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Abstract. In this article we investigate the distribution of prime ideals of residue degree bigger than one across the 
ideal classes in the class group of a number field L. A criterion for the class group of L being generated by the classes 
of prime ideals of residue degree f > 1 is provided. Further, some consequences of this study on the solvability of 
norm equations for L/<Q and on the problem of finding annihilators for relative extensions are discussed. 
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1. Introduction 

In this article, L and K denote number fields such that K is a subfield of L. We assume that L / K is Galois and 
write G := Gal(L/ K). Let p be a prime ideal of L, p denote the prime ideal of K below p. The residue degree 
[~h/P : (O)K /p] will be denoted by resL (p}, and when K = Q we should simply write res(p). Also we let l be an 
odd prime number and fix a primitive ef5z root of unity (e. Let Q((e) denote the subfield of C obtained by adjoining 
t;e to Q. An important result in algebraic number theory is the following theorem, which is one of many density 
theorems. 

Theorem 1.1. Every ideal class in the class group of L contains infinitely many prime ideals p of residue degree 
one, that is, res(p) = 1. 

Let c be an ideal class in the class group of L and p be a prime ideal in c. If p denotes the rational prime lying 
below p then, by Theorem 1.1, one may assume that pis unramified in L/Q and the following factorization holds 

p(O)L = TI a(p). 
t1EGal(L/Q) ✓ 

Thus, for N = LuEGal(L/Q) a we have 

which is trivial. This shows that· N annihilates the class group Cf(L). But N is not very useful as annihilator, as in 
applications of annihilators, mostly one uses (1 - a )0 for annihilation, where 0 E Z[ Gal(L /Q)] is any annihilator of 
the class group of Land a E Gal(L/Q) is the complex conjugation (e.g. see the works ofMihailescu on Catalan's 
conjecture, in (15] or [2]). 

There are various accounts of finding elements in the group ring Z[G] which annihilate the class group Cf(L) of L. 
When K = Q, the Stickelberger theorem is a celebrated result in this direction (see [9] or (17]). In full generality 
(that is when K is arbitrary) there is no description of elements in Z[G] which annihilate the class group Cf(L) 
(though there are some results in special cases, see [4] or [14,16]). On the other hand, if K has class number one, 

/ 

then it is easy to see (for example, as illustrated after Theorem 1.1), that the G-trace N = LuEG a annihilates the 
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class group Cl(L). The. perspective taken in this article is to explore an analogue of Theorem 1.1 for higher residue 
degrees and possible consequences. For extension L / K, we define the set 

'.Rk := {f EN: Cl(L) is generated by classes of unramified prime ideals p with resi(P) = /}. 

From Theorem 1.1 it follows that 1 E '.Ri for any extension L/K. For L = Q((e) and K = Q, Kummer had 
proved this using only algebraic tools (see [8] or chapter 9 in [15]). This algebraic proof has been further extended 
by Lenstra and Stevenhagen in more general set-up (see [11]). To the best of our knowledge, the following question 
( which can be seen as a generalization of Theorem 1.1) has not been addressed in the literature. 

Question 1. When does the set '.Ri has more than one element? 
The question is interesting only when the class number of L is bigger than 1. When G is cyclic and K has class 

number 1, then each element of '.Ri gives rise to an annihilator of the class group Cl(L). Let f E '.Ri and let G' be 
the unique subgroup of G of order f. If { a1, ... , a 8 } is a complete set of representatives of the elements of G / G', 
then we put 0 f = L.f =1 <Ti and prove the following theorem. 

Theorem 1.2. Consider a cyclic extension L / K of number fields. Then at least one of the following holds: 

(1) the class number of K is bigger than one, 
(2) the element 0 f annihilates C l(L) for each f E '.Ri. 

For f = 1 we have 01 = N, the G-trace. Using Theorem 1.2, in section 3, we shall show that for the fields 
L = <Ql((23) and K = Q we have '.Ri = {l}. Next, we give a criterion to determine if a positive integer f is in '.Ri 
or not. For this, let H := H(L) be the Hilbert class field of L (maximal unramified abelian extension of L). Then 
H / K is Galois (see Lemma 1) and we have a short exact sequence 

0-+ Gal(H/L)-+ Gal(H/K)-+ Gal(L/K)-+ 0. (1) 

For any a E Gal(L/ K) we use ii for any lift of a to H, that is, ii E Gal(H/ K) and ii IL= a. Now we are in a 
position to state the criterion. 

Theorem 1.3. For an integer f > 1, the ideal class group Cl(L) is generated by the classes of prime ideals p with 
resi (p) = f if and only if the set 

{(a)f : a E Gal(L/ K) and the order of a is f} 

generates the group Gal(H / L ). 

We give a proof of Theorem 1.3 in the next section. The proof also demonstrates that the size of the subgroup 
generated by the set { (a )f : a E Gal(L / K) is of order /} measures the size of the subgroup of the class group which 
is generated by the classes of prime ideals p with resi(P) = f. This can be exploited to study the (absolute) norm 
equations. The study of solvability of norm equations for number fields and algorithms to determine solutions to 
norm equations are well pursued (see [6,1,5,3] and references in there). The special case '.Ri = {1} has an immediate 
bearing on the solvability of the norm equations. In this direction we give the following sufficient condition for the 
solvability of norm equations. 

Theorem 1.4. Let L be a number field whose class number is a prime number. If '.Rij = { 1} then the norm equation 

(2) 

is solvable whenever the prime divisors p of a are unramified, of residue degree bigger than 1 and v p (a) is a multiple 
of the residue degree of p. Here vp(a) is the p-adic valuation of a, that is, the highest power of p which divides a. 

The only reason for considering the absolute norm equation in Theorem 1.4 is that we can not say, in general, 
whether -1 is a norm or not. Thus, if the extension L /Q is not totally real then in Theorem 1.4 we can replace 
equation (2) by 

Ni;Q(x) = a. 

In section 3, Theorem 1.4 is used to give a very concrete description of the solvability of the norm equations for the 
extension Q((23)/Q in a very elementary way (see Theorem 3.3). 
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2. Proofs 

We begin this section with a proof of Theorem 1.2. 
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Proof of Theorem 1.2 If the class number of K is bigger than one then nothing. to prove. So we assume that the 
class number of K is one. Let c be an ideal class in Ct(L). Then 

for unramified prime ideals Pl, ... , Pt of residue degree f. Thus it is enough to prove that 01 annihilates all the 
unramified prime ideals of residue de,gree f. 

Let p be an unramified prime ideal of the residue degree fin Land let p be the prime ideal of K lying below p. 
Let Dp denote the decomposition group at p. Then Dp is the unique subgroup of G of order f and it does not depend 
on p. If { a1, ... , a g} is a complete set ofrepresentatives of G / Dp, then { a; (p) : 1 :::: i =::: g} is the set of all conjugates 
of p. Thus the factorization of pOi is given by 

g 

pOi = IT a;(p). 
i=l 

Since 0 I is a multiple of Lf = 1 a; by some 1: E Dp, it follows that 

p01 = r(pOi) 

is principal. Thus 01 annihilates the class group Ct(L). D 

To prove Theorem 1.3 we need some preliminaries. We begin with the following elementary lemma (as was 
indicated in section 1). 

Lemma 1. If L / K is a Galois extension of number fields and H is the Hilbert class field of L, then H / K is Galois. 

Proof We fix an algebraic closure Q of Q. Let a E Gal(<Q/K), then a(L) = L, as L/K is Galois. We observe 
that the extension a ( H) / a ( L) is abelian and unramified. That is, the extension a ( H) / L is abelian and unramified. 
From the maximality of Hit follows that a (H) c H, proving that H / K is Galois. D 

For an unramified prime ideal p in L, let (r7K·) denote the Frobenius of p with respect to the extension L / K. 

If L / K is abelian then we also write ( -!Jx) for ( -c/-K), where p = p n OK. From the definition of the Frobenius, we 
have the following lemma (see page 127 in [7]). 

Lemma 2. Let L / K be a Galois extension of number fields and let F be an intermediate field such that F / K is 
Galois. Then for any unramified prime ideal p of L one has (-c/-K) IF = ( P~J1} 

Next we recall the Chebotarev density Theorem (see [10]). For any a E Gal(L/K), let Pi;K(a) denote the set of 
prime ideals p in K such that there is a prime ideal p of L above p such that (-c/-K) = a. 

Theorem 2.1 (Chebotarev Density Theorem). Let a E Gal(L/ K) and Cu stand for the conjugacy class of a 
then the density of Pi;K(a) is ICul/[L: K]. 

Proof of Theorem 1.3 For any a E Gal(L/ K) of or<!,e: f, it is immediate to see that 

(ii-)f I L = i_d, 

and thus (ii-)1 E Gal(H/L). 
Assume that the set {(ii-)1 : a E Gal(L/ K) and the order of a is f} generates the group Gal(H/ L). Let c be an 

ideal class in Ct(L) and 1: be the corresponding element in Gal(H/ L) under the Artin isomorphism between Cl(L) 
and the Galois group Gal(H / L). Then there is a prime ideal pin c such that 
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From our assumption, there are elements 111, ... , 11, in Gal(L/ K) of order f such that 

By Chebotarev density theorem, for each i, 1 ::: i ~ r there exists prime ideal Pi of H such that 

Let Pi = Pi n ((h for i = 1, ... , r. Then from Lemma 2 it follows that (SK) = O"i, for i = 1, ... , r. Since the 

order of O"i is f, we conclude that the residue degree of Pi is f. Next we note that 

Since H / L is abelian, we get 

This leads to 

From the above equality, it follows that c = [Pt] ... [Pr], as desired. 
Conversely assume that the ideal class group Cf(L) is generated by the classes of prime ideals of residue degree f. 
Let -r E Gal(H / L) and let c be the ideal class corresponding to -r under the Artin isomorphism. By our assumption, 

there are prime ideals PI, ... , Pr of residue degree f such that c = [pi] ... [Pr]. Put <li = (SK), for i = 1, ... , r. 

Then it follows immediately that O"i is of order f and -r = (ci1)f ... (cir )f. This proves the Theorem. D 

Remark 1. From the proof of the Theorem 1.3, it is immediate that the size of the subgroup generated by the set 
{(a)f : a E Gal(L/ K) is of order/} measures the size of the subgroup of the class group Cf(L) which is generated 
by the classes of prime ideals of residue degree f. In particular, if the class number of L is prime and f </. ~ i then 
all the prime ideals of residue degree f are principal in L. 

Proof of Theorem 1.4 Let p be a prime of residue degree f > 1 which is unramified in L. We shall show that there 
is an element a E L such that INL;K(a)I = pf. Since the class number of Lis a prime number and~~ = {1}, 
the subgroup generated by the set 

{ (a)f : a E Gal(L/ K) and the order of a is /} 

is trivial. Consequently, from the Remark 1, all the prime ideals p of L above pare principal. Let p be a prime ideal 
of L dividing panda be a generator of p. Then we have 

The theorem follows at once from the multiplicative property of the norm map. D 

3. An example 

In this section, we consider the fields L = Q((23) and K = Q and show that ~i = {1}. Note that, the condition 
'unramified' in the definition of ~i is redundant in this case. If pis a prime ideal in Q((e) of residue degree f then 
/ I 22, and thus f E { 1, 2, 11, 22}. We shall show that for no f E {2, 11, 22} each ideal class of L can contain a prime 
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ideal of residue degree f. Since the class number of (Q((23) is bigger than 1, it follows that f = 22 is not possible. 
So it remains to show that f = 2 or ~1 is not possible. 

Before proceeding further, we recall some results on cyclotomic fields which will be needed. Let h l and he 

denote the class numbers of Q((e + (e- 1
) and (Q((e) respectively and put he = he/ hl- Let G be the Galois group 

Gal((Q((e)/(Q) and S denote the Stickelberger ideal in Z[G]. It is well known that [Z[G] : S] =he.We now describe 
a basis of S (see chapter 9 in [15]). 

For each a ?:. 1 with (a,£) = 1 we define 

where er; : (e f---+ d and L x J denotes the largest integer not bigger than x. Further we put f; = 0; + 1 - 0;. Then we 
have following Theorem due to Kummer. 

Theorem 3.1 (Theorem 9.3, [15]). The elements Ji, ... , /(p-1)/2 together with the G-trace N = Lo-EG er forms 
a Z - basis of S. 

We recall following fact (see Theorem 1.1 in [12]). 

Theorem 3.2. We have ht = 1 fore < 100. 
'-

Now we fix e = 23, we have h23 = h2i Thus, if 0 E Z[G] annihilates the class group of (Q((23) then 0 must lie 
in S. In the case of (Q((23), we have 

/1 = L,CT;, where Ii= {2, 16, 5, 20, 13, 19, 9, 17, 15, 11, 22}, 
iE/i 

h = L,CTi, where ]z = {3, 18, 7, 21, 13, 19, 9, 17, 15, 11, 22}, 
iE]z 

/3 = L,CT;, where /3 = {4, 10, 2, 16, 5, 20, 9, 17, 15, 11, 22}, 
iE/3 

/4 = L, er;, where /4 = {2, 16, 5, 20, 13, 19, 9, 17, 15, 11, 22}, 
iE/4 

fs = L,cr;, where Is= {6, 3, 18, 2, 16, 13, 19, 9, 15, 11, 22}, 
iE/5 

/6 = L, er;, where 16 = {10, 7, 21, 5, 20, 19, 9, 17, 15, 11, 22}, 

I 

h = L,CTi, where h = {8, 4, 18, 2, 16, 20, 13, 9, 17, 11, 22}, 
iEh 

/s = L, er;, where Is= {3, 21, 16, 5, 13, 19, 9, 17, 15, 11, 22}, 
- - iE/g -

/9 = L,CTi, where /9 = {14, 10; 7, 2, 5, 20, 19, 17, 15, 11, 22}, 
iE/9 

fio = L, er;, where Iio = {18, 21, 16, 20, 13, 19, 9, 17, 15, 11, 22}, 
iE/10 

/11 = L, er;, where /11 = {12, 6, 4, 3, 7, 2, 5, 13, 9, 15, 22}. 
iElu 
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If the class group of (Q((23) is generated by prime ideals of residue degree 11 then by Theorem 1.2 the element 011. 
is an annihilator of the class group of (Q((23). Thus we have 011 E S. Hence, from Theorem 3.1, there are integers 
ao, ... , a11 such that 

011 = aoN + aif1 + · · · + a11f11. 

For any prime ideal p ()f (Q((23) of residue degree 11 the decomposition group is 

Dp = {a2, a4, as, a16, a9, a1s, a13, a3, a6, a12, ai}. 

(3) 

Thus { a 1 , as} is a complete set of coset representatives of G / Dp- Note that any other set of coset representatives of 
G / Dp is a multiple by an element of Dp. Hence, without loss of generality we take 

011 = a1 + as. (4) 

Comparing the coefficients of ai in equations (3) and (4) we obtain a contradiction as explained below. 
Comparing the coefficient of a1 leads to ao = 1 and comparing the coefficient of a12 leads to a11 = -1. On the 

other hand comparing the coefficients of a 11 gives 

(5) 

and from the coefficients of a22 we obtain 

1 + a1 + a2 + · · · + au = 0. (6) 

Equations (5) and (6) together give au = 0 which contradicts to au = -1. Thus 011 ¢ S and it follows that the 
class group of (Q((23) is not generated by the classes of prime ideals ofresidue degree 11. 

Next, we show that the class group of (Q((23) is not generated by the classes of prime ideals of residue degree 2. 
If p is a prime ideal of residue degree 2, then the decomposition group at p is 

As done earlier, we may assume that 

(7) 

From Theorem 1.2 02 annihilates the class group of (Q((23) and thus 02 ES. From Theorem 3.1, there are integers 
ao, ... , a11 such that 

(8) 

The equations (7) and (8) leads to an inconsistent system of equation in ai, 1 ~ i ~ 22 and this is summarized below. 
Coefficients of a1 gives ao = 1, coefficients of as gives a7 = 0 and coefficients of a12 gives a 11 = -1. Using 

these, the coefficients of a4 gives a3 = 1 and coefficients of a6 gives as = 1. Using these values in the relations 
obtained from coefficients of a11 and a22 further leads to a9 = 0. Now coefficients of a14 leads to a4 = -1. In same 
way, coefficients of a2 leads to a 1 = -1, coefficients of a10 leads to a6 = -1. Further the coefficients of aw gives 
a10 = 0. Now we see that the coefficients of a3 and that of a21 lead to the inconsistent system 

a2 + as = -1 and a2 + as = 0. 

Thus we have proved that 

~i((23) = {l}. 

Remark 2. Proceeding along the same line, we have made computations for L = <Q((29) and K = (Q and found 
that ~i = {l}. 
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Now we give a complete description of solvability of norm equations for <Ql((23)/<Ql. Since the splitting type of any 
rational prime q in <Ql((23) is well understood (see chapter 3 in [17]), the description in Theorem 3.3 is the best one 

can expect. If we let Ng<(23 ) to also denote the norm map from the group h;_((23) of ideles of Q((23) to the group hi 
of ideles of <Ql, then the quotient group 

<Ql* n Ng<(23) (J<Q((23)) I IY8((23\<Ql((23)*) 

is finite and its cardinality is the knot number of <Ql((23) (see [3]). The next theorem asserts that the knot number of 
/ <Ql((23) is 1. \ 

Theorem 3.3. For any a E Q the norm equation 

Ng<(23 ) (x) = a 

is solvable if and only if vp(a) is a multiple of the residue degree of p for all primes panda ~ 0. 

Proof Since Q((23) is totally complex, the values of norm map are non-negative. It suffices to show that for each 
prime q there is an a E <Ql((23) such that 

Ng<(23\a.) =pf, where f is the residue degree of p. (9) 

. For p = 23, equation (9) holds for a = 1 - (23. When p is a prime of residue degree f > I, then p is unramified 
and existence of an a satisfying equation (9) is guaranteed from the Theorem 1.4. 

Now assume that p splits completely in <Ql((23), and let p be a prime ideal of <Ql((23). If pis principal then we are 
done. The class number of <Ql((23) is 3 (see [17,12]). Consequently there is a /J E <Ql((23) such that 

N8((23) (/J) = p3. 

On the other hand 

Ng<(23) (p) = p22. 

Let s, t E Z be such that 3s + 22t = 1 then equation (9) holds for a. = ps pt. D 

From the proof of Theorem 3.3 it also follows that if the class number hL of Land the degree [L ~ Q] are coprime 
then the norm equation 

IN {j (a) I = pf, where f is the residue degree of p 

is solvable for each prime p. 

4. Concluding remarks 

The purpose of this article is to convince the reader that the problem "whether prime ide~ls of residue degree bigger 
than one are well distributed across the ideal class group or not" is a useful problem. In general, we are not aware of 
any method to tackle this problem; the analytic methods which successfully tackle the distribution of prime ideals of 
residue degree one are limited to prime ideals of residue degree one. 

From the_two examples we made computations for, it is tempting-(c; look for some relation between •~g((e) = {l}' 

and 'hi= 1):--. 
The study carried out here is in the spirit that 'look at subfields of L to get information on L'. Such studies has 

been carried out earlier too, for example see [13]. 
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