
J. Ramanujan Math. Soc. 34, No.2 (2019) 169-183 

z-classes and rational conjugacy classes in alternating groups 

Sushil Bhunia, Dilpreet Kaur and Anupam Singh 
IISER Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India 
e-mail: sushilbhunia@gmail.com; dilpreetmaths@gmail.com; anupamkl 8@ gmail. com 

Communicated by: Prof Ritabrata Munshi 

Received: September 28, 2017 

Abstract. In this paper, we compute the number of z-classes (conjugacy classes of centralizers of elements) in 
the symmetric group Sn, when n :::: 3 and alternating group An when n :::: 4. It turns out that the difference between 
the number of conjugacy classes and the number of z-classes for Sn is determined by those restricted partitions of 
n - 2 in which 1 and 2 do not appear as its part. In the case of alternating groups, it is determined by those restricted 
partitions of n - 3 which has all its parts distinct, odd and in which 1 (and 2) does not appear as its part, along with an 
error term. The error term is given by those partitions of n which have distinct parts that are odd and perfect squares. 
Further, we prove that the number of rational-valued irreducible complex characters for An is same as the number of 
conjugacy classes which are rational. 

2010 Mathematics Subject Classification: 20B30, 20B35. 

1. Introduction 

Let G be a group. Two elements x, y E G are said to be z-conjugate if their centralizers Za(x) and Zo(y) are 
conjugate in G. This defines an equivalence relation on G and the equivalence classes are called z-classes. Clearly 
if x and y are conjugate then they are also z-conjugate. Thus, in general, z-conjugacy is a weaker relation than 
conjugacy on G. In the theory of groups of Lie type, this is also called "types" (see [Gr]) and the number of z-classes 
of sernisimple elements is called the genus number (see [Cal,Ca2]). This has been studied explicitly for various 
groups of Lie type in several papers, see for example, [BS,Go,GK,Ku,Si]. In this work, we want to classify and count 
the number of z-classes for symmetric and alternating groups. For convenience we deal with these groups when they 
are non-commutative (the commutative cases can be easily calculated), i.e., we assume n ~ 3 while dealing with 
symmetric groups and n ~ 4 while dealing with alternating groups. 

Let a E Sn. The conjugacy classes of elements in Sn are determined by their cycle structure which, in tum, is 
determined by a partition of n. Let A = A11 A;2 

••• A~r be a partition of n, i.e., we have 1 ::: Al < A2 < • • • < Ar ::: n, 
each ei > 0 and n = L~=l Aiei. We may represent an element of Sn corresponding to a partition), in cycle notation. 
We prove the following, 

Theorem 1.1. Suppose n ~ 3. Let v be a restricted partition of n - 2 in which 1 and 2 do not appear as its part. 
Let A= 12v andµ = 21v be partitions ofn obtained by extending v. Then the conjugacy classes of A andµ belong 
to the same z-class in Sn. 

Further, the converse is also true, i.e., the conjugacy class corresponding to ), = J11 Af ... ),~r is z-equivalent to 
another conjugacy class then A? = 12, and, in that case the other class corresponds to 2 A;2 ••• A;r. 

Corollary 1.2. The number of z-classes in Sn is p(n) - p(n - 2), where p(n) is the number of partitions ofn and 
p(n -2) is the number of partitions ofn -2 in which 1 and 2 do not appear as its part. Thus, the number of z-classes 
in Sn is equal to p(n) - p(n - 2) + p(n - 3) + p(n - 4) - p(n - 5). 

During this work, the first named author was supported by CSIR Ph.D. fellowship, and second named author was 
supported by NBHM Post-Doctoral fellowship. The third named author would like to acknowledge the support of DST 
through lndo-Russian joint project INT/RUS/RFBR/P-288. 
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To prove this theorem, we need to understand the centralizers better which involves the generalised symmetric group. 
A group S(a, b) = Ca I Sb~ ct ><1 Sb is called a generalised symmetric group. We will briefly introduce this group 
in the following section. We remark that the centralizers could be isomorphic but not conjugate. For example, in s6 

the centralizers of 112131 and 61 are isomorphic but not conjugate. 
Next we look at the problem of classifying z-classes in alternating groups An. Usually the conjugacy classes in 

An are studied as a restriction of that of Sn. First, it is easy to determine for what partitions A. = A.~1 
.•. A.~' of n the 

corresponding element o). is in An. This is precisely when n - Lei is even. We call such partitions even. Further, 
when o;, E An, the conjugacy class of o;. in Sn splits in two conjugacy classes in An if and only if Zsn(o;.) = 
ZAn (0.1), which is, if and only if the partition A has all its parts distinct and odd, i.e., ei = 1 and Ai odd for all i. With 
this notation we have, 

Theorem 1.3. Suppose n :::: 4. Let A = A.~1 
••• A.~' be an even partition of n. Then the following determines 

z-classes in An. 

(1) Suppose ei = lfor all i and all Ai are odd, i.e., A corresponds to two distinct conjugacy classes in An. Then, A 
corresponds to two distinct z-classes (corresponding to the two distinct conjugacy classes) if and only if all Ai 
are square. Else, the two split conjugacy classes form a single z-class. 

(2) Suppose either one of thee; :::: 2 or at least one of the Ai is even, i.e., A corresponds to a unique conjugacy class 
in A,i. Then, A is z-equivalent to another conjugacy class if and only if A = 13v, where vis a restricted partition 
ofn - 3, with all its parts distinct and odd, and in which 1 (and 2) does not appear as its part. Further the other 
equivalent class is 31 v. 

We remark that 31v could be of the first kind. For example, in As the partitions 1351 and 3151 give same z-class. 
Further, the conjugacy class 3151 splits into two but both fall in a single z-class. We list few more examples 
(using GAP) in a table in Section 9. We also note that v could have its first part 3, in that case while writing 31v we 
appropriately absorb the power of 3. We denote by E(n), the number of partitions of n with all of its parts distinct, 
odd and square. We list the values of f(n) for small values in a table in Section 9. 

Corollary 1.4. The number of z-classes in An is 

cl(An) - (q(n) + q(n - 3)) + E(n), 

where cl(An) = p(n)~3q(n) is the number of conjugacy classes in An, q(n) is the number of partitions ofn which has 
all parts distinct and odd, q (m) is the number of restricted partitions of m, with all parts distinct, odd and which do 
not have 1 ( and 2) as its part. 

Let G be a finite group. An element g E G is called rational if g is conjugate to gm for all m with property 
(m, o(g)) = 1 where o(g) is the order of g. Clearly if g is rational then all of its conjugates are rational. Thus a 
conjugacy class of G is said to be rational if it is a conjugacy class of a rational element. It is believed that, for a finite 
group G, the number of conjugacy classes which are rational is related to the number of rational-valued complex 
irreducible characters of the group G (for example, see Theorem A in [NT]). A group of which all elements are 
rational (and in that case, all complex irreducible characters are rational-valued) is called a rational group or Q-group 
(see [Kl]). The alternating groups An play an important role in determining simple groups which are rational 
(see Theorem A [PS]). There is a related notion of rational class in a group which comes from an equivalence relation. 
For a finite group G, a rational class of an element g is a subset containing all elements of G that are conjugate to 
gm, where (m, o(g)) = 1. Thus the rational class of g can be thought of as the conjugacy class of cyclic subgroup 
(g) of G. A conjugacy class which is rational is a rational class. However the converse need not be true. It is well 
known that, for a finite group G, the number of isomorphism classes of irreducible representations of G over Q is 
equal to the number ofrational classes of G (see Corollary 1, Section 13.1 [Se]). The symmetric group Sn is rational. 
Alternating groups are not rational (see Corollary B.1 [FS,AO]). The rational-valued complex irreducible characters 
for Ah are discussed in [Br] and [Pr]. In this paper we determine conjugacy classes which are rational and the rational 
classes in alternating group. With notation as above, 

'-
Theorem 1.5. Suppose n :::: 4. Let C be a conjugacy class in An and corresponding partition be A = A.~1 

••• A.~' 
ofn. 
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(1) Then the conjugacy class C is rational in An if and only if one of the following happens: 

(a) either one of thee; ::: 2 or one of the Ai is even, or, 
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(b) all A; are distinct (i.e., e; = 1 for all i) and odd, and the product IT~=l ),; is a perfect square. In this case, 
A corresponds to two conjugacy classes in An and both are simultaneously rational ( or non-rational). 

(2) All conjugacy classes which are rational are rational classes. When C is not a rational conjugacy class in An, 
the conjugacy class C in Sn containing C is a rational class in An. 

We denote by J(n), the number of partitions of n with all parts distinct, odd and the product of parts is a perfect 
square. We list the values of J(n) for small values in a table in Section 9 which is also there in [Br]. 

Corollary 1.6. For the alternating group An with n :::: 4, 

(1) the number of conjugacy classes which are rational is cl(An) - 2q(n) + 2J(n), and 
(2) the number of rational classes is cl(An) - q(n) + J(n). 

The character theory of An is well understood. We use the notation and results from [Pr] and conclude the following, 

Theorem 1.7. Suppose n ::: 4. Then, the number of conjugacy classes in An which are rational is same as the 
number of rational-valued complex irreducible characters. 

This theorem is proved in Section 8. We also acknowledge that we have used GAP [GAP] on several occasions to 
verify our computations and results. 

Acknowledgement 

The authors would like to thank Gerhard Hiss and Alexander Hulpke for wonderful discussion on GAP during the 
workshop "Group theory and computational methods" held at ICTS Bangalore, India in November 2016. The authors 
would like to thank the referees for their comments. 

2. Restricted partitions 

We require certain kind of restricted partitions which we introduce in this section. We denote by p(m ), the number of 
partitions of positive integer m. To set the notation clearly, a partition of m is ), = m? ... m~' where 1 :::: m 1 < • • • < 
mr .:::: m, ei :::: lVi and m = L,~=l e;m;. Sometimes this is also denoted as A f- m or m? ... m~' f- m. We clarify 
that the partition written as 1121 is same as 1.2 but, in this case, latter notation is confusing if written without a dot. 
For us the significance of partitions is due to its one-one correspondence with conjugacy classes of the symmetric 
group Sm. Let p(m) be the number of those partitions of m in which 1 and 2 do not appear as its part, i.e., 

Here we list down values of p(m) for some small values. 

. m-· jJ(m)- ·m p(m) m: -p(m) 'm ·-p(m) 

1 0 6 2 11 6 16 21 

2 0 7 2 12 9 17 25 

3 1 8 3 13 10 18 33 

4 1 9 4 14 13 19 39 

5 1 10 5 15 17 20 49 
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The generating function for p (m) is 

and a formula to compute p (m) in terms of partition function is 

p(m) = p(m) - p(m - 1) - p(m - 2) + p(m - 3). 

This is a well known sequence in OBIS database (see [OBIS]). This will be used in the study of z-classes of symmetric 
groups later. 

Now we introduce the function q(m). For a given integer m, the value of q(m) is the number of those partitions of 
m which have all of its parts distinct and odd, i.e., 

q(m) =IV= ml ... m: f- m Im; odd 'v'i}I. 

This number is same as the number of self-conjugate partitions. For us this would correspond to those partitions 
which give split conjugacy Classes in A 11 • Now we introduce q (m) which is the number of partitions of m which have 
all its parts distinct, odd and 1 (and 2) does not appear as its part. The following table gives values of q(m) for some 
values of m. 

m q(m) q(m) m q(m) q(m) m q(m) q(m) m q(m) q(m) 

.1 1 0 6 1 0 11 2 1 16 5 3 

2 o· ·-· o 7 1 1 12 3 2 17 5 2 

3 1 1- 8 2 1 13 3 1 18 5 3 

4 1 0 9 2 1 14 3 2. 19 6 3 

5 1 1 10 2 1 15 4 2 20 7 4 
/ 

The generating function for q(m) is fl;:::oO + x 2i+I) _and the generating function for q(m) is fli:::l (1 + x2i+I ). 

3. Symmetric groups 

In this section we classify z-classes in S11 • Since the centralizers are a product of generalised _symmetric groups, 
we begin with a brief introductio~ to them. 

3.1 Generalised symmetric groups 

The group S(a, b) = Ca I Sb, where Ca is a cyclic group and Sb is a symmetric group, is called a generalised 
symmetric group. This group is an example of wreath product and has been studied well in literature. Since the 
centralizer subgroups in the symmetric group are a product of geperalised .. symmetric groups, we need to have more 
information about this group. For the sake of clarity, let us begin with defining this group. Consider the action of 
symmetric group Sb on the direct product C% = Ca x · · · x Ca given by permuting the components:· 

a(x1, ... , Xb) = (Xu(I), ... , Xu(b))-

Then the generalised symmetric group is S(a, b) = Ca I Sb := C% ><1 Sb. Hence the multiplication in this group is 
given as follows: 
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This group has a monomial matrix (each row and each column has exactly one non-zero entry) representation where 
cg is embedded in the diagonal matrices and the whole group is a subgroup of GLb(C), in particular as a subgroup 
of monomial group. Monomial group is well known in the study of GLb(C) as an algebraic group. This gives rise to 
the Weyl group and Bruhat decomposition. Let T be the diagonal maximal torus (set of all diagonal matrices), then 
the monomial group is the normaliser NaLb(q(T). The Weyl group is defined as W = NaLb(q(T)/T ~ Sb. 

Let D be the set of those diagonal matrices in G Lb(C) of which each diagonal entry is an ath roots of unity, i.e., 
each diagonal entry is from the set {(i I O ::: i ::: a - 1} where t; is an ath primitive root of unity. Assume b > a, 
then, D ~ cg and the group S(a, b) ~ NaLb(C) (D). Thus, S(a, b) is the set of those monomial matrices which have 
non-zero entries coming from ath roots of unity. The following can be easily verified: 

(1) the center Z(S(a, b)) = {),,.J d I ;,_a = 1} ~ Ca if a ::=: 2 orb ~ 3. 
(2) NaLb(q(D)/ D ~ Sb. 

Representation theory of the generalised symmetric group has been studied by Osima [Os], Can [Ca], Mishra and 
Srinivasan [MS], just to mention a few. 

3.2 z-classes in Sn 

In this section we aim to prove Theorem 1.1. For n = 3 and 4 the conjugacy classes and z-classes are same. 
Thus, if necessary, we may assume n ::=: 5 in this section. Let),, = ),,? ;,,;2 

•.• ),,~' be a partition of n. Let us denote the 

partial sums as ni = L~·=l }, ie j and no = 0. We may represent an element of Sn corresponding to),, as a product of 
cycles and we choose a representative of class denoted as a;_ = a;,1 ••• a;,; ... CJ;_, where 

e,-

is a product of ei many disjoint cycles, each of length },i. Then the centralizer of· this element is (see [JK] 
Equation 4.1.19) 

r 

Zsn (),,) :-- Zsn (CJ;J ~ IT ci;,1 Se;, 
i=l 

where C;_; is a cyclic group of size A; and the size of the centralizer is given by the formula IZsn (},,)I = ff =1 (;,,7; .e; !). 
Further, with the above chosen representative element the center of Zsn (a;J is, 

Note that if },1 =· 1 then the element a},, 1 = 1. 

iU,1' f. 12 

when },f = 12 . 

Lemma 3.1. Let A = ),, 1' ;,,;2 
••• },;' be a partition of n. Then Zsn (},) determines r uniquely. 

Proof Consider the natural ac~io~ _of G _ = Zs)A). on the set {-1, 2, .-.. , n}- as a- subgroup of -Sn, Since 
G ~ f1~=l C;,,. I Se,., the orbits.are { {l, ... , ni}, {n1 + 1, ... , n2}, ... }. The number of orbits is exactly r. □ 

Lemma 3.2. Let A = },1' ;,,;z ... },;' be a partition of n and ),,11 f. 12. Let Z;, be the center of Zsn (),,). Then Z},, 
4,t!termines the partition ),, uniquely. 

'· 
Proof Let us mak~ Z},, act or(the· set { 1, 2, ... , n}. Then the orbits are of size Ai and each of them occur e; many 
times. This determines the partition A. . D 
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Proposition 3.3. Let A = A11 A;2 
••• A~r andµ = µ{1 µ{2 

••• µ{• be partitions ofn. Then Zsn(A) is conjugate to 
Zsn (µ) if and only if 

(1) r = s, 
(2) for all i ~ 2, Ai and µi are~ 3 and A?=µ{, 

(3) ,1,11 = 12 and µ{1 = 21 or vice versa. 

Proof Clearly if the three conditions are given we have A = 12v andµ = 21v where v = vi1 ... vik is a partition of 
n - 2 with v1 > 2. Thus the representative elements of the conjugacy classes are aµ = (12)aA and aA, where aA has 
cycles each of length > 2. Thus centralizers of these two elements are same. 

For the converse, we choose representative elements aA and aµ and we are given that ZsJaA) and Zsn (aµ) are 
conjugate. The Lemma 3.1 implies that r = s. Now we take the center of both of these groups ZA and Zµ and make 

it act on the set { 1, 2, ... , n}. If A? and µ {1 are not both 12 then from Lemma 3 .2 we get the required result. D 

This proves Theorem 1.1. 

4. Rational conjugacy classes in An 

The group An is of index 2 in Sn. Thus, we usually think of conjugacy classes in An in terms of that of Sn. We have 
two kinds of conjugacy classes in An. Let a;, be a representative of a conjugacy class, corresponding to a partition A, 
of Sn. Suppose aA E An, that is to say, A is an even partition. Then the two kinds of conjugacy classes are, 

a. Split: The conjugacy class of a A in Sn splits into two conjugacy classes in An if and only if all parts of A are 
· -distinct and odd, which happens, if and only if Zsn (1J) = ZAn (aA)-

b. Non-split: The conjugacy class of a A remains a single conjugacy class in An if and only if either one of the ei ~ 2 
for some i or at least one of the Ai is even, which is, if and only if Z An (a ;J <:; Zsn (a ;J. 

While writing proofs in this section and later sections, we consider these two cases separately. 
Let G be a finite group and g E G. The Weyl group of an element g in G, denoted as, W G (g) : = NG ( (g)) / ZG ( (g)) 

where (g) is the subgroup generated by g. Using the map 1: NG((g)) -+. Aut((g)) given by 1(x)(gr) = xgrx- 1 , one 
can show that, the element g in G is rational if and only if W G (g) ~ Aut( (g)). We need to understand Weyl group of 
elements a in An. Since Sn is a rational group, we have, the Weyl group Wsn (a)~ Aut((a)). Thus, to understand if 
a is rational in An, we need to understand N An ((a)). This is determined by Brison (see Theorem 4.3 [Br]) as follows, 

Theorem 4.1. Let a E An and corresponding partition be A = A 11 
••. A~r. Then, N Sn ((a)) = N An ((a)) if and only 

if A satisfies the following, 

(1) all parts of). are distinct, i.e., e i = l for all i, 
(2) Ai is odd for all i, and 
(3) the product of parts fr=l Ai E Z is a perfect square. 

Corollary 4.2. Suppose n is odd and w = (l, 2, ... , n) is in An. Then, w is rational in An if and only if n is a 
perfect square ( of odd number). 

Proof We know w is rational in Sn. Thus Wsn (w) ~ Aut((w)). Since n is odd the conjugacy class of win Sn splits 
in An and ZAn (w) = Zsn (w). Thus w is rational in An if and only if Nsn ((w)) = NAn ((w)) which is if and only if 
n is a perfeh square (from Theorem 4.1 above). D 

Now we determine which conjugacy classes are rational in An. 
When the conjugacy class does not split, C = afn = afn and ZAn (aA) <:; Zsn (aA) is of index 2. Then, 

Proposition 4.3. Let C be a non-split conjugacy class in An. Then, C is rational in An. 

Proof. For this, we need to prove aA is conjugate to af for all m which is coprime to the order of 0",4. Since Sn is 
rational we have g E Sn such that gaAg- 1 = af. If g is in An we are done. Else take h E Zsn (aA) which is not in 
ZAn (aA)- Now gh E An and ghaAh- 1 g-1 = af, and we are done. D 
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When the conjugacy class splits, let C be the conjugacy class of rn. in Sn where 2 = 2! ... 2; with all Ai odd 
(and distinct). Let C1 and C2 be the conjugacy classes in An, which are obtained by splitting C. Then, 

Proposition 4.4. With the notation as above, both An conjugacy classes C1 and C2 are rational if and only if 
TI~=l Ai is a peifect square. 

Proof In this case, we have Z An (er;J = Zsn (er;J. Thus WAn (er ;J = W Sn (er;.) ~ Aut( (er;.)) if and only if N An ((er;.)) = 
Nsn ((er;J). Which is determined by Theorem 4.1. D 

We remark that either both conjugacy classes C1 and C2 are rational or not rational simultaneously. 

Proposition 4.5. With the notation as above, suppose both conjugacy classes C 1 and C2 are not rational. Then the 
subset C = C1 U C2 is a rational class in An, 

Proof This follows easily because C is a rational conjugacy class in Sn. D 

Proof of Theorem 1.5 Let C be a conjugacy class in An. Consider the conjugacy class C in Sn containing C. 
Let 2 = }, 1' ... 2~' be the corresponding partition of C. Then either C = C or C = C 1 U C2, where C is one of the 

C1 or C2. If C = Cit follows from Proposition 4.3 that it is always rational and this corresponds to the partitions 
where either ei ~ 2 for some i or one of the Ai is even. 

Now suppose C = C1 U C2, where C is one of the components. Then from Proposition 4.4, it follows that both C1 
and C2, and hence C, are rational if and only if fI= 1 Ai is a square. That is, in this case the partition}, has all parts 
distinct, odd and the product of parts is a square. 

When C is not a rational conjugacy class, Proposition 4.5 implies C is a rational class in An. This completes the 
proof. D 

5. z-classes in An - when the conjugacy class splits 

Since the z-equivalence is a relation on conjugacy classes we deal with split and non-split classes separately. 
We begin with a few Lemmas. 

Lemma 5.1. Let x, y be elements in An such that x and y are conjugate in Sn, If there exists g E An such that g is 
conjugate to y in An and Z An (g) = Z An (x) then centralizers Z An (x) and Z An (y) are conjugate in An. 

Proof Since g and y are conjugate in An, their centralizers ZAn (g) and ZAn (y) are conjugate in An, Hence 
centralizers Z An (x) and Z An (y) are conjugate in An. □ 

The following Lemma establishes partial converse to the above. 

Lemma 5.2. Let A = 21 ... Ar be a partition with all parts (distinct and) odd. Let x and y be elements 
in An representing the two distinct conjugacy classes corresponding to A. Suppose x = x1x2 ... Xr and 
y = Y1Y2 ... Yr E An, where Xi and Yi are cycles of length Ai and centralizers ZAn (x) and ZAn (y) are conjugate 

in An. Then, y is conjugate to xi' x~2 
••• x:' in An for some positive integers i1, ... , ir, where i j is coprime to A j 

(which is the orderofxj)forall j. 

Proof Since x and y are z-conjugate in An, i.e., there exist g E An such that ZAJx) = gZAn(y)g-1 = 
ZA,. (gyg- 1). Now, we know that ZAn (x) = Zsn (x) = (x1, x2, ... , Xr) ~ C;. 1 x · · · x C;.r. Hence gyg- 1 = 

i I i2 ir + · • Th + · · ii iz ir · A x 1 x2 .,.Xr 1.orsomeq, .. ,,zr. ere1.ore,y1sconJugatetox1 x2 ... xr m n• D 

Now we prove the main proposition of this section. 

Proposition 5.3. Let A = }, 1 ... Ai be a partition with all parts ( distinct and) odd. Let x and y be elements in An 
representing the two distinct conjugacy classes corresponding to A. Suppose x = x1x2 ... Xr and y = Y1Y2 ... Yr 
written as a product of disjoint cycles where Xi and Yi are of length Ai. Then, x and y are not z-conjugate in An if 
and only if each },i is a peifect square ( of odd number) Vi = 1, ... , r. 
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Proof First, suppose there exists a k such that ),k is not a perfect square of odd number. We define A;_k and S;.k 
to be the subgroups of An and Sn respectively, on the symbols involved in the cycle Xk. Corollary 4.2 implies 
that the element Xk is not a rational element of A;.k. Hence, there exists m with (m, h) = 1 such that Xk is 
not conjugate to x,:1 in A;,k. In any case Xk is conjugate to x,:1 in S;,k, say, there exists s E S;.k \A;,k such that 

-1 m Th -I -I m n, 1 · th · t · t SXkS = xk . us, sxs = sx1x2 ... Xk ... XrS = XJX2 ... Xk-JXk Xk+I ... Xr, vve C atm at XIS no conJuga e 
to sxs-1 in An. Because any two such elements will differ by an element of ZAn(x) which, in this case, is equal to 
Zsn (x) thus all such elements would be even. This implies that x and sxs-1 are representatives of the two distinct 
conjugacy classes obtained by splitting that of x hence sxs-1 is conjugate toy. But ZAn (x) = (xi, x2, ... , xr) = 
(x1, x2, ... , Xk-1, x;:1, Xk+J, ... , xr) = ZAn (sxs-1 ), because of the structure of sxs-1. Lemma 5.1 implies that 
Z An (x) and Z An (y) are conjugate in An. 

Now, assume that each),; is a perfect square (of odd number), for all i. We define the subgroups A;,; of An on the 
symbols appearing in the cycle x; for all i. Corollary 4.2 implies that x; is rational in A;.;, hence x; is conjugate to xr; 
in A;.; for all m; with (m;, ),; ) = l. Let (j1, ... , Jr) be a tuple where (j;, ),; ) = l. Then we can find s j; E A;.; such 

th -l j; Th . . A d . j, h j, H b . at s j; x; s j; = X; . us sh sh ... s j, ts m n an conJugates x to x 1 x 2 ... x r . ence, y can not e con Jugate to 

x{1 xf ... xfr for any tuple (}I, ... , Jr) where (j;, ),; ) = I. Lemma 5 .2, implies that x and y can not be z-conjugate in 
An. □ 

6. The center of centralizers in An 

In Lemma 3.2 we showed that, for the group Sn, the center of centralizers Z;. determines the partition), uniquely via 
its action on the set { 1, 2, ... , n} except in one case when ), 11 = 12. For the alternating groups we employ similar 
strategy. 

Let us begin with the case when the partition .A. has only one part, say, ). = ab. The representative element can be 
chosen as follows, 

a;. = (1, 2, ... , a)(a + 1, a+ 2, ... , 2a) ... ((b - l)a + 1, (b - l)a + 2, ... ; ba) 

which for convenience will be written as a;. = a;.,1a;.,2 ... aJ.,b where a;.,; are cycles of length a. And the 
centralizer is 

Zsn(a;.) = (((1, 2, ... , a)) x · · · x (((b - l)a + 1, (b - l)a + 2, .· .. , ba))) XI Sb 

where Sb permutes the various cyclic subgroups. To avoid confusion, we write the elements of Sb using 
roman numerals. For example, the element (I, II) in Sb would be actually (1, a + 1)(2, a + 2) ... (a, 2a) 

in Zsn (a;.), similarly, the element (I, II, ... , b) in Sb would be (1, a + 1, ... , (b - l)a + 1)(2, a + 2, ... , 
(b - l)a + 2) ... (a,2a, ... ,ba). In general, the cycle (J,II, ... ,i) in Sb would be (1,a + 1, ... , 
(i - l)a + 1)(2, a + 2, ... , (i - l)a + 2) ... (a, 2a, ... , ia) which is a product of a many disjoint cycles, each 
of length i. We can also compute sgn((I,11 ... ,i)) = sgn((l,2, ... ,i))a which will be useful to determine if 
(I, II ... , i) belongs to An, when needed. We begin with, 

Lemma 6.1. If), = ab is a partition of n and b ::=: 2 then Zsn (a;.) contains at least one odd permutation. 

Proof If a is even then the cycle (1, 2, ... , a) E Zsn(a;.) is odd and we are done. Thus we may assume a is odd. 
From the computation above, sgn( (I, II)) = ( - 1 t = -1 hence (/ ,J/) is odd. D 

Lemma6.2. 

(1) If r =(/,II, ... , b) E Zsn (a;.) then Zzsn(a;.)(r) = (r, a;.), 

(2) Jf r =(/,II, ... , b - 1) E Zsn(a;.) then Zzsn(a;.)(-r) = (r, O"J.,b, nt:l O").,i), 

Proof The proof is simple and follows from the multiplication defined on S (a, b) in Section 3 .1. D 

We need to understand the center of centralizers of elements in An, Suppose ), = ),1' ),;2 
••• 2~' is a partition of 

even type, i.e., a;_ E An. Recall the notation, a;.= a;., ... a;.,, the centralizer is Zs,.(a;.) ~ TI~=l Zs,;i.; (a;.;) and its 
center is denoted as Z;.. 
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Lemma 6.3. Let x E An. Then, Z;. n An = Z(Zsn (x)) n An ~ Z(ZAn (x)). 

Proof Let g E Z(Zsn (x)) n An then g E ZAn (x). Now ZAn (x) = Zsn (x) n An thus we get g E Z(ZAn (x)). □ 

Now we need to decide when Z(ZAn (a;.)) ;;2 Z;, n An. For the convenience of reader we draw a diagram of the 
subgroups involved in the proofs. We call tlie elements of Z;. "diagonal elements" and the elements of Zsn (a;i,) which 
are not central "non-diagonal elements". 

The main theorem is as follows, 

Theorem 6.4. Let A be a partition of n and a;, E An. Then Z(ZAn (a;.)) ;2 Z;. n An if and only if}, is one of the 
following: 

(1) 13 v; 22v; 1122v where v = },3 ... },r with all},;::::_ 3 and odd. 
(2) 11v; v where v = },3 ... },j-JAJ}·j+I ... },r where A;::::_ 3 and odd for all i. 

The rest of this section is devoted to the proof of this theorem. 

' 
Lemma 6.5. Let}.= 2~1 

••• 2~' where at least two distinct e; and ej are::::_ 2. Then, Z(ZAn (a;._))= Z;. n An. 

Proof Let us first take the case when 21 = 1, e1 ::::_ 2 and some other e; is::::_ 2. We have Zsn(a;.) = Se1 x 
Zs.

2
;_

2 
(a;,2 ) -x · · · x Zsc,i., (a;,,). We note that when e1 = 2 the subgroup S2 is central. Let g = (g1, ... , gr) E 

Z(ZAn (a;.)) but g <t Z;_. That is, there exists some j such that gj is non-diagonal element in ZsejJ·j (a;,j). 

Suppose j -::/= l. Since gj is non-diagonal there exists h j E Zsej;_/a;,j) such that h j gj -::/= gjh j • Now define 
h = (1, ... , 1, hj, 1, ... , 1) if h1 is even else h = ((1, 2), 1, ... , 1, hj, 1, ... , 1). Then h E Ann Zsn(a;._) = 
ZAn (a;.) but gh-::/= hg, a contradiction. 

Now if j = 1 the element g1 is non-diagonal in Se1 , that is, g1 -::/= 1. We may also assume that all other g;, 
other than the first one, are diagonal. However if e1 = 2 the element g = ((1, 2), g2, ... gr) is already in Z;., 
so we couldn't have assumed otherwise. Now if e1 ::::_ 3, pick h1 E Se, which does not commute with g1. 
Now define h = (h1, 1, ... , 1) if h1 is even. Else define h = (h1, 1, ... , 1, w, 1, ... , 1) where w E Zsc;J.; (a;t;) is an 
odd permutation guaranteed by Lemma 6.1. Then h E An but gh -::/= hg, a contradiction. 

The proof when e1 = 1 and 21 = 1 or },1 > 1 follows similarly. Now two components i and j will have odd 
elements because of Lemma 6.1 which can be used to change the sign to get an appropriate h. □ 

This reduces drastically the number of cases we need to look at. Thus we may assume that at most one e; is greater 
than 2 or none, i.e.,}. = 21 ... },;-12? 2;+1 ... Ar withe; ::::_ l. Let us deal with the case when i = 1 and },1 = l. 

Lemma 6.6. Let A = lei },2 ... },,. be a partition of n. Then, Z(ZAn (a;.)) ;;2 Z;. n An if and only if},= l 3 22 ... Ar 
where A; > 1 and odd for all i. 

Proof Suppose }. is not of the form 13 },2 ... }.,. whe~ 2; > 1 and odd for all i. So, if e1 = 0, 1 or 2 then Zsn (a;._) is 
Abelian and its subgroup ZAn (a;.) is also Abelian. Therefore, 

Thus, we assume e1 ::::_ 3. Suppose at least one 2 j is even. Now a;. has e1 fixed points. Hence, Zsn (a;.) = 
Se1 x (a;._2 ) x · · · x (a;.,) and Z;. = Z(Zsn (a;.)) = (a;.2 ) x · · · x (a;.,) since},; are distinct. Now let g E Z(ZAn (a;.)} C 
Zsn(a;.). Write g = (g1, g2, ... , gr)- If g ¢ Z;. n An then g1 -::/= l. But we can find h1 E Se1 such that g1h1 -::/= h1g1. 
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\ 
Defineh = (h1, 1, ... , 1) if h1 is even else h = (h1, 1, ... , 1, <I).j, 1, ... , 1). Clearly h E Ann +sn(aJ..) = ZAn(aJ..) 
and gh -::/= hg. This contradicts that g E Z(ZAn (a;.)), thus Z(ZAn (a;.))= Z;. n An. 

Now suppose e1 ~ 4 and all J.i are odd. In this case, ZAn (a;.)= Ae1 x (a;.2) x · · · x (aJ.,) since all a;.; are even. 
And Z(ZAn (a;.)) = (a;.2 ) x · · · x (a;.,) which is equal to 2). n An. 

For the converse,},= 13 J.2 ... },r with all},; odd. Then Zsn (a;.) = S3 x (a;.2 ) X · · · X (aJ.,) and Z;. = Z(Zsn (a;.)) = 
(a12) X •.. X (a).,) C An. Also ZAn (a;.) = A3 X (a;.2) X ... X (a).,) = Z(ZAn (a;.)). Hence Z(ZAn (a;.)) 2 Z;. n An. 

D 

This also takes care of the case when all parts are distinct so we may assume e; ~ 2. Thus, assume either i ~ 2 
or J.1 ~ 2. That is we can have at most one fixed point, if at all. If a;. has one fixed point, say, a;.(n) = n then we 
may consider a;. E An-I with no fixed points. Further ZAn (aJ..) = ZAn-I (a;.). Therefore, it is enough to study the 
partitions which do not have 1 as its part, i.e., we have J.1 > 1. 

Lemma 6.7. Let}. = J.1 ... },i-1J.? J.;+1 ... J.r be a partition with J.1 > 1. Further suppose}, satisfies one of the 
followings, 

(1) ei ~ 3, or, 
(2) }.i > 2 and is even. 

Then, Z(ZAn (aJ..)) = ZJ.. n An. 

Proof We prove (1) first. Let g = (g1, ... , gr) E Z(ZAn (a;.)) but g ¢ Z; .. All gi are diagonal except g; which 
is non-diagonal. The element g; E Zse. ,. (a)..) where O").. = a;,. 1 ••• a1 . .. Recall the notation that O"). . . are cycles 

t ''l I I I, l,e, J,J 

of length },i as introduced in the beginning of Section 6. Now consider r = (/, II, ... , e;) as in Lemma 6.2. Then 
Zzs,;;,;(u;,;)(r:) = (a;.;,r).Ifg; = r thenitdoesnotcommutewithhi = a;.;_ 1 a;.;,2 (rememberthate; ~ 3).Sinceall 

a l;,j are of same len-gth J.i this is an element in An . Thus we get h = ( 1, ... , 1, h;, 1 ... , 1) in Z An (a;.) which does 
not commute with g, a contradiction. · 

On other hand if gi f. r then g; does not commute with r. We observe that r is a product of },i many cycles, each 
of length e;. If ei is odd then r is an even permutation. Further, if both e; and },; are even then, also, r is an even 
permutation. And in these cases we may take h; = r: and get a contradiction as above. 

Now let us assume that },; is odd and e; is even and thus r is an odd permutation. In this case instead of r we make 
use of two elements ri, r:2 E Zse; ;./a).;) as follows. The element r:1 = (II, III, ... , e;) and r:2 = (/, II, ... , e; - 1). 
Each of the r:1 and r:2 are product of J.; many cycles, each of length e; - 1 and hence even. Now we note that 
Zzs (u,.)(r:1) = (a;.·i, fie;_2 a; .. . , r:1) and Zzs (u,.)(r:2) =(a; ... , fI~;_:::-1

1 a;. .. , r:2) (see Lemma 6.2). This gives e;l; ., 1, J- l,J e;).; .1 r,e1 J- 1,J 

us that Zzse.,· (u;.;)(r:1) n Zzse•).• (u;,;)(r:2) = (a;.;). Since gi is non-diagonal it does not commute with either r:1 or r:2 
l 'l I I 

else it would be in the intersection of centralizers which is diagonal. Thus we may take h; to be r:1 or r:2 as required, 
and get a contradiction. 

For the proof of (2), let g = (g1, ... , gr) E Z(ZAn (a;.)) but g ¢ Z1. The component gi is non-diagonal element 
in Zse. ,. (a;_.). In this case <I).- = 0").. 1 a;.. 2 • Taker =(/,I/) then r is an even permutation as J.; is even. If r f. gi 

I '·1 l l I, I, 

take h; = r: and we are done. Else if g; = r: then we take a}. . Since J.; > 2, a}. -::/= 1 and it is even permutation. 
1,l •1,l 

And now taking hi = a};,I would lead to a contradiction. D 

This leaves us with the following case now. The partition is }. = J 1 ... Ai -I J.f J.; + 1 ... J.r with }, 1 > 1 and either 
A; = 2 or J.; is odd. And this is where all complication lies. 

Lemma 6.8. Let A with A J > 1 be one of the following, 

(1) J.1 ... A;-1J?J;+1- .. },r, and suppose, },i is odd and },m evenforsome m f. i, or, 
2 I 

(2) 2 },2 .•• J.r with some J.m even. 

Then, Z(ZAn(a;_)) = Z;. n An. 

Proof For the proof of (1), let g = (g1, .. ,,gr) E Z(ZAn(aJ..)) but g ¢ Z; .. Then g; is non-diagonal. Pick 
h; E Zse;J.; (a;,;) such that hig; f. g;h;. If hi is even then h = (1, ... , h;, ... , 1) would do the job. Else take 
h = (1, ... , h;, 1, ... , a1m, 1 ... , 1) which is an even permutation, and does the job. 
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In the second case, we have OJ= (1, 2)(3, 4)a22 ••• aJ,, and Zsn(a2) = Zs4 ((1, 2)(3, 4)) x (a22 } x · · · x (a2,}. 
Let g = (g1, ... , gr) E Z(ZAn (a2)) but g (j. ZJ,. In this case g1 has to be non-diagonal. Now we can do the same 
thing as above to get a contradiction. □ 

At this step we are left with the A of following kinds, and its variant (see the discussion following Lemma 6.6) 
with exactly one fixed point, 

(1) Al ... Ai-1Af Ai+l ... Ar, where all A J are odd, and, 
(2) 22 A2 ... Ar, where all A J are odd. 

Now we are ready to prove the main theorem of this section, 

Proof of Theorem 6.4 Lemma 6.5, 6.6, 6.7 and 6.8 prove that if the partition A is not of the type listed in the theorem 
then Z(ZAn (a2)) = Z2 n An. Thus it remains to prove if A is of one the kinds listed in the theorem then we do not 
get equality. Which we prove now case-by-case. 

In case A = 13 A3 ... Ar and Ai are odd for all i then the result follows from Lemma 6.6. Now, take 
A. = 2½3A4 ... Ar and A3 ~ 2 and odd for all i. Write a2 = (1, 2)(3, 4)aJ,3 ••• a2, then Zsn (a2) = {1, (1, 2), (3, 4), 
(1, 2)(3, 4), (1, 3)(2, 4), (1, 3, 2, 4), (1, 4, 2, 3), (1, 4)(2, 3)} x (aJ,J · · · x (a;,,}. And ZAn (a2) = {l, (1, 2)(3, 4), 
(1, 3)(2, 4), (1, 4)(2, 3)} x (a23 } • • • x (a2,} which is equal to its own center, being commutative. However the 
element (1, 3)(2, 4) (/. Z;,. Thus we get strict inequality in this case. The argument is similar when A = 1122 A3 ... Ar. 

Now suppose A = A3 ... },;-1.A.f Ai+l ... Ar with A3 ~ 3 and all odd. In this case, a2 = a23 ••• a;.; ... a2, where 
a2j is a cycle oflength Ai for j f= i and a;.; = a2;.i aJ,;,2 is a product of two cycles, each oflength A;. Then a2;,l and 
a2;,2 both belong to Z(ZAn (a2)) but none of them belong to Z2 instead their product belongs. A similar argument 
works for the case when A = 11 A3 ... Ai-1,1,f Ai+l ... Ar. □ 

7. z-classes in An - when the conjugacy class does not split 

Our strategy for the proof is similar to that of Sn case. That is, we look at the action of Z(ZAn (a2)) on {l, 2, ... , n} 
and decide when it determines the partition. This works in almost all cases. We continue to use notation from previous 
sections. 

Proposition 7.1. The action of Z2 n An on the set {l, 2, ... , n} determines the partition}, uniquely except when 
,e1 _ 12 
Al - . 

Proof We know that the action of Z2 on the set {1, 2, ... , n} determines the partition uniquely except when A? = 12 

(see Lemma 3.2). We need to prove that if two points in {l, 2, ... , n} are related under the action of Z;. then they are 
so under the action of Z2 n An. 

Since a 2 = a 21 ••• a 2,, we reorder a ;,k's, if required, so that a 2k for 1 ~ k ~ l are even permutations and a 2k 
for l < k ~rare odd permutations. Since a2 is an even permutation, the number of odd permutations r - l is even 
(including 0). If r = l then Z;, = Z2 n An and we are done. Else suppose i f= j are related under Z2. That is, there 
exists t such that a'!' (i) = j for some power m. If a'!' is even, we are done. So we may assume a'!' is odd. But since 

A/ /•/ '-t 

the number of odd permutations is assumed to be even we have another odd permutation a2, disjoint from this one. 
Thus, a2,af: will do the job. □ 

We record the following example of the exception case. Take A = 1241 f- 6 then Zs6(3, 4, 5, 6) = ((1, 2)) x 
((3, 4, 5, 6)) = Z 1241. And Z 1241 n As = ((1, 2)(3, 4, 5, 6)) which would determine the partition 2141. Now let us 
look at the case when Z(ZAn (a;,)) f= Z;, n An. In this case we have the following, 

Proposition 7.2. If A is one of the following with a2 in An, 

(1) 1 ½;2 
••• A.~', where A2 ~ 2, or, 

(2) 11v, v where v = A2 ... Ai-1.A.f Ai+l ... Ar, where A J ~ 3 and odd for all j, 

then, the action of Z(ZAn (a2)) on the set {1, 2, ... , n} determines the partition A uniquely. 
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[, 
Proof. The first case appears in Sn, where Zsn (a;.) determines all Ai > 2 except for tlie first orbit which is {1, 2}. 
Thus there are two possibilities either 12 or 21. Since a;. = a;.2 ••• aJ,r E An we note that the partition 21 ),;2 ••• A~r 

is not even because this would correspond to the element (1, 2)a;. = (1, 2)a;.2 ••• a;.r which is odd. Thus this leaves ., 
a unique choice for A where the first part must be 12 . 

For the part (2), from the proof of Theorem 6.4, we see that 

Clearly this determines the partition A uniquely. 

Now, we prove the main proposition as follows. 

D 

Proposition 7.3. Let n ::::: 4. Let v be a restricted partition of n - 3, with distinct and odd parts, in which 1 (and 2) 
does not appear as its part. Let A = 13v andµ = 31v be partitions of n obtained by extending v. Then A andµ 
belong to the same z-class in An. Conversely, if A corresponds to a non-split class in An then it can be z-equivalent 
to at most one more class (possibly split), provided A is of the form l 3v. 

Proof When the partition ), = l 3v then Zsn (a;.) = S3 x Zsn-J (av) and its center is Z;. = {1} x Zv. However 
ZAn (a;.)= A3 x ZAn-J (av) is Abelian and its action would give the partition 31v. In this case, if we take partition 
l' = 31v then ZAn (a;.1) = ((1, 2, 3)) x ZAn_3 (av) and ZAn (a;_,) = ZAn (a;.) (in case A1 corresponds to a split class 
they are z-conjugate thus we may choose this representative). And thus aJ. and a;_, would be z-conjugate. 

For the converse, if Z ( Z An ( a J.)) = Z J. n An, then from Proposition 7 .1, the action of Z ( Z An (a;.)) determines the 
partition A of n uniquely, and we are done. Otherwise, we use Proposition 7.2 which implies that ZAn (aJ.) determines 
the partition ;i, uniquely except in two cases. One of the cases is 13v where the centralizer is conjugate to that of 31 v as 
required in the proposition. Thus we need to rule out the possibility when A= 22v and 1122v where v = A3A4 ... Ar, 
l; ::::: 3 and are odd for all i . 

Let us deal with the case when ;i, = 22v, the other case is similar. The element a;. = (1, 2)(3, 4)a;.2 ••• aJ,r and 

ZAn (aJ.) = ((1, 2)(3, 4), (1, 3)(2, 4)) X (a;.2) X · · · X (a;.r) 

which has size 4.J2 .... . Ar. Since this is Abelian its center is itself which determines the partition A except for the 
first orbit which is { 1, 2, 3, 4}. Considering that A is even, we have the possibilities of the first part being 14 , 1131, 2 2 . 

We claim that if ;i, = 14v, 1131v or 22 v the size of centralizers is different and hence they can not be z-equivalent. 
We note that, ZAn (a14v) = (A4) x (aJ.2) x · · · x (aJ,r) which has size 12.A2 .... . Ar- And if A2 > 3, ZAn (a1131v) = 
((1, 2, 3)) X (a;.2 ) x · · · X (aJ,r) of size 3.12 .... . Ar and if ),2 = 3, ZAn (a1132;_

3 
___ ;.) = ((2, 3, 4), (5; 6, 7)) X 

(aA3 ) x · · · x (a;.r) of size 32 .A3 .... . Ar. □ 

7 .1 Proof of Theorem 1.3 

Let C be a conjugacy class of Sn corresponding to the partition A 112 ... Ar of n with all Ai distinct and odd. Then the 
conjugacy class C splits in two conjugacy classes, say, C1 and C2 in An. From Proposition 5.3 if each Ai is a perfect 
square for all 1 ::::: i ::::: r, then both the conjugacy classes C 1 and C2 are distinct z-classes in An. Else C 1 U C2 form 
a single z-class in An. 

Now, when C does not split, it follows from Proposition 7 .3, that except the partition 13v where v is a partition of 
n - 3, with all parts odd and distinct without 1 as its part, all conjugacy classes remain distinct z-classes. And in the 
case when A = 13 v its z-class can coincide with that of 31 v. 

8. Rational-valued characters of An 

We begin with recalling characters of the alternating group from [Pr]. First we note that, the number of partitions 
of n with distinct and odd parts is equal to the number of self-conjugate partitions of n (see Lemma 4.6.16 in [Pr]). 
In fact, these are in one-one correspondence via folding. This corresponds to the split conjugacy classes. The complex 
irreducible characters of An are given as follows (see Theorem 4.6.7 and 5.12.5 in [Pr]). For every partitionµ of 
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n which is not self-conjugate (this corresponds to non-split conjugacy classes), the irreducible character Xµ of Sn 
restricts to an irreducible character of An. Since all characters of Sn are integer-valued, these characters of An are 
rational-valued too. Now, for all partitions µ of n which are self-conjugate (these correspond to split conjugacy 
classes), there exists a pair of irreducible characters x: and x;. The character values are given by the following 
formula. When g E An of cycle type J with all parts distinct and odd, say, A = (2m1 + 1, ... , 2mz + 1), and the 
folding corresponding to J is the partition µ then 

and x;(gi) = xJ(gt). Here gt and gi denote the two split conjugacy classes in An and e;. = (-l}~::l~1 m;. 

Else xt(g) = x;(g) = Xµig). Clearly the characters x; are rational valued if and only if e;. = l and IZ;.I is a 
perfect square. 

Lemma 8.1. For A= (2m1 + 1, ... , 2mz + 1), if lZ;.I is a square then e.l. = l. 

Proof In this case, IZ.l.l = rr!=l (2mi + 1) = (2a + 1)2 for some a. Then L!=l mi must be even. D 

Proof of Theorem 1.7 From the discussion above, all characters of An corresponding to non-split conjugacy classes 
are rational-valued. And, both characters corresponding to split conjugacy classes are simultaneously rational-valued 
if and only if the partition A has all its parts distinct and odd and the product of parts is a perfect square. Clearly this 
is same as the criteria determining conjugacy classes which are rational. D 

Example 8.2. Let us work with Aw. In [AO] Section 2 Theorem 1, it is proved that the alternating groups are not 
Q-groups. However, in the proof for Arn case it is wrongly mentioned that 1191 is not rational. It is easy to see from 
our criteria that 1191 is a rational conjugacy class as the product 1.9 = 9 is a square. In fact, the class corresponding 
to 3171 is not rational because of 1.5 part 1 (b) as the product 3. 7 = 21 is not a square. We also note that the character 
value x~41 (g~ 71 ) = ½(-1 ± Hl) is clearly not rational. 

9. Some GAP calculations 

In this work, we have come across two functions on natural numbers. The first one is E defined as 

and its generating function is IT~0 (1 + x<2i+l)\ And another one is J defined as, 

0( n) = { n = n 1 + · · · + n, I I ,;: n 1 < · · • < •_, ,;: n, n; odd Vi, D n; E 1'12
} 

Writing a natural number as a sum of squares is well studied problem in number theory. However, we could not find 
references to these functions. Clearly E(n) :::::: J(n). The inequality could be strict, for example, n = 78 = 3 + 75 
where 3.75 = 152 but none of the components are square. This happens infinitely often. For example, let Pl and 
P2 be odd and distinct primes. Consider, n = Pl + p2 + PlP2 and the partition of n given by pf p~ (P1P2)1. Then 
E(n) < J(n). We may also consider, for example, m =Pl+ Pl Pi, i.e., we have the partition of m given as p}(p1pi)1. 
Then t(m) < J(m). We make a table for the values of E and J for small values of n and also note down the partitions 
giving rise to the function J. Some values of J(n) are also given in [Br]. 
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n t(n) J(n) Partitions n t(n) J(n) Partitions 

9 1 1 91 34 1 1 91251 

10 1 1 1191 35 1 1 1191251 

23 0 1 3151151 39 0 1 3191271 

24 0 1 113151151 40 0 2 113191271,31719121 1 

25 1 1 251 41 0 1 1131719121 1 

26 1 1 11251 47 0 3 3111 1331,5171351,51151271 

30 0 1 31271 48 0 5 1131111331, 115171351, 

1151151271 ,517115121 1, 
3151151251 

31 0 2 1131271, 317121 1 49 1 3 491, 113151151251, 
11517115121 1 

32 0 2 1l3l7l21l,3l5l9l15l 50 1 2 11491, 5145 1 

33 0 1 11315191151 51 0 1 115145 1 

Next, we used GAP [GAP] to compute z-classes, rational conjugacy classes etc. Here we have some examples for 
An which verifies our theorem. 

n Number of Number of Partitions 
conj. classes z-classes 

20 324 315 {13315191, 325191 }, {11317191, 11317191} 
{113151111, 113151111}, {91111, 91111}, {11191, 11191} 
{71131, 71131}, {51151, 51151}, {13171, 31171, 31171} 

27 1526 1506 {1331517191, 32517191}, {11315171111, 11315171111} 

{719111 1, 719111 1 }, {5191131, 5191131} 
{1311 1131,3111 1131,3111 1131},{5171151,5171151} 
{1391151, 3191151, 3191151}, {1 111 1151, 1111115 1} 

{1371171,3171171,3171171},{1351191,3151191,3151191} 
{1 171191, 1171191}, {1 191171, 1191171} 

{133121 1, 3221 1}, {1 15121 1, 115121 1} 
{1 131231, 1131231 }, {271,271} 

The last column combines together the partitions which give same z-class and the repetition of a partition indicates 
a split conjugacy class. 
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