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Abstract. Let S be a locally noetherian regular scheme. We compute the units-Picard complex of a reductive
S-group scheme G in terms of the dual algebraic fundamental complex of G. To this- end we establish a
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1. Introduction

Let S be a non-empty scheme and let D?(Sy) denote the derived category of the category of bounded complexes of
abelian etale sheaves on S. A morphism of schemes f: X — § induces a morphism fYGms = 1<iRfiGp x in
D?(Sg) that factors through the canonical morphism (of etale sheaves on §) f”: b m,s = [+Gm, x. The (relative)
units-Picard complex of X over § is the object UPicx/s = C*(f 1y(1] of D?(Ss,), where C*( f by is the mapping cone
of any morphism of complexes that represents f!. There exists a distinguished triangle in Db(S)

Picx;s[—1] — RUx/s[1] — UPicx;s — Picxys,

where Picy/s is the etale relative Picard functor of X over S and RUx/s = C*(f b) is the complex of relative units
of X over S. Except for a shift, UPicx/s was originally introduced by Borovoi and van Hamel in the case where §
is the spectrum of a field of characteristic zero [BvH]. The more general object UPicy/s discussed in this paper was
introduced in [GA3, §3], where the reader can find proofs of some of its main properties. Borovoi and van Hamel, and
later Harari and Skorobogatov [HSk], showed that UPicy/s is well-suited for simplifying and generalizing various
classical constructions [San81,CTS]. Further, the author has shown in [GA3] that UPicx/s is important in the study
of the Brauer group of X.

‘We now explain the contents of the paper.

Let k be a field, let G be a (connected) reductive k-group scheme [SGA3ew, XIX, 1.6 and 2.7} and let G be
the simply connected central cover of the (semisimple) derived group of G. Let 7 be a maximal k-torus in G,
set T =T X6 G and let T* and T* denote the k- group schemes of characters of T and 7, respectively. The
dual algebraic fundamental complex of G is the object x] (G) of Db(kg,) tepresented by the mapping cone of the
morphism T* — T* induced by the canonical morphlsm ‘G — G. Up to isomorphism, L D(G) is independent of
the choice of T'. The main theorem of [BvH] establishes the existence of an isomorphism in D?(kg,) that is functorial ~
in G:

UPicg/x — z2(G) ~_ (1.1)

(if the characteristic of k is 0, the reductivity assumption on G can be dropped). Overa generaﬂ base scheme S, nlD G)
can be defined in terms of a ¢-resolution of G, i.e., a central extension of S-group schemes1 - T — H - G — 1,
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where T is an S-torus and H is a reductive S-group scheme whose derived subgroup H 9" is simply connected
[BGA Definition 2.1]. In effect, if R = H' = H/H%" is the largest quotient of H which is an S-torus, then

(G) is (represented by) the cone of the morphism of etale twisted constant S-group schemes R* — T'* induced
by T — H.If G contains a maximal S-torus T, then there exists a t-resolution 1 - T — H — G — 1 of
G where H'" is canomcally isomorphic to 7 and we recover the Borovoi-van Hamel definition of 7, D(G). Up to
isomorphism, 7 D(G) is independent of the choice of a z-resolution of G. The aim of this paper is to establish the
following generalization of (1.1):

~

Theorem 1.1 (=Theorem 4.20). Let S be a locally noetherian regular scheme and let G be a reductive S-group
scheme. Then there exists an isomorphism in D%(Sg)

UPiCG/s :) TtlD(G)
which is functorial in G.

As in [BvH], the main ingredients of the proof of Theorem 1.1 are certain long exact sequencés of abelian groups
of the form
-+ —> Gy - Gf > PicG3 > PicGy —> ... 1.2)

induced by short exact sequences of S-group schemes 1 — G; — G2 — G3 — 1. In this paper we derive
all the sequences of the form (1.2) that we need for the proof of Theorem 1.1 from the units-Picard-Brauer exact
sequeﬁce of a torsor given in Proposition 3.11. The latter is a broad generalization of an exact sequence of Sansuc
[San81, Proposition 6.10, p. 43}, which itself generalizes a well-known exact sequence of Fossum and Iversen
(FI, Proposition 3.1]. On the other hand, in constrast to [BvH] (and [CTO8, Appendix B]), we avoid working with
explicit presentations of UPic g/s (in terms of rational functxons and divisors on G ) since such presentations are not
needed for the proof of Theorem 1.1 (as already suggested i in [BvH, Remark 4.6]).

. .In [BvH], the isomorphism (1.1) plays an important role in the study of the so-called elementary obstruction to
the existence of k-rational points on G-torsors over k. Theorem 1.1 above has similar applications to the existence of
sections on G-torsors over an arbitrary locally noetherian and regular scheme §, as we hope to show in a subsequent
publication.
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2. Preliminaries
2.1 Generalities

If X is an object of a category, the identity morphism of X will be denoted by 1x. An exact and commutative diagram
is a commutative diagram with exact rows and columns. The category of abelian groups will be denoted by Ab.

The maximal points of a topological space are the generic points of its irreducible coinponents. If f: X — §
is a morphism of schemes, a maximal fiber of f is a fiber of f over a maximal point of S. Recall also that j is
called schematically dominant if the canonical morphism (of Zariski sheaves on §) f*: €5 — f,&% is injective
[EGA Ipew, §5.4]. By [Pic, Proposition 52, p. 10], a faithfully flat morphism is schematically dominant.

A stricly local scheme is a scheme which is isomorphic to the spectrum of a local henselian ring with separably
closed residue field [EGA, IV4, Definition 18.8.2].

Lemma2l. LetA > B > C be morphisms in an abelian category «f. Then there exists a canonical exact
sequence in & .

0 — Keru — Ker(v ou) - Kerv — Cokeru — Coker(v ou) — Cokerv — 0.
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Proof. See, for example, [Bey, §1.2]. a

If S is a scheme (which is tacitly assumed to be non-empty throughout the paper), we will write Sg for the small
fppf site over S. Thus Sy is the category of S-schemes that are flat and locally of finite presentation over S equipped
with the fppf topology, i.e., a covering of (X — §) € Sg is a family ¢;: U; — X of flat S-morphisms locally of
finite presentation such that X = (J ¢; (U;). We will also need the small etale site Sg, which is defined as above by
writing étale in place of flat and locally of finite presentation.

A sequence of S-group schemes 1 - G| = G2 — G3 — 1 will be called exact if the corresponding sequence
of (representable) sheaves of groups on Sy is exact.

We will write S” for the category of abelian sheaves on Sg and C b($4) for the category of bounded complexes.of
objects of S;". The corresponding derived category will be denoted by D?(S&). The (mapping) cone of a morphism
u: A* — B*in C?(S4) is the complex C*(u) whose n-th component is C"(u) = A" @ B", with differential
diuyla, b) = (—d:“ (a), u(a) + dj(b)), wheren € Z,a € A" and b € B". Ifu: A > B is a morphism in

S, and A and B are regarded as complexes concentrated in degree 0, then C*(u) = (A 5 B), where A and B are
placed in degrees —1 and 0, respectively. Thus H~1(C *(u)) = Keru and H%(C *(u)) = Coker u. The distinguished
triangle in D?(Sz) corresponding to u is

C'W[-11>A4A5 B— C*®), 2.1

where the mapv: C*(u)[—1] = (A 5B )[—1] — A is the negative of the canonical projection. We also recall that,
if A® is a bounded-below complex of objects of S;” and n > 0 is an integer, then the n-th truncation t<p A® of A® is

the following object of C?(Sg):
t<nA® == A"2 5 A" 5 Ker[A" — A" 0.

For every n € N, there exists a distinguished triangle in D?(Sg)

Teno1A® 5 1o A® = H'(AM[=n] = (z<n_1A"[1]. 22)

Next we recall the definition of the separable index of a scheme over a field. If k is a field with fixed separable
algebraic closure k® and X is a k-scheme such that X(k’) # @ for some finite subextension k’/ k of k5/k, then the
separable index of X over k is the integer

I(X) = gcd{{k’: k]: k'/k C k®/k finite and X (k') # 7).

The positive integer I (X) is defined if X is geometrically reduced and iocally of finite type over k (see [Liu, §3.2,
Proposition 2.20, p. 93] for the finite type case and note that the more general case can be obtained by applying
the indicated reference to a nonempty open affine subscheme of X). The above is a particular case of the following
definition: if f: X\ § is a morphism of schemes, the érale index I (f) of f is the greatest common divisor of the
degrees of all finite etale quasi-sections of f of constant degree, if any exist (recall that an érale quasi-section of f is
an etale and surjective morphism 7 — § such that there exists an S-morphism 7 — X). Note that I (f) is defined
(and is equal to 1) if f has a section.

2.2 Torsors
Let G be an S-group scheme and let X (respectively, Y) be a right (respectively, left) G-scheme. Then X xsY is a
right G-scheme under the action (X xs Y) x5 G — X xs7, (x, v, g) > (xg, g~ 'y). The corresponding quotient
fppf sheaf of sets is denoted by X AC Y. If G” is another S-group scheme which acts on ¥ from the right compatibly
with the given left action of G, then X AC Y is naturally a right G”-sheaf. For example, if ¥ = G/ is a right
G"-scheme via right translations and a left G-scheme via an S-homomorphism v: G — G”, then X AC? G'isa
right G"”-sheaf [Gi, Proposition 1.3.6, p. 116]. If X = G’ is a third S-group scheme regarded as a right G-scheme
via an S-homomorphism u: G — G’, then G’ N“C-* G/ is the well-known pushout of u and v. We will write
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H(Sg, G) for the pointed set of isomorphism classes of right (sheaf) G-torsors over S relative to the fppf topology
on S, where the distinguished point is the isomorphism class of the trivial right G-torsor G,. An S-homomorphism
u: G — G’ induces a map of pointed sets [Gi, Proposition 1.4.6(i), p. 119]

u®D: HY(S5, G) - HY(Sp, G'), [X]1~ [X AC¥ G!]. (2.3)

The latter map is functorial in §, i.e., for every morphism of schemes T — §, there exists a (canonical) isomorphism
of Gr -torsors over T
(X A9 G]) xs T =~ Xr ASTHT G . (2.4)
See [Gi, 1.5.1.2, p. 316]. Now, if
1-HS5G63 Kk —>1 @2.5)
is an exact sequence of S-group schemes, then the right action G xg (H xs K) - G, (g, (h,q(g))) > gi(h),
endows G with the structure of a right H -torsor over K and we obtain a class [G] € H(Kq, Hg). If L is an

S-group scheme and u: H — L is an S-homomorphism, let P = G A">H:% L be the pushout of i and u. Then there
exists an exact and commutative diagram of fppf sheaves of groups on §

i q

1 H G K 1
SR R O @9
1 L—2sp-Lsk 1,

where the maps j and p are defined as follows: if 7;: L — § is the structural morphism of L and
eg: 8§ — G andeg: S — K are the unit sections of G and K, respectively, then j and p are induced, respectively,
by(sGonL_, 11)s: L > GxsLandmo(gxs(egon)): GxsL - KxsK — K,wherem: K xgK - Kis
the product morphism of K. As noted previously, the bottom row of diagram (2.6) equips P with the structure of a
right L ¢ -torsor over K. Using the explicit definitions of the maps j and p given above, it is not difficult to check that

the canonical isomorphism of S-schemes G x5 L — G x g Lk induces an isomorphism of right Lg -torsors over K
GA L 5 G AR YR Ly Q.7

Thus [P] = uD((G1), where ul?: H!(Kp, Hx) — H'(Ka, Lx) is the map (2.3) induced by the morphism of
K -group schemes ug : Hx — Lg.

2.3 Units, Picard groups and Brauer groups

Let f: X — § be a morphism of schemes and let f b, Gm,s = f+Gm,x be the morphism of abelian sheaves on S
induced by f. The complex of relative units of X over S is the complex

b
RUy/s = C*(f") = Gm.s L fiGm x), 2.8)

where G, s and f,G,,, x are placed in degrees —1 and 0, respectively.

xSy S are morphisms of schemes, then (h o g)°: Gm,s = h«(g+Gm, x) factors as

hb hy b
G, 2> 1uGmy 5 ho(84Gm ). 2.9)

\
Consequently, % ,(g?) induces a morphism RUs(g) : RUy/s — RUys in C?(Sg). Thus (2.8) defines a contravariant
functor ,

RU;: (Sch/S) = C?(Sx), (X — §) = RUys.

Now set
Ux/s = H°(RUy/s5) = Coker f” (2.10)
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and consider the contravariant functor

Us: (Sch/S) —» S, (X — S) — Uyys.

et

If f is schematically donﬁnant, then f” is injective [GA2, Lemma 2.4] and RUyx/s = Ux/s (placed in degree 0).

Lemma22. LetX 5 Y 2% Sbe morphisms of schemes, where g is schematically dominant. Then the canonical
morphism Us(g): Uy;s — Uyxys is injective.

Proof. Apply Lemma 2.1 to the pair of morphisms (2.9) using the injectivity of . (g%): Gmy —
h*(g*Gm,X)- O

If G is an S-group scheme, the pfésheaf of groups
G* = Hom g .,(G, Gpm,s) 2.11)

is a sheaf on Sg such that
G*(S) = Homs.5 (G, Gm,s). 2.12)

See [SGA3ew, IV, Corollary 4.5.13 and Proposition 6.3.1(1ii)].

Lemma 2.3. Let S be a reduced scheme and let G be a flat S-group scheme locally of finite presentation with
smooth and connected maximal fibers. Then there exists a canonical isomorphism of étale sheaves on S

wg: Ug/s — G*, (2.13)
where Ug/s and G* are given by (2.10) and (2.11), respectively.
Proof. See [GA2, Lemma 4.8]. : 0O

If X is a scheme, the etale cohomology group PicX = H Y(X&, G, x) will be identified with the group
of isomorphism classes of right G, x-torsors over X with respect to either the etale or fppf topologies on X.
See [MiEt, Theorem 4.9, p. 124]. A morphism of schemes g: X — Y induces a morphism of abelian groups

Picg: PicY — PicX,[E]+— [E xy X], 2.149)

where [ E] denotes the isomorphism class of the right G, y-torsor E over Y and [ E xy X] denotes the isomorphism
class of the right G,, x-torsor E xy X over X.

Next we write f (P). Gm,s = f«Gm,x for the morphism of abelian presheaves on Sy such that, for any object
T — S of S, fP(T): Gm,s(T) = (fsGum,x)(T) = Gp, s(X7) is the canonical map induced by the projection
Xt — T.Now consider the following abelian presheaf on Sg

f(P)
Uxss = Coker [G”,”S — f*Gm’X]

and set_ o N . o ol .
Us(X) = Ux/s(S) = Coker[Gm,5(S) = Gm,s(X)].
Thus we obtain an abelian presheaf on (Sch/S)

Us: (Sch/S) = Ab, (X — S) — Us(X). (2.16)

Remark 2.4. If Uyx/s is regarded as an abelian presheaf on S, then the etale sheaf on S associated to Uxys is
Ux/s (2.10).

(2.15)
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If f is schematically dominant, then f(P) is an injective morphism of abelian presheaves on Sy [GA2, proof of
Lemma 2.4]. Thus, in this case, there exists a canonical exact sequence of abelian presheaves on Sg

(p)
1= G5 15 £iGm x — Ugss — 1. @.17)

Further, by [GA2, comments after Lemma 2.5], there exists a canonical exact sequence of abelian groups

0 = Gm.5(S) > Gm.s(X) - Uy/s(S) - Pic § -4 Pic x,

where Ux/s is the etale sheaf (2.10). The preceding sequence induces an exact sequence of abelian groups

0 - Us(X) — Uy/s(S) — Pic § =<4 Pic X.

Thus, if Pic f is injective (e.g., f has a section), then Us(X) = Uy/s(S). In particular, if G is an S-group scheme,
then Us(G) = Ug,s(S) and the following statement is immediate from Lemma 2.3.

Lemma 2.5. Let S be a reduced scheme and let G be a flat S-group scheme locally of finite presentation with
smooth and connected maximal fibers. Then there exists a canonical isomorphism of abelian groups

Us(G) > G*(S),
where the groups Us(G) and G*(S) are given by (2.15) and (2.12), respectively.

Now let Picy,s be the (etale) relative Picard functor of X over S, i.e., the etale sheaf on S associated to the abelian
presheaf (Sch/S) — Ab, (T — S) +> Pic X7. Then

PiCX/S = Rét f*Gm,X-

If g: X — Y is a morphism of S-schemes and T is an S-scheme, then the canonical maps Picgr: PicYr — Pic X1 -
(2.14) induce a morphism Pic 5(g): Picy/s — Picx/s in S;". Thus we obtain a contravariant functor )

Pic s: (Sch/S) — S, (X — §) — Picys.
We will also need to consider the abelian group ' o
NPic(X/S) = Coker [Pic s 7 pic X] (2.18)
and the associated abelian presheaf on (Sch/S)
NPics: (Sch/S) — Ab, (X — §) — NPic(X/S). (2.19)

Remark 2.6. If S is a strictly local scheme and X — § is quasi-compact and quasi-separated, then Picx;s(S) =
Pic X. See [T, Lemma 6.2.3, p. 124, and Theorem 6.4.1, p. 128].

Next we recall from [GA3, §3] the definition of the units-Picard complex of a morphism of schemes f: X — §.
Let A® be any representative of R f,Gn x € D(Sg) and consider the following composition of morphisms in C b(Ss):

b .1
f1: Gns EN [iGm x = 1<0A® > 1<1 A°,

where i! is the first map in the distinguished triangle (2.2) for n = 1. The relative units-Picard complex of X over S
is the following (well-defined) object of D?(S):

UPicx/s = C*(fN1]. (2.20)
There exists a distinguished triangle in D?(Ss,)
Picx/s[—1] — RUy/s[1] — UPicx/s — Picxys, 2.21)

where RUy/s is the complex (2.8).
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If f: X — §is schematically dominant, then f b is injective and therefore RUx/s = Uy/s in D?(Sg). In this case
(2.21) is a distinguished triangle
Picx/s[—1] — Uy/s[1] — UPicx;s — Picxys. (2.22) |
Consequently, H” (UPicy/s) = 0 forr # —1, 0,
H~1(UPicx/s) = Uyss (2.23)

and
H°(UPicx/s) = Picy/s. (2.24)

x5 y% Sare morphisms of schemes, then gh: Gm,y = 8+Gm, x induces a morphisfn g’ < 1IRMGpy —
7<1R (h 0 8)«Gp, x in D?(Sg) such that g’ o h' = (h o g)!. Thus g’ induces a morphism UPics(g): UPicy;s —
UPicy/s in D?(S4) and we obtain a contravariant functor

UPics: (Sch/S) — DP(S4), (X = S) — UPicyys,

such that H~1(UPics) = H%(RUs) = Ug by (2.21). Further, if & and & o g are schematically dominant, then the
following diagram in D?(Sg) commutes

Us(g)[1
Uy/s(1] s Uxys[1]
l l (2.25)
UPic Y/S UPics () UPiCX/S,

where the vertical arrows are those in (2.22). /
Next let BrX = H?(X¢, G, x) be the cohomological Brauer group of X . We will write Bry/s for the etale sheaf
on S associated to the presheaf (T — S) — BrXr,ie.,

Brx/s = RZ f,Gp,x.
There exists a canonical morphism of abelian groups BrX — Bry/s(S ) and/we set
Br;(X/S) = Ker [BrX — Bryys (S)] . (2.26)
Note that, if f = 1g5: § — S, then Br; (§/S) = BrS. We obtain an abelian presheaf on (Sch/S)
Bry,s: (Sch/S) — Ab, (X — S) — Bri(X/S).

If h is a morphism of S-schemes, we will write Br; 4 for Bry_ s(h).
Next, since f: X — S is a morphism of S-schemes and Br;(S/S) = BrS, we may consider

Bra(X/S) = cOker[%s " Bry (X/S)] 2.27)
and the corresponding abelian presheaf on (Sch/S). . =~ e - S - e
’ Br, s: (Sch/S) — Ab, (X — S) > Br.(X/S). (2.28)

If h is a morphism of S-schemes, we will write Br, 4 for Br, s(%). Note that
) Br,(S/S) = 0. | (2.29)

IThis is an instance of the canonical adjoint morphism P(S) — P*(S), where P is a presheaf of abelian groups on
(Sch/S) and-P* is its associated etale sheaf [T, Remark, p. 46].
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The groups (2.26) and (2.27) are related by an exact sequence

Brs >4 By, (X/S) M Bra(x/S) — 0, (2.30)
where c(x) is the canonical projection.
If f hasasectiong: § — X, thenBrjo: Brj(X/S) —» Bri(§/S) = BrS is a retraction of Br1 f that splits (2.30).
Thus, if we define

, i Br, (X/S) = Ker[Brl (x/s) 2 BrS], (2.31)
then
Bri(X/S) = ImBr; f @ Br, (X/S) (2.32)

and the restriction of c(x) (2.30) to Bry (X/S) € Br1(X/S) is an isomorphism of abelian groups
), Brg (X/8) = Bra(X/S). (2.33)

Nextlet g: ¥ — S be another morphism of schemes with section 7: § — Y and let : X — Y be an S-morphism
such that & o ¢ = t. Then the restriction of Bri % to ImBr; g € Br;(Y/S) is an isomorphism of abelian groups

ImBrig = ImBr; f | (2.34)
which fits into a commutative diagram

ImBr; g = ImBr; f

N <

Br'S

On the other hand, the restriction of Bry 4 to Br,(¥Y/S) € Br (Y/S) induces a map

\ Brg, ¢ h: Br,(¥Y/S) — Brs (X/S) (2.35) °
such that (by (2.32) and (2.34)) L :
o KerBr,, . h = KerBrih - (236)
and the following diagram commutes
‘ Bl’g’ 1’1
Br; (Y/§) ————— Br;(X/S)
. l: zlc(x),,, . (2.37)
Bra(Y /§) —orrma®

Bra(X/S),

where the vertical maps are the isomorphisms (2.33).
We now discuss products. If f: X — Sand g: ¥ — § are morphisms of schemes, then the canonical projection
morphisms px: X xs¥Y — X and py: X x5 Y — Y define a morphism of abelian groups
f

G, 5(X)®Gm 5(Y) > G s(X x5 Y), (,0) = pQ @) pL (), (2.38)

where p§() Gm,s(X) = G s(X x5 Y) is the pullback map and p( ) is defined similarly. Further, there exist
canonical morphisms of abelian groups

Pic X @PicY — Pic (X xsY), ([E], [F]) — (Pic px)[E] + (Pic py)[F],
and

BrX@®BrY — Br'(X xsY), (a,‘b) > (Brpx)(a) + (Brpy)(®).
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The preceding maps induce morphisms of abelian groups

Us(X)@ Us(Y) > Us(X xsY), (2.39)
NPic(X/S) @ NPic(Y/S) — NPic(X xsY/S), (2.40)
Bri(X/S) & Br1(¥Y/S) — Bri(X xs Y/S) (2.41)
and
Bro(X/S) & Bry(Y/S) — Bra(X x5 Y/S). (2.42)

Further, there exists a canonical morphism in D?(Sg) (see [GA3, beginning of §4])
UPicx;s @ UPicy;s — UPicxxy/s. (2.43)
Now, if g: Y — S hasasectionz7: § — Y and Br;(¥/S) C Bri(Y/S) is the group (2.31) associated to 7, we write
¢x,y: Bri(X/S) @ Br, (Y/S) = Bri(X xs Y/S) (2.44)
for the restriction of (2.41) to Br(X/S) & Br; (Y/S) € Br1(X/S) @ Br1 (Y/S).
If iBn(x/s): Bri(X/S) - Bri(X/S) @ Br; (¥Y/S),a > (a,0),

is the canonical embedding, then

Bripx = {x,y oiBr(X/$)- ) (2.45)
Now we define
(g’y : Bri(X/S) ®Bra(Y/S) — Bri(X x5 Y/S) (2.46)
by the commutativity of the diagram
¢ g,y

Br;(X/S) @ Bra(Y /§) ———— Bri(X x5 Y/$),

(1ry 057> €01, <) T:
Brl&JS) @ Br, (Y/S)

{x,y

where c(yy,;: Br: (Y/S) S Bra(Y/S ) is the map (2.33) defined by z. Clearly, {Q y is an isomorphism if, and only
if, ¢'x,y is an isomorphism. If this is the case, then (2.45) shows that

PBr(x/5) © {5y © B Px = 1Br(x/5) (2.47)
PBr.(v/S) ©Cx yoBripx =0, (2.48)
where ppr,(x/s): Bri(X/S) @ Br;(Y/S) — Bri(X/S) is the canonié:al projection and pg, (y/s) is defined similarly.
Lemma 2.7. If the map 3  (2.46) is an isomorphism, then the map (2.42)
Bra(X/S) @ Bra(¥Y/S) — Bra(X x5 Y/S)
is an isomorphism as well.

Proof. The composition

Bri£.0) Sy o o
BrS =’ " Bri(X/S)®Br.(Y/S) 3 Bn(X xs Y/S)

equals (Br; px)o(Br; f) = Bry( f xsg). Thus Lemma 2.1 applied to the above pair of mapé yields an exact sequence
of abelian groups

Ker¢d y — Bra(X/S) @ Bra(¥/S) — Bra(X x5 Y/S) — Coker(y y,

where the middle arrow is the map (2.42). The lemma is now clear. O
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2.4 Additivity theorems

Proposition 2.8. Let S be a reduced scheme and let f: X — Sand g: Y — S be faithfully flat morphisms locally
of finite presentation with reduced and connected maximal geometric fibers. Assume that f has an étale quasi-section

and g has a section or, symmetrically, that f has a section and g has an étale quasi-section. Then the canonical map
(2.39)

Us(X)d Us(Y) — Us(X xsY)
is an isomorphism of abelian groups.

. Proof. Since f, g and f x5 g are schematically dominant, the following diagram of abelian groups, whose exact
rows are induced by (2.17), commutes:

1—— Gm,S(S)eaGm,S(S) _L)Gm,S(X) @Gm,S(Y) —>US(X)€BL15(Y) —1

jo | |

1 Gm,s(S) Gm,s(X Xs Y) Us(X xsY)

1.

The left-hand vertical map in the above diagram is the (surjective) multiplication homomorphism. The middle and
right-hand vertical arrows are the maps (2.38) and (2.39), respectively. Now, since f X s g has an etale quasi-section,
the map labeled 1 in the above diagram induces an isomorphism between the kernels of the first two vertical arrows.
See [GA2, Corollary 4.5 and its proof]. Further, the cokernel of the middle vertical map is canonically isomorphic to
KerPic f N KerPic g C Pic S. Thus the diagram yields an exact sequence of abelian groups

1 - Us(X)DUs(Y) > Us(X xsY) — KerPic f N KerPicg — 1.
Since cither f or g has a section, either KerPic f or KerPic g is zero, whence the proposition follows. O

The next statement collects together and reformulates results obtained in {GA3], with the exception of assertion
(c) (v""), which is new and generalizes a result of Sansuc [San81, Lemma 6.6(ii)] (the separable indices I (X,), I(Y;)
and the etale index I (f x g g) that appear below have been defined at the end of Subsection 2.1).

Proposition 2.9. Let S be a locally noetherian normal scheme and let f: X — S and g: Y ~ § be faithfully flat
morphisms locally of finite type. Assume that the following conditions hold:

(1) f Xs g has an étale quasi-section,

(i) for every étale and surjective morphism T — S, X, Y1 and X1 x 1 YT are locally factorial,
(iii) for every point s € S of codimension < 1, the fibers X and Y5 are geometrically integral, and
(iv) for every maximal point n of S, ged(1(X,), I(Y,)) = 1 and

Pic (X5 Xk YT D = (Pic X5)T™ @ (Pic ¥5)" ), (2.49)
where I" (1) = Gal(k (n)*/ k().

Then
(a) the canonical map (2.40)

NPic(X/S) & NPic(Y/S) — NPic(X xs¥/S) \

is an isomorphism of abelian groups,
(b) the canonical morphism (2.43)

UPicy/s @ UPicy;s — UPicxxsy/s

is an isomorphism in Db(Sg), and
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(¢) if, in addition, either

(v) H*(Se, Gm,s) =0, or o
(V') the étale index I (f xsg) is defined and is equal to 1, or
(v"") g has a section,

then the canonical map (2.42)
Bra(X/S)®Bra,(Y/S) — Bra(X xs Y/S)
is an isomorphism of abelian groups.

Proof. [Cf. [San81, proof of Lemma 6.6]] For (a) and (b), see [GA3, Propositions 2.7 and 4.4, respectively].
By [GA3, Corollary 4.5], is suffices to check that (2.42) is an isomorphism of abelian groups when (v”) holds, i.e.,
g has a section 7: § — Y. In this case we will show that the map (%Y (2.46) is an isomorphism, which will show
that (2.42) is an isomorphism by Lemma 2.7.

By [GA3, Proposition 3.6(iv)], there exists a canonical exact sequence of abelian groups

Picy/s(S) = H*(Sg, Uy/s) — Bra(Y/S) — H' (S, Picys) — H>(Sg, Uy/s). (2.50)
Further, if (h, Z) = (f, X) or (f x5 g, X x5 7Y), then the Cartén-Leray spectral sequence associated toh: Z — §
H'(Set, R°1uGim,z) = H™(Zet, Gm,z)
induces an exact sequence of abelian groups [MiEt, p. 309, line 8]
Picz/s(S) = H*(Sg, h+Gm,z) — Bri(Z/S) — H(Sg, Picz/s) = H>(S4, hGm z). (2.51)
Next, by [GA2, Corollary 4.4], the given section 7 of g induces an isomorphism of etale sheaves on S
f+Gm,x ® Uyss = (f x5 8)xGm, xxs¥- (2.52)

We now use the sequences (2.50) and (2.51) to form the following 5-column diagram of abelian groups with exact
rows

Picy/s(S) @ Picys(S) —— H*(S&, fuGm,x) ® H*(Sg, Uy/s) — Bri(X/S) €BBra(Y\/S)

alz ﬂi: lc}?,y

Picxxsy/5(S) ——————> H2(S, (f x5 8)+Cm, xxs¥) Bri(X xs ¥/S)

— H!(Sg, Picx/s) ® H'(Sq, Picy/s) — H3(S&, fxGm,x) ® H>(Set, Uyys)

yl: alz

B Hl(sét’ PiCXXsY/S) Hs(Sét, (f xs 8)*Gm,Xst)-

The maps a and y are isomorphisms since, by (b), Picx/s @ Pic v/s — Picxxgyss, ie., H 0(UPicx/s @ UPicy/s) —
H O(UPichsy/S), is an isomorphism of etale sheaves on S. The maps f# and J are induced by the isomorphism
of etale sheaves (2.52). It follows from the definition of (%Y (2.46) and the proof of [GA2, Corollary 4.4] that

the above diagram commutes. Thus the five lemma applied to the diagram shows that {g y is an isomorphism, as
. R oo e e . ’ . ..

claimed. . —

Remark 2.10.

(a) The proof shows that if hypotheses (i)—(iv) and (v"") of the proposition hold, then the fact that
Bry(X/S)®Br,(Y/S) = Bro(X x5 Y/S) .

(2.42) is an isomorphism is a consequence of the fact that 4’2 y (2.46) (ovr, equivalently, ¢x y (2.44)) is an
isomorphism.
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(b) If S is locally noetherian and regular and f: X = S and g: Y — § are smooth and surjective, then hypothesis
(ii) of the proposition holds. See [GA3, Remark 4.10(a)]. Further, since in this case f xg g is also smooth
and surjective, hypothesis (i) also holds by [EGA| IV4, Corollary 17.16.3(ii)]. The identity (or, more precisely,
canonical isomorphism) (2.49) holds in many cases of interest. See [GA2, Examples 5.9 and 5.12]. Finally,
hypothesis (v) holds in the following cases (see [ADT, Remark I1.2.2(a), p. 165]):

(1) S is the spectrum of a global field.
(2) S is a proper nonempty open subscheme of the spectrum of the ring of integers of a number field.
(3) S is a nonempty open affine subscheme of a smooth, complete and irreducible curve over a finite field.

Recall that, if k'/k is a field extension, a geometrically integral k-scheme X is called k’-rational if the function
field of X x4 Speck’ is a purely transcendental extension of k.

Corollary 2.11. Let S be a locally noetherian normal scheme and let X and G be faithfully flat S-schemes locally
of finite type, where G is an S-group scheme. Let F: (Sch/S) — Ab denote either NPic s (2.19) or Br, 5 (2.28).
Assume that

(i) the structural morphism X — S has an étale quasi-section,
(ii) for every integer i > 1 and every étale and surjectzve morphism T — S, Xr, G’ and X1 XT G‘ are locally
factorial,
(iii) for every point s € S of codimension < 1, the fibers X; and G are geometrically integral, and
(iv) for every maximal point n of S, Gy, is k(n)*-rational.

Then the maps F(G') ® F(G) — F(G"H) and F(X) ® F(G') — F(X xs G) (2.40), (2.42) are isomorphisms
of abelian groups Joreveryi > 1.

‘Proof By (ii) and (iii), X, is norrnal geometrically 1ntegral and locally of finite type over k(q) Further, by (iv), Gl is
k(#)’-rational for every integeri > 1. Thus, by [GA2, Example 5.9(a)], PIC(X n X k() (G ')$) = Pic X 5 ©®Pic ((Gn)s)
i.e., (2.49) holds. Similarly, Pic((G,, ')S x k(s Gy) = Pic ((G,,) ) @ Pic (G,). Therefore hypotheses (1) (iv) and (v")

of the proposition hold for X, G* and G', G.The corollary for F = NPic s (respectively, F = Br,, 5) now follows
from part (a) (respectively, (c)) of the proposition. : a

Remark 2.12. There are many examples where hypothesis (iv) of the proposition holds, e.g., when G is a reductive
S-group scheme. See Proposition 4.1(i).

3. The units-Picard-Brauer sequence of a torsor

Let S be a scheme, let G and Y be flat S-schemes locally of finite presentation, where G is an S-group scheme,
and let Gy = G xg Y. A basic problem is to compute the Picard group of a Gy-torsor X over Y in terms of
the Picard groups of ¥ and G. When § = Speck, where k is a field, this problem was discussed by Sansuc in
[San81, pp. 43-45], who used a simplicial method to obtain a units-Picard-Brauer exact sequence that relates the
groups mentioned above. In this Section we generalize Sansuc’s method to deduce, under appropriate conditions, a
similar exact sequence over any locally noetherian normal scheme S.

3.1 A simplicial lemma

Let ¥ be a full subcategory of Sz which is stable under products and contains 1. Further, let F: 4 — Ab be an
abelian presheaf on % such that F(15) = 0. If X — S is an object of ¥ (respectively, if £: X — Y is a morphism
in ©), we will write F(X) (respectively, F(¢)) for the abelian group F(X — S) (respectively, morphism of abelian
groups F(Y) — F(X)). The canonical ¥-morphisms py : XxsY — X and py: X xsY — Y define a morphism in
Ab

wx,y = Vrx,y: F(X)® F(Y) > F(X x5Y), (a, b) = F(px)(a) + F(py)®). (3.1
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If Z — S is athird object of ¥ and we identify (X xsY) x5 Z and X x5 (Y xs Z) (and write X x5 Y x5 Z for
the latter), then the following diagram commutes:

|
F(X)® F(Y)® F(2)

lreny®vy,z
—_—

F(X)® F(Y xsZ)
l'//X,YxSZ (3.2)

F(XxsY x52).

V’X,Y@lF(Z)l

F(XxsY)® F(Z)

WXXsY,Z

Now let #: Y — S be an object of &, write %)y for the category of Y-objects of € and let£: X — Y be a faithfully
flat morphism locally of finite presentation. Thus & is an object of ‘ﬁ/y which has a section locally for the fppf
topology on ¥ [EGA, IV4, Corollary 17.16.2]. Now, for every i > 0, let X* Jy be defined recursively by X9 iy =Y and

X }“’1;1 =X xy X} /Y- It is well-known that {X ’+1}l>0 is a simplicial Y-scheme with degeneracy and face maps
X;.-!};l Xl+2 (XO,.,,,xi)l—)(xo,...,Xj,Xj,...,x,'), 0<j<i, 3.3)

and?

a]

ARE X}y - Xﬁ], (x0, ..., Xit1) = (X0, ..., Xj—1, Xj41, .5 Xit1), 0=<j<i+1 (3.4)

Let
WF: %y — Ab,(Z > Y) > F(Z > Y 5 5),

be the restriction of F to %)y. Since A*F is an abelian presheaf on %)y, we may consider the Cech cohomology
groups of h*F relative to the fppf covering ¢: X — 7, i.e., the cohomology groups H!(X)Y, h*F ) of the complex
of abelian groups {F(X‘+1) 8’1}, o where 8’1 = ZH'I (—-1)/F(5],,): (Xﬁl) - F(X’“Lz)3

Nextletz: G — S be a group object of € with unit sectlon £:85 — G We will need the followmg fact: since
F(S) = 0, both F(x) and F(¢) are the zero morphism of Ab. Now assume that the Y-scheme X is a right (fppf)
Gy-torsor over Y with action ¢’: X xy Gy — X. We will write:

c: XxsG—> X,(x,8)— xg, (3.5)

for the composite S-morphism X xg G 5 X xy Gy %5 X. Now set Bo = lx and note that, for every i > 0,
the morphism of S-schemes

Bi: X xsG' > Xﬁl, (x,81,...,8) > (x,x81,...,%x81 &), (3.6)
is an isomorphism. The following holds:
%01 = (3.7)
and
o o1 = px, a8

where 8 and 8/ are given by (3.4) and ¢ is given by (3.5).
Lemma 3.1. The map {f;}i>0: {X x5 G'}i>0 — {X;“;l}izo is an isomorphism of simplicial S-schemes.
Proof. The simplicial S-scheme structure on {X x §G'}; > ¢ is defined as follows. For every j such that0 < j < i, let

o] =(gi, e 1gi-i)s: G' = G (g1, ..., 8) = (81, -+, 8js L, 8jt1s - -5 8i)- (3.9)

2In several formulas below, ordered tuples of the form Yk, - .., Yr with k > r must be omitted for the formulas to make
sense.

3Here we regard X };1 and 6l.j+1 as S-schemes and S-morphisms, respectively.
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Then the degeneracy maps of {X xs G'};>g are the maps

siJ = (IX:U,'J)S: XXS Gi - XXS Gi+l’ (x5gla -“agi)\}-_) (xygl"“’gja lagj-i-l’ . -"gi)' (310)

Now, fori > 1and1 < j <i + 1, consider

w] Gt > G (g1,...,8i41) P (8155 8j-1,8j8j+1,8j+2 - - -» 8i+1): (3.11)
We extend the above definition to the pair (i, j) = (0, 1) by setting
wl=7:6-S8. (3.12)

Thenthefacemapsdi{i_1 : XxsGH = XxsGof (Xx5G'}ix0 aregivenbydi’;rl = (lx,wij+1)s ifl<j<i+l
and :
dl (x, 81, .., 8i+1) = (x81,82, ..., 8i+1). (3.13)
Note that,ifi > land 1 < j <i+ 1, then
dl (e, 815, 8i41) = (X, 81, .-, 81, 8j8j+1> &j+2---» 8i+1): (3.14)

It is not difficult to check that the maps B; (3.6) commute with the operators (3.3), (3.4), (3.10) and (3.13), in the
sense of [May, Definition 9.1, p. 83], which yields the lemma. O

We now assume that the map yx, G : F(X) ®F(G) > F(X xsG)(B.1)isan 1somorphlsm of abelian groups and
consider the composmon

F (c) pr(c)

¢ =9F,x,6: F(X) — F(X x5 G) %0 F(X)GBF(G) F(G), ‘ (3.15)
where ¢ is the S-morphism (3.5) and pr(G) is the canonical projection.

Lemma 3.2. If yx,¢: F(X) ® F(G) = F(X x5 G) is an isomorphism, then there exists a cosimplicial abelian
group structure onr{F(X) @ F(G ’)}i>-0 so that the map

(wx,iizo: (FX)® F(GN},50 = (F(X x5G)} 50 (3.16)
is a morphism of cosimplicial abelian groups
Proof. The codegeneracy maps of {F (X Y® F(G ’)} are
Lro ® F)): F(X) @ F(G™*!) > F(X) @ F(G),
where 0 < j < and the maps v : G' — G'*! are given by (3.9). The coface maps are
(prix), @ity FX) @ F(G') > F(X)®F(G'™"), (a,b) > (a, 0" (a, b)),
where 0 < j < i+ 1, prx): F(X) & F(G!) — F(X) is the canonical projection and the, maps

a;*': F(X) ® F(G') > F(G'*") are defined by

ol (a,b) = [F(pé)(q’(“))*F(”G‘)(”) =9 (3.17)

F(w], )(®) ifl<j<i+]l,

where a € F(X),b € F(G'), pL: G'*! — G is the first projection @ is the map (3.15), pgi: Gt = G'is
the projection onto the last i factors (when i > 1) and the maps w : Gt — G’ are given by (3.11) and (3.12).
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To check that (3.16) is, indeed, an isomorphism of cosimplicial abelian groups, we need to check that the following
diagrams commute: '

WX,Gi

F(X)® F(G') F(X x5 G')
(PF(X),a;',ﬂ)l lF(di{H) (3.18)

WX,Gi+1

F(X)® F(G'™h) — > F(X x5 G'1),

where 0 < j <i + 1, and

. WX,GH'I ) :
F(X)® F(GH) —— F(X x5 Gt
l[:(x)@F(vij)l lF(Sij)
. Yx,6i ,
F(X)® F(G') F(X x5 G'),

where 0 < j < i. Except when j = 0 in (3.18), the commutativity of the preceding diagrams follows without
difficulty from the definitions (3.1), (3.9)-(3.12), (3.14) and (3.17). The commutativity of (3.18) when j = O follows
from the definitions (3.13), (3.17), the commutativity of diagram (3.2) for (X, ¥, Z) = (X, G, G*) and the following
equality of maps F(X) > F(X x5 G):

yx,c o (irx) +ir@G)o9) = F(g), (3.19)

where ir(x): F(X) = F(X) ® F(G) and if@): F(G) — F(X) ® F(G) are the canonical embeddings.
The identity (3.19) follows, in turn, (by the definition of ¢) from the equality

PF(x) © W;?,]G o F(¢) = lpx)ys
which is [GA2, formula (25), p. 480]. u
Now, for every integer i > 0, let
y D F(G) - F(G')

be defined recursively by yc(;o) = 0 (where F(G)° = {0} by definition), yc(;l) = 1Fr(G) and, fori > 1,

ySV B, b)) = vei g (b1, - Bi), bis). (3.20)
By (3.1), we have
i ~
y 1, .. b)) =D F(pk) o), (3.21)
k=1

where pé : G' — G is the k-th projection morphism. Further, the maps y c(; ) satisfy the following inversion formula
(3.22)%: for every integer k such that 1 < k < i, let ok G > G, g~ (1,...,8%>-..,1), where the subscript
indicates position, i.e., 8% is the unique S-morphism such that pé 00% =15 and pé 00% = gox for j # k. Then,
for every k such that 1 < k < i, we have

be=F @075 G1,. ... b). 622).

Lemma 3.3. Assume that, for every i > 1, the maps yi g: F(G') ® F(G) — F(G'™') are isomorphisms of

abelian groups. Then there exists a cosimplicial abelian group structure on {F X)eF (G)i} so that the map

i>0
{1re @1} iz0: {FOBF(G)'},,0 > {(FX)OF(GH}, (3.23)
is an isomorphism of cosimplicial abelian groups. l

4This inversion formula is the key to obtaining without difficulty the formulas (3.29) below.
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Proof. By (3.20), the maps y((;i ) are isomorphisms of abelian groups for every i > 1. Now, for every i > 0, we
define maps 5;“: F(X)® F(G) - F(X)® F(G)"*! (where 0 < j <i + 1) and a/: F(G)*! — F(G)'
(where O < j < i) by the commutativity of the diagrams

) ]F(X)@}’((;i) ) ; .
FX)®F(G) ——=—> F(X)®F(G")
5 l<pm),a;i+l> | (3.24)
v 1F(X)®Yg+1)

F(X)®F(G)*' ———— F(X)® F(G'*}),

where 0 < j <i+1, and
(i+1)-
F(G)H ———— F(G'*))
aji lF ("ij)
Vo 9 .

F(G)Y ——=— F(G"),
where 0 < j <i.Then {F (X)®F(G)' } ; >0 is a cosimplicial abelian group with codegeneracy maps 1r(x)®o J' and
coface maps 5}“. Further, it is immediate (by construction) that (3.23) is an isomorphism of cosimplicial abelian
groups. g

The next statement is the simplicial lemma alluded to in the title of this subsection. It generalizes
[San81, Lemma 6.12], which is the case S = Spec k, where £ is a field.

Lemma34. LetF: 6 — AbwithF(15) =0,G —> S, h: Y — Sand &: X — Y be as above. Assume that the
maps ygi G- F(G)® F(G) » F(Gi*) and vx,ci: F(X)® F(GY) — F(X x5 G') (3.1) are isomorphisms of
abelian groups for everyi > 1. Then Hi (X/Y, h*F) = Qfor every i > 2 and there exists a canonical exact sequence
of abelian groups

0— H(X/Y,h*F) - F(X) 5 F(G) »> H'(X/Y, h*F) — 0, . . (3.25)

where 9 = @F, x, G is the map (3.15).

Remark 3.5. Let
9=pgofi': X xy X > G, (3.26)

where £ is the isomorphism (3.6) for i =1.Thend is an S-morphism such that, for every’S-scheme T, 9 (T) maps
(x0, x1) € X(T) xy(ryX(T) to the unique element g € G(T') such that x; = xog. The proof of the lemma will
show that F(J#): F(G) —» F(X xy X) factors as

F(G) ™ Kera? € F(X xy X).

It will also show that the maps H°(X/Y, h*F) — F(X) and F(G) — H'(X/Y, h*F) in (3.25) are, respectively,
the inclusion and the composition

F(G) 2% Kero? —» Kero/Ima' = H(X/Y, h*F).
Proof. By Lemmas 3.1, 3.2 and 3.3,

{F(ﬁi_l)° ¥x,Gi © (1F(X)®7((;i))}izo: {F(X)EBF(G){}[EO - {F(X;-;l)}izo;__

is an isomorphism of cosimplicial abelian groups. The latter map induces isomorphisms of the associated cochain
complexes of abelian groups :

(FOOBFGY,8), > (F(X[F),0™") @2

i>0

k24
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and thus of the corresponding cohomology groups
HY (F(X)®F(G)*) > H'(X/Y,h*F) (i 20), (3.28)

where &' = Z”"O( 1),51+1 FX)®F(G) - FX)® F(G)’+1 and the maps (5'+ are given by (3.24) via
(3.17) and (3.20). Note that, since fo = 1x, ¥x go = 1F(x) and y( ) — 0, the map (3.28) for i = 0 is an equality
HO(X/Y, h*F) = Kerd®.

We will now compute the maps &' explicitly. Using definitions (3.11), (3.12), (3.17), formulas (3.21), (3.22) and
the commutativity of diagram (3.24), the maps 5’“ (where 0 < j < i + 1) are given by 5’+1(a by,...,b) =

(a, g’ Do fl+11)) where the elements c(’ e F(G) for 1 <k <i + 1 are defined by

pa) ifk=1landj=0
M) _ b1 if2<k<i+land0<j<k-1 (3.29)
by ifl<k<iandk=<j<i+1

0 ifG,j)=0Dork=j=i+1>2.
The preceding formulas yield®:

6%a) = (0,9()
6la, b1) = (a, 9(a),0)
6%(a, by, ...,b2) = (0,9(@) —b1,0,b0 —b3,0,...,b2,_2 — byr_1,0, ba,)
8%+ a, b1, ...,b2r+1) = (a,0(a),bs, b, ..., bar, bar,0),

where 7 > 1. It is now clear that H(X/Y, h*F) = Kerd® = Kerg. Next we note that the /ﬁrst component of the map
3.27),1e.,

F(BTH o wx,g: F(X)® F(G) = F(X xy X),

induces (via restriction of domain) a map Keré! — Kerd?2. The composition of the latter map and the canonical
isomorphism F(G) — Kerd! € F(X) @ F(G),b — (0,b), is a map F(¥): F(G) — Kerd? such that the
composition

F(G) T Kers? <> F(X xy X)

is the map F(¥): F(G) — F(X xy X) (3.26). Further, F(#) induces an isomorphism of abelian groups
F(G)/Imp > HY(X/Y, h*F), namely the composition

F(G)/Imp = Keré!/Imé® > Kerd?/Ima' = H\(X/Y, h*F),

where the second isomorphism is the map (3.28) for i = 1. Thus we can define the map F(G) —» HY(X /Y, h*F)
appearing in (3.25) as the composition

F(G) ™ Kera? —» Kero?/Ima! = HY(X/Y, *F).

It remains only to check that H(X/Y,h*F) = 0 for i > 2. Following [San81, p. 45], we define the map
Ai: F(X) ® F(G)' - F(X) ® F(G)'~! by Ai(a,b1,...,b;)) = (a,—b1,b3,...,b;), where i > 2. Then
0" lodi+2i1106" = lpxygr(c): forevery i > 2, whence Kerd' = Imd'~! foralli > 2,ie., H (X/Y,h*F) =0
for every i > 2 by (3.28). The proof is now complete. a

SThese formulas generalize those stated (without proof) in [San81, p. 45].
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3.2 A complement

Let S be a locally noetherian normal scheme, let € = Sy and assume that the objects X — § and G — S considered
above satisfy the conditions of Corollary 2.11. Then, by (2.29), the functor F = Br, s: Sg — Ab (2.28) satisfies the
hypotheses (and therefore the conclusions) of Lemma 3.4. In particular, there exists a canonical map (3.15)

9 = 0Br, 5,X,G = PBr(G/S) © Vx G © Ba¢ : Bra(X/S) = Bra(G/S). (3.30)

On the other hand, the functor F = Bry s: Sa — Ab does not satisfy the conditions of Lemma 3.4 since
F(1s) = BrS is nonzero in general. However, we may still define an analog of the map (3.30) for Bry, s:

Proposition 3.6. There exists a morphism of abelian groups
9’ = ¢x g: Br(X/§) — Br.(G/S) (3.31)

such that the following diagram of abelian groups commutes

Br; (X/S) —2> Br,(G/S)

C(X)l 1C(G)n:

. Br,(X/S) —2— Br.(G/S),
where ¢ is the map (3.30), c(x) is the canonical projection (2.30) and ¢ (G), ¢ is given by (2.33).

Proof. By the proof of Corollary 2.11 and Remark 2.10, the map (2.44) .

' {x.6: Bri(X/S) @ Br,(G/S) = Bri(X x5 G/S) ' (3.32)

is an isomorphism of abelian groups. Thus we may define

o ¢’ = PBr,(6/s) © 5. ©Bri¢: Bri(X/S) > Br:(G/S). (3.33)

The diagram of the proposition is the outer circuit of the following diagram with commuting squares

1

- .

Br; (X/S) 2% Bry(X x5 G/S) —X%> Br)(X/S) @ Bz (G/S) — 22 . Br,(G/S)

c(x) C(X"Sa)l (cxys C(G),c)l ’ lC(G),e
a V’_’ Ta

Br,(X/S) —25 Bra(X x5 G/S) —X% Bry(X/S) @ Bra(G/S) — 222, Br.(G/S).

Lemma 3.7. ~If ¢ x,G is the isomorphism (3.32), then
PBr(X/S) © C;ZIG o Bri¢ = Iy (x/5)-

Proof. Recall sg = (1x, &)s (3.10). Since pg o sg = goh o and Bry(g) o ppr,(c/s) = 0 by definition of Br.(G/S)
(2.31), we have

Br15d)olx, ¢ = Bri(px 0 53) © Py x/s) + Bri(pG 05d) o pr.(G/s) = PBri(x/s)s
whence pgr, (x/s) © g;’lG o Bri¢ = (Bry s8) o (Bri¢) =Bri(1x) = 1y (x/s), as claimed. O

Lemma3.8. Letl — H 2> G — K — 1 be an exact sequence of groups in €, so that the K -scheme G is an
Hy -torsor over K, and let ey and e denote the unit sections of H and G, respectively. Assume that G — S and
H — § satisfy the conditions of Corollary 2.11, so that the map (3.31)

go'G’H: Bri(G/S) — Brg,(H/S) (3.34)
is defined. Then the restriction of ¢(’;’ g 10 Bre;(G/S) C Bri(G/S) is the map Brgy, ¢ i (2.35). -
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Proof. The action of H on G is given by ¢: G xs H — G, (g,h) + gi(h). We claim that the map
® = @Br,5,G,H = PBry(H/S) © y/E’IH o Bry¢: Bro(G/S) — Bra(H/S) (3.30) is the map Br,i. In effect, applying
the argument at the beginning of the proof of [GA2, Lemma 2.7, p. 480] to the unit section £ of G (rather than to
the unit section of H) and the functor F = Br, 5, we obt{ain the formula Br, s(eG Xs 15) = PBr,(H/s) © WE,IH,
whence ¢ = pBr,(s/5) © WE,IH o Bry¢ = Bra(eg xs 15) o Bro¢ = Brai, as claimed. Now consider the diagram

d Brg,,('if/S)

Bre, o i
¢ | Brog(G/S) — " s Br, (H/S) |cun.en

Bri(G/S)

ZlC(G),ec "(H)»EHl:
¢=Br,i

Bry(G/S) ———— Bry(H/S),

where ¢’ = (p&’ H = PBry(H/S) © (EIH o Bri¢ (3.33). By definition of ¢(g),¢; (2.33), the left-hand semicircle
commutes. Further, the bottom square commutes by the commutativity of diagram (2.37) and the outer diagram
commutes by Lemma 3.6. Since the map c(z), ¢, is an isomorphism, we conclude that the top square above
commutes, i.€., the lemma holds. a

3.3 The units-Picard-Brauer sequence

Let S be a locally noetherian scheme and let € be the full subcategory of Sg whose objects are the schematically
dominant morphisms. Then % contains 15 and is stable under products [EGA, IV3, Theorem 11.10.5(ii)]. Now let
z: G — § be a flat S-group scheme locally of finite type and let 2: ¥ — § be a faithfully flat morphism locally
of finite type. Note that both 7 and & are objects of €. Now let £: X — Y be a right (fppf) Gy-torsor over Y and
consider the restrictions of the abelian presheaves (2.16) and (2.19) to €:

Us: E - Ab,(Z - S) — Us(2),
and
NPics: € — Ab, (Z — S) > NPic(Z/S).

If F denotes either of the above functors, then F(15) = 0. Further, Proposition 2.8 and Corollary 2.11 show that the
maps (3.1) ygi g: F(G)) @ F(G) - F(G'*') and yy gi: F(X)® F(G') » F(X x5 G') are isomorphisms of
abelian groups for every i > 0. Thus Lemma 3.4 yields ,

H'(X/Y,h*Us) = H' (X/Y, h*NPics) =0 (i > 2). (3.35)
Further, by Lemmas 2.5 and 3.4, there exist canonical exact sequences of abelian groups
0— HOX/Y, h*Us) — Us(X) = GXS) - HY(X/Y, h*Us) — 0 - (3.36)

and
0 — H%X/Y, "*NPics) — NPic(X/S) — NPic(G/S) — H(X/Y, h*NPics) — 0. (3.37)

Next we consider the abelian presheaf
Qs: € — Ab, (Z 5 5) > Im [PicS Pt pic z]. (3.38)

Lemma 3.9. We have _

() H(X/Y, h*Qs) = ImPic(h o 5); and
(i) H(X/Y,h*Qs)=0fori > 1.
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Proof. Recall the Y-morphism 8/, : X;’;z x‘+1 (3.4), where i > Oand 0 < j <i + 1. Then (h*Q5)(3/, ) =
Qs(a,+1) is the restriction of Picd/, ,: Pic X};l — Pic X}‘}‘Zz to ImPic(k o p}1), where pli: X};}l - Y

is the structural morphism of X’+1 Smce ho p[ S 6l]+1 = ho p[’] ) 6113_1 for every pair of integers j, k
such that 0 < j, k < i 4+ 1, we have Qs(al“) Qs(am) for all j, k as above. Further, since a/H has a

section, namely (3.3), the map Pic 8/, is injective for every j. Thus the complex {Qs(X ’+1) o't} where

i=0

oitl = Z’+1 (-1)J Qs( ; +1)’ is quasi-isomorphic to the complex whose only term is the group ImPic(% o &)
placed in degree O, where ¢ = p£,0]: X — Y. The lemma is now clear. a

Next, for every integer j > 0, we consider the abelian presheaf
\ HGm,y): Gy — Ab,(Z > Y) > HI(Zg, G, 2). (3.39)

Lemma 3.10. The following holds

G) HO(X/Y, i*Us) = Us(Y),
(i) H'(X/Y,h*Us) = H'(X/ Y, %G, v)),
(iii) there exists a canonical isomorphism of abelian groups

H(X/Y, #YG, 1) ~
ImPic(h o)

H%(X/Y, h*NPicy),

where I:IO(X/Y %I(Gm Y)) = Ker[Pic 61 — Pic 61 Pic X — Pic (X xy X)] is a subgroup of Pic X.
(iv) H (X/Y; h*NPlcs) H! (X/Y, #NGmy)), and
v) H'(X/Y G, v)) = H' (XY, fl(Gm y)) =0fori = 2.

Proof. Let PG,,, s(s) be the constant presheaf on %y with value G, S(S ). Since every object Z > Yof Gy is
schematically dominant over S, the canonical map G, s(S) = Gp, s(Z ) is injective. Consequently, there exists a
canonical exact sequence of abelian presheaves on €y

1 > Pg, o(s) = H#Cnm,y) > B*Us > 1.

Since H' (X/Y, Pg,, s(s)) = 0fori > 1, the preceding sequence immediately yields (i) and (ii) and also shows that
H (X/Y, #%Gpm,y)) = H (X/Y, h*Us) = 0 for i > 2 by (3.35), which is the first half of (v). Next, there exists a
canonical exact sequence of abelian presheaves on %y

15 h*Qs — S G, y) = h*NPicg — 1,

where Qg is the presheaf (3.38). By Lemma 3.9, the latter sequence induces the isomorphism in (iii) as well as
isomorphisms

H'(X/Y, i*NPics) = HI(X/Y, #'Gm,y)) (i 2 1),
which yields (iv) and the second half of (v) by (3.35). The proof is now complete. a
The following proposition generalizes [San81, (6.10.1), p. 43]:

Proposition 3.11. (The units-Picard-Brauer sequence of a torsor) Let S be a locally noetherian normal scheme,
G a flat S-group scheme locally of finite type and X — Y a Gy-torsor over Y, where Y — S is faithfully flat and
locally of finite type. Assume that

(i) the structural morphism X — S has an étale quasi-section', ‘ .
(ii) for every integer i > 1 and every étale and surjective morphism T — S, X, G’T and X1 X1 G’T are locally

Jactorial,
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(iii) for every point s € S of codimension < 1, the fibers X; and G are geometrically integral, and
(iv) for every maximal point n of S, Gy is k(n)®-rational.

Then there exists a canonical exact sequence of abelian groups

0—- Us(Y) - Us(X) > G*(§) > PicY —» PicX —» I<IPic(G/S)
— BrY — BrX,

where Us is the functor (2.15) and NPic(G/S) is the group (2.18).
Proof. Using Lemma 3.10, (i)-(iv), in (3.36) and (3.37), we obtain exact sequences
0 — Us(Y) > Us(X) > G*S) - H' (X/Y, %G y)) = O (3.40)

and
0 — Pic X/HY(X/Y, # G, y)) — NPic (G/S) — HY(X/Y, HNGpm,y)) = 0. (3.41)

We now endow %)y with the fppf topology and consider the spectral sequence for Cech cohomology associated to
the fppf covering £: X — Y and the abelian sheaf G,y on €y:
H (XY, #)(Gm,y)) = HH (Y3, Gp,y) = HF (Y, Gy ).

By Lemma 3.10(v) and [CE, Case E* for k = 0, p. 329], the above spectral sequence induces exact sequences of
abelian groups -
' 0— H' (X/Y, %G, y)) — PicY - HO(X/Y, (G, y)) = 0 (3.42)

" and

0— HY(X/Y, 5 G y)) = BrY = HY(X/Y, 5% (Gm,y)) — O, (3.43)
where
HO(X/Y, #*(Gpm,y)) = Ker[Bra? — Bro!: BrX — Br(X xy X)).
Note that, since f1: X xs G = X xy X (3.6) is an isomorphism, we have
HO(X/Y, #*(Gm,y)) = Ker[Br (800 f1) — Br(8; o f1) ] = Ker[Br¢ — Brpx]

by (3.7).and (3.8). Thus, if
‘ ¢ = Br¢ —Brpyx: BrX — Br(X xsG), (3.44)

then (3.40)-(3.43) yield exact sequences
0 — Us(Y) = Us(X) = G*(S) = PicY — HO(X/Y, #' (Gp,y)) = 0 (3.45)
" and

0 — Pic X/H(X/Y, 5 (Gm,y)) > NPic(G/S) - BrY — BrX 4 Br(X xsG). (3.46)

The sequences (3.45)._2.1nc;(3_.4é) é-an ﬁo-v.v be ;sse;nbiedi td_yiéld the exact Sequehce'of abelian groups o
0 - Us(Y) > Us(X) > G*(S) — PicY — Pic X — NPic(G/S)

— BrY — BrX 55 Br(X x5G), 347

where ¢ is the map (3.44). The proposition follows. o
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Remarks 3.12. _

(a) The sequence (3.47) (and therefore also the sequence of the proposition) is functorial in the following sense.
Let G’ be a flat S-group scheme locally of finite type and let X’ — Y’ be a (right) G/, -torsor over Y’ such
that the S-schemes G’, X’, Y’ satisfy all the conditions of the proposition. Assume, furthermore, that there exist
a morphism of S-group schemes G — G’ and morphisms of S-schemes X — X’ and Y — Y’ such that the
following diagram, whose horizontal arrows are the corresponding group actions, commutes

XxyGy —X

L

X' xyi Gl —> X

Then the following diagram, whose top and bottom rows are, respectively, the exact sequences (3.47) associated
to the triples (X', Y/, G’) and (X, Y, G), commutes:

-+ —>Pjc Y/ — Pic X’ —> NPic(G'/S) ——=BrY' —> -

R

-+ —> PicY — Pic X — NPic(G/S) ——BrY —>----

We do not carry out here the (lengthy) verification of this fact. We do, however, include below (after Remark 3.15)
a partial verification of the indicated functoriality in a particular case that will be relevant in the next
section. v

(b) The homomorphism of abelian groups d: G*(S§) — PicY in (3.47) is defined as follows: if y € G*(S), i.e.,
x: G — Gy, s is a morphism of S-group schemes, then

d(x) = xPAXT) = [X ACPH Gy ],

where )(9): H(Yg, Gy) — H'(Ya, Gp y) = PicY is the map (2.3) induced by yy and [X] is the class of the
Gy-torsor X — Y in H1(Yy, Gy).

(c) In the setting of the proposition, assume in addition that S is noetherian and (for simplicity) irreducible with
function field K. Assume also that G is of finite type over S and that, for every point s of S of codimension 1,
Ys is integral. By (a), [GA2, Corollary 5.3], [Ray, Proposition VII.1.3(4), p. 104] and the proposition, there exists
a canonical exact and commutative diagram of abelian groups

Pic S Pic S
l Pi l . B :
G*(§) ——PicY ad Pic X NPic(G/S) BrY i BrX

] R

G*(K) —> Pic Yx %> Pic Xy —> Pic G Br Yx —% BrXk.

It follows from the diagram that the canonical map KerBré — KerBrlk is an isomorphism. Further, if the
canonical map Us(X) — Ux(Xg) is surjective, then KerPic{ — KerPic&x is an isomorphism as well.
Thus, in this case, a substantial part of the sequence of the proposition is essentially equivalent to the
corresponding part of the sequence over the field K. See also Remark 4.22.

Recall that, if G is an S-group scheme, then G* is the sheaf Hom S_gr(G, Gm,s) (2.11). Assertion (ii) in the
following statement generalizes [San81, (6.10.3), p. 4316.

6Since it seems that the proof of the indicated result in [San81, p. 45, lines 21-26] is incorrect, we provide a modified
argument in the setting of this paper.
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Corollary 3.13. Let the notation and hypotheses be those of the proposition.

(i) There exists a canonical exact sequence of étale sheaves on S
1 — Uyss = Ux/s — G*— Picy;s — Picx/s — Picgys
— Bryss = Brx/s — Brxwxsa/s

(ii) If the morphism Picx;s — Picg/s in (i) is surjective, then there exists a canonical exact sequence of abelian
groups

0 - Us(Y) = Us(X) = G*(§) — PicY — Pic X — NPic(G/S)
— Bri(Y/S) - Bri(X/S) > Br,(G/S),
where ¢ is the unit section of G — S and ¢’ is the map (3.33).

Proof If T — S is an etale and surjective morphism of schemes, then T, G, X1 and Yr satisfy all the hypotheses
of the proposition. Thus there exists an exact sequence of abelian groups (3.47)

0— Uy;s(T) - Ux;s(T) - GXNT) — PicYr — Pic X7 — NPic(Gr/T)

(3.48)
— BrYr - BrXr — Br(X7 xr Gr). :

The above sequence is the sequence of T-sections of a complex of abelian presheaves on Sg such that the
corresponding complex of associated sheaves on Sg; is exact, by the exactness of (3.48) for every T — S as above.
Assertion (i) now follows, noting that Uy,s and Uyx/s are the etale sheaves on S associated to Uy;s and Ux/s
(respectively) by Remark 2.4, and Picg/s is the etale sheaf on S associated to the presheaf T +— NPic(Gr/T)
by [Klei, Definition 9.2.2, p. 252]. If Picx;s — Picg/s is surjective, then (i) yields the exactness of the right-hand
column in the following commutative diagram of abelian groups with exact rows:

1 —— Bri(Y/S) BT Bry/s(S)
1 — Bri(X/S) Brx Brx;s(S)

| ! |

] — Br1(X x5 G/S) — Br(X x5 G) — Brxx,/s(S),

where ¢ is the map (3.44) and ¢; = Bri¢ — Bry px is induced by ¢. By the exactness of (3.47), the middle column
in the above diagram is also exact. It now follows that the left-hand column is exact and Ker[Br Y — BrX] =
Ker[Bri(Y/S) — Br1(X/S)]. Thus (3.47) yields the exact sequence

0— Us(Y) > Us(X) > G*(S) — PicY — Pic X — NPic(G/S)
— Br(Y/S) - Bri(X/S) & Bri(X x5 G/S).

Now, since we work under the hypotheses of Proposition 3.11, which are the same as those of Corollary 2.11,
the proof of Corollary 2.11 and Remark 2.10(a) together show that the map ¢x,¢: Bri(X/S) @ Br:(G/S) —
Bri(X xs G/S) (2.44) is an isomorphism of abelian groups. Thus the kernel of ¢; is the same as the kernel of the

composite map
1

-
Bri(X/S) & Bri(X xsG/S) S Bri(X/S) @ Br.(G/S). (3.49)
Now, by (2.47), (2.48) and Lemma 3.7, we have T

PBryx/s) ©Cx. ©P1 = PBu(x/s) ©Cx,6 ©BI1S = PBn(v/s) © (g ©Bri Px
= IBnx/s) — IBn(x/5) =0



214 Cristian D. Gonzdlez-Avilés

and
PBr.(G/S) © ()—(_lG o1 = PBr.(G/S) © C)ZIG oBri¢ — pBr(6/s) © C,ZIG o Br; px
: — (PI —0= (/7/,
where ¢': Br|(X/S) — Br.(G/S) is the map (3.33). Thus the kernel of the composition (3.49) is the kernel of ¢’,
which completes the proof. a

Corollary 3.14. Let1 > H — G — F — 1 be an exact sequence of smooth S-group schemes with connected
fibers at all points of § of cog‘imension < 1, where S is a locally noetherian regular scheme. Assume that, for every
maximal point n of S, Hy is k(n)*-rational. Then the given sequence induces

(1) an exact sequence of abelian groups

00— F*S) > G*(S) » H*(S) > PicF — PicG — NPic(H/S)
— BrF — BrG,

(ii) an exact sequence of étale sheaves on.S
-0— F* > G* > H* — Pic pys = Picgss = Picays
— Brr/s = Brgys = Broxgays
and, ,
(iii) #f the morphism Pic s — Pic gys in (ii) is surjective, an exact sequence of abelian groups
0 — F*S) - G*(S) - H*S) — Pic F — Pic G — NPic(G/S)
| | — Bry(F/S) - Bry(G/S) % Br,(H/S),
where &€ denotes the uﬁit section of H — Sand @’ is the map (3.34). ‘

Proof. Assertion (i) follows by applying Proposition 3.11 to the Hr-torsor G- — F, which is justified since all
the conditions of that proposition hold true by Remark 2.10(b). Assertion (ii) follows from Corollary 3.13(i) and
Lemma 2.3. Assertion (iii) follows from Corollary 3.13(ii) and Lemma 2.5. _ D

" Remark 3.15. Regardmg assertion (i) of the preceding corollary, Raynaud constructed in [Ray, Proposition VII.1. 5
pp. 106-107] a canonical complex of abelian groups G*(S) = H*(S) — Pic F — Pic G, where § is any scheme,
G is an S-group scheme and H is a subgroup scheme of G such that the quotient fpqc sheaf G/H is represented by
an S-scheme F. If the maximal fibers of H are not smooth, then the preceding complex may not be exact.

The maps H*(S) — Pic F and H* — Pic 1:/3 in the sequences of Corollary 3.14, (i) and (ii), can be defined for
any exact sequence of S-group schemes

1-H-> G- F->1. (3.50)
The first map d: H*(S) — Pic F is given by
d(x) = x$A(G)) = (G AHPXF Gy 1), 3.51)

where ¥ : H(Fy, HF) - H'(Fa,Gn, r) = Pic F is the map (2.3) induced by xr and [G] is the class of the
Hp-torsor G — F in H(Fy, HF). See Remark 3.12(b). The map (3.51) is compatible with pul]backs if
g: F' — F is a morphism of S-group schemes, then the exact sequence 1> H—> G > F' =1 1nduced by
(3.50) defines a map d’: H*(S) — Pic F’/, namely d'(x) = X ([GF/]) = [Gpr AHF!> XF! Gum, F',r), such that the
following diagram commutes

H*(S) —L>Pic F

x lmcg | | (3.52)

Pic F'.

"This fact is a particular case of the functoriality assertion in Remark 3.12(a).
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See (2.4) and (2.14). Now, for every morphism of schemes T — S, there éxist maps H*(T) -»> Pic Fr defined
similarly to (3.51) which induce a morphism of abelian presheaves on (Sch/S). This morphism of presheaves
induces, in turn, a morphism of the associated etale sheaves on .S

d: H* — Pic s, : (3.53)

which is the map in the sequence of Corollary 3.14(ii). If S is strictly local, then d(S) agrees with the map d (3.51)
(see Remark 2.6 for the equality Pic r/s(S) = Pic F). Further, there exist commutative diagrams analogous to (3.52)
when S is replaced by any T as above. We conclude that there exists a canonical commutative diagram of etale
sheaves on §:

H* ——d——> Pic F/S

N lPics(g) (3.54)

Pic F!S.

4. Reductive group schemes

In this section we establish the main theorem of the paper (Theorem 4.20 below), which generalizes the main theorem
-of [BvH].

Let S be a (non-empty) scheme. Henceforth, all S-group schemes are tacitly assumed to be of finite type over S.

If M is an S-group scheme of multiplicative type, then M* = Homg gr(M Gm,s) (2.11) and
M, = Hom ¢ gr(Gm s, M) are represented by (finitely generated) twisted constant S-group schemes [SGA3ew, X,
Corollary 4.5 and Theorem 5.6). If f: M — N is a morphism of S-group schemes, we will write f®): N* — M*
and f(x): M, — N, for the canonical morphisms induced by f.

An S-group scheme G is called reductive (respectively, semisimple, simply connected) if G is affine and smooth
over S and its geometric fibers are connected reductive (respectively, semisimple, simply connected) algebraic
groups. By convention, the trivial S-group scheme is simply connected. If G is a reductive S-group scheme, we will
write 7g: G ~ S and eg: § — G for the structural morphism and unit section of G, respectively. Further, rad(G)
will denote the radical of G, i.e., the identity component of the center of G. Now recall that the derived group G %
of G is a normal and semisimple S-subgroup scheme of G such that G = G/G 9% is the largest quotient of G
that is an S-torus. If G is a semisimple S-group scheme, there exists a simply-connected S-group scheme G and a
central isogeny ¢ : G — G. The S-group scheme G is called the simply-connected central cover of G and the group
u = uc = Kerg is called the fundamental group of G. See [GA1, p. 1161] for more details and relevant references.
If G is an arbitrary reductive S-group scheme, G and u will denote, respectively, the simply connected central cover
and fundamental group of G%"ie., G = G and u = ug = U geer. Then there exists a canonical central extension
of flat S-group schemes of finite type :

. — \\\,
1> u>G—G¥ =, (4.1)

where u = Ker[G — Gder] =S Xgder Gandi = = ggder X Ggder G. The S-group scheme y is a (possibly non-smooth)
finite subgroup scheme of G of multlphcauve type. Consequently, u* is a finite and etale S-group scheme. We note
that G is simply connected if, and only if; we = 0. We also note that there exists a canonical exact sequence of
reductive S-group schemes : ™

1 Gl gi g, (4.2)

The composiﬁon G —» Gfie’ <> G and the product in G- define a faithfully flat morphism of S-group schemes
rad(G) xs G — G which fits into a central extension of flat S-group schemes of finite type

1 - 4’ %5 1ad(G) xsG —> G — 1, (4.3)

where 1’ = Ker[rad(G) xs G — G 1= S xg (rad(G) xs 5) is a finite S-group scheme of multiplicative type and
i’ = £ x¢ (rad(G) x5 G). Since rad(G) x¢ G % is the trivial S-group scheme, we may make the identification

X6 G =, 4.4)
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Further, there exists a canonical exact sequence of S-group schemes of multiplicative type
11— u— y - rad(G) - G — 1. ' “4.5)
See [GA1, proof of Proposition 3.2]. When reference to G is necessary, we will write
qG): G > G (4.6)

for the morphism ¢ in (4.2). Note that, since (G%")* = 0, (4.2) induces an isomorphism of etale twisted constant
S-group schemes '

a8y (G > G*. 4.7)
Further, the exact sequence (4.1) induces a morphism of abelian groups (3.51)
e: u*(S) = PicG¥, y > [G A#64 1% G, oer , ], (4.8)
and a morphism of etale sheaves on § (3.53)
e: pu* — Picgerg. 4.9
If S is strictly local, then e(S) = e.

For lack of adequate references, we now present proofs of the following “well-known” facts.

Proposition 4.1. Let k be a field with fixed separable algebraic closure k® and let G be a (connected) reductive
algebraic k-group scheme. Then

(1) G is a k®-rational variety, and
. (ii) Pic G = 0 if G is simply connected.

Proof. [See [Nfdc23-1] and [Nfdc23-2]] To prove (i), we may assume that k = k5. Let T be a (split) maximal k-torus
in G, let B O T be the Borel k-subgroup of G such that the set of T-roots on Lie(B) is a chosen positive system of
T-roots for G and let B’ O T be the Borel k-subgroup of G opposite to B.If U C B and U’ C B’ are the k-split
k-unipotent radicals, then the multiplication morphism U’ xx T x4 U — G is an open immersion with k-rational
source, which yields (i). See [CGP, Propositions 2.1.8,(2),(3), p. 53, 2.1.10, p. 58 and 2.2.9, p. 67]. Now let k be any
field and let G be a simply connected k-group scheme. By [CT08, Corollary 5.7]%, Pic G is canonically isomorphic
to the group of central extensions of G by G, x. Since any such extension is trivial by [GA1, Proposition 2.4], the
proof is complete. O

Lemmad.2. Let S be a scheme andlet 1 — G1 - Gy — G3 — 1 be an exact sequence of reductive S-group
schemes. Then the given-sequence induces an exact sequence of S-group schemes of multiplicative type

1> p1—> p2—> p3 = G = GY - G — 1,
where u; = ug,.

Proof. By [GA1, Proposition 2.10], there exists an exact and commutative diagram of reductive S-group schemes

1 61 62 53 1
1 Gy G, G3 1.

Now, although the category of reductive S-group schemes is not abelian, the proof of the snake lemma given in
[Bey, Lemma 2.3, p. 307] can be adapted so that it applies to the above diagram (for example, the decomposition
[Bey, (2.2), p. 306] is valid if we set X = G2 Xg, 53 there). The sequence of the lemma then follows from the above
diagram as in [Bey, Lemma 2.3, p. 307]. ' O

8The proof of this result depends on (i) but not on the assertion that we aim to prove, i.e., (ii).
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Lemma 4.3. Let S be a locally noetherian normal scheme and let G be a smooth S-group scheme with connected
fibers at every point of S of codimension < 1. Then there exists a canonically split exact sequence of abelian
groups

0~ PicS — PicG — [[Pic G, — 0,
whére_ the product runs over the set of maximal points  of S.

Proof. See [GA2, Corollary 5.3] and note that the unit section of G defines a retraction of the canonical map
Pic § — Pic G which splits the above sequence [GA2, Remark 3.1(c)]. 0

Proposition 4.4. Let S be a noetherian strictly local regular scheme and let G be a reductive S-group scheme such
that G % is simply connected. Then Pic G = 0.

Proof. Since G'*" splits over a finite etale cover of § [SGA3pew, X, Corollary 4.6(i)], we have G >~ G}, ¢ for some
n > 0 by [EGA, IV4, Proposition 18.8.1(b)]. Now, since Pic S = 0, Lemma 4.3 shows that Pic G'*" ~ PIC G;’n §
Pic (Gm x» Where K is the function field of S. Thus, since the ring of regular functions on G, K isa UFD and
therefore Pic G, mK = = 0, we have Pic G = 0. Now Corollary 3.14(i) applied to the exact sequence (4.2) shows
that the canonical map Pic G — Pic Gl‘ge’ is injective. Since Pic G;}er = 0 by Proposition 4.1(ii), the proposition
follows. _ O

Definition 4.5. A t-resolution of a reductive S-group scheme G is a central extension of reductive S-group schemes
1> T - H— G — 1, where T is an S-torus and H%" is simply connected. A morphzsm of t-resolutions of G is
a morphism of central extensions of G [BGA, Definition 2.4]. -

Lemma 4.6. There exists a t-resolution of G

1-TAHHE2 651 @) (4.10)

which fits into an exact and commutative diagram of S-group schemes

1—>,u’—i>rad(G)xs6—~——>G—>1

sl ‘ (4.11)

1 T H G 1,

where the top row is the sequence (4.3).
Proof. [Cf. [BGA, proof of Proposition 2.2]] Choose an S-torus T and a closed immersion [’: u’ < T and let
H = (rad(G) xs G ) A"#>I' T 4.12)

be the pushout of i’ and I’. Then H % is isomorphic to G [GA1, proof of Proposition 3.2], (4.11) is a particular case
of diagram (2.6) and (4.10) is indeed a r-resolution of G. a

Lemma 4.7. The t-resolution (4.10) of G induces a t-resolution of G %

1> T34 g B gl 5, (4.13)
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where Hy = H x G G%. Further, there exists a closed immersion 1: y < T and a canonical isomorphism of right
T;; aer -torsors over G 9 -
Hy =~ G aHodnloter Trge | (4.14)

Proof. The exact sequence (4.13) is the pullback of (4.10) along :: G % < G. Thus there exists a canonical exact
and commutative diagram of reductive S-group schemes

T . H G'der —]
| T
J p

The above diagram induces an exact sequence of reductive S-group schemes

1> H 5 H - G S 1.  (4.15)

Set R = H'" and Ry = H|®. Then Lemma 4.2 applied to (4.15) yields pum, = un = 0, ie., Hlder is simply
connected and therefore (4.13) is a z-resolution of G, and an exact sequence of S-tori

1> R > R—-> G > 1. - (4.16)

oy
Now let I: x4 <> T be the composition of closed immersions ¢ <> u’ < T, where the first map comes from (4.5)
and the second morphism is the left-hand vertical map in diagram (4.11). Via the identification (4.4), the pullback of
dlagram (4.11) along 1: Gder <> G is (isomorphic to) the pushout diagram

i

1 /[‘ T\ Glder ——=1
1 Hl l Gder RN, 1
ie., H =~ G Ab#! T. See (2.4). Now (2.7) yields the isomorphism (4.14). . m

If g,y and g(x) are the maps (4.6) associated to H; and H, respectively, then there exist exact and commutative
diagrams of S-group schemes

1 1 1
1 p—1sgG Gler 1
!
! Tl Hi P e g 4.17)
p1 q(Hy)
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and _
1 1 1
1 p—5G Gler —— 1
: |
1 T—_>g—L>¢G 1 (4.18)
1 \\”{ a1
1 R "~ R -~ Glor 1,
1 1 1

where the bottom row in (4.18) is the sequence (4.16) and
p=rop1=q(H)oj2T—)R. (4.19)
Note that the left-hand column in (4.17) induces an exact sequence of etale twisted constant S-group schemes

& 1(%)

1 RS 105 pr 1 (4.20)
Further, by the commutativity of (4.17), we have |
pAS) = j{(S) 0 g3 (), 4.21)

where q((;?l) : Ry = Hl’k is the isomorphism (4.7) associated to Hj.

Next we observe that the z-resolution (4.10) of G and the associated r-resolution (4.13) of G9 induce,
~ respectively, morphisms of abelian groups (3.51)

d: T*S) = PicG, x v [HATCX6 G, g, ] (4.22)

and
d': T*S) > PicG¥, y > [H AToer Xt G, Gaer ] (4.23)

such that the following diagram commutes (3.52)

T*(S) —%—PicG
X lPicz 4.29)
Pic G %r.
Further, there exists a canonical morphism of etale sheaves on S (3.53)
| d:T* — Picgs (4.25)

such that d(S) =dif$ is '_szrictly local and the diagrafﬁ of etale sheaves on § ('3.54')- '

T* -——d——>PiCG/S

R lPics(z) (4.26)

PiCG der /8

commutes.
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Proposition 4.8. Ler S b\e a locally noetherian regular scheme and let G be a reductive S-group scheme. Then
there exists a canonical isomorphism of étale sheaves on S

Picg/s ~ p*,
where u is the fundamental group of G.

Proof. We will show that the canonical maps Pic 5(1): Picg/s — Picgeer s (induced by 1: G% < G) and
e: u* — Picgaer /g (4.9) are isomorphisms of etale sheaves on S. By [SP, Tag 07QL, Lemma 15.42.10] and standard
considerations [T, Theorem 5.6(i), p. 118, Lemma 6.2.3, p. 124, and Theorem 6.4.1, p. 128], we may assume
that S is noetherian, strictly local and regular, in which case the proof reduces to checking that the induced maps
e =e(S): u*(S) - Pic G% (4.8) and Pic1: Pic G — Pic G %" are isomorphisms of abelian groups. Let H be given
by (4.12) and let H; = H x¢g G%". Since Hlder is simply connected, we have Pic H; = 0 by Proposition 4.4. Thus
Corollary 3.14(i) applied to (4.13) yields the bottom row of the following diagram of abelian groups with exact rows

[©)
(s Gxs
qf;?,)(S)lz ‘ le 4.27)
i(s) /

00— H}S) —1"1 > TX(5)

Pic Gder — 0,

where the top row is induced by the exact sequence (4.20) using [T, II, Lemma 6.2.3, p. 124], the left-hand square
commutes by (4.21) and d’ is the map (4.23). We will show that the right-hand square in (4.27) commutes, which will
show that the right-hand vertical map e is an isomorphism. Let y : T — G, 5 be a morphism of S-group schemes.
By (4.14) and [Gi, III, 1.3.1.3, p. 115, and 1.3.5, p. 116}, there exist isomorphisms of right G, g -torsors over Gder

Hl /\TGdcr:XGdcr Gm Géer ~ (G Aﬂcderslcder TGdc,",r) /\T(;dcra Xgder Gm,Gdc",r

~ G /\,UGde'rs (Z°I)Gder»(Gm’ Gder,r-

Thus, by definitions (4.8) and (4.23), we have
d'(x) = [H Ao 260 G, e ] =[G AFeder (1006t G aer ] = (e 0 1MN(S) (),

whence d’ = eol (*)(S), as claimed. Thus e is an isomorphism. Now, by Proposition 4.4 and Corollary 3.14(i) applied
to the sequence (4.2), the map Pic:: PicG — Pic G%" is injective. On the other hand, the commutative diagram
(4.24) and the surjectivity of d’ (4.27) show that Pic: is surjective as well, which completes the proof. O

Remarks 4.9.

(a) In the case S = Speck, where k is a separably closed field, the preceding argument yields a new proof of the
“well-known” facts z*(k) = Pic G %" = Pic G [San81, Lemma 6.9(iii), p. 41, and (6.11.4), p. 43].
(b) Under the hypotheses of the proposition, the above proof and the commutativity of diagram (4.26) show that the

following diagram of etale sheaves on S commutes:

/
: 7* —% > Picgys

& l :lPic s() (4.28)
#* —i> PiCGder/s,
where d and e are the maps (4.25) and (4.9), respectively.

Corollary 4.10. Let S be a locally noetherian regular scheme and let G be a reductive S-group scheme such that
G s simply connected. Then

Picg/s = 0.
Consequently, there exists a canonical isomorphism in D%(Sg)

UPiCG/S :> U(;/s[l].
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Proof. The first assertion of the corollary is immediate from the proposition since ¢ = 0. The triangle (2.22) yields
an isomorphism Ug/s([1] S UPicg /s whose inverse is the isomorphism of the corollary. O

We nbw apply Lemma 4.2 to the middle row of diagram (4.18), i.e., the given z-resolution (%) of G (4.10), and
obtain an exact sequence of S-group schemes of multiplicative type

1> u5TER> G -1, 4.29)

where p is the map (4.19). The latter sequence induces an exact sequence of etale twisted constant S-group schemes

tory* */’(*)**1(*) *
1> GY*">R* > T*"> u* > 1. 4.30)

Consider the following object of C?(S):

()
2(R) = C*(p®) = (R* 5 T,
where R* and T * are placed in degrees —1 and 0, respectively.

Lemma 4.11. Let G be a reductive S-group scheme. Then a morphism ¢: %1 — % of t-resolutions of G induces
a quasi-isomorphism 7le (%) S nlD () in CP(Ss) such that, for i. = —1 and 0, the induced isomorphisms of
étale sheaves on S

H'(z (%)) > H' (x (%))
are independent of the choice of ¢.

Proof. Let Z;:1 - T; -» H; > G — 1,wherei = 1 and 2, be the given t-resolutions of G. By (4.29), the
morphism of complexes (¢(ry, ¢(r)): (Ti = R1) = (T2 = R») is a quasi-isomorphism. Further, if w: %) — %>
is another morphism of ¢-resolutions, then the morphisms ¢(x), ¥ (5): Hi — H> differ by a morphism of S-group
schemes a: Hy — T; that factors through R; [BGA, proof of Lemma 2.7]. Thus, since a is trivial on Ker (T — R;),
we conclude that the two isomorphisms Ker(7; — Rj) S Ker (T, — Rj3) (respectively, Coker (Ty — Rj) 3
Coker (I — R»)) induced by ¢(z) and y(z) are equal. The lemma now follows from the above by duality, i.e.,
by applying to the preceding considerations the exact functor M — M™ on the category of S-group schemes M
(of finite type and) of multiplicative type. -0

Lemma 4.12. Let G be a reductive S-group scheme and let 1 and %, be two t-resolutions of G. Then nlD (%)
and nP(%l ) are canonically isomorphic in D?(Sg).

Proof. The proof is similar to the proof of [BGA, Proposition 2.10], using the previous lemma in place of
[BGA, Lemma 2.7]. 0O

Definition 4.13. Let G be a reductive S-group scheme. Using the preceding lemma, we shall henceforth identify
the objects an(% ) € DY(S4) as & ranges over the family of all t-resolutions of G. Their common value will be
denoted by n{°(G) and called the dual algebraic fundamental complex of G. Thus n]D(G) = nlD (%) € D?(Sy) for

any t-resolution Z of G.

Remark 4.14. As noted in the Introduction, over a field (of characteristic zero), Borovoi and van Hamel defined
nlD(G) in terms of a maximal torus in G. Their definition-can be extended over any base scheme S using the
etale-local existence of maximal tori in reductive S-group schemes. This definition and Definition 4.13 can then be
shown to be equivalent using the fact that a maximal torus in a reductive S-group scheme G canonically defines a
t-resolution of G. See [BGA, Lemma 3.9 and the following discussion].

A morphism of reductive S-group schemes ¢: G’ — G induces a morphism nlD((p): nlD(G) — nlD(G’) in
Db(Sét). Thus we obtain a contravariant functor EID from the category of reductive S-group schemes to Db (Sa)-
Next we will show that nlD is exact, i.e., it transforms short exact sequences of reductive S-group schemes into
distinguished triangles in D?(Sg). To this end, we first prove
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Lemma 4.15. Let S be a scheme and let 1 — G — G2 — G3 — 1 be an exact sequence of reductive S-group
schemes. Then there exists an exact and commutative diagram of reductive S-group schemes

1 1 1
1 T H, G 1
1 i) H, Gy 1 4.31)
1 I3 Hj Gs 1,

1 1 1

where the top, middle and bottom rows are t-resolutions of Gy, G2 and G3, respectively.
Proof. Let1l - T3 — H3 — G3 — 1 be a t-resolution of G3 and let
1-T1>HS5 G, -1 ‘ (4.32)

be a t-resolution of G. Set T = T1 x5 T3 and H, = H3 X, H, where H — G3 is the composition H — G, — G3.
By {GA1, Proposition 2.8 and its proof], there exists a commutative diagram with exact rows

1 T H—L G, 1
g
] T2 5, 7% G, )
4.33)
1 I3 Hj Gs 1,
1 1 1

where the middle row is a z-resolution of G,. Note that, by the definition of H,, there exists a canonical exact and
commutative diagram

Hy xp, § 225 H xg, S

!

1 £ Hy H 1 (4.34)
1 T3 H; G3 1.

Now set Hy = H x¢, G1. Then the pullback of (4.32) along G; — G is an exact sequence of reductive S-groups
schemes.  °

1-T1 3386 -1
Nextletv: H; S H X G5 § be the composition of canonical isomorphisms

Hy = H xg, G1 = H xg, (G2 Xg, §) > H xg, S : (4.35)
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and consider the composition

~-1

v H > H xg, S 2% Hy xpyy S > Hy. (4.36)

Then 1 — H; A H, — Hs; — 1is an exact sequence of reductive S-group schemes. Thus the rows and columns
of the following diagram of reductive S-group schemes are exact:

1 1 1
1 Tl JI Hl P1 Gl 1
r I v (I1) i
1 T, —> H; —>G; 1 (4.37)
1 T3 Hj G3 1
1 1 1

An application of [GA1, Corollary 2.11] to the middle column above shows at once that Hlder is simply connected.
Thus the top, middle and bottom rows of diagram (4.37) are ¢-resolutions of G, G2 and G3, respectively. Further,
by the commutativity of (4.33), the lower half of diagram (4.37) commutes. Thus it remains only to check that the
squares labeled (I) and (II) above commute. By the definitions of H; and v (4.35) and the commutativity of diagrams
(4.33) and (4.34), there exists an exact and commutative diagram of reductive S-group schemes

5 -1
H2XH3S—{)\?—>-HXG3S\L—>H P,
r ﬁ
14

Hy —— H——H G,
l ¥p2/_l_;?
H; Gs. '
Thus, by the definition of  (4.36), we have

P20V = P2 lthyxu,s 0Py ov=(iopiov ! oBg)oPy ov=iopi,
i.e., the square labeled (II) in dié\gram (4.37) commutes. The commutativity of the square labeled (I) in (4.37) follows
from the commutativity of the following diagram:
Jj1

ﬁ

T1——~>H1 XGls( H;

~ ~

Hxg, §S&— > H x

(H X G, S) xs (H3 XG3S) H; Xf{hS

~

T, H; xq, ScC H.

w

J2
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[ O

Proposition 4.16. Ler S be a scheme and let 1 - G — G2 —> G3 — 1 be an exact sequence of reductive
S-group schemes. Then the given sequence induces a distinguished triangle in D?(Sg)

zP(G3) » nP(G2) —» zP(G1) — zP(Gy)[1).

Proof. By Lemma 4.15, there exist z-resolutions (%;): 1 => T; > H; > G; — 1 of G;, wherei = 1,2 or 3, and
an exact and commutative diagram of reductive S-group schemes

1 T Ip) T3 1
1 H, H Hj 1.

The preceding diagram induces an exact and commutative diagram of S-tori

i T T T3 1
l”‘ lpz lpg (4.38)
1 Ry Ry R3 1,

where R; = H!”, the bottom sequence is obtained by applying Lemma 4.2 to the sequence 1 - H; — Hp —
H3 — 1 and the maps p; are the compositions 7; — H; — R; (4.19). Now (4.38) induces an exact and commutative
diagram of etale twisted constant S-group schemes

1 —>R] —> R} —> R} —1
I
1 Ty T, Uy 1

which induces, in turn, an exact séquence in C(Sg)
1> nlD(.%’3) - nll)(.%z) — 7le(<%’1) - 1.
The latter sequence induces a distinguished triangle in D?(Sg)
7P Ps) = 7 (%) - 7L (1) — (@],
which yields the proposition. o

Remark 4.17. Lemma 4.15 also yields a new proof of the exactness of the covariant functor r1(G) = m1(Z) =
Coker[ T, — R.] on the category of reductive S-group schemes [BGA, Theorem 3.8]. Indeed, diagram (4.38)
induces an exact and commutative diagram of etale twisted constant S-group schemes

1—— (Tl * (TZ * (T3 * 1
P1,(x) P2,(%) P3,(%)

1 —— (R1)+ (R2)« (R3)x —> 1

which immediately yields an exact sequence of etale twisted constant S-group schemes
1 = 71(Gy) = 71(G2) = 711(G3) = 1.

Proposition 4.18. Let S be a locally noetherian regular scheme, let G be a reductive S-group scheme and let
(Z):1 > T > HSA G- 1beat-resolution of G. Then
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(i) the map Us(p): Ug;s — Upnys induces an isomorphism of étale sheaves on S
Ug/s — KerUs(j),

and
(ii) there exists a canonical quasi-isomorphism in Cb(Sg)

C*(Us(j)) = m(%).

Proof. Since H% is simply connected, Corollary 4.10 shows that Pic gys = 0. Thus Corollary 3.14(ii) applied to
the given z-resolution (Z) yields a canonical exact sequence of etale sheaves on S

. p(*) . j(*) « d .
1> G*"—> H*—> T* - Picgys = 1, (4.39)

where d is the map (4.25). On the other hand, since Ug(gg) is the zero morphism and p o j = &g o nr, we have
Us(j) o Us(p) = 0. Thus the sequence
U Us(j
1= Ugys Y Unys ™Y Upys — Coker Us(j) — 1 (4.40)
is a complex of etale sheaves on S. Now, since p is faithfully flat and therefore schematically dominant, Lemma 2.2
shows that Ug( p) is injective. Thus (4.40) can fail to be exact only at Ug/s. Consider the diagram

U Us(Jj .
1 Ugys 5(p) Upys —S(i)> Urjs —— Coker Us(j) —— 1

|
wcl: 185} wﬂl’z (Iny "’Ti’—‘ (1) =

\

. () : (%)
1 G* —- H*— T2 Picg/s — 1 (4.41)
- -1
(q((é))) l l: (‘I((;i))) l: ” e loPic S(l)l:
- tory* * p™ % ™ *
1 (G™) R T u 1.

The top row above is the complex (4.40), and the middle and bottom rows are the exact sequences (4.39) and (4.30),
respectively. The continuous vertical arrows in the upper half of the diagram are the maps (2.13). In the lower half
of the diagram, the left-hand and middle vertical arrows are the inverses of the maps (4.7) associated to G and H,
respectively. Further, the map e~! o Pic 5(2) is an isomorphism by the proof of Proposition 4.8. Using the definitions
of the maps (2.13) (see [GA2, Lemma 4.8]) and the identities p o ey = ¢ and j o e = ¢g, it is not difficult to
check that the squares labeled (I) and (IT) in (4.41) commute. Thus the top row of diagram (4.41), i.e., the complex
(4.40), is exact, whence (i) follows. Further, there exists a unique way to define the discontinuous vertical arrow in
diagram (4.41) so that the resulting map is an isomorphism of etale sheaves on $ and the square labeled (III) in (4.41)
commutes. Since the bottom squares in diagram (4.41) also commute by the commutativity of diagrams (4.18) and
(4.28), the entire diagram (4.41) commutes, whence the map C*(Us(j)) — C*(p™) = nP(#) with components

(q((;;,)))*1 owg: Unys — R* and oy : Urys — T* (in degrees —1 and 0, respectively) is a morphism of complexes.

The diagram shows that the map just defined is, in fact, a quasi-isomorphism in C?(S,), which completes the proof.
a

Lemma 4.19. Let S be a locally noetherian regular scheme and let G be a reductive S-group scheme. Every
t-resolution (%) of G induces an isomorphism in Db(Sg)

UPiCG/S —: ElD(%)
Proof. Letl - T 5 HE G- 1bethe given t-resolution of G. Then

UPiCS(j)oUPiCS(//p) = UPicg(p o j) = UPics(egorr) =0, 4.42)
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since UPics(eg): UPicg/s — UPics/s = 0 is the zero morphism. Now, since D?(Sg,) is a triangulated category,
there exists a distinguished triangle in D?(Sy) containing the morphism UPics(p): UPicg /s — UPicgyys, ie., for
some object Z of D?(Sy,), the top row of the following diagram is a distinguished triangle in D?(Sy):

UPicg/s —MUPEH/S “ Z UPicg/s(1]
I | |
I 8 l“—‘ ki £an (4.43)
v . U - 1 v v
C*(Us(j)) ——— Unysli] S Urysl] — C*(Us (G,

The bottom row of the above diagram is a distinguished triangle of the form (2.1) and the map labeled g is the
isomorphism of Corollary 4.10. Note that, since H(UPicg,s) = 0 for r # —1 and H"(UPicgss) = O for
r # —1,0, we have H"(Z) = Ofor r # —2, —1. Now, by (4.42) and the commutativity of diagram (2.25) applied
to the S-morphism j, we have Ugs(j)[1] o g o UPics(p) = 0. Thus, by [BBD, Proposition 1.1.9, p. 23], there exist
morphisms f : UPicg/s — C*(Us(j)) and h: Z — Ur/s[1] in diagram (4.43) such that (f, g, k) is a morphism
of distinguished triangles. Now, since H ‘1(1)) is the inclusion KerUs(j) — Upg s, the commutativity of the
left-hand square in (4.43) shows that the map H~!(f): H~!(UPic G/s) = H~1(C*(Us(j))) is the isomorphism
Ug/s > KerUs(j) of Proposition (4.18)(i). Further, H=2(Z) = 0, whence H"(Z) = 0 for all r # —1. We now
consider the diagram _

. Us(J)[1
C*(Us(j)) Upysl1] —=20 Urys(l] — C*(Us (/)]
|
Fi - lz 7\ 7o . (4.44)
A . Y
UPicgs — o) Upicy /s —* Z UPicays(1].

We claim that the composition uog~lov : C*(Us(j)) = Z is the zero morphism. Indeed, since vo f = goUPics(p)

and H~1(f) is an isomorphism, we have
H'(w)o H ' (g7 o H™ () = H™'(u) o H™} (UPics(p) o HH(f)™' =0

since u o UPics(p) =0 [Ver, Corollary 1.2.2, p. 97]. We conclude, as above, that there exist morphisms f and % in
diagram (4.44) such that ( f g L, h) is a morphism of distinguished triangles. Now the concatenation of diagrams
(4.44) and (4.43) (in that order) is a diagram of the form

Us ()11
—_—

C*(Us(j)) Unysl1] Uzys[1] — C*(Us(j)I1]
|
" ’ s | a[l1] (4.45)
. Y Y
C*(Us(})) Unys1] —2DM g o1l —— ¢ Us( )11

(namely fora = fof and 8 = hoh). Since HY(C*(Us(j))) = Coker Us(j) = u* by the proof of Proposition 4.18
(see diagram (4.41)) and Ur;s ~ T * by Lemma 2.3, we have

Hompe s, )(C Us(j)), UT/S) Hom(u*,T*) = 0.

Thus {(BBD, Proposition 1.1.9, p. 23] yields the existence of umque morphisms a and § in diagram (4.45) such that
(@, Luysiis f) is a morphism of distinguished triangles, i.e., @ = 1¢+us(;)) and B = luys1). We conclude that
fo f = IC'ﬂJs(J))’ whence H(f): HO(UPch/S) — HO(C*(Us(j))) is a surjective morphism of etale sheaves
on S. Since H%(UPicg /s) = Picgs and H 0(C*(Us(j))) = Coker Us(j) are both isomorphic to the etale sheaf
(1*, which has finite stalks, a counting argument now shows that H 0(f) is, in fact, an isomorphism of etale sheaves
on S. We conclude that f: UPicg;s — C*(Us(j)) is an isomorphism in D®(Sz). The composition of the preceding
isomorphism and the canonical isomorphism C*(Us(j)) S 1D (Z) of Proposition 4.18(ii) is the isomorphism of
the lemma. i

We may now prove the main theorem of the paper.
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Theorem 4.20. Let S be a locally noetherian regular scheme and let G be a reductive S-group scheme. Then there
exists an isomorphism in Db (S4)

UPicg/s > 72(G)
which is functorial in G.

Proof. By definition of #2(G) (see Definition 4.13), it suffices to check that the isomorphism UPicg/s — 7 2(%)
of Lemma 4.19 induced by a given ¢-resolution (#) of G is functorial in G. To this end, let ¢: G’ - G be a
morphism of reductive S-group schemes. By [BGA, Lemma 3.3], there exists a z-resolution of ¢, i.e., an exact and
commutative diagram of reductive S-group schemes

|—7' g P s 1 (@)
ly [6 l,,, (4.46)
J P
1 T H——>G 1 (Z),

where the top and bottom rows are z-resolutions of G’ and G, respectively. The left-hand square in the above diagram
induces a morphism of complexes 8: C*(Us(j)) — C*(Us(j’)) whose components are Us(d) and Us(y ) in
degrees —1 and 0, respectively. We also note that, since the map figy = fG,%): UPicgs — C*(Us(j)) in
diagram (4.43) is an isomorphism, the map h: Z — Urys[1] in that diagram is an isomorphism as well
[Ver, Corollary 1.2.3, p. 97]. Now let f(g f(G/ @y UPicgr/s S C* (Us(j’)) and consider the followmg
diagram whose rows are distinguished tnangles in D?(Sg):

Us({1]

C*(Us(j)) Ugysil] Ur/s[1] —— C*(Us(j)[1]
1| = N h—ll:\ S|~
. \
UPicgs — P UPicy s — Z ———> UPicgys[1]
0
6|  UPics(p) (I)  UPics(d) Il ml UPics(p)l) 611] (4.47)
. 7 ’ ‘V
UPiCG//S ——UM—-> UPiCH//s “ Al ! UPiCG//s[l]
/
f(Gl) ~ 8(H" |~ . h,l:/ f(G/)[l] ~
. ., Us (") s . y
C*(Us(j")) Ugys[1} ————— Urysll] — C*(Us(j')I1].

= f(e") o UPics(p) o f{g)
Ja2 = gy o UPics(9) o 87y,

be the first and second vertical compositions in the preceding diagram, respectively. By the definitions of f(g)
and fgr, ( f(G), g(H), h~1y and ( f"» g7y, h') are morphisms of distinguished triangles. Further, the square
labeled (I) above commutes since (4.46) commutes. On the other hand, it follows from the definitions of the maps
&(#)> &(H")> U, v’ (2.1) and @ that the following diagram commutes:

C*(Us(j)) —— Unysli]

0l , llz

C*(Us(j") = Uaysl].
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Thus, by [BBD, Proposition 1.1.9, p. 23], there exist morphisms I[: Z — Z' and m: Uzss[1] — Urys[l] in
(4.47) such that (A1, 12, h’ oloh™!) and (, 1, m) are morphisms of distinguished triangles with the same second
component A2. Now, since

Hompe(s,) (C*(Us(j)), Urys) = Hom(u*, (T')*) =0,

the uniqueness assertion in [BBD, Proposition 1.1.9, p. 23] yields § = 11, i.e., the following diagram commutes:

) f ,
UPicgys O coUs(5))

UPicgs(g) l lg

. fr :
UPicGys —> C*(Us(j")).

Therefore the following diagram commutes as well

. b \ ~
UPicg/s ——=» C*(Us(j)) —— z2(%)

UPics(p) l le . lnlp(m

. fcr ~
UPicgys ——> C*(Us(j")) —— z ("),

where the unlabeled maps are the canonical isomorphisms of Proposition (4.18)(ii). The required functoriality is now
established. . a

The sequences in (ii) and (iii) below generalize (respectively) [San81, (6.11.4) and (6.11.2)].
Corollary 4.21. -Let S be a locally noetherian regular scheme and let ‘
1->G1—»> Gy —> Gy —> 1

be an exact sequence of reductive S-group schemes. Then the above sequence induces

(i) a distinguished triangle in D®(Sg)
UPicg,/s = UPicg,/s = UPicg,/s = UPicg,/sl1],
(il) an exact sequence of étale sheaves on S
1 - G; - G = G} — Picg,/s — Picg, s = Picgys = 1

and
(iii) an exact sequence of abelian groups

1 - G3(S) > G}(S) - G}(S) — PicG3 — Pic G2 — NPic(G1/S)
— Bri(G3/S) — Bra(G2/S) — Bra(G1/S).

Proof. Assertion (i) is immediate from the theorem and Proposition 4.16. By (2.23) and (2.24), the distinguished
triangle in (i) induces an exact sequence (of etale sheaves on §) 1 — Ug,;s = Ug,ss = Ug,ss = Picgys —
Picg,;s — Picg,/s — 1. Assertion (ii) now follows from Lemma 2.3. To prove (iii), leti: Gy » Gaand p: G —
G3 be the given S-morphisms and, for j = 1,2 or3,let z;: G; — S and ¢j: S — G; denote the structural
morphism and unit section of G, respectively. Now recall from Corollary 3.14(iii) the exact sequence of abelian
groups

: 0 = G3(S) = G3(S) = G{(S) — PicG3 — Pic G2 — NPic(G1/S)

/ e (448)
2% Bri(Gs/S) 2 Br((G2/S) 5 Br (G1/S),
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where ¢’ is the map (3.31), and consider the following diagram

Brey, e3P Breje,i
Br,(G3/S) ————— Br,(G2/S) ————— Br(G1/9)

/ -
a .
—
-

’

NPic(G1/S) —%> Bri(G3/S) ——— Bry(G2/S) ——~—> Br;,(G1/5)

| :

ImBr 73 ImBr; 7>

The bottom horizontal arrow is the isomorphism (2.34) induced by Brj p and all squares above commute by
Remark 3.8 and the definition of Brg, ¢, p (2.35). Further, the middle row is exact by the exactness of (4.48) and
the left-hand and middle columns are (split) exact sequences of abelian groups by (2.32). Since the bottom map
is injective (in fact, an isomorphism), the commutativity of all three squares in the diagram shows that the top
row is exact as well. On the other hand, by Remark 3.12(a) applied to the triples (G2, G3, G1) and (S, S, §),
the composition of o and the map Brjes: Bri(G3/S) — BrS factors through NPics(e1): NPic(G1/S) —
NPic(S/S) = 0. Thus o factors through the map labeled a’ above and (2.36) (applied to the S-morphism G, — G3)
shows that Ima’ = KerBr,, ., p. Thus (4.48) induces an exact sequence

0 — G3(S) = G3(S) = G{(S) = PicG3 — PicG; — NPic(Gl/S)
% Brey(G3/S) 22" Broy(Go/S) i Br, (G1/S).
Finally, by the commutativity of diagram (2.37), the above sequence induces an exact sequence of abelian groups

00— GXS) = G}(S) - G}S) — PicG3 — Pic G2 - NPic(G1/S)

% Bra(G3/S) = Bra(G2/S) B Bra(G1/S5),

where a” = ¢(G5),¢; © @’ and ¢ (G,), ¢, 1S given by (2.33). O

Remark 4.22. In the setting of the corollary assume, in addition, that S is noetherian and irreducible with function
field K. As in Remark 3.12(c), the canonical maps G}(S) — G(K) (where i = 1,2 and 3) and NPic(G1/S) —
Pic G, ¢ are isomorphisms of abelian groups. Further, by Lemma 4.3, Pic G; is canonically isomorphic to Pic § &
Pic G; g for i = 2 and 3. Thus the sequence in part (iii) of the corollary is canonically isomorphic to an exact
sequence

1 - G3(K) > G3(K) - Gj(K)— PicS®PicG3 gk — PicS ®PicGy g
. Bra
— PicG1,x — Bra(G3/S) =¥ Bra(G2/S) > Bra(G1/S).
Now, by a functoriality argument similar to that given in Remark 3.12(c), KerBr, p is canonic{lly isomorphic to
KerBr, pgx. Thus most of the sequence in part (iii) of the corollary is essentially equivalent to the corresponding

subsequence over K. A similar fact becomes evident when the sequence in Corollary 3.14(iii) is compared with
[San81, (6.10.3), p. 43].
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