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Abstract. We construct some families of quadratic fields whose class numbers are divisible by 3. The main tools 
used are a trinomial introduced by Kishi and a parametrization of Kishi and Miyake of a family of quadratic fields 
whose class numbers are divisible by 3. At the end we compute class number of these fields for some small values and 
verify our results. 
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1. Introduction 

The ideal class grouP, or more precisely the class number of number fields is one of the most fundamental and 
mysterious objects associated with the field extensions. Starting from Gauss, this area has attracted the attention of 
many researchers. It is well-known that there exist infinitely many quadratic fields each with class number divisible 
by a given integer g :::: 2. In particular, Nagell [11] proved that there are infinitely many imaginary quadratic fields 
with class number divisible by a given integer g :::: 2. On the other hand, for real quadratic field case, Honda [2], 
Yamamoto [13), Weinberger [12] and Ichimura [5] independently proved that there are infinitely many real quadratic 
fields each with class number divisible by a given integer g :::: 2. In recent years, the study is concentrating on 
characterising such fields, i.e. each with class number divisible by a given integer g :::: 2. In this direction, Kishi and 
Miyake [9] gave a parametrization of quadratic fields with class number divisible by 3 and this enabled enlargement 
of the list of families of quadratic fields with the divisibility properties. Chakraborty and Murty [1], Kishi [6], Hoque 
and Saikia [3] contributed some members to this list. 

In this paper we provide some infinite, simply parametrized new families of quadratic fields with class number 
divisible by 3. More precisely, we show that under certain conditions on the integers a, b, m, n, p and r, the 
class numbers of the fields Q(J3(4m3n - k2)), Q(J-(m2n2 ± 4n)/3), Q(J-(3m p 2n + r)), Q(J3(a3n - b2n)), 
Q(J3(4a3n - b2n)), Q(J-3(4m3 + 1)), Q(J3(2m3n - 1)) and Q(✓l - 2m3) are divisible by 3. We begin by 
fixing some notations. 

Notations. For a number field K, I),. K and OK denote the discriminant and the ring of integers of K, respectively. 
We denote by NK;Q and TK/Q the norm and trace map of a number field K, respectively. For a non-square integer 
d, h(d) denotes the class number of Q(v'd). For a prime number p and an integer n, vp(n) denotes the greatest 
exponentµ of p such that pµ I n. For a polynomial f, SQ(f) denotes the splitting field off over Q. 

2. Kishi's trinomial and class numbers of quadratic fields 
-

We begin with some lemmas and then recall a criterion for an extension to be unrarnified. Finally, we construct some 
quadratic fields each with class number divisible by 3 using Kishi's trinornial. 

Leto. E OK with NK;Q(a) E Z 3 and 

fa(X) := X3 
- 3[NK;Q(a)] 113 X - TK;Q(a) (2.1) 

The trinomial fa (X) was introduced by Kishi in [7]. We recall the following result of Kishi [8]. 
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Lemma 2.1. Let K = Q( .JJ). Suppose a = a+t.Jd E OK with N K IQ (a) E Z3. Then fa ( X) is reducible over Q 
if and only if a is a cube in K. 

Let d(=/= 1, -3) be a square-free integer and 

D = {-d/3 
-3d 

Let K = Q(.JJ) and L = Q(-v'D). Also, 

if d is a multiple of 3, 

otherwise. 

Rd := {a E OK : a is not a cube in Kand NK;Q(a) is a cube in Z} 

and 

RD := {a E OL : a is not a cube in Land NL;Q(a) is a cube in Z}. 

It is clear that the subset Rd (respectively Ro) contains all those units in K which are not cubes in K 
(respectively in L). Further let, 

and 

We can now recall a result of Kishi ([7], Proposition 6.5) which is one of the main ingredient for deriving our.results. 

Lemma 2.2. Let a E RD (resp. a ER;). Then SQ(/a) is an S3-field containing K = Q(.JJ) (resp.L = Q(-v'D)) 
which is a cyclic cubic extensi(!n of K (resp. L) unramified outside 3 and contains a cubic subfield K' with 
v3(~ 1c) =I= 5. Conversely, every S3-field containing K (resp. L) which is unramified outside 3 over K (resp. L) and 
contains a cubic subfield K' satisfying v3(~K') =I= 5 is given by SQ.Ua) with a E RD (resp. a E Rd). 

The following result of Llorente and Nart ([IO], Theorem 1) talks about ramification at the prime p = 3. 

Lemma 2.3. Suppose that 

g(X) := X 3 - aX - b E Z[X] 

is irreducible over Q! and that either v3(a) < 2 or v3(b) < 3 holds. Let 0 be a root of g(X). Then 3 is totaly 
ramified in Q(0)/Q if and only if one of the following conditions holds: 

(LN-1) 1 ::S v3(b) ~ v3(a), 
(LN-2) 3 I a, a ¢=. 3 (mod 9), 3 f band b2 ¢=.a+ 1 (mod 9), 
(LN-3) a = 3 {mod 9), 3 f band b2 ¢=.a+ l (mod 27). 

Now we can proceed to our first result. 

Theorem 2.1. Let m = 0 (mod 3) be odd and n be any positive integers. If d1 is the square-free part of 
3(4m3n - k2 ) with k = ±l (mod 18) and gcd(m, k) = 1, then 31h(d1). 

Proof Let D1 = -di/3, K1 = Q(,./di) and L1 = Q(,JDj"). Let a1 E OL1 so that 

k + ✓k2 -4m3n 
a1 = 

2 

Then TL,;Q(a1) = k and NL,/Q(a1) = m3n. Since gcd(m, k) = 1, so that 

gcd(h,;Q(a1), NLifQ(a1)) = 1. 
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Now with respect to a 1, 

fa1 (X) : = X3 
- 3[NL1/1Ql(a1)] 113 X - ht11QJ(a1) 

= X 3 - 3mnx - k 

= x3 + X + 1 (mod 2). 
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Thus the polynomial fa 1 (X) is irreducible over Z2 and therefore it is irreducible over Q. Therefore by Lemma 2.1, 
a1 is not a cube in L1 and thus a1 E RD1. Since gcd(hi11QJ(a1), NL1/1QJ(a1)) = 1, so that a1 E R7J1 too. Therefore 
by Lemma 2.2, SIQJ(fa1) is a cyclic cubic extension of K1 which is unramified outside 3. 

Now we are left to show that SQ(fa1) is unramified over K1 at 3 too. The polynomial fa 1 (X) does not satisfy 
the condition (LN-1) as v3(1) = 0. Also fa 1 (X) does not satisfy the conditions (LN-2) and (LN-3) since m = 0 
(mod 3). Therefore by Lemma 2.3, SIQJ(fa1 ) is unramified over K 1 at 3. Thus by Hilbert class field theory the class 
number of K 1 is divisible by 3. □ 

Theorem 2.2. Let m = 0 (mod 3) and n be any odd integers such that v3(n) 
Q(J-(m2n2 ± 4n)/3) is divisible by 3. 

1. Then the class number of 

Proof Let d2 be the square-free part of -(m2n2 ± 4n)/3 and K2 = Q(,Jdz). Suppose that D2 = -3d2 and 
L2 = Q(-v'Ih). Let a2 E th2 be so that 

Then TLz/lQl(a) = m2n ± 2 and NLz/lQl(a2) = 1. Thus again their gcd is 1. 
We can now have the cubic polynomial corresponding to such an a2: 

fa2 (X) : = X3 
- 3[NL2;Q(a2)] 113 X - TL2;Q(a2) 

= X3 
- 3X - (m 2n ± 2) 

= X 3 - X - 1 (mod 2). 

Thus the polynomial fa 2 (X) is irreducible over Z2 and therefore it is irreducible over Q. Therefore by lemma 2.1, 
a2 is not a cube in L2 and thus a2 E R7J

2
• Therefore by Lemma 2.2, SQ(fa2 ) is a cyclic cubic extension of K2 

unramified outside 3. 
Now it remains to show that SQ(fa2 ) is unramified over K2 at 3. Since m = 0 (mod 3) and v3(n) = 1, the 

polynomial fa 2 (X) does not satisfy the conditions (LN-1), (LN-2) and (LN-3). Therefore by Lemma 2.3, Srrlfa2 ) is 
unramified over K2 at 3 too. Thus by Hilbert class field theory the class number of K2 is divisible by 3. □ 

We now give an extension of a result proved by Hoque and Saikia [[4], Theorem 3.1]. 

Theorem 2.3. Let m > 1 and p be odd integers, and n be any positive integer. Let d3 be the square-free part of 
-(3m p 2n + r) with r E {-2, 4}. Then 31h(d3). 

Proof Let r = 4 and then d3 = 1 (mod 4). As before we set D3 
L3 = Q(J3m+l p 2n + 12). Choose a3 E (h

3 
by 

3mp2n +2+3(m-l)/2pnJ3m+lp2n + 12 
a3 := ---------------. 

2 
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The cubic polynomial corresponding to a3 is: 

/a3(X): = X3 
- 3[NL3/Q(a3)]113 X - h3;Q(a3) 

= X3 - 3X - 3m p2n - 2 

= X 3 - X - 1 (mod 2) .. 

Thus the polynomial fa 3 (X) is irreducible over Z2 and therefore it is irreducible over Q. Therefore by Lemma 2.1, 
a3 is not a cube in L3 and hence a3 E R1

3
• Thus by Lemma 2.2, SQ(/a3 ) is a cyclic cubic extension of K3 unramified 

outside 3. 
We now claim that SQ(/a3 ) is unramified over K3 at 3 too~ The polynomial fa 3 (X) does not satisfy the conditions 

(LN-1), (LN-2) and (LN-3) as v3(3m p2n + 2) = 0 and m > I. Therefore by Lemma 2.3, we proof the claim. 
Thus by Hilbert class field theory the class number of K3 is divisible by 3. 

Now let r = -2. Then 3 f d3 and d3 = 3 (mod 4). Let us set D3 = -3d3 and L 3 = Q(~). Then 

L 3 = Q(J3m+l p2n - 6) and choose an element a3 E OL' by 
. 3 

a3 := 3m p2n - 1 + 3(m-l)/2 pn J3m+I p2n - 6. 

One can now complete the proof by a similar argument as in the previous case. 

Theorem 2.4. Let n > 1 be an odd integer and a, b two more integers such that: 

(C3.l) a= 19 (mod 30), 
(C3.2) b = 6 (mod 15), and is coprime to a, 

then 3 divides the class number ofQ(J3(a3n ~ b2n)). 

D 

Proof Let d4 be the square-free part of 3(a3n - b2n) and K4 - Q(v'd4). Suppose that D4 - -d4/3 and 
L4 = Q!(.JI5;i). 

a4 = bn + Jb2n - a 3n. 

Then TL4 jQ(a4) = 2bn and NL4;Q(a4) = a3n. Then 

fa4(X): = X3 - 3(NL4/Q(a4))1
13

X - h4/Q(a4) 

= X3 - 3an X - 2bn. 

By the conditions (C3.1) and (C3.2), we have 

/a4 (X) = X3 + 3X - 2 (mod 5). 

Clearly the polynomial fa4 (X) is irreducible over Zs and hence it is irreducible over Q too. Thus a4 is not a cube in 
L4 by Lemma 2.1 and hence a4 E Rv4 • The conditions (C3.l) and (C3.2) entail gcd(NL4 ;Q(a), Tr4;Q(a4)) = 1 and 
therefore by Lemma 2.2, SQ(/a4) is a cyclic cubic extension of K4 unramified outside 3. 

Now we are left to show that SQ(/a4 ) is unramified over K4 at 3 also. The polynomial fa4 (X) does not satisfy the 
condition (LN-1) since n > I, a = I (mod 3) and b = 0 (mod 3). Again 3 I 2bn by the condition (C3.2), and thus 
fa4 (X) satisfies none of the conditions (LN-2) and (LN-3). Therefore by Lemma 2.3, SQ(/a4 ) is unramified over 
K4 at 3. Thus by Hilbert class field theory the class number of K4 is divisible by 3. D 

Theorem 2.5. Let n > I be an integer and a, b two more integers satisfying: 

(C3.3) gcd(a, b) = I; 
(C3.4) a= I (mod 3) and is odd; 
(C3.5) b = 0 (mod 3) and is odd; 

Then-3 divides the class numberofQ(J3(4a3n - b2n)). 
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Proof Let ds be the sqaure-free part of 3(4a3n - b2n) and Ks = <Q(,Jds). Suppose that Ds 
Ls = <Q(,JDs). Let as E OL5 be of the form 

bn + Jb2n - 4a3n 
as= 

2 

Then h 5;Q(as) = bn and NLsfQ(as) = a3n and the corresponding polynomial 

fas (X) : = X3 
- 3[NL5;Q(as)] 113 X - h 5;Q(as) 

= X 3 - 3anx-bn. 
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-ds/3 and 

The conditions (C3.4) and (C3.5) would imply fa 5 (X) = X 3 - X -1 (mod 2). Therefore fa 5 (X) is irreducible over 
Z2 and thus it is irreducible over <Q. Thus by Lemma 2.1, as is not a cube in Ls and hence as E Rv5 • By (C3.3), 
gcd(NLs/Q(as), TLs/Q(as)) = 1 and therefore by Lemma 2.2, SQ<fa5 ) is a cyclic cubic extension of Ks unramified 
outside 3. 

It remains to prove that SQ<fa5 ) is unramified over Ks at 3 too. Clearly v3(bn) > v3(3an) = 1 owing to (C3.4) 
and (C3.5) and thus fa 5 (X) does not satisfy the condition (LN-1). Also 3 I bn due to (C3.5) and thus fa 5 (X) does 
not satisfy the conditions (LN-2) and (LN-3). Therefore by Lemma 2.3, SQ(fa5 ) is unramified over Ks at 3. Thus by 
Hilbert class field theory the class number of Ks is divisible by 3. □ 

3. Some more families of quadratic fields 

In this section, we shall use a result of Kishi and Miyake [9] for proving the first of the two theorems. Let us first 
recall Kishi-Miyake parametrization. 

Lemma 3.1. Let u and v be two integers and 

If 

(KM-1) u and v are relatively prime; 
(KM-2) fu,v(x) is irreducible over <Q; 

fu,v(x) = x 3 - uvx - u2
. 

(KM-3) discriminant D fu,v of fu,v(x) is not a perfect square in Z; 
(KM-4) one of the following conditions hold: 

(a) 3fv, 
(b) 3 Iv, uv ¢= 3 (mod 9) an<f, u = v ± 1 (mod 9), 
(c) 31 v, uv = 3 (mod 9) andu = v ± 1 (mod 27), 

(3.1) 

then 3 divides the class number of <Q(J D fu," ). Conversely, every quadratic number field <Q(J D fu,.J with class 
number divisible by 3 arises in the above way from a suitable choices of integers u and v. 

We use this to prove: 

Theorem 3.1. Let m be an odd positive integer. 

(I) Ifm = 0 (mod 3), then 3 divides the clasniumberofthe:field-<Q(J-=-3(4m~ +_1)). 
(II) lfm =4 (mod 15), then3dividestheclassnumberofthefield<Q(J3(2nz3n - l))forany~dd-in-tegern ~ 3: -

Proof We prove (I) and outline the proof of (II) as in most aspects these are very similar to the proof of (I). 
Let us put u = -1 and v = 3m in (3.1). Then 

f-1,3m(X) = X3 + 3mX - 1 

and D f-I,Jm = 9d with d = -3(4m3 + 1). 
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Clearly u and v are relatively prime, and D f-I.Jm -:/=- □ in Z. Now 

f-1,3m(X) = X 3 
- X - 1 (mod 2) 

as m is odd. Thus f- 1 ,3m (X) is irreducible over Z2 and therefore it is irreducible over Q. Again uv = -3m = 0 
(mod 9) (as m = 0 (mod 3)). Furthermore v - 1 = 3m - l = -1 (mod 9) = u (mod 9). Therefore 3 divides class 
number ofQ(J-3(4m3 + 1)) by invoking Lemma 3.1. 

Finally to prove (II), we put u = 2 and v = 3m 11 in (3.1). The irreduciblity of h,3mn(X) follows from the 
irreducibility of h,3m" (X) over Zs. The condition (KM-3) holds since the discriminant of lz,3mn (X) is 144d with 
d = 3(2m 311 - 1) = 3 (mod 4). Moreover we can show that the condition (b) of (KM-4) holds. □ 

We conclude this section by providing another family of quadratic fields whose class number is divisible by 3 by 
actually producing an element of order 3. 

Theorem 3.2. The class number ofQ( Jl - 2m3) is divisible by 3 for any odd integer m > 1. 

Proof Let d = l - 2m3 and K = Q(-JJ). Thus d = 3 (mod 4). Let a E OK be of the form a= l + Jl - 2m3 . 

Then NK;Q(a) = 2m3
. 

Suppose that p j is a prime factor of m. Then the Kronecker symbol ( :j ) = 1. Thus we can write 

(pj) = PjPJ 

with distinct prime ideals Pj and P1 in OK which are conjugate to each other. Furthermore 

(2) = P 2 with P = (2, 1 + -JJ). 

We may express the prime ideal decomposition of (a) as 

j 

because a is not divisible by any rational integers except ±1. Then NK;Q((a)) = 2 IJ Pj with p j = NK;Q(Pj) and 
thus 3 I t j. Therefore 

(p I} P/3 
)' - (2)P 9 P? - (2)(a), 

which is principal in OK. If (I) is an ideal class containing P Ilj P/
3

, then the order of (I) is 3 if (P IJj P/
3

) 

is not principal in OK. To show (P flj P? 13) is not principal in OK, itis sufficient to show 2a is not a cube in OK. 

Let d' be the square-free part of 1 ·- 2m3 and denote 

1 - 2m3 = t 2d' (t E Z). 

If 2a = (a+ b#)3 for some a, b E Z, then we obtain 

2 = a 3 + 3ab2d', 

21tl = 3a2b + b3d'. 

(3.2) 

(3.3) 

(3.4) 

From (3.3), it holds al2, that is, a E {±1, ±2}. Taking modulo 3 in (3.3), we see that a -I- 1, -2. When a = -1, 
we see from (3.3) and (3.4) that d' = -1 and !ti = 1. Then by (3.2), we obtain m = 1, which contradicts to the 
assumption m > 1. When a = 2, we see from (3.3) and (3.4) that d' = -1 and !ti = 11/2. This is a contradiction. 
This completes the proof. D 

4. Numerical Examples 

In this section, we give some numerical examples corroborating our results in §2 and §3. We compute the class 
numbers of each of the above families of fields for some small values of d and list them in tables below. All the 
computations in this paper were done using PARI/GP (version 2.7.6). 
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Table 1. Numerical examples of Theorem 2.1 for k = 1 only 

m n d = 3(4m 3n - 1) h(d) m n d = 3(4m311 - 1) h(d) 
3 1 321 3 3 2 8745 12 
3 3 2361953 36 3 4 6377289 36 
9 1 8745 12 9 2 6377289 36 
15 1 40497 3 21 1 111129 6 
27 1 2361953 36 33 1 431241 6 
39 1 711825 3 45 1 1093497 3 
51 1 1591809 3 57 1 2222313 36 
63 1 30000561 9 69 1 3942105 6 
75 1 5062497 108 81 1 6377289 36 
87 1 7902033 3 93 1 9652281 6 
99 1 11643585 24 105 1 13891487 18 
111 1 16411569 6 117 1 19219353 18 
123 1 22330401 12 129 1 25760265 60 
135 1 29524497 18 141 1 33638649 60 
147 1 38118273 282 153 1 42978921 9 
159 1 48236145 6 165 1 53905497 6 

Table 2. Numerical examples of Theorem 2.2 

m n d = -(m2n2 + 4n)/3 D = -(m2n2 - 4n)/3 h(d) h(D) 
3 3 -31 -23 3 3 
3 15 -695 -655 24 12 
3 21 -1351 -1295 24 36 
3 33 -3311 -3223 72 30 
3 39 -4615 -4511 36 84 
3 51 -7871 -7735 120 48 
9 3 -247 -239 6 15 
9 15 -6095 -6055 84 36 
9 21 -11935 -11879 72 150 
9 33 -29447 -29359 132 72 
9 39 -41119 -41015 120 180 
9 51 -70295 -70159 252 168 
15 3 -679 -671 18 30 
15 15 -16895 -16855 96 84 
15 21 -33103 -33047 60 150 
21 3 -1327 -1319 15 45 
21 15 -33095 -33055 240 72 
21 21 -64855 -64799 120 222 
27 3 -2191 -2183 30 42 
27 15 -54695 -54655 216 156 
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Table 3. Numerical examples of Theorem 2.3 

m n p d = -(3m P2n - 2) D = -(3m P2n + 4) h(d) h(D) 

3 1 3 -241 -247 12 6 
3 2 3 -2185 -2191 24 30 
3 1 7 -1321 -1327 24 15 

3 2 7 -64825 -64831 24 162 
3 3 3 -19681 -19687 84 81 
5 1 3 -2185 -2191 24 30 
5 2 3 -19681 -19687 84 81 
5 1 5 -6073 -6079 24 57 
5 2 5 -151873 -151879 120 300 
7 1 3 -)9681 -19687 84 81 
7 1 5 -107161 -107167 216 108 

Table 4. Numerical examples of Theorem 2.4 Table 5. Numerical examples of Theorem 2.5 

a b n d = 3(a3n - b2n) h(d) a b n d = 3(4a3n - e2n) h(d) 

19 6 3 968062953369 6 1 3 2 -331 3 

19 21 3 967805794974 648 1 3 3 -725 6 

19 36 3 961532746329 24 1 3 4 -19671 84 

19 51 3 915274229934 48 I 9 2 -19671 84 

19 66 3 720101243289 12 I 9 3 -531437 480 

19 81 3 120774483894 24 I 15 2 -151863 324 

19 96 3 -1380210275751 1388160 7 3 2 1411545 12 

19 111 3 -4643180563146 1951488 7 15 -2 1259913 6 

19 126 3 -11036449330791 4263624 · 7 27 2 -60845 192 

19 141 3 - 2260608083 I 186 3780672 13 9 2 57902025 72 

49 306 3 2422323582800979 192 13 15 2 57769833 48 

13 21 2 57338265 96 

Tobie 6. Numerical examples of Theorem 3.1 (I) 

m d = -3(4m3,-4- 1) h(d) m d = -3(4m 3 + 1) h(d) 
3 -327 12 9 -8751 72 

15 -40503 96 21 -111135 240 
27 -236199 504 33 -431247 360 
39 -711831 648 45 -1093503 540 
51 -1591815 780 57 -2222319 984 

63 -3000567 1152 69 -3942111 2568 
75 -5062503 1800 81 -6377295 1296 

87 -7902039 2772 93 -9652287 1452 

99 -J1643591 2160 105 -13891503 2448 
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Table 7. Numerical examples of Theorem 3.2 

m d = 1- 2m3 h(d) m d = 1-2m3 h(d) 
3 -53 6 5 -249 12 
7 -685 12 9 -1457 24 

11 -2661 48 13 -4393 24 
15 -6749 84 17 -9825 12 
19 -13717 48 21 -18521 228 
23 -24333 72 25 -31249 96 
27 -39365 180 29 -48777 96 
31 -59581 126 33 -71873 240 
35 -85749 336 37 -101305 144 
39 -118637 216 41 -137841 264 
43 -159013 162 45 -182249 408 
47 -207645 288 49 -235297 264 
51 --265301 684 53 -297753 228 
55 -332749 318 57 -370385 360 
59 -410757 336 61 -453961 420 
63 -500093 78 65 -549249 624 
67 -601525 66 69 -657017 660 
71 -715821 672 73 -778033 324 
75 -843749 1128 77 -913065 912 

Acknowledgements 

A. Hoque is supported by SERB N-PDF (PDF/2017/001958), Govt. of India. The authors are indebted to the 
anonymous referee for his/her valuable suggestions which has helped improving the presentation of this manuscript. 

References 

[1] K. Chakraborty and M. R. Murty, On the number of real quadratic fields with class number divisible by 3, Proc. Amer. Math. Soc., 
131 (2003) 41-44. 

[2] T. Honda, On real quadratic fields whose class numbers are multiples of 3, J. Reine Angew. Math., 233 (1968) 101-102. 
[3] A. Hoque and H.K. Saikia, A note on quadratic fields whose class numbers are divisible by 3, SeMA J., 73 (2016) 1-5. 
[4] A. Hoque and H.K. Saikia, A family of imaginary quadratic fields whose class numbers are multiples of three, J. Taibah Univ. Sci., 

9 (2015) 399-402. 
[5] H. lchimura, Note on the class numbers of certain real quadratic fields, Abh. Math. Sem. Univ. Hamburg, 73 (2003) 281-288. 
[6] Y. Kishi, On the ideal class group of certain quadratic fields, Glasgow Math. J., 52 (2010) 575-581. 
[7] Y. Kishi, A constructive approach to Spiegelung relations between 3-Ranks of absolute ideal class groups and congruent ones 

modulo (3)2 in quadratic fields, J. Number Theory, 83 (2000) 1-49. 
[8] K. Kishi, A criterion for a certain type of imaginary quadratic fields to have 3-ranks of the ideal class groups greater than one, 

Proc. JapanAcad., 74 Ser. A (1998) 93-97. 
[9] Y. Kishi and K. Miyake, Parametrization of the quadratic fields whose class numbers are divisible by three, J. Number Theory, 

80 (2000) 209-217. 
[10], P. Llorente and E. Nart, Effective determination of the decomposition of the rational prime in a cubic field, Proc. Amer. Math. Soc., 

,,, 87 (1983) 579-585. 
;' [11] T. Nagell, Uber die Klassenzahl imaginar quadratischer, Ziihlkorper, Abh. Math. Sem. Univ. Hamburg, 1 (1922) 140-150. 

[12] P. J. Weinberger, Real Quadratic fields with Class number divisible by n, J. Number theory, 5 (1973) 237-241. 
[13] Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math., 7 (1970) 57-76. 






