z-classes and rational conjugacy classes in alternating groups

Sushil Bhunia, Dilpreet Kaur and Anupam Singh
IISER Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
e-mail: sushilbhunia@gmail.com; dilpreetmaths@gmail.com; anupamk18@gmail.com

Communicated by: Prof. Ritabrata Munshi

Received: September 28, 2017

Abstract

In this paper, we compute the number of z-classes (conjugacy classes of centralizers of elements) in the symmetric group S_{n}, when $n \geq 3$ and alternating group A_{n} when $n \geq 4$. It turns out that the difference between the number of conjugacy classes and the number of z-classes for S_{n} is determined by those restricted partitions of $n-2$ in which 1 and 2 do not appear as its part. In the case of alternating groups, it is determined by those restricted partitions of $n-3$ which has all its parts distinct, odd and in which 1 (and 2) does not appear as its part, along with an error term. The error term is given by those partitions of n which have distinct parts that are odd and perfect squares. Further, we prove that the number of rational-valued irreducible complex characters for A_{n} is same as the number of conjugacy classes which are rational.

2010 Mathematics Subject Classification: 20B30, 20B35.

1. Introduction

Let G be a group. Two elements $x, y \in G$ are said to be z-conjugate if their centralizers $\mathcal{Z}_{G}(x)$ and $\mathcal{Z}_{G}(y)$ are conjugate in G. This defines an equivalence relation on G and the equivalence classes are called z-classes. Clearly if x and y are conjugate then they are also z-conjugate. Thus, in general, z-conjugacy is a weaker relation than conjugacy on G. In the theory of groups of Lie type, this is also called "types" (see [Gr]) and the number of z-classes of semisimple elements is called the genus number (see [Ca1, Ca 2$]$). This has been studied explicitly for various groups of Lie type in several papers, see for example, [BS,Go,GK,Ku,Si]. In this work, we want to classify and count the number of z-classes for symmetric and alternating groups. For convenience we deal with these groups when they are non-commutative (the commutative cases can be easily calculated), i.e., we assume $n \geq 3$ while dealing with symmetric groups and $n \geq 4$ while dealing with alternating groups.

Let $\sigma \in S_{n}$. The conjugacy classes of elements in S_{n} are determined by their cycle structure which, in turn, is determined by a partition of n. Let $\lambda=\lambda_{1}^{e_{1}} \lambda_{2}^{e_{2}} \ldots \lambda_{r}^{e_{r}}$ be a partition of n, i.e., we have $1 \leq \lambda_{1}<\lambda_{2}<\cdots<\lambda_{r} \leq n$, each $e_{i}>0$ and $n=\sum_{i=1}^{r} \lambda_{i} e_{i}$. We may represent an element of S_{n} corresponding to a partition λ in cycle notation. We prove the following,

Theorem 1.1. Suppose $n \geq 3$. Let v be a restricted partition of $n-2$ in which 1 and 2 do not appear as its part. Let $\lambda=1^{2} v$ and $\mu=2^{1} v$ be partitions of n obtained by extending v. Then the conjugacy classes of λ and μ belong to the same z-class in S_{n}.

Further, the converse is also true, i.e., the conjugacy class corresponding to $\lambda=\lambda_{1}^{e_{1}} \lambda_{2}^{e_{2}} \ldots \lambda_{r}^{e_{r}}$ is z-equivalent to another conjugacy class then $\lambda_{1}^{e_{1}}=1^{2}$, and, in that case the other class corresponds to $2^{1} \lambda_{2}^{e_{2}} \ldots \lambda_{r}^{e_{r}}$.

Corollary 1.2. The number of z-classes in S_{n} is $p(n)-\tilde{p}(n-2)$, where $p(n)$ is the number of partitions of n and $\tilde{p}(n-2)$ is the number of partitions of $n-2$ in which 1 and 2 do not appear as its part. Thus, the number of z-classes in S_{n} is equal to $p(n)-p(n-2)+p(n-3)+p(n-4)-p(n-5)$.

During this work, the first named author was supported by CSIR Ph.D. fellowship, and second named author was supported by NBHM Post-Doctoral fellowship. The third named author would like to acknowledge the support of DST through Indo-Russian joint project INT/RUS/RFBR/P-288.

To prove this theorem, we need to understand the centralizers better which involves the generalised symmetric group. A group $S(a, b)=C_{a}\left\langle S_{b} \cong C_{a}^{b} \rtimes S_{b}\right.$ is called a generalised symmetric group. We will briefly introduce this group in the following section. We remark that the centralizers could be isomorphic but not conjugate. For example, in S_{6} the centralizers of $1^{1} 2^{1} 3^{1}$ and 6^{1} are isomorphic but not conjugate.

Next we look at the problem of classifying z-classes in alternating groups A_{n}. Usually the conjugacy classes in A_{n} are studied as a restriction of that of S_{n}. First, it is easy to determine for what partitions $\lambda=\lambda_{1}^{e_{1}} \ldots \lambda_{r}^{e_{r}}$ of n the corresponding element σ_{λ} is in A_{n}. This is precisely when $n-\sum e_{i}$ is even. We call such partitions even. Further, when $\sigma_{\lambda} \in A_{n}$, the conjugacy class of σ_{λ} in S_{n} splits in two conjugacy classes in A_{n} if and only if $\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)=$ $\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)$, which is, if and only if the partition λ has all its parts distinct and odd, i.e., $e_{i}=1$ and λ_{i} odd for all i. With this notation we have,

Theorem 1.3. Suppose $n \geq 4$. Let $\lambda=\lambda_{1}^{e_{1}} \ldots \lambda_{r}^{e_{r}}$ be an even partition of n. Then the following determines z-classes in A_{n}.
(1) Suppose $e_{i}=1$ for all i and all λ_{i} are odd, i.e., λ corresponds to two distinct conjugacy classes in A_{n}. Then, λ corresponds to two distinct z-classes (corresponding to the two distinct conjugacy classes) if and only if all λ_{i} are square. Else, the two split conjugacy classes form a single z-class.
(2) Suppose either one of the $e_{i} \geq 2$ or at least one of the λ_{i} is even, i.e., λ corresponds to a unique conjugacy class in A_{n}. Then, λ is z-equivalent to another conjugacy class if and only if $\lambda=1^{3} v$, where v is a restricted partition of $n-3$, with all its parts distinct and odd, and in which 1 (and 2) does not appear as its part. Further the other equivalent class is $3^{1} \nu$.
We remark that $3^{1} v$ could be of the first kind. For example, in A_{8} the partitions $1^{3} 5^{1}$ and $3^{1} 5^{1}$ give same z-class. Further, the conjugacy class $3^{1} 5^{1}$ splits into two but both fall in a single z-class. We list few more examples (using GAP) in a table in Section 9. We also note that v could have its first part 3, in that case while writing $3^{1} v$ we appropriately absorb the power of 3 . We denote by $\epsilon(n)$, the number of partitions of n with all of its parts distinct, odd and square. We list the values of $\epsilon(n)$ for small values in a table in Section 9.

Corollary 1.4. The number of z-classes in A_{n} is

$$
c l\left(A_{n}\right)-(q(n)+\tilde{q}(n-3))+\epsilon(n),
$$

where $c l\left(A_{n}\right)=\frac{p(n)+3 q(n)}{2}$ is the number of conjugacy classes in $A_{n}, q(n)$ is the number of partitions of n which has all parts distinct and odd, $\tilde{q}(m)$ is the number of restricted partitions of m, with all parts distinct, odd and which do not have 1 (and 2) as its part.

Let G be a finite group. An element $g \in G$ is called rational if g is conjugate to g^{m} for all m with property $(m, o(g))=1$ where $o(g)$ is the order of g. Clearly if g is rational then all of its conjugates are rational. Thus a conjugacy class of G is said to be rational if it is a conjugacy class of a rational element. It is believed that, for a finite group G, the number of conjugacy classes which are rational is related to the number of rational-valued complex irreducible characters of the group G (for example, see Theorem A in [NT]). A group of which all elements are rational (and in that case, all complex irreducible characters are rational-valued) is called a rational group or \mathbb{Q}-group (see [Kl]). The alternating groups A_{n} play an important role in determining simple groups which are rational (see Theorem A [FS]). There is a related notion of rational class in a group which comes from an equivalence relation. For a finite group G, a rational class of an element g is a subset containing all elements of G that are conjugate to g^{m}, where $(m, o(g))=1$. Thus the rational class of g can be thought of as the conjugacy class of cyclic subgroup $\langle g\rangle$ of G. A conjugacy class which is rational is a rational class. However the converse need not be true. It is well known that, for a finite group G, the number of isomorphism classes of irreducible representations of G over \mathbb{Q} is equal to the number of rational classes of G (see Corollary 1, Section 13.1 [Se]). The symmetric group S_{n} is rational. Alternating groups are not rational (see Corollary B. 1 [FS,AO]). The rational-valued complex irreducible characters for $A_{\boldsymbol{h}}$ are discussed in $[\mathrm{Br}]$ and $[\mathrm{Pr}]$. In this paper we determine conjugacy classes which are rational and the rational classes in alternating group. With notation as above,
Theorem 1.5. Suppose $n \geq 4$. Let \tilde{C} be a conjugacy class in A_{n} and corresponding partition be $\lambda=\lambda_{1}^{e_{1}} \ldots \lambda_{r}^{e_{r}}$ of n.
(1) Then the conjugacy class \tilde{C} is rational in A_{n} if and only if one of the following happens:
(a) either one of the $e_{i} \geq 2$ or one of the λ_{i} is even, or,
(b) all λ_{i} are distinct (i.e., $e_{i}=1$ for all i) and odd, and the product $\prod_{i=1}^{r} \lambda_{i}$ is a perfect square. In this case, λ corresponds to two conjugacy classes in A_{n} and both are simultaneously rational (or non-rational).
(2) All conjugacy classes which are rational are rational classes. When \tilde{C} is not a rational conjugacy class in A_{n}, the conjugacy class C in S_{n} containing \tilde{C} is a rational class in A_{n}.

We denote by $\delta(n)$, the number of partitions of n with all parts distinct, odd and the product of parts is a perfect square. We list the values of $\delta(n)$ for small values in a table in Section 9 which is also there in [Br].

Corollary 1.6. For the alternating group A_{n} with $n \geq 4$,
(1) the number of conjugacy classes which are rational is $\operatorname{cl}\left(A_{n}\right)-2 q(n)+2 \delta(n)$, and
(2) the number of rational classes is $c l\left(A_{n}\right)-q(n)+\delta(n)$.

The character theory of A_{n} is well understood. We use the notation and results from $[\mathrm{Pr}]$ and conclude the following,
Theorem 1.7. Suppose $n \geq 4$. Then, the number of conjugacy classes in A_{n} which are rational is same as the number of rational-valued complex irreducible characters.

This theorem is proved in Section 8. We also acknowledge that we have used GAP [GAP] on several occasions to verify our computations and results.

Acknowledgement

The authors would like to thank Gerhard Hiss and Alexander Hulpke for wonderful discussion on GAP during the workshop "Group theory and computational methods" held at ICTS Bangalore, India in November 2016. The authors would like to thank the referees for their comments.

2. Restricted partitions

We require certain kind of restricted partitions which we introduce in this section. We denote by $p(m)$, the number of partitions of positive integer m. To set the notation clearly, a partition of m is $\lambda=m_{1}^{e_{1}} \ldots m_{r}^{e_{r}}$ where $1 \leq m_{1}<\cdots<$ $m_{r} \leq m, e_{i} \geq 1 \forall i$ and $m=\sum_{i=1}^{r} e_{i} m_{i}$. Sometimes this is also denoted as $\lambda \vdash m$ or $m_{1}^{e_{1}} \ldots m_{r}^{e_{r}} \vdash m$. We clarify that the partition written as $1^{1} 2^{1}$ is same as 1.2 but, in this case, latter notation is confusing if written without a dot. For us the significance of partitions is due to its one-one correspondence with conjugacy classes of the symmetric group S_{m}. Let $\tilde{p}(m)$ be the number of those partitions of m in which 1 and 2 do not appear as its part, i.e.,

$$
\tilde{p}(m)=\left|\left\{\lambda=m_{1}^{e_{1}} \ldots m_{r}^{e_{r}} \vdash m \mid m_{1} \geq 3\right\}\right|
$$

Here we list down values of $\tilde{p}(m)$ for some small values.

m	$\tilde{p}(m)$	m	$\tilde{p}(m)$	m	$\tilde{p}(\bar{m})$	m	$\tilde{p}(\bar{m})$
1	0	6	2	11	6	16	21
2	0	7	2	12	9	17	25
3	1	8	3	13	10	18	33
4	1	9	4	14	13	19	39
5	1	10	5	15	17	20	49

The generating function for $\tilde{p}(m)$ is

$$
\prod_{i \geq 3} \frac{1}{1-x^{i}}
$$

and a formula to compute $\tilde{p}(m)$ in terms of partition function is

$$
\tilde{p}(m)=p(m)-p(m-1)-p(m-2)+p(m-3)
$$

This is a well known sequence in OEIS database (see [OEIS]). This will be used in the study of z-classes of symmetric groups later.

Now we introduce the function $q(m)$. For a given integer m, the value of $q(m)$ is the number of those partitions of m which have all of its parts distinct and odd, i.e.,

$$
q(m)=\mid\left\{\lambda=m_{1}^{1} \ldots m_{r}^{1} \vdash m \mid m_{i} \text { odd } \forall i\right\} \mid .
$$

This number is same as the number of self-conjugate partitions. For us this would correspond to those partitions which give split conjugacy classes in A_{n}. Now we introduce $\tilde{q}(m)$ which is the number of partitions of m which have all its parts distinct, odd and 1 (and 2) does not appear as its part. The following table gives values of $\tilde{q}(m)$ for some values of m.

m	$q(m)$	$\tilde{q}(m)$									
1	1	0	6	1	0	11	2	1	16	5	3
2	0	0	7	1	1	12	3	2	17	5	2
3	1	1	8	2	1	13	3	1	18	5	3
4	1	0	9	2	1	14	3	2	19	6	3
5	1	1	10	2	1	15	4	2	20	7	4

The generating function for $q(m)$ is $\prod_{i \geq 0}\left(1+x^{2 i+1}\right)$ and the generating function for $\tilde{q}(m)$ is $\prod_{i \geq 1}\left(1+x^{2 i+1}\right)$.

3. Symmetric groups

In this section we classify z-classes in S_{n}. Since the centralizers are a product of generalised symmetric groups, we begin with a brief introduction to them.

3.1 Generalised symmetric groups

The group $S(a, b)=C_{a} \geq S_{b}$, where C_{a} is a cyclic group and S_{b} is a symmetric group, is called a generalised symmetric group. This group is an example of wreath product and has been studied well in literature. Since the centralizer subgroups in the symmetric group are a product of generalised"symmetric groups, we need to have more information about this group. For the sake of clarity, let us begin with defining this group. Consider the action of symmetric group S_{b} on the direct product $C_{a}^{b}=C_{a} \times \cdots \times C_{a}$ given by permuting the components:

$$
\sigma\left(x_{1}, \ldots, x_{b}\right)=\left(x_{\sigma(1)}, \ldots, \dot{x}_{\sigma(b)}\right)
$$

Then the generalised symmetric group is $S(a, b)=C_{a} \imath S_{b}:=C_{a}^{b} \rtimes S_{b}$. Hence the multiplication in this group is given as follows:

$$
\left(x_{1}, \ldots, x_{b}, \sigma\right)\left(y_{1}, \ldots, y_{b}, \tau\right)=\left(x_{1} y_{\sigma^{-1}(1)}, \ldots, x_{b} y_{\sigma^{-1}(b)}, \sigma \tau\right)
$$

This group has a monomial matrix (each row and each column has exactly one non-zero entry) representation where C_{a}^{b} is embedded in the diagonal matrices and the whole group is a subgroup of $G L_{b}(\mathbb{C})$, in particular as a subgroup of monomial group. Monomial group is well known in the study of $G L_{b}(\mathbb{C})$ as an algebraic group. This gives rise to the Weyl group and Bruhat decomposition. Let T be the diagonal maximal torus (set of all diagonal matrices), then the monomial group is the normaliser $N_{G L_{b}(\mathbb{C})}(T)$. The Weyl group is defined as $W=N_{G L_{b}(\mathbb{C})}(T) / T \cong S_{b}$.

Let D be the set of those diagonal matrices in $G L_{b}(\mathbb{C})$ of which each diagonal entry is an a th roots of unity, i.e., each diagonal entry is from the set $\left\{\zeta^{i} \mid 0 \leq i \leq a-1\right\}$ where ζ is an a th primitive root of unity. Assume $b>a$, then, $D \cong C_{a}^{b}$ and the group $S(a, b) \cong N_{G L_{b}(\mathbb{C})}(D)$. Thus, $S(a, b)$ is the set of those monomial matrices which have non-zero entries coming from a th roots of unity. The following can be easily verified:
(1) the center $\mathcal{Z}(S(a, b))=\left\{\lambda . I d \mid \lambda^{a}=1\right\} \cong C_{a}$ if $a \geq 2$ or $b \geq 3$.
(2) $N_{G L_{b}(\mathbb{C})}(D) / D \cong S_{b}$.

Representation theory of the generalised symmetric group has been studied by Osima [Os], Can [Ca], Mishra and Srinivasan [MS], just to mention a few.

$$
3.2 z \text {-classes in } S_{n}
$$

In this section we aim to prove Theorem 1.1. For $n=3$ and 4 the conjugacy classes and z-classes are same. Thus, if necessary, we may assume $n \geq 5$ in this section. Let $\lambda=\lambda_{1}^{e_{1}} \lambda_{2}^{e_{2}} \ldots \lambda_{r}^{e_{r}}$ be a partition of n. Let us denote the partial sums as $n_{i}=\sum_{j=1}^{i} \lambda_{j} e_{j}$ and $n_{0}=0$. We may represent an element of S_{n} corresponding to λ as a product of cycles and we choose a representative of class denoted as $\sigma_{\lambda}=\sigma_{\lambda_{1}} \ldots \sigma_{\lambda_{i}} \ldots \sigma_{\lambda_{r}}$ where

$$
\sigma_{\lambda_{i}}=\underbrace{\left(n_{i-1}+1, \ldots, n_{i-1}+\lambda_{i}\right) \ldots\left(n_{i-1}+\left(e_{i}-1\right) \lambda_{i}+1, \ldots, n_{i-1}+e_{i} \lambda_{i}\right)}_{e_{i}}
$$

is a product of e_{i} many disjoint cycles, each of length λ_{i}. Then the centralizer of this element is (see [JK] Equation 4.1.19)

$$
\mathcal{Z}_{S_{n}}(\lambda):=\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right) \cong \prod_{i=1}^{r} C_{\lambda_{i}}^{i}, 2 S_{e_{i}}
$$

where $C_{\lambda_{i}}$ is a cyclic group of size λ_{i} and the size of the centralizer is given by the formula $\left|\mathcal{Z}_{S_{n}}(\lambda)\right|=\prod_{i=1}^{r}\left(\lambda_{i}^{e_{i}} . e_{i}!\right)$. Further, with the above chosen representative element the center of $\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)$ is,

$$
Z_{\lambda}=\mathcal{Z}\left(\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)\right)= \begin{cases}\prod_{i=1}^{r}\left\langle\sigma_{\lambda_{i}}\right\rangle & \text { if } \lambda_{1}^{e_{1}} \neq 1^{2} \\ \langle(1,2)\rangle \times \prod_{i=2}^{r}\left\langle\sigma_{\lambda_{i}}\right\rangle & \text { when } \lambda_{1}^{\dot{e}_{1}}=1^{2}\end{cases}
$$

Note that if $\lambda_{1}=1$ then the element $\sigma_{\lambda_{1}}=1$.
Lemma 3.1. Let $\lambda=\lambda_{1}^{e_{1}} \lambda_{2}^{e_{2}} \ldots \lambda_{r}^{e_{r}}$ be a partition of n. Then $\mathcal{Z}_{S_{n}}(\lambda)$ determines r uniquely.
Proof. Consider the natural action of $G=\mathcal{Z}_{S_{n}}(\lambda)$ on the set $\{1,2, \ldots, n\}$ as a subgroup of S_{n}. Sincē $G \cong \prod_{i=1}^{r} C_{\lambda_{i}}$ $S_{e_{i}}$, the orbits are $\left\{\left\{1, \ldots, n_{1}\right\},\left\{n_{1}+1, \ldots, n_{2}\right\}, \ldots\right\}$. The number of orbits is exactly r.

Lemma 3.2. Let $\lambda=\lambda_{1}^{e_{1}} \lambda_{2}^{e_{2}} \ldots \lambda_{r}^{e_{r}}$ be a partition of n and $\lambda_{1}^{e_{1}} \neq 1^{2}$. Let Z_{λ} be the center of $\mathcal{Z}_{S_{n}}(\lambda)$. Then Z_{λ} determines the partition λ uniquely.

Proof. Let us make Z_{λ} act on the set $\{1,2, \ldots, n\}$. Then the orbits are of size λ_{i} and each of them occur e_{i} many times. This determines the partition λ.

Proposition 3.3. Let $\lambda=\lambda_{1}^{e_{1}} \lambda_{2}^{e_{2}} \ldots \lambda_{r}^{e_{r}}$ and $\mu=\mu_{1}^{f_{1}} \mu_{2}^{f_{2}} \ldots \mu_{s}^{f_{s}}$ be partitions of n. Then $\mathcal{Z}_{S_{n}}(\lambda)$ is conjugate to $\mathcal{Z}_{S_{n}}(\mu)$ if and only if
(1) $r=s$,
(2) for all $i \geq 2, \lambda_{i}$ and μ_{i} are ≥ 3 and $\lambda_{i}^{e_{i}}=\mu_{i}^{f_{i}}$,
(3) $\lambda_{1}^{e_{1}}=1^{2}$ and $\mu_{1}^{f_{1}}=2^{1}$ or vice versa.

Proof. Clearly if the three conditions are given we have $\lambda=1^{2} v$ and $\mu=2^{1} v$ where $v=v_{1}^{l_{1}} \ldots v_{k}^{l_{k}}$ is a partition of $n-2$ with $\nu_{1}>2$. Thus the representative elements of the conjugacy classes are $\sigma_{\mu}=(12) \sigma_{\lambda}$ and σ_{λ}, where σ_{λ} has cycles each of length >2. Thus centralizers of these two elements are same.

For the converse, we choose representative elements σ_{λ} and σ_{μ} and we are given that $\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)$ and $\mathcal{Z}_{S_{n}}\left(\sigma_{\mu}\right)$ are conjugate. The Lemma 3.1 implies that $r=s$. Now we take the center of both of these groups Z_{λ} and Z_{μ} and make it act on the set $\{1,2, \ldots, n\}$. If $\lambda_{1}^{e_{1}}$ and $\mu_{1}^{f_{1}}$ are not both 1^{2} then from Lemma 3.2 we get the required result.
This proves Theorem 1.1.

4. Rational conjugacy classes in $\boldsymbol{A}_{\boldsymbol{n}}$

The group A_{n} is of index 2 in S_{n}. Thus, we usually think of conjugacy classes in A_{n} in terms of that of S_{n}. We have two kinds of conjugacy classes in A_{n}. Let σ_{λ} be a representative of a conjugacy class, corresponding to a partition λ, of S_{n}. Suppose $\sigma_{\lambda} \in A_{n}$, that is to say, λ is an even partition. Then the two kinds of conjugacy classes are,
a. Split: The conjugacy class of σ_{λ} in S_{n} splits into two conjugacy classes in A_{n} if and only if all parts of λ are distinct and odd, which happens, if and only if $\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)=\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)$.
b. Non-split: The conjugacy class of σ_{λ} remains a single conjugacy class in A_{n} if and only if either one of the $e_{i} \geq 2$ for some i or at least one of the λ_{i} is even, which is, if and only if $\dot{\mathcal{Z}}_{A_{n}}\left(\sigma_{\lambda}\right) \subsetneq \mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)$.
While writing proofs in this section and later sections, we consider these two cases separately.
Let G be a finite group and $g \in G$. The Weyl group of an element g in G, denoted as, $W_{G}(g):=N_{G}(\langle g\rangle) / \mathcal{Z}_{G}(\langle g\rangle)$ where $\langle g\rangle$ is the subgroup generated by g. Using the map $t: N_{G}(\langle g\rangle) \rightarrow \operatorname{Aut}(\langle g\rangle)$ given by $l(x)\left(g^{r}\right)=x g^{r} x^{-1}$, one can show that, the element g in G is rational if and only if $W_{G}(g) \cong \operatorname{Aut}(\langle g\rangle)$. We need to understand Weyl group of elements σ in A_{n}. Since S_{n} is a rational group, we have, the Weyl group $W_{S_{n}}(\sigma) \cong \operatorname{Aut}(\langle\sigma\rangle)$. Thus, to understand if σ is rational in A_{n}, we need to understand $N_{A_{n}}(\langle\sigma\rangle)$. This is determined by Brison (see Theorem 4.3 [Br]) as follows,
Theorem 4.1. Let $\sigma \in A_{n}$ and corresponding partition be $\lambda=\lambda_{1}^{e_{1}} \ldots \lambda_{r}^{e_{r}}$. Then, $N_{S_{n}}(\langle\sigma\rangle)=N_{A_{n}}(\langle\sigma\rangle)$ if and only if λ satisfies the following,
(1) all parts of λ are distinct, i.e., $e_{i}=1$ for all i,
(2) λ_{i} is odd for all i, and
(3) the product of parts $\prod_{i=1}^{r} \lambda_{i} \in \mathbb{Z}$ is a perfect square.

Corollary 4.2. Suppose n is odd and $w=(1,2, \ldots, n)$ is in A_{n}. Then, w is rational in A_{n} if and only if n is a perfect square (of odd number).
Proof. We know w is rational in S_{n}. Thus $W_{S_{n}}(w) \cong \operatorname{Aut}(\langle w\rangle)$. Since n is odd the conjugacy class of w in S_{n} splits in A_{n} and $\mathcal{Z}_{A_{n}}(w)=\mathcal{Z}_{S_{n}}(w)$. Thus w is rational in A_{n} if and only if $N_{S_{n}}(\langle w\rangle)=N_{A_{n}}(\langle w\rangle)$ which is if and only if n is a perfect square (from Theorem 4.1 above).

Now we determine which conjugacy classes are rational in A_{n}.
When the conjugacy class does not split, $C=\sigma_{\lambda}^{S_{n}}=\sigma_{\lambda}^{A_{n}}$ and $\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right) \subsetneq \mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)$ is of index 2 . Then,
Proposition 4.3. Let C be a non-split conjugacy class in A_{n}. Then, C is rational in A_{n}.
Proof. For this, we need to prove σ_{λ} is conjugate to σ_{λ}^{m} for all m which is coprime to the order of σ_{λ}. Since S_{n} is rational we have $g \in S_{n}$ such that $g \sigma_{\lambda} g^{-1}=\sigma_{\lambda}^{m}$. If g is in A_{n} we are done. Else take $h \in \mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)$ which is not in $\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)$. Now $g h \in A_{n}$ and $g h \sigma_{\lambda} h^{-1} g^{-1}=\sigma_{\lambda}^{m}$, and we are done.

When the conjugacy class splits, let C be the conjugacy class of σ_{λ} in S_{n} where $\lambda=\lambda_{1}^{1} \ldots \lambda_{r}^{1}$ with all λ_{i} odd (and distinct). Let C_{1} and C_{2} be the conjugacy classes in A_{n}, which are obtained by splitting C. Then,

Proposition 4.4. With the notation as above, both A_{n} conjugacy classes C_{1} and C_{2} are rational if and only if $\prod_{i=1}^{r} \lambda_{i}$ is a perfect square.

Proof. In this case, we have $\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)=\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)$. Thus $W_{A_{n}}\left(\sigma_{\lambda}\right)=W_{S_{n}}\left(\sigma_{\lambda}\right) \cong \operatorname{Aut}\left(\left\langle\sigma_{\lambda}\right\rangle\right)$ if and only if $N_{A_{n}}\left(\left\langle\sigma_{\lambda}\right\rangle\right)=$ $N_{S_{n}}\left(\left\langle\sigma_{\lambda}\right\rangle\right)$. Which is determined by Theorem 4.1.
We remark that either both conjugacy classes C_{1} and C_{2} are rational or not rational simultaneously.
Proposition 4.5. With the notation as above, suppose both conjugacy classes C_{1} and C_{2} are not rational. Then the subset $C=C_{1} \cup C_{2}$ is a rational class in A_{n}.

Proof. This follows easily because C is a rational conjugacy class in S_{n}.
Proof of Theorem 1.5 Let \tilde{C} be a conjugacy class in A_{n}. Consider the conjugacy class C in S_{n} containing \tilde{C}. Let $\lambda=\lambda_{1}^{e_{1}} \ldots \lambda_{r}^{e_{r}}$ be the corresponding partition of C. Then either $\tilde{C}=C$ or $C=C_{1} \cup C_{2}$, where \tilde{C} is one of the C_{1} or C_{2}. If $\tilde{C}=C$ it follows from Proposition 4.3 that it is always rational and this corresponds to the partitions where either $e_{i} \geq 2$ for some i or one of the λ_{i} is even.

Now suppose $C=C_{1} \cup C_{2}$, where \tilde{C} is one of the components. Then from Proposition 4.4, it follows that both C_{1} and C_{2}, and hence \tilde{C}, are rational if and only if $\prod_{i=1}^{r} \lambda_{i}$ is a square. That is, in this case the partition λ has all parts distinct, odd and the product of parts is a square.

When \tilde{C} is not a rational conjugacy class, Proposition 4.5 implies C is a rational class in A_{n}. This completes the proof.

5. z-classes in $\boldsymbol{A}_{\boldsymbol{n}}$ - when the conjugacy class splits

Since the z-equivalence is a relation on conjugacy classes we deal with split and non-split classes separately. We begin with a few Lemmas.

Lemma 5.1. Let x, y be elements in A_{n} such that x and y are conjugate in S_{n}. If there exists $g \in A_{n}$ such that g is conjugate to y in A_{n} and $\mathcal{Z}_{A_{n}}(g)=\mathcal{Z}_{A_{n}}(x)$ then centralizers $\mathcal{Z}_{A_{n}}(x)$ and $\mathcal{Z}_{A_{n}}(y)$ are conjugate in A_{n}.

Proof. Since g and y are conjugate in A_{n}, their centralizers $\mathcal{Z}_{A_{n}}(g)$ and $\mathcal{Z}_{A_{n}}(y)$ are conjugate in A_{n}. Hence centralizers $\mathcal{Z}_{A_{n}}(x)$ and $\mathcal{Z}_{A_{n}}(y)$ are conjugate in A_{n}.

The following Lemma establishes partial converse to the above.
Lemma 5.2. Let $\lambda=\lambda_{1} \ldots \lambda_{r}$ be a partition with all parts (distinct and) odd. Let x and y be elements in A_{n} representing the two distinct conjugacy classes corresponding to λ. Suppose $x=x_{1} x_{2} \ldots x_{r}$ and $y=y_{1} y_{2} \ldots y_{r} \in A_{n}$, where x_{i} and y_{i} are cycles of length λ_{i} and centralizers $\mathcal{Z}_{A_{n}}(x)$ and $\mathcal{Z}_{A_{n}}(y)$ are conjugate in A_{n}. Then, y is conjugate to $x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{r}^{i_{r}}$ in A_{n} for some positive integers i_{1}, \ldots, i_{r}, where i_{j} is coprime to λ_{j} (which is the order of x_{j}) for all j.

Proof. Since x and y are z-conjugate in A_{n}, i.e., there exist $g \in A_{n}$ such that $\mathcal{Z}_{A_{n}}(x)=g \mathcal{Z}_{A_{n}}(y) g^{-1}=$ $\mathcal{Z}_{A_{n}}\left(g y g^{-1}\right)$. Now, we know that $\mathcal{Z}_{A_{n}}(x)=\mathcal{Z}_{S_{n}}(x)=\left\langle x_{1}, x_{2}, \ldots, x_{r}\right\rangle \cong C_{\lambda_{1}} \times \cdots \times C_{\lambda_{r}}$. Hence gyg $^{-1}=$ $x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{r}^{i_{r}}$ for some i_{1}, \ldots, i_{r}. Therefore, y is conjugate to $x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{r}^{i_{r}}$ in A_{n}.
Now we prove the main proposition of this section.
Proposition 5.3. Let $\lambda=\lambda_{1} \ldots \lambda_{r}$ be a partition with all parts (distinct and) odd. Let x and y be elements in A_{n} representing the two distinct conjugacy classes corresponding to λ. Suppose $x=x_{1} x_{2} \ldots x_{r}$ and $y=y_{1} y_{2} \ldots y_{r}$ written as a product of disjoint cycles where x_{i} and y_{i} are of length λ_{i}. Then, x and y are not z-conjugate in A_{n} if and only if each λ_{i} is a perfect square (of odd number) $\forall i=1, \ldots, r$.

Proof. First, suppose there exists a k such that λ_{k} is not a perfect square of odd number. We define $A_{\lambda_{k}}$ and $S_{\lambda_{k}}$ to be the subgroups of A_{n} and S_{n} respectively, on the symbols involved in the cycle x_{k}. Corollary 4.2 implies that the element x_{k} is not a rational element of $A_{\lambda_{k}}$. Hence, there exists m with $\left(m, \lambda_{k}\right)=1$ such that x_{k} is not conjugate to x_{k}^{m} in $A_{\lambda_{k}}$. In any case x_{k} is conjugate to x_{k}^{m} in $S_{\lambda_{k}}$, say, there exists $s \in S_{\lambda_{k} \backslash} \backslash A_{\lambda_{k}}$ such that $s x_{k} s^{-1}=x_{k}^{m}$. Thus, $s x s^{-1}=s x_{1} x_{2} \ldots x_{k} \ldots x_{r} s^{-1}=x_{1} x_{2} \ldots x_{k-1} x_{k}^{m} x_{k+1} \ldots x_{r}$. We claim that x is not conjugate to $s x s^{-1}$ in A_{n}. Because any two such elements will differ by an element of $\mathcal{Z}_{A_{n}}(x)$ which, in this case, is equal to $\mathcal{Z}_{S_{n}}(x)$ thus all such elements would be even. This implies that x and $s x s^{-1}$ are representatives of the two distinct conjugacy classes obtained by splitting that of x hence $s x s^{-1}$ is conjugate to y. But $\mathcal{Z}_{A_{n}}(x)=\left\langle x_{1}, x_{2}, \ldots, x_{r}\right\rangle=$ $\left\langle x_{1}, x_{2}, \ldots, x_{k-1}, x_{k}^{m}, x_{k+1}, \ldots, x_{r}\right\rangle=\mathcal{Z}_{A_{n}}\left(\right.$ sxs $\left.^{-1}\right)$, because of the structure of $s x s^{-1}$. Lemma 5.1 implies that $\mathcal{Z}_{A_{n}}(x)$ and $\mathcal{Z}_{A_{n}}(y)$ are conjugate in A_{n}.

Now, assume that each λ_{i} is a perfect square (of odd number), for all i. We define the subgroups $A_{\lambda_{i}}$ of A_{n} on the symbols appearing in the cycle x_{i} for all i. Corollary 4.2 implies that x_{i} is rational in $A_{\lambda_{i}}$, hence x_{i} is conjugate to $x_{i}^{m_{i}}$ in $A_{\lambda_{i}}$ for all m_{i} with $\left(m_{i}, \lambda_{i}\right)=1$. Let $\left(j_{1}, \ldots, j_{r}\right)$ be a tuple where $\left(j_{i}, \lambda_{i}\right)=1$. Then we can find $s_{j_{i}} \in A_{\lambda_{i}}$ such that $s_{j_{i}} x_{i} s_{j_{i}}^{-1}=x_{i}^{j_{i}}$. Thus $s_{j_{1}} s_{j_{2}} \ldots s_{j_{r}}$ is in A_{n} and conjugates x to $x_{1}^{j_{1}} x_{2}^{j_{2}} \ldots x_{r}^{j_{r}}$. Hence, y can not be conjugate to $x_{1}^{j_{1}} x_{2}^{j_{2}} \ldots x_{r}^{j_{r}}$ for any tuple $\left(j_{1}, \ldots, j_{r}\right)$ where (j_{i}, λ_{i}) $=1$. Lemma 5 .2, implies that x and y can not be z-conjugate in A_{n}.

6. The center of centralizers in $\boldsymbol{A}_{\boldsymbol{n}}$

In Lemma 3.2 we showed that, for the group S_{n}, the center of centralizers Z_{λ} determines the partition λ uniquely via its action on the set $\{1,2, \ldots, n\}$ except in one case when $\lambda_{1}^{e_{1}}=1^{2}$. For the alternating groups we employ similar strategy.

Let us begin with the case when the partition λ has only one part, say, $\lambda=a^{b}$. The representative element can be chosen as follows,

$$
\sigma_{\lambda}=(1,2, \ldots, a)(a+1, a+2, \ldots, 2 a) \ldots((b-1) a+1,(b-1) a+2, \ldots, b a)
$$

which for convenience will be written as $\sigma_{\lambda}=\sigma_{\lambda, 1} \sigma_{\lambda, 2} \ldots \sigma_{\lambda, b}$ where $\sigma_{\lambda, i}$ are cycles of length a. And the centralizer is

$$
\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)=(\langle(1,2, \ldots, a)\rangle \times \cdots \times\langle((b-1) a+1,(b-1) a+2, \ldots, b a)\rangle) \rtimes S_{b}
$$

where S_{b} permutes the various cyclic subgroups. To avoid confusion, we write the elements of S_{b} using roman numerals. For example, the element ($I, I I$) in S_{b} would be actually $(1, a+1)(2, a+2) \ldots(a, 2 a)$ in $\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)$, similarly, the element $(I, I I, \ldots, b)$ in S_{b} would be $(1, a+1, \ldots,(b-1) a+1)(2, a+2, \ldots$, $(b-1) a+2) \ldots(a, 2 a, \ldots, b a)$. In general, the cycle $(I, I I, \ldots, i)$ in S_{b} would be $(1, a+1, \ldots$, $(i-1) a+1)(2, a+2, \ldots,(i-1) a+2) \ldots(a, 2 a, \ldots, i a)$ which is a product of a many disjoint cycles, each of length i. We can also compute $\operatorname{sgn}((I, I I \ldots, i))=\operatorname{sgn}((1,2, \ldots, i))^{a}$ which will be useful to determine if ($I, I I \ldots, i$) belongs to A_{n}, when needed. We begin with,

Lemma 6.1. If $\lambda=a^{b}$ is a partition of n and $b \geq 2$ then $\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)$ contains at least one odd permutation.
Proof. If a is even then the cycle $(1,2, \ldots, a) \in \mathcal{Z}_{S_{n}}\left(\sigma_{2}\right)$ is odd and we are done. Thus we may assume a is odd. From the computation above, $\operatorname{sgn}((I, I I))=(-1)^{a}=-1$ hence $(I, I I)$ is odd.
Lemma 6.2.
(1) If $\tau=(I, I I, \ldots, b) \in \mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)$ then $\mathcal{Z}_{\mathcal{Z}_{S_{n}}\left(\sigma_{2}\right)}(\tau)=\left\langle\tau, \sigma_{\lambda}\right\rangle$,
(2) If $\tau=(I, I I, \ldots, b-1) \in \mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)$ then $\mathcal{Z}_{\mathcal{Z}_{S_{n}}\left(\sigma_{2}\right)}(\tau)=\left\langle\tau, \sigma_{\lambda, b}, \prod_{i=1}^{b-1} \sigma_{\lambda, i}\right\rangle$,

Proof. The proof is simple and follows from the multiplication defined on $S(a, b)$ in Section 3.1.
We need to understand the center of centralizers of elements in A_{n}. Suppose $\lambda=\lambda_{1}^{e_{1}} \lambda_{2}^{e_{2}} \ldots \lambda_{r}^{e_{r}}$ is a partition of even type, i.e., $\sigma_{\lambda} \in A_{n}$. Recall the notation, $\sigma_{\lambda}=\sigma_{\lambda_{1}} \ldots \sigma_{\lambda_{r}}$, the centralizer is $\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right) \cong \prod_{i=1}^{r} \mathcal{Z}_{S_{e_{i} \lambda_{i}}}\left(\sigma_{\lambda_{i}}\right)$ and its center is denoted as Z_{λ}.

Lemma 6.3. Let $x \in A_{n}$. Then, $Z_{\lambda} \cap A_{n}=\mathcal{Z}\left(\mathcal{Z}_{S_{n}}(x)\right) \cap A_{n} \subseteq \mathcal{Z}\left(\mathcal{Z}_{A_{n}}(x)\right)$.
Proof. Let $g \in \mathcal{Z}\left(\mathcal{Z}_{S_{n}}(x)\right) \cap A_{n}$ then $g \in \mathcal{Z}_{A_{n}}(x)$. Now $\mathcal{Z}_{A_{n}}(x)=\mathcal{Z}_{S_{n}}(x) \cap A_{n}$ thus we get $g \in \mathcal{Z}\left(\mathcal{Z}_{A_{n}}(x)\right)$.
Now we need to decide when $\mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right) \supsetneq Z_{\lambda} \cap A_{n}$. For the convenience of reader we draw a diagram of the subgroups involved in the proofs. We call the elements of \mathcal{Z}_{λ} "diagonal elements" and the elements of $\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)$ which are not central "non-diagonal elements".

The main theorem is as follows,
Theorem 6.4. Let λ be a partition of n and $\sigma_{\lambda} \in A_{n}$. Then $\mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right) \supsetneq Z_{\lambda} \cap A_{n}$ if and only if λ is one of the following:
(1) $1^{3} v ; 2^{2} v ; 1^{1} 2^{2} v$ where $v=\lambda_{3} \ldots \lambda_{r}$ with all $\lambda_{i} \geq 3$ and odd.
(2) $1^{1} \nu$; ν where $\nu=\lambda_{3} \ldots \lambda_{j-1} \lambda_{j}^{2} \lambda_{j+1} \ldots \lambda_{r}$ where $\lambda_{i} \geq 3$ and odd for all i.

The rest of this section is devoted to the proof of this theorem.
Lemma 6.5. Let $\lambda=\lambda_{1}^{\iota_{1}} \ldots \lambda_{r}^{e_{r}}$ where at least two distinct e_{i} and e_{j} are ≥ 2. Then, $\mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right)=Z_{\lambda} \cap A_{n}$.
Proof. Let us first take the case when $\lambda_{1}=1, e_{1} \geq 2$ and some other e_{i} is ≥ 2. We have $\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)=S_{e_{1}} \times$ $\mathcal{Z}_{S_{c_{2} \lambda_{2}}}\left(\sigma_{\lambda_{2}}\right) \times \cdots \times \mathcal{Z}_{S_{e_{r} \lambda_{r}}}\left(\sigma_{\lambda_{r}}\right)$. We note that when $e_{1}=2$ the subgroup S_{2} is central. Let $g=\left(g_{1}, \ldots, g_{r}\right) \in$ $\mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right)$ but $g \notin Z_{2}$. That is, there exists some j such that g_{j} is non-diagonal element in $\mathcal{Z}_{S_{e_{j} \lambda_{j}}}\left(\sigma_{\lambda_{j}}\right)$.

Suppose $j \neq 1$. Since g_{j} is non-diagonal there exists $h_{j} \in \mathcal{Z}_{S_{e_{j} \lambda_{j}}}\left(\sigma_{\lambda_{j}}\right)$ such that $h_{j} g_{j} \neq g_{j} h_{j}$. Now define $h=\left(1, \ldots, 1, h_{j}, 1, \ldots, 1\right)$ if h_{j} is even else $h=\left((1,2), 1, \ldots, 1, h_{j}, 1, \ldots, 1\right)$. Then $h \in A_{n} \cap \mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)=$ $\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)$ but $g h \neq h g$, a contradiction.

Now if $j=1$ the element g_{1} is non-diagonal in $S_{e_{1}}$, that is, $g_{1} \neq 1$. We may also assume that all other g_{i}, other than the first one, are diagonal. However if $e_{1}=2$ the element $g=\left((1,2), g_{2}, \ldots g_{r}\right)$ is already in Z_{λ}, so we couldn't have assumed otherwise. Now if $e_{1} \geq 3$, pick $h_{1} \in S_{e_{1}}$ which does not commute with g_{1}. Now define $h=\left(h_{1}, 1, \ldots, 1\right)$ if h_{1} is even. Else define $h=\left(h_{1}, 1, \ldots, 1, w, 1, \ldots, 1\right)$ where $w \in \mathcal{Z}_{S_{e_{i} \lambda_{i}}}\left(\sigma_{\lambda_{i}}\right)$ is an odd permutation guaranteed by Lemma 6.1. Then $h \in A_{n}$ but $g h \neq h g$, a contradiction.

The proof when $e_{1}=1$ and $\lambda_{1}=1$ or $\lambda_{1}>1$ follows similarly. Now two components i and j will have odd elements because of Lemma 6.1 which can be used to change the sign to get an appropriate h.

This reduces drastically the number of cases we need to look at. Thus we may assume that at most one e_{i} is greater than 2 or none, i.e., $\lambda=\lambda_{1} \ldots \lambda_{i-1} \lambda_{i}^{e_{i}} \lambda_{i+1} \ldots \lambda_{r}$ with $e_{i} \geq 1$. Let us deal with the case when $i=1$ and $\lambda_{1}=1$.

Lemma 6.6. Let $\lambda=1^{e_{1}} \lambda_{2} \ldots \lambda_{r}$ be a partition of n. Then, $\mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right) \supsetneq Z_{\lambda} \cap A_{n}$ if and only if $\lambda=1^{3} \lambda_{2} \ldots \lambda_{r}$ where $\lambda_{i}>1$ and odd for all i.

Proof. Suppose λ is not of the form $1^{3} \lambda_{2} \ldots \lambda_{r}$ where $\lambda_{i}>1$ and odd for all i. So, if $e_{1}=0,1$ or 2 then $\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)$ is Abelian and its subgroup $\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)$ is also Abelian. Therefore,

$$
\mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right)=\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)=\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right) \cap A_{n}=Z_{\lambda} \cap A_{n}
$$

Thus, we assume $e_{1} \geq 3$. Suppose at least one λ_{j} is even. Now σ_{λ} has e_{1} fixed points. Hence, $\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)=$ $S_{e_{1}} \times\left\langle\sigma_{\lambda_{2}}\right\rangle \times \cdots \times\left\langle\sigma_{\lambda_{r}}\right\rangle$ and $Z_{\lambda}=\mathcal{Z}\left(\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)\right)=\left\langle\sigma_{\lambda_{2}}\right\rangle \times \cdots \times\left\langle\sigma_{\lambda_{r}}\right\rangle$ since λ_{i} are distinct. Now let $g \in \mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right) \subset$ $\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)$. Write $g=\left(g_{1}, g_{2}, \ldots, g_{r}\right)$. If $g \notin Z_{\lambda} \cap A_{n}$ then $g_{1} \neq 1$. But we can find $h_{1} \in S_{e_{1}}$ such that $g_{1} h_{1} \neq h_{1} g_{1}$.

Define $h=\left(h_{1}, 1, \ldots, 1\right)$ if h_{1} is even else $h=\left(h_{1}, 1, \ldots, 1, \sigma_{\lambda_{j}}, 1, \ldots, 1\right)$. Clearly $h \in A_{n} \cap \ddagger s_{n}\left(\sigma_{\lambda}\right)=\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)$ and $g h \neq h g$. This contradicts that $g \in \mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right)$, thus $\mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right)=Z_{\lambda} \cap A_{n}$.

Now suppose $e_{1} \geq 4$ and all λ_{i} are odd. In this case, $\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)=A_{e_{1}} \times\left\langle\sigma_{\lambda_{2}}\right\rangle \times \cdots \times\left\langle\sigma_{\lambda_{r}}\right\rangle$ since all $\sigma_{\lambda_{i}}$ are even. And $\mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right)=\left\langle\sigma_{\lambda_{2}}\right\rangle \times \cdots \times\left\langle\sigma_{\lambda_{r}}\right\rangle$ which is equal to $Z_{\lambda} \cap A_{n}$.

For the converse, $\lambda=1^{3} \lambda_{2} \ldots \lambda_{r}$ with all λ_{i} odd. Then $\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)=S_{3} \times\left\langle\sigma_{\lambda_{2}}\right\rangle \times \cdots \times\left\langle\sigma_{\lambda_{r}}\right\rangle$ and $\mathcal{Z}_{\lambda}=\mathcal{Z}\left(\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)\right)=$ $\left\langle\sigma_{\lambda_{2}}\right\rangle \times \cdots \times\left\langle\sigma_{\lambda_{r}}\right\rangle \subset A_{n}$. Also $\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)=A_{3} \times\left\langle\sigma_{\lambda_{2}}\right\rangle \times \cdots \times\left\langle\sigma_{\lambda_{r}}\right\rangle=\mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right)$. Hence $\mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right) \supsetneq Z_{\lambda} \cap A_{n}$.

This also takes care of the case when all parts are distinct so we may assume $e_{i} \geq 2$. Thus, assume either $i \geq 2$ or $\lambda_{1} \geq 2$. That is we can have at most one fixed point, if at all. If σ_{λ} has one fixed point, say, $\sigma_{\lambda}(n)=n$ then we may consider $\sigma_{\lambda} \in A_{n-1}$ with no fixed points. Further $\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)=\mathcal{Z}_{A_{n-1}}\left(\sigma_{\lambda}\right)$. Therefore, it is enough to study the partitions which do not have 1 as its part, i.e., we have $\lambda_{1}>1$.
Lemma 6.7. Let $\lambda=\lambda_{1} \ldots \lambda_{i-1} \lambda_{i}^{e_{i}} \lambda_{i+1} \ldots \lambda_{r}$ be a partition with $\lambda_{1}>1$. Further suppose λ satisfies one of the followings,
(1) $e_{i} \geq 3$, or,
(2) $\lambda_{i}>2$ and is even.

Then, $\mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right)=Z_{\lambda} \cap A_{n}$.
Proof. We prove (1) first. Let $g=\left(g_{1}, \ldots, g_{r}\right) \in \mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right)$ but $g \notin Z_{\lambda}$. All g_{j} are diagonal except g_{i} which is non-diagonal. The element $g_{i} \in \mathcal{Z}_{S_{c_{i} i_{i}}}\left(\sigma_{\lambda_{i}}\right)$ where $\sigma_{\lambda_{i}}=\sigma_{\lambda_{i, 1}} \ldots \sigma_{\lambda_{i, e_{i}}}$. Recall the notation that $\sigma_{\lambda_{i, j}}$ are cycles of length λ_{i} as introduced in the beginning of Section 6. Now consider $\tau=\left(I, I I, \ldots, e_{i}\right)$ as in Lemma 6.2. Then $\mathcal{Z}_{\mathcal{Z S}_{e_{i} \lambda_{i}}\left(\sigma_{i_{i}}\right)}(\tau)=\left\langle\sigma_{\lambda_{i}}, \tau\right\rangle$. If $g_{i}=\tau$ then it does not commute with $h_{i}=\sigma_{\lambda_{i, 1}} \sigma_{\lambda_{i, 2}}$ (remember that $e_{i} \geq 3$). Since all $\sigma_{\lambda_{i, j}}$ are of same length λ_{i} this is an element in A_{n}. Thus we get $h=\left(1, \ldots, 1, h_{i}, 1 \ldots, 1\right)$ in $\mathcal{Z}_{A_{n}}\left(\sigma_{l}\right)$ which does not commute with g, a contradiction.

On other hand if $g_{i} \neq \tau$ then g_{i} does not commute with τ. We observe that τ is a product of λ_{i} many cycles, each of length e_{i}. If e_{i} is odd then τ is an even permutation. Further, if both e_{i} and λ_{i} are even then, also, τ is an even permutation. And in these cases we may take $h_{i}=\tau$ and get a contradiction as above.

Now let us assume that λ_{i} is odd and e_{i} is even and thus τ is an odd permutation. In this case instead of τ we make use of two elements $\tau_{1}, \tau_{2} \in \mathcal{Z}_{S_{e_{i} \lambda_{i}}}\left(\sigma_{\lambda_{i}}\right)$ as follows. The element $\tau_{1}=\left(I I, I I I, \ldots, e_{i}\right)$ and $\tau_{2}=\left(I, I I, \ldots, e_{i}-1\right)$. Each of the τ_{1} and τ_{2} are product of λ_{i} many cycles, each of length $e_{i}-1$ and hence even. Now we note that $\mathcal{Z}_{\mathcal{Z}_{s_{e_{i} i_{i}}}\left(\sigma_{\left.\tau_{i}\right)}\right.}\left(\tau_{1}\right)=\left\langle\sigma_{\lambda_{i, 1}}, \prod_{j=2}^{e_{i}} \sigma_{\lambda_{i, j}}, \tau_{1}\right\rangle$ and $\mathcal{Z}_{\mathcal{Z}_{s_{i} \lambda_{i}}}\left(\sigma_{\left.\lambda_{i}\right)}\right)\left(\tau_{2}\right)=\left\langle\sigma_{\lambda_{i, e_{i}}}, \prod_{j=1}^{e_{i}-1} \sigma_{\lambda_{i, j}}, \tau_{2}\right\rangle$ (see Lemma 6.2). This gives us that $\mathcal{Z}_{\mathcal{Z}_{S_{c_{i}} \lambda_{i}}\left(\sigma_{\lambda_{i}}\right)}\left(\tau_{1}\right) \cap \mathcal{Z}_{\mathcal{Z}_{s_{i} \lambda_{i}}\left(\sigma_{\lambda_{i}}\right)}\left(\tau_{2}\right)=\left\langle\sigma_{\lambda_{i}}\right\rangle$. Since g_{i} is non-diagonal it does not commute with either τ_{1} or τ_{2} else it would be in the intersection of centralizers which is diagonal. Thus we may take h_{i} to be τ_{1} or τ_{2} as required, and get a contradiction.

For the proof of (2), let $g=\left(g_{1}, \ldots, g_{r}\right) \in \mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right)$ but $g \notin Z_{\lambda}$. The component g_{i} is non-diagonal element in $\mathcal{Z}_{S_{e_{i} \lambda_{i}}}\left(\sigma_{\lambda_{i}}\right)$. In this case $\sigma_{\lambda_{i}}=\sigma_{\lambda_{i, 1}} \sigma_{\lambda_{i, 2}}$. Take $\tau=(I, I I)$ then τ is an even permutation as λ_{i} is even. If $\tau \neq g_{i}$ take $h_{i}=\tau$ and we are done. Else if $g_{i}=\tau$ then we take $\sigma_{\lambda_{i, 1}}^{2}$. Since $\lambda_{i}>2, \sigma_{\lambda_{i, 1}}^{2} \neq 1$ and it is even permutation. And now taking $h_{i}=\sigma_{\lambda_{i}, 1}^{2}$ would lead to a contradiction.

This leaves us with the following case now. The partition is $\lambda=\lambda_{1} \ldots \lambda_{i-1} \lambda_{i}^{2} \lambda_{i+1} \ldots \lambda_{r}$ with $\lambda_{1}>1$ and either $\lambda_{i}=2$ or λ_{i} is odd. And this is where all complication lies.

Lemma 6.8. Let λ with $\lambda_{1}>1$ be one of the following,
(1) $\lambda_{1} \ldots \lambda_{i-1} \lambda_{i}^{2} \lambda_{i+1} \ldots \lambda_{r}$, and suppose, λ_{i} is odd and λ_{m} even for some $m \neq i$, or,
(2) $2^{2} \lambda_{2} \ldots \lambda_{r}$ with some λ_{m} even.

Then, $\mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{2}\right)\right)=Z_{2} \cap A_{n}$.
Proof. For the proof of (1), let $g=\left(g_{1}, \ldots, g_{r}\right) \in \mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right)$ but $g \notin Z_{\lambda}$. Then g_{i} is non-diagonal. Pick $h_{i} \in \mathcal{Z}_{S_{e_{i}} \lambda_{i}}\left(\sigma_{\lambda_{i}}\right)$ such that $h_{i} g_{i} \neq g_{i} h_{i}$. If h_{i} is even then $h=\left(1, \ldots, h_{i}, \ldots, 1\right)$ would do the job. Else take $h=\left(1, \ldots, h_{i}, 1, \ldots, \sigma_{\lambda_{m}}, 1 \ldots, 1\right)$ which is an even permutation, and does the job.

In the second case, we have $\sigma_{\lambda}=(1,2)(3,4) \sigma_{\lambda_{2}} \ldots \sigma_{\lambda_{r}}$ and $\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)=\mathcal{Z}_{S_{4}}((1,2)(3,4)) \times\left\langle\sigma_{\lambda_{2}}\right\rangle \times \cdots \times\left\langle\sigma_{\lambda_{r}}\right\rangle$. Let $g=\left(g_{1}, \ldots, g_{r}\right) \in \mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right)$ but $g \notin Z_{\lambda}$. In this case g_{1} has to be non-diagonal. Now we can do the same thing as above to get a contradiction.

At this step we are left with the λ of following kinds, and its variant (see the discussion following Lemma 6.6) with exactly one fixed point,
(1) $\lambda_{1} \ldots \lambda_{i-1} \lambda_{i}^{2} \lambda_{i+1} \ldots \lambda_{r}$, where all λ_{j} are odd, and,
(2) $2^{2} \lambda_{2} \ldots \lambda_{r}$, where all λ_{j} are odd.

Now we are ready to prove the main theorem of this section,
Proof of Theorem 6.4 Lemma 6.5, 6.6,6.7 and 6.8 prove that if the partition λ is not of the type listed in the theorem then $\mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right)=Z_{\lambda} \cap A_{n}$. Thus it remains to prove if λ is of one the kinds listed in the theorem then we do not get equality. Which we prove now case-by-case.

In case $\lambda=1^{3} \lambda_{3} \ldots \lambda_{r}$ and λ_{i} are odd for all i then the result follows from Lemma 6.6. Now, take $\lambda=2^{2} \lambda_{3} \lambda_{4} \ldots \lambda_{r}$ and $\lambda_{3} \geq 2$ and odd for all i. Write $\sigma_{\lambda}=(1,2)(3,4) \sigma_{\lambda_{3}} \ldots \sigma_{\lambda_{r}}$ then $\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)=\{1,(1,2),(3,4)$, $(1,2)(3,4),(1,3)(2,4),(1,3,2,4),(1,4,2,3),(1,4)(2,3)\} \times\left\langle\sigma_{\lambda_{3}}\right\rangle \cdots \times\left\langle\sigma_{\lambda_{r}}\right\rangle$. And $\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)=\{1,(1,2)(3,4)$, $(1,3)(2,4),(1,4)(2,3)\} \times\left\langle\sigma_{\lambda_{3}}\right\rangle \cdots \times\left\langle\sigma_{\lambda_{r}}\right\rangle$ which is equal to its own center, being commutative. However the element $(1,3)(2,4) \notin Z_{\lambda}$. Thus we get strict inequality in this case. The argument is similar when $\lambda=1^{1} 2^{2} \lambda_{3} \ldots \lambda_{r}$.

Now suppose $\lambda=\lambda_{3} \ldots \lambda_{i-1} \lambda_{i}^{2} \lambda_{i+1} \ldots \lambda_{r}$ with $\lambda_{3} \geq 3$ and all odd. In this case, $\sigma_{\lambda}=\sigma_{\lambda_{3}} \ldots \sigma_{\lambda_{i}} \ldots \sigma_{\lambda_{r}}$ where $\sigma_{\lambda_{j}}$ is a cycle of length λ_{j} for $j \neq i$ and $\sigma_{\lambda_{i}}=\sigma_{\lambda_{i, 1}} \sigma_{\lambda_{i, 2}}$ is a product of two cycles, each of length λ_{i}. Then $\sigma_{\lambda_{i}, 1}$ and $\sigma_{\lambda_{i}, 2}$ both belong to $\mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right)$ but none of them belong to Z_{λ} instead their product belongs. A similar argument works for the case when $\lambda=1^{1} \lambda_{3} \ldots \lambda_{i-1} \lambda_{i}^{2} \lambda_{i+1} \ldots \lambda_{r}$.

7. z-classes in $A_{\boldsymbol{n}}$ - when the conjugacy class does not split

Our strategy for the proof is similar to that of S_{n} case. That is, we look at the action of $\mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right)$ on $\{1,2, \ldots, n\}$ and decide when it determines the partition. This works in almost all cases. We continue to use notation from previous sections.

Proposition 7.1. The action of $Z_{\lambda} \cap A_{n}$ on the set $\{1,2, \ldots, n\}$ determines the partition λ uniquely except when $\lambda_{1}^{e_{1}}=1^{2}$.

Proof. We know that the action of Z_{λ} on the set $\{1,2, \ldots, n\}$ determines the partition uniquely except when $\lambda_{1}^{e_{1}}=1^{2}$ (see Lemma 3.2). We need to prove that if two points in $\{1,2, \ldots, n\}$ are related under the action of Z_{λ} then they are so under the action of $Z_{\lambda} \cap A_{n}$.

Since $\sigma_{\lambda}=\sigma_{\lambda_{1}} \ldots \sigma_{\lambda_{r}}$, we reorder $\sigma_{\lambda_{k}}$'s, if required, so that $\sigma_{\lambda_{k}}$ for $1 \leq k \leq l$ are even permutations and $\sigma_{\lambda_{k}}$ for $l<k \leq r$ are odd permutations. Since σ_{λ} is an even permutation, the number of odd permutations $r-l$ is even (including 0). If $r=l$ then $Z_{\lambda}=Z_{\lambda} \cap A_{n}$ and we are done. Else suppose $i \neq j$ are related under Z_{λ}. That is, there exists t such that $\sigma_{\lambda_{t}}^{m}(i)=j$ for some power m. If $\sigma_{\lambda_{t}}^{m}$ is even, we are done. So we may assume $\sigma_{\lambda_{t}}^{m}$ is odd. But since the number of odd permutations is assumed to be even we have another odd permutation $\sigma_{\lambda_{s}}$ disjoint from this one. Thus, $\sigma_{\lambda_{s}} \sigma_{\lambda_{t}}^{m}$ will do the job.

We record the following example of the exception case. Take $\lambda=1^{2} 4^{1} \vdash 6$ then $\mathcal{Z}_{S_{6}}(3,4,5,6)=\langle(1,2)\rangle \times$ $\langle(3,4,5,6)\rangle=Z_{1^{2} 4^{1}}$. And $Z_{1^{2} 4^{1}} \cap A_{5}=\langle(1,2)(3,4,5,6)\rangle$ which would determine the partition $2^{1} 4^{1}$. Now let us look at the case when $\mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right) \neq \mathcal{Z}_{\lambda} \cap A_{n}$. In this case we have the following,

Proposition 7.2. If λ is one of the following with σ_{λ} in A_{n},
(1) $1^{2} \lambda_{2}^{e_{2}} \ldots \lambda_{r}^{e_{r}}$, where $\lambda_{2} \geq 2$, or,
(2) $1^{1} \nu$, v where $v=\lambda_{2} \ldots \lambda_{i-1} \lambda_{i}^{2} \lambda_{i+1} \ldots \lambda_{r}$, where $\lambda_{j} \geq 3$ and odd for all j,
then, the action of $\mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right)$ on the set $\{1,2, \ldots, n\}$ determines the partition λ uniquely.

Proof. The first case appears in S_{n}, where $\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)$ determines all $\lambda_{i}>2$ except for the first orbit which is $\{1,2\}$. Thus there are two possibilities either 1^{2} or 2^{1}. Since $\sigma_{\lambda}=\sigma_{\lambda_{2}} \ldots \sigma_{\lambda_{r}} \in A_{n}$ we note that the partition $2^{1} \lambda_{2}^{e_{2}} \ldots \lambda_{r}^{e_{r}}$ is not even because this would correspond to the element $(1,2) \sigma_{\lambda}=(1,2) \sigma_{\lambda_{2}} \ldots \sigma_{\lambda_{r}}$ which is odd. Thus this leaves a unique choice for λ where the first part must be 1^{2}.

For the part (2), from the proof of Theorem 6.4, we see that

$$
\mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right)=\left\langle\sigma_{\lambda_{1}}, \ldots, \sigma_{\lambda_{i-1}}, \sigma_{\lambda_{i, 1}}, \sigma_{\lambda_{i, 2}}, \sigma_{\lambda_{i+1}}, \ldots, \sigma_{\lambda_{r}}\right\rangle
$$

Clearly this determines the partition λ uniquely.
Now, we prove the main proposition as follows.
Proposition 7.3. Let $n \geq 4$. Let v be a restricted partition of $n-3$, with distinct and odd parts, in which 1 (and 2) does not appear as its part. Let $\lambda=1^{3} v$ and $\mu=3^{1} v$ be partitions of n obtained by extending v. Then λ and μ belong to the same z-class in A_{n}. Conversely, if λ corresponds to a non-split class in A_{n} then it can be z-equivalent to at most one more class (possibly split), provided λ is of the form $1^{3} \nu$.

Proof. When the partition $\lambda=1^{3} v$ then $\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)=S_{3} \times \mathcal{Z}_{S_{n-3}}\left(\sigma_{v}\right)$ and its center is $Z_{\lambda}=\{1\} \times Z_{v}$. However $\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)=A_{3} \times \mathcal{Z}_{A_{n-3}}\left(\sigma_{\nu}\right)$ is Abelian and its action would give the partition $3^{1} \nu$. In this case, if we take partition $\lambda^{\prime}=3^{1} v$ then $\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda^{\prime}}\right)=\langle(1,2,3)\rangle \times \mathcal{Z}_{A_{n-3}}\left(\sigma_{\nu}\right)$ and $\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda^{\prime}}\right)=\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)$ (in case λ^{\prime} corresponds to a split class they are z-conjugate thus we may choose this representative). And thus σ_{λ} and $\sigma_{\lambda^{\prime}}$ would be z-conjugate.

For the converse, if $\mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right)=Z_{\lambda} \cap A_{n}$, then from Proposition 7.1, the action of $\mathcal{Z}\left(\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)\right)$ determines the partition λ of n uniquely, and we are done. Otherwise, we use Proposition 7.2 which implies that $\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)$ determines the partition λ uniquely except in two cases. One of the cases is $1^{3} v$ where the centralizer is conjugate to that of $3^{1} v$ as required in the proposition. Thus we need to rule out the possibility when $\lambda=2^{2} v$ and $1^{1} 2^{2} v$ where $v=\lambda_{3} \lambda_{4} \ldots \lambda_{r}$, $\lambda_{i} \geq 3$ and are odd for all i.

Let us deal with the case when $\lambda=2^{2} \nu$, the other case is similar. The element $\sigma_{\lambda}=(1,2)(3,4) \sigma_{\lambda_{2}} \ldots \sigma_{\lambda_{r}}$ and

$$
\mathcal{Z}_{A_{n}}\left(\sigma_{\lambda}\right)=\langle(1,2)(3,4),(1,3)(2,4)\rangle \times\left\langle\sigma_{\lambda_{2}}\right\rangle \times \cdots \times\left\langle\sigma_{\lambda_{r}}\right\rangle
$$

which has size $4 . \lambda_{2} \ldots . . \lambda_{r}$. Since this is Abelian its center is itself which determines the partition λ except for the first orbit which is $\{1,2,3,4\}$. Considering that λ is even, we have the possibilities of the first part being $1^{4}, 1^{1} 3^{1}, 2^{2}$. We claim that if $\lambda=1^{4} v, 1^{1} 3^{1} v$ or $2^{2} v$ the size of centralizers is different and hence they can not be z-equivalent. We note that, $\mathcal{Z}_{A_{n}}\left(\sigma_{1^{4} \nu}\right)=\left\langle A_{4}\right\rangle \times\left\langle\sigma_{\lambda_{2}}\right\rangle \times \cdots \times\left\langle\sigma_{\lambda_{r}}\right\rangle$ which has size $12 . \lambda_{2} \ldots \ldots \lambda_{r}$. And if $\lambda_{2}>3, \mathcal{Z}_{A_{n}}\left(\sigma_{1^{1} 3^{1} \nu}\right)=$ $\langle(1,2,3)\rangle \times\left\langle\sigma_{\lambda_{2}}\right\rangle \times \cdots \times\left\langle\sigma_{\lambda_{r}}\right\rangle$ of size $3 . \lambda_{2} \ldots . \lambda_{r}$ and if $\lambda_{2}=3, \mathcal{Z}_{A_{n}}\left(\sigma_{1^{1} 3^{2} \lambda_{3} \ldots \lambda_{r}}\right)=\langle(2,3,4),(5 ; 6,7)\rangle \times$ $\left\langle\sigma_{\lambda_{3}}\right\rangle \times \cdots \times\left\langle\sigma_{\lambda_{r}}\right\rangle$ of size $3^{2} . \lambda_{3} \ldots \lambda_{r}$.

7.1 Proof of Theorem 1.3

Let C be a conjugacy class of S_{n} corresponding to the partition $\lambda_{1} \lambda_{2} \ldots \lambda_{r}$ of n with all λ_{i} distinct and odd. Then the conjugacy class C splits in two conjugacy classes, say, C_{1} and C_{2} in A_{n}. From Proposition 5.3 if each λ_{i} is a perfect square for all $1 \leq i \leq r$, then both the conjugacy classes C_{1} and C_{2} are distinct z-classes in A_{n}. Else $C_{1} \cup C_{2}$ form a single z-class in A_{n}.
Now, when C does not split, it follows from Proposition 7.3, that except the partition $1^{3} v$ where v is a partition of $n-3$, with all parts odd and distinct without 1 as its part, all conjugacy classes remain distinct z-classes. And in the case when $\lambda=1^{3} v$ its z-class can coincide with that of $3^{1} v$.

8. Rational-valued characters of $\boldsymbol{A}_{\boldsymbol{n}}$

We begin with recalling characters of the alternating group from [Pr]. First we note that, the number of partitions of n with distinct and odd parts is equal to the number of self-conjugate partitions of n (see Lemma 4.6.16 in [Pr]). In fact, these are in one-one correspondence via folding. This corresponds to the split conjugacy classes. The complex irreducible characters of A_{n} are given as follows (see Theorem 4.6.7 and 5.12.5 in [Pr]). For every partition μ of
n which is not self-conjugate (this corresponds to non-split conjugacy classes), the irreducible character χ_{μ} of S_{n} restricts to an irreducible character of A_{n}. Since all characters of S_{n} are integer-valued, these characters of A_{n} are rational-valued too. Now, for all partitions μ of n which are self-conjugate (these correspond to split conjugacy classes), there exists a pair of irreducible characters χ_{μ}^{+}and χ_{μ}^{-}. The character values are given by the following formula. When $g \in A_{n}$ of cycle type λ with all parts distinct and odd, say, $\lambda=\left(2 m_{1}+1, \ldots, 2 m_{l}+1\right)$, and the folding corresponding to λ is the partition μ then

$$
\chi_{\mu}^{ \pm}\left(g_{\lambda}^{+}\right)=\frac{1}{2}\left(e_{\lambda} \pm \sqrt{e_{\lambda}\left|Z_{\lambda}\right|}\right)
$$

and $\chi_{\mu}^{ \pm}\left(g_{\lambda}^{-}\right)=\chi_{\mu}^{\mp}\left(g_{\lambda}^{+}\right)$. Here g_{λ}^{+}and g_{λ}^{-}denote the two split conjugacy classes in A_{n} and $e_{\lambda}=(-1)^{\sum_{i=1}^{\prime} m_{i}}$. Else $\chi_{\mu}^{+}(g)=\chi_{\mu}^{-}(g)=\frac{\chi_{\mu}(g)}{2}$. Clearly the characters χ_{μ}^{\mp} are rational valued if and only if $e_{\lambda}=1$ and $\left|Z_{\lambda}\right|$ is a perfect square.

Lemma 8.1. For $\lambda=\left(2 m_{1}+1, \ldots, 2 m_{l}+1\right)$, if $\left|Z_{\lambda}\right|$ is a square then $e_{\lambda}=1$.
Proof. In this case, $\left|Z_{\lambda}\right|=\prod_{i=1}^{l}\left(2 m_{i}+1\right)=(2 a+1)^{2}$ for some a. Then $\sum_{i=1}^{l} m_{i}$ must be even.
Proof of Theorem 1.7 From the discussion above, all characters of A_{n} corresponding to non-split conjugacy classes are rational-valued. And, both characters corresponding to split conjugacy classes are simultaneously rational-valued if and only if the partition λ has all its parts distinct and odd and the product of parts is a perfect square. Clearly this is same as the criteria determining conjugacy classes which are rational.

Example 8.2. Let us work with A_{10}. In [AO] Section 2 Theorem 1, it is proved that the alternating groups are not Q-groups. However, in the proof for A_{10} case it is wrongly mentioned that $1^{1} 9^{1}$ is not rational. It is easy to see from our criteria that $1^{1} 9^{1}$ is a rational conjugacy class as the product $1.9=9$ is a square. In fact, the class corresponding to $3^{1} 7^{1}$ is not rational because of 1.5 part $1(\mathrm{~b})$ as the product $3.7=21$ is not a square. We also note that the character value $\chi_{2^{3} 4^{1}}^{ \pm}\left(g_{3^{1} 7^{1}}^{+}\right)=\frac{1}{2}(-1 \pm \sqrt{-21})$ is clearly not rational.

9. Some GAP calculations

In this work, we have come across two functions on natural numbers. The first one is ϵ defined as

$$
\epsilon(n)=\mid\left\{n=m_{1}^{2}+m_{2}^{2}+\cdots+m_{r}^{2} \mid 1 \leq m_{1}<m_{2}<\cdots<m_{r} \leq n, m_{i} \text { odd } \forall i\right\} \mid
$$

and its generating function is $\prod_{i=0}^{\infty}\left(1+x^{(2 i+1)^{2}}\right)$. And another one is δ defined as,

$$
\delta(n)=\mid\left\{n=n_{1}+\cdots+n_{r} \mid 1 \leq n_{1}<\cdots<n_{r} \leq n, n_{i} \text { odd } \forall i, \prod_{i=1}^{r} n_{i} \in \mathbb{N}^{2}\right\} \mid
$$

Writing a natural number as a sum of squares is well studied problem in number theory. However, we could not find references to these functions. Clearly $\epsilon(n) \leq \delta(n)$. The inequality could be strict, for example, $n=78=3+75$ where $3.75=15^{2}$ but none of the components are square. This happens infinitely often. For example, let p_{1} and p_{2} be odd and distinct primes. Consider, $n=p_{1}+p_{2}+p_{1} p_{2}$ and the partition of n given by $p_{1}^{1} p_{2}^{1}\left(p_{1} p_{2}\right)^{1}$. Then $\epsilon(n)<\delta(n)$. We may also consider, for example, $m=p_{1}+p_{1} p_{2}^{2}$, i.e., we have the partition of m given as $p_{1}^{1}\left(p_{1} p_{2}^{2}\right)^{1}$. Then $\epsilon(m)<\delta(m)$. We make a table for the values of ϵ and δ for small values of n and also note down the partitions giving rise to the function δ. Some values of $\delta(n)$ are also given in [Br].

n	$\epsilon(n)$	$\delta(n)$	Partitions	n	$\epsilon(n)$	$\delta(n)$	Partitions
9	1	1	9^{1}	34	1	1	$9^{1} 25^{1}$
10	1	1	$1^{1} 9^{1}$	35	1	1	$1^{1} 9^{1} 25^{1}$
23	0	1	$3^{1} 5^{1} 15^{1}$	39	0	1	$3^{1} 9^{1} 27^{1}$
24	0	1	$1^{1} 3^{1} 5^{1} 15^{1}$	40	0	2	$1^{1} 3^{1} 9^{1} 27^{1}, 3^{1} 7^{1} 9^{1} 21^{1}$
25	1	1	25^{1}	41	0	1	$1^{1} 3^{1} 7^{1} 9^{1} 21^{1}$
26	1	1	$1^{1} 25^{1}$	47	0	3	$3^{1} 11^{1} 33^{1}, 5^{1} 7^{1} 35^{1}, 5^{1} 15^{1} 27^{1}$
30	0	1	$3^{12} 2{ }^{1}$	48	0	5	$\begin{gathered} 1^{1} 3^{1} 11^{1} 33^{1}, 1^{1} 5^{1} 7^{1} 35^{1} \\ 1^{1} 5^{1} 15^{1} 27^{1}, 5^{1} 7^{1} 15^{1} 21^{1} \\ 3^{1} 5^{1} 15^{1} 25^{1} \end{gathered}$
31	0	2	$1^{1} 3^{1} 27^{1}, 3^{1} 7^{1} 21^{1}$	49	1	3	$\begin{gathered} 49^{1}, 1^{1} 3^{1} 5^{1} 15^{1} 25^{1}, \\ 1^{1} 5^{1} 7^{1} 15^{1} 21^{1} \end{gathered}$
32	0	2	$1^{1} 3^{1} 7^{1} 21^{1}, 3^{1} 5^{1} 9^{1} 15^{1}$	50	1	2	$1^{1} 49^{1}, 5^{1} 45^{1}$
33	0	1	$1^{1} 3^{1} 5^{1} 9^{1} 15^{1}$	51	0	1	$1^{1} 5^{1} 45^{1}$

Next, we used GAP [GAP] to compute z-classes, rational conjugacy classes etc. Here we have some examples for A_{n} which verifies our theorem.
$\left.\begin{array}{|c|c|c|c|}\hline n & \begin{array}{c}\text { Number of } \\ \text { conj. classes }\end{array} & \begin{array}{c}\text { Number of } \\ z \text {-classes }\end{array} & \text { Partitions } \\ \hline 20 & 324 & 315 & \begin{array}{c}\left\{1^{3} 3^{1} 5^{1} 9^{1}, 3^{2} 5^{1} 9^{1}\right\},\left\{1^{1} 3^{1} 7^{1} 9^{1}, 1^{1} 3^{1} 7^{1} 9^{1}\right\} \\ \left\{1^{1} 3^{1} 5^{1} 11^{1}, 1^{1} 3^{1} 5^{1} 11^{1}\right\},\left\{9^{1} 11^{1}, 9^{1} 11^{1}\right\},\left\{1^{1} 19^{1}, 1^{1} 19^{1}\right\} \\ \left\{7^{1} 13^{1}, 7^{1} 13^{1}\right\},\left\{5^{1} 15^{1}, 5^{1} 15^{1}\right\},\left\{1^{3} 17^{1}, 3^{1} 17^{1}, 3^{1} 17^{1}\right\}\end{array} \\ \hline 27 & 1526 & 1506 & \left\{1^{3} 3^{1} 5^{1} 7^{1} 9^{1}, 3^{2} 5^{1} 7^{1} 91\right\},\left\{1^{1} 3^{1} 5^{1} 7^{1} 11^{1}, 1^{1} 3^{1} 5^{1} 7^{1} 11^{1}\right\} \\ & & & \left\{7^{1} 9^{1} 11^{1}, 7^{1} 9^{1} 11^{1}\right\},\left\{5^{1} 9^{1} 13^{1}, 5^{1} 9^{1} 13^{1}\right\}\end{array}\right\}$

The last column combines together the partitions which give same z-class and the repetition of a partition indicates a split conjugacy class.

References

[AO] Armeanu, Ion and Ozturk, Didem, Alternating q-groups, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 74 no. 4, (2012) 39-46.
[BS] Bhunia, Sushil and Singh, Anupam, Conjugacy classes of centralizers in unitary groups, Journal of Group Theory, 22 (2019) 231-151.
[Ca1] R. W. Carter, Centralizers of semisimple elements in finite groups of Lie type, Proc. London Math. Soc. (3), 37 no. 3, (1978) 491-507.
[Ca2] R. W., Carter, Centralizers of semisimple elements in the finite classical groups, Proc. London Math. Soc. (3), 42 no. 1, (1981) 1-41.
[Pr] Prasad, Amritanshu, Representation theory, A combinatorial viewpoint, Cambridge Studies in Advanced Mathematics, 147. Cambridge University Press, Delhi (2015).
$[\mathrm{Br}]$ - Brison, Owen J., Alternating groups and a conjecture about rational valued characters, Linear and Multilinear Algebra, 24 no. 3, (1989) 199-207.
[Ca] Can, Himmet, Representations of the generalized symmetric groups, Beitrge Algebra Geom., 37 no. 2, (1996) 289-307.
[FS] Feit, Walter and Seitz, Gary M., On finite rational groups and related topics, Illinois J. Math., 33 no. 1, (1989) 103-131.
[Go] Gongopadhyay, Krishnendu, The z-classes of quaternionic hyperbolic isometries, J. Group Theory, 16 no. 6, (2013) 941-964.
[GAP] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.8 .7 (2017), (http://www.gap-system.org).
[GK] Gongopadhyay, Krishnendu and Kulkarni, Ravi S., z-classes of isometries of the hyperbolic space, Conform. Geom. Dyn., 13 (2009), 91-109.
[Gr] J. A., Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc., 80 (1955) 402-447.
[JK] James, Gordon and Kerber, Adalbert, The representation theory of the symmetric group, With a foreword by P. M. Cohn. With an introduction by Gilbert de B. Robinson. Encyclopedia of Mathematics and its Applications, 16. Addison-Wesley Publishing Co., Reading, Mass. (1981).
[K1] Kletzing, Dennis, Structure and representations of Q-groups, Lecture Notes in Mathematics, 1084. Springer-Verlag, Berlin (1984). vi+290 pp.
[Ku] Kulkarni, Ravi S., Dynamical types and conjugacy classes of centralizers in groups, J. Ramanujan Math. Soc., 22 no. 1, (2007) 35-56.
[MS] Mishra, Ashish and Srinivasan, Murali K., The Okounkov-Vershik approach to the representation theory of $G \sim S_{n}$, J. Algebraic Combin., 44 no. 3, (2016) 519-560.
[NT] Navarro, Gabriel and Tiep, Pham Huu, Rational irreducible characters and rational conjugacy classes in finite groups, Trans. Amer. Math. Soc., 360 no. 5, (2008) 2443-2465.
[OEIS] The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org.
[Os] Osima, Masaru, On the representations of the generalized symmetric group, Math. J. Okayama Univ., 4 (1954) 39-56.
[Se] Serre, Jean-Pierre, Linear representations of finite groups, Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42. Springer-Verlag, New York-Heidelberg (1977).
[Si] Singh, Anupam, Conjugacy classes of centralizers in G_{2}, J. Ramanujan Math. Soc., 23 no. 4, (2008) 327-336.

