be a Hecke eigenform in $S_{2}\left(\Gamma_{0}(N)\right)^{q \text { new }}$, and let K be a number field sufficiently large to accommodate all the Hecke eigenvalues $a_{p}(f)$. The homomorphism $\theta_{f}: \mathbb{T} \rightarrow K$ such that $T_{p} \mapsto a_{p}(f)$ and $U_{p} \mapsto$ $a_{p}(f)$ has kernel \mathfrak{p}_{f}, say. Let λ be a prime ideal of O_{K}, dividing a rational prime ℓ. The homomorphism $\overline{\theta_{f}}: \mathbb{T} \rightarrow \mathbb{F}_{\lambda}:=O_{K} / \lambda$ such that $\overline{\theta_{f}}(t)=\overline{\theta_{f}(t)}$ for all $t \in \mathbb{T}$, has a kernel \mathfrak{m} which is a maximal ideal of \mathbb{T}, containing \mathfrak{p}_{f}, with $k_{\mathfrak{m}}:=\mathbb{T} / \mathfrak{m} \subseteq \mathbb{F}_{\lambda}$.

The abelian variety quotient $\left(J_{0}(M) / \mathbb{F}_{q}\right)^{2}$ is connected with q-old forms, while the toric part T is connected with q-new forms. In fact, by $[\mathbf{R}$, Theorem 3.10], \mathbb{T} may be viewed as a ring of endomorphisms of T, hence of X. We may find an eigenvector ϕ_{f} in $X \otimes_{\mathbb{Z}} K$ (a K-valued function on $\left.B^{\times}(\mathbb{Q}) \backslash B^{\times}\left(\mathbb{A}_{f}\right) / \hat{R}\right)$, on which \mathbb{T} acts through $\mathbb{T} / \mathfrak{p}_{f}$. We may extend coefficients to K_{λ}, and scale ϕ_{f} to lie in $X \otimes O_{\lambda}$ but not in $\lambda\left(X \otimes O_{\lambda}\right)$. This association $f \mapsto \phi_{f}$ gives a geometrical realisation of the Jacquet-Langlands correspondence.

3. A congruence between ϕ_{f} and ϕ_{g}

Again, in this section we work in greater generality than in the statement of Theorem 1.1.

Lemma 3.1. Let $N=q M$ with q prime and $(q, M)=1$ Let $f, g \in$ $S_{2}\left(\Gamma_{0}(N)\right)^{q-\text { new }}$ be Hecke eigenforms. Let K be a number field sufficiently large to accommodate all the Hecke eigenvalues $a_{p}(f)$ and $a_{p}(g)$, and $\lambda \mid \ell$ a prime divisor in O_{K} such that $a_{p}(f) \equiv a_{p}(g)(\bmod \lambda)$ for all primes p. Let ϕ_{f} be as in the previous section, and define ϕ_{g} similarly. If $\bar{\rho}_{f, \lambda}$ is irreducible and $\ell \nmid 2 M(q-1)$ then, with suitable choice of scaling, we have $\phi_{f} \equiv \phi_{g}$ $(\bmod \lambda)$.

Proof. In the notation of the previous section, we can define θ_{g} just like θ_{f}, and the congruence implies that we have a single maximal ideal \mathfrak{m} for both f and g. By [R , Theorem 6.4] (which uses the conditions that $\bar{\rho}_{f, \lambda}$ is irreducible and that $\left.\ell \nmid 2 N(q-1)\right), \operatorname{dim}_{k_{\mathfrak{m}}}(X / \mathfrak{m} X) \leq 1$. The proof of this theorem of Ribet uses his generalisation to non-prime level [R , Theorem 5.2(b)] of Mazur's "multiplicity one" theorem that $\operatorname{dim}_{k_{\mathrm{m}}}\left(J_{0}(N)[\mathfrak{m}]\right)=2[\mathrm{M}$, Proposition 14.2], and Mazur's level-lowering argument for $q \not \equiv 1(\bmod \ell)$. We can relax the condition $\ell \nmid 2 N(q-1)$ to the stated $\ell \nmid 2 M(q-1)$ (i.e. allow $\ell=q$ if $q>2$), using Wiles's further generalisation of Mazur's multiplicity one theorem [Wi, Theorem 2.1(ii)]. (Note that since $q \| N, a_{q}(f)= \pm 1$, in particular $q \nmid a_{q}(f)$, so in the case $\ell=q$ Wiles's condition that \mathbf{m} is ordinary, hence " D_{p}-distinguished" is satisfied.)

We can localise at \mathfrak{m} first, so $\phi_{f^{\prime}}, \phi_{g} \in X_{\mathfrak{m}} \otimes O_{\lambda}$ and $\operatorname{dim}_{k_{\mathfrak{m}}}\left(X_{\mathfrak{m}} / \mathfrak{m} X_{\mathfrak{m}}\right) \leq 1$. In fact, since we are looking only at a Hecke ring acting on q-new forms (what Ribet calls \mathbb{T}_{1}), we must have $\operatorname{dim}_{k_{\mathfrak{m}}}\left(X_{\mathfrak{m}} / \mathfrak{m} X_{\mathfrak{m}}\right)=1$. It follows from $\left[\mathrm{R}\right.$, Theorem 3.10], and its proof, that $X_{\mathfrak{m}} \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$ is a free $\mathbb{T}_{\mathfrak{m}} \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$-module of rank 1 . Then an application of Nakayama's Lemma shows that $X_{\mathfrak{m}}$ is a free. $\mathbb{T}_{\mathfrak{m}}$-module of rank 1. Now $\mathbb{T}_{\mathfrak{m}}$ is a Gorenstein ring, as in [M, Corollary 15.2], so $\operatorname{dim}_{k_{\mathfrak{m}}}\left(\left(\mathbb{T}_{\mathfrak{m}} / \ell \mathbb{T}_{\mathfrak{m}}\right)[\mathfrak{m}]\right)=1$ (by [T, Proposition 1.4(iii)]) and hence $\operatorname{dim}_{k_{\mathfrak{m}}}\left(\left(X_{\mathfrak{m}} / \ell X_{\mathfrak{m}}\right)[\mathfrak{m}]\right)=1$. It follows_by basic linear algebra that $\left(\left(X_{\mathfrak{m}} \otimes_{\mathbb{Z}_{\ell}}\right.\right.$ $\left.\left.O_{\lambda}\right) / \ell\left(X_{\mathfrak{m}} \otimes_{\mathbb{Z}_{\ell}} O_{\lambda}\right)\right)\left[\mathfrak{m} \otimes_{\mathbb{Z}_{\ell}} O_{\lambda}\right]$ is a free $\left(k_{\mathfrak{m}} \otimes_{\mathbb{F}_{\ell}} \mathbb{F}_{\lambda}\right)$-module of rank 1 , using the assumption that $K_{\lambda} / \mathbb{Q}_{\ell}$ is unramified.

Now $\left(k_{\mathrm{m}} \otimes_{\mathbb{F}_{\ell}} \mathbb{F}_{\lambda}\right) \simeq \prod_{k_{\mathrm{m}} \hookrightarrow \mathbb{F}_{\lambda}} \mathbb{F}_{\lambda}$, and it acts on both ϕ_{f} and ϕ_{g} through the single component corresponding to the map $k_{\mathrm{m}} \hookrightarrow \mathbb{F}_{\lambda}$ induced by $\overline{\theta_{f}}=\overline{\theta_{g}}$. Hence ϕ_{f} and ϕ_{g} reduce to the same 1-dimensional \mathbb{F}_{λ}-subspace of $\left(X_{\mathfrak{m}} \otimes \mathbb{Z}_{\ell}\right.$ $\left.O_{\lambda}\right) / \ell\left(X_{\mathrm{m}} \otimes_{\mathbb{Z}_{\ell}} O_{\lambda}\right)$, and by rescaling by a λ-adic unit, we may suppose that their reductions are the same, i.e. that $\phi_{f}\left(y_{i}\right) \equiv \phi_{g}\left(y_{i}\right)(\bmod \lambda) \forall i$.

3.1 Proof of Theorem 1.1

This is now an immediate consequence of Lemma 3.1, of $\mathcal{W}(\phi)=$ $\sum_{i=1}^{h} \phi\left(y_{i}\right) \theta_{i}$, and the integrality of the Fourier coefficients of the θ_{i}.

4. Two examples

Presumably one could obtain examples with smaller level by using $\ell=3$ rather than our $\ell=5$. Moreover we have looked, for simplicity, only at congruences between f and g which both have rational Hecke eigenvalues.
$\mathbf{N}=170$. Let f and g be the newforms for $\Gamma_{0}(170)$ attached to the isogeny classes of eiliptic curves over \mathbb{Q} labelled $\mathbf{1 7 0 b}$ and 170 e respectively, in Cremona's data [C]. For both f and g the Atkin-Lehner eigenvalues are $w_{2}=w_{5}=+1, w_{17}=-1$. The modular degrees of the optimal curves in the isogeny classes $\mathbf{1 7 0 b}$ and $\mathbf{1 7 0 e}$ are 160 and 20, respectively. Both are divisible by 5 , with the consequence that 5 is a congruence prime for f in $S_{2}\left(\Gamma_{0}(170)\right)$, and likewise for g. In fact f and g are congruent to each other mod 5 .

p	3	7	11	13	19	23	29	31	37	41	43	47	53
$a_{p}(f)$	-2	2	6	2	8	-6	-6	2	2	-6	-4	12	6
$a_{p}(g)$	3	2	-4	-3	3	-6	9	-3	-8	-6	6	-13	-9

The Sturm bound [Stu] is $\frac{k N}{12} \prod_{p \mid N}\left(1+\frac{1}{p}\right)=54$, so the entries in the table (together with the Atkin-Lehner eigenvalues) are sufficient to prove the congruence $a_{n}(f) \equiv a_{n}(g)$ for all $n \geq 1$.

Using the computer package Magma, one can find matrices for Hecke operators acting on the Brandt module for $D=17, M=10$, for which $h=24$. Knowing in advance the Hecke eigenvalues, and computing the null spaces of appropriate matrices, one easily finds that we can take [$\left.\phi_{f}\left(y_{1}\right), \ldots, \phi_{f}\left(y_{24}\right)\right]$ and $\left[\phi_{g}\left(y_{1}\right), \ldots, \phi_{g}\left(y_{24}\right)\right]$ (with the ordering as given by Magma) to be

$$
\begin{aligned}
& {[-4,-4,-4,-4,5,5,5,5,5,5,5,5,2,2,-1,-1,-1,-1,-1,} \\
& \left.\quad-1_{5},-1,-1,-10,-10\right]
\end{aligned}
$$

and

$$
[1,1,1,1,0,0,0,0,0,0,0,0,2,2,-1,-1,-1,-1,-1,-1,-1,-1,0,0]
$$

respectively, and we can observe directly a mod 5 congruence between ϕ_{f} and ϕ_{g}.

Using the computer package Sage, and Hamieh's function "shimura_lift_in_kohnen_subspace" [H, §4], we found

$$
\begin{aligned}
\mathcal{W}\left(\phi_{f}\right)= & -4 q^{20}+16 q^{24}-24 q^{31}+16 q^{39}+20 q^{40}+8 q^{56}-8 q^{71} \\
& -40 q^{79}+4 q^{80}+16 q^{95}-16 q^{96}+O\left(q^{100}\right), \\
\mathcal{W}\left(\phi_{g}\right)= & -4 q^{20}-4 q^{24}-4 q^{31}-4 q^{39}+8 q^{56}+12 q^{71}+4 q^{80} \\
& -4 q^{95}+4 q^{96}+O\left(q^{100}\right),
\end{aligned}
$$

in which the mod 5 congruence is evident. Unfortunately the condition $\ell \nmid 2 M(q-1)$ does not apply to this example.
$\mathrm{N}=174$. Let f and g be the newforms for $\Gamma_{0}(174)$ attached to the isogeny classes of elliptic curves over \mathbb{Q} labelled 174a and 174d respectively, in Cremona's data [C]. For both f añd \dot{g} 'the' Atkin'-Lehner eigenvalues are $w_{2}=w_{29}=+1, w_{3}=-1$. The modular degrees of the optimal curves in the isogeny classes 174a and 174d are 1540 and 10, respectively. Both are divisible by 5 , with the consequence that 5 is a congruence prime for f in $S_{2}\left(\Gamma_{0}(174)\right)$, and likewise for g. In fact f and g are congruent to each other $\bmod 5$.

p	5	7	11	13	17	19	23	31	37	41	43	47	53	59
$a_{p}(f)$	-3	5	6	-4	3	-1	0	-4	-1	-9	-7	-3	-6	3
$a_{p}(g)$	2	0	-4	6	-2	4	0	-4	-6	6	-12	-8	-6	8

The Sturm bound [Stu] is $\frac{k N}{12} \prod_{p \mid N}\left(1+\frac{1}{p}\right)=60$, so the entries in the table (together with the Atkin-Lehner eigenvalues) are sufficient to prove the congruence $a_{n}(f) \equiv a_{n}(g)$ for all $n \geq 1$.

Using Magma, one can find matrices for Hecke operators acting on the Brandt module for $D=3, M=58$, for which $h=16$. We find $\left[\phi_{f}\left(y_{1}\right), \ldots, \phi_{f}\left(y_{16}\right)\right]$ and $\left[\phi_{g}\left(y_{1}\right), \ldots, \phi_{g}\left(y_{16}\right)\right]$ to be

$$
[2,2,-5,-5,-5,-5,10,10,10,10,-2,-2,-2,-2,-8,-8]
$$

and

$$
[2,2,0,0,0,0,0,0,0,0,-2,-2,-2,-2,2,2]
$$

respectively, and we can observe directly the mod 5 congruence between ϕ_{f} and ϕ_{g} proved on the way to Theorem 1.1.

Using the computer package Sage, and Hamieh's function "shimura_lift_in_kohnen_subspace" [H, §4], we found (with appropriate scaling)

$$
\begin{aligned}
\mathcal{W}\left(\phi_{f}\right)= & 2 q^{4}-10 q^{7}-2 q^{16}-8 q^{24}+10 q^{28}+2 q^{36}+20 q^{52}-10 q^{63} \\
& +2 q^{64}-12 q^{87}-4 q^{88}+8 q^{96}+O\left(q^{100}\right) \\
\mathcal{W}\left(\phi_{g}\right)= & 2 q^{4}-2 q^{16}+2 q^{24}+2 q^{36}+2 q^{64}-2 q^{87} \\
& -4 q^{88}-2 q^{96}+O\left(q^{100}\right)
\end{aligned}
$$

in which the mod 5 congruence is evident. The condition $\ell \nmid 2 M(q-1)$ does apply to this example, and $\bar{\rho}_{f, \ell}$ is irreducible, since we do not have $a_{p}(f) \equiv$ $1+p(\bmod \ell)$ for all $p \nmid \ell N$.

Remark. The norm we used comes from a bilinear pairing $\langle\rangle:, X \times X \rightarrow \mathbb{Z}$ such that $\left\langle y_{i}, y_{j}\right\rangle=w_{j} \delta_{i j}$. The Hecke operators T_{p} for $p \nmid N$ are self-adjoint
for \langle,$\rangle , since if E_{i}$ is the supersingular elliptic curve associated to the class representated by y_{i}, then $\left\langle T_{p} y_{i}, y_{j}\right\rangle$ is the number of cyclic p-isogenies from E_{i} to E_{j}, while $\left\langle y_{i}, T_{p} y_{j}\right\rangle$ is the number of cyclic p-isogenies from E_{j} to E_{i}, and the dual isogeny shows that these two numbers are the same. See the discussion preceding [R, Proposition 3.7], and note that the factor $w_{j}=\# \operatorname{Aut}\left(E_{j}\right)$ intervenes between counting isogenies and just counting their kernels.

We have $\phi_{f}-\phi_{g}=\lambda \phi$ for some $\phi \in X \otimes O_{\lambda}$. Hence $\phi=\frac{1}{\lambda}\left(\phi_{f}-\phi_{g}\right)$. Now ϕ_{f} and ϕ_{g} are simultaneous eigenvectors for all the T_{p} with $p \nmid N$, and are orthogonal to each other, so we must have $\frac{1}{\lambda}=\frac{\left\langle\phi, \phi_{f}\right\rangle}{\left\langle\phi_{f}, \phi_{f}\right\rangle}$. Consequently, $\lambda \mid\left\langle\phi_{f}, \phi_{f}\right\rangle$, and similarly $\lambda \mid\left\langle\phi_{g}, \phi_{g}\right\rangle$. We can see this directly in the above examples, where $\lambda=\ell=5$. In the first one, the GramMatrix command in Magma shows that all $\dot{w}_{i}=2$, so $\left\langle\phi_{f}, \phi_{f}\right\rangle=960$ and $\left\langle\phi_{g}, \phi_{g}\right\rangle=40$. In the second example, $w_{1}=w_{2}=4$ while $w_{i}=2$ for all $3 \leq i \leq 16$, so $\left\langle\phi_{f}, \phi_{f}\right\rangle=1320$ and $\left\langle\phi_{g}, \phi_{g}\right\rangle=80$.

Acknowledgments

We are grateful to A. Hamieh for supplying the code for her Sage function "shimura_lift_in_kohnen_subspace", as used in [H, §4]. The second named author would like to thank Sheffield University for the great hospitality. She was supported by a DST-INSPIRE grant.

References

[BM] E. M. Baruch and Z. Mao, Central value of automorphic L-functions, Geom. Funct. Anal., 17 (2007) 333-384.
[BS1] S. Böcherer and R. Schulze-Pillot, On a theorem of Waldspurger and on Eisenstein series of Klingen type, Math. Ann., 288 (1990) 361-388.
[BS2] S. Böcherer and R. Schulze-Pillot, Vector valued theta series and Waldspurger's theorem, Abh. Math. Sem. Univ. Hamburg, 64 (1994) 211-233.
[${ }^{\prime}$] J. Cremona, Elliptic curve data, http://homepages.warwick.ac.uk/staff/J.E.Cremona/ftp/data/INDEX.html.
[D] N. Dummigan, Congruences of modular forms and Selmer groups, Math. Res. Lett., 8 (2001) 479-494.
[Ed] B. Edixhoven, Serre's Conjecture, in Modular Forms and Fermat's Last Theorem, (G. Cornell, J. H. Silverman, G. Stevens, eds.), 209-242, Springer-Verlag, New York (1997).
[Em] M. Emerton, Supersingular elliptic curves, theta series and weight two modular forms, J. Amer. Math. Soc., 15 (2002)-671-714.
[G1] B. Gross, Heights and the special values of L-series, in Number theory (Montreal, Que., 1985), 115-187, CMS Conf. Proc.; 7, Amer. Math. Soc., Providence, RI (1987).
[G2] B. Gross, Algebraic modular forms, Israel J. Math., 113 (1999) 61-93.
[H] A. Hamieh, Ternary quadratic forms and half-integral weight modular forms, LMS J. Comput. Math., 15 (2012) 418-435.
[K] W. Kohnen, Newforms of half-integral weight, J. Reine Angew. Math., 333 (1982) 32-72.
[L] R. P. Langlands, Modular forms and ℓ-adic representations, in Modular Functioms of One Variable II, Lect. Notes Math., Springer-Verlag, 349 (1973) 361-500.
[M] B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. IHES, 47 (1977) 33-186.
[MRT] Z. Mao, F. Rodriguez-Villegas and G. Tornaría, Computation of central value of quadratic twists of modular L-function, 273-288 in Ranks of elliptic curves and random matrix theory, London Math. Soc. Lecture Note Ser. 341, Cambridge Univ. Press, Cambridge (2007).
[MO] W. J. McGraw and K. Ono, Modular form congruences and Selmer groups, J. London Math. Soc. (2), 67 (2003) 302-318.
[PT] A. Pacetti and G. Tornaría, Computing central values of twisted L-series: the case of composite levels, Experiment. Math., 17 (2008) 459-471.
[P] K. Prasanna, On p-adic properties of central L-values of quadratic twists of an elliptic curve, Canad. J. Math, 62 (2010) 400-414.
[Q] P. L. Quattrini, The effect of torsion on the distribution of IU among the quadratic twists of an elliptic curve, J. Number Theory, 131 (2011) 195-211.
$[\mathrm{R}] \quad \mathrm{K}$. Ribet, On modular representations of $\mathrm{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ arising from modular forms, Invent. Math., 100 (1990) 431-476.
[Sh] G. Shimura, On modular forms of half-integral weight, Ann. Math., 97 (1973) 440-481.
[Ste] G. Stevens, Λ-adic modular forms of half-integral weight and a Λ-adic Shintani lifting, Contemp. Math., 174 (1994) 129-151.
[Stu] J. Sturm, On the congruence of modular forms, in Number theory (New York 1984-1985), 275-280, Lect. Notes Math., Springer-Verlag, 1240 (1987).
[T] J. Tilouine, Hecke algebras and the Gorenstein property, in Modular Forms and Fermat's Last Theorem, (G. Cornell, J. H. Silverman, G. Stevens, eds.), 327-342, Springer-Verlag, New York (1997).
[V] V. Vatsal, Canonical periods and congruence formulae, Duke Math. J., 98 (1999) 397-419.
[Wa1] J.-L. Waldspurger, Correspondances de Shimura et quaternions, Forum Math., 3 (1991) 219-307.
[Wa2] J.-L. Waldspurger, Sur les coefficients de fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl., 60 (1981) 375-484.
[Wi] A. Wiles, Modular elliptic curves and Fermat's Last Theorem, Ann. Math., 141 (1995) 443-551.

Journal of the Ramanujan Mathematical Society

Volume 32

Year 2017

VOLUME CONTENTS

March 2017Height Functions on Quaternionic Stiefel Manifolds Enrique Macías-Virgós, John Oprea, Jeff Strom and Daniel Tanré 1-16
Remarks on the metric induced by the Robin function IIIDiganta Borah 17-42
Fourier-Mukai transform of vector bundles on surfaces to Hilbert scheme Indranil Biswas and D. S. Nagaraj 43-50
Tame ramification and group cohomology
Chandan Singh Dalawat and Jung-Jo Lee 51-74
A conditional construction of Artin representations of $G L_{n}$
Henry H. Kim and Takuya Yamauchi 75-99
June 2017
Fourier coefficients for twists of Siegel paramodular forms
Jennifer Johnson-Leung and Brooks Roberts 101-119
On generalized graph ideals of complete bipartite graphs Maurizio Imbesi, Monica La Barbiera and Paola Lea Staglianó 121-133
A note on rational cuspidal curves on \mathbb{Q}-homology projective planes \quad R. V. Gurjar, DongSeon Hwang and Sagar Kolte 135-146
Congruences modulo powers of 2 for ℓ-regular overpartitions
Chandrashekar Adiga and D. Ranganatha 147-163
Counting terms U_{n} of third order linear recurrences with $U_{n}=u^{2}+n v^{2}$
Alexandru Ciolan, Florian Luca and Pieter Moree 165-183
Vanishing of Witten L-functions Jeongwon Min 185-200
September 2017
Algebraic vs. topological vector bundles on spheres Aravind Asok and Jean Fasel 201-216
Direct and inverse spectral assignment for the operator Sturm-Liuoville type with linear delay Ismet Kalčo, Milenko Pikula, Dževad Burgić and Fatih Destović 217-230
A positive proportion of cubic curves over \mathbb{Q} admit linear determinantal representations Yasuhiro Ishitsuka 231-257
Shintani Functions on SL(2, C) and Heun's Differential Equations Kohta Gejima 259-297
On the complete faithfulness of the p-free quotient modules of dual Selmer groups Meng Fai Lim 299-326
December 2017
A cubic generalization of Brahmagupta's identity
Samuel A. Hambleton 327-337
On weakly holomorphic quasimodular forms Jaban Meher 339-353Surconvergence et classicité : le cas Hilbert
Vincent Pilloni et Benoît Stroh 355-396
Adjoint L-functions, 'period integrals, and a converse theorem for $S L_{2}$ Vinayak Vatsal 397-416
On the number of factorizations of an integer
R. Balasubramanian and Priyamvad Srivastav 417-430
Lifting congruences to weight $3 / 2$
Neil Dummigan and Srilakshmi Krishnamoorthy 431-440

