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Abstract. The coset diagrams for PS L (2, Z) are composed of fragments, and the fragments are further composed 
of circuits. Mushtaq has found that, the condition for the existence of a fragment in coset diagram is a polynomial 
f in Z[z]. Higman has· conjectured that, the polynomials related to the fragments are monic and for a fixed 
degree, there are finite number of such polynomials. In this paper, we consider a family n of fragments such 
that each fragment .in n contains one vertex fixed by a pair of words (xy)q 1 (xy- 1 )q2 , (xy- 1 y1 (xyY2 , where 
s1, s2, q1, q2 E z+, and prove Higman 's conjecture for the polynomials obtained from n. At the end, we answer the 
question; for a fixed degree n, how many polynomials are evolved from n. 

2010 Mathematics Subject Classification: Primary 05C25, Secondary 20G40. 

1. Introduction 

A central theme in the group theory, since the completion of the classification of simple groups in the l 980's, has 
been the study of groups via their actions. This most commonly takes the form of actions on vector spaces and similar 
commutative objects (linear representation theory) or on more elementary combinatorial objects. 

It is not an exaggeration to say that the modular group PS L(2, Z) is the single most important infinite discrete 
group, through its myriad connections with number theory, geometry and topology. There is a long and venerable 
history of studying its actions, particularly on finite sets, that goes back to before the tum of the 20th century. 
The modular group PS L(2, Z) [2] has finite presentation 

(x, y : x 2 = y3 = 1) 

where x and y are the linear fractional transformations defined by z ➔ ~ 1 and z ➔ z-::- 1 respectively. If we add a 
. ' ' 

new generator t : z ➔ ½ in the modular group PS L (2, Z), we obtain a group 

-( - 2 .3 2 2 ( 2 PGL 2, Z) = (x, y, t: x = y = t = (xt) = yt) = 1) 

known as extended modular group. 
Let p be a prime number and q = p 11

, where n E N. Then by the projective line over the finite field Fq, denoted 
by P L(Fq), we mean Fq U {oo}. 

The group PG L (2, q) has its customary meaning, as the group of all linear fractional transformations z ➔ ~1!! 
such that a, b, e, d E Fq and ad - be f. 0, while P SL(2, q) is its subgroup consisting of all those where ad - be is 
a quadratic residue in Fq. 
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The coset diagram for PGL(2Z) was introduced by Higman in 1978. Later, in 1983 Mushtaq [4] laid its 
foundation. The three cycles of y are denoted by small triangles whose vertices are permuted counter-clockwise 
by y. If ( Vi )x = v j, then we join Vi and v j by an edge. The vertices fixed by x and y are denoted by heavy dots. 
Since (yt)2 = 1, so tyt = y-1, thus t reverses the orientation of the triangles representing the three cycles of y 
(as reflection does). Consider the action of PGL(2, Z) on P L(F19). We can calculate the permutation representations 
x, y and t by (z)x = -;_1

, (z)y = z;1 and (z)t =½respectively. So 

X: (0 oo)(l 18)(2 9)(3 6)(4 14)(5 15)(7 8)(10 17)(1112)(13 16), 

y: (0 oo 1)(210 18)(3 7 9)(4 15 6)(5 16 14)(13 17 11)(8)(12), 

t : (0 00)(2 10)(3 13)(4 5)(6 16)(7 11)(8 12)(9 17)(14 15)(1)(18). 

10 2 

18 

17 9 

13 0 00 3 

5 4 

14 15 

Figure 1. 

For more on coset di~grams, we suggest reading of [l], [7], [8] and [9]. 
1\vo homomorphisms a and /J from PGL(2; Z) to PGL(2, q) are called conjugate if /J = ap for some inner 

automorphism p on PGL(2, q). We call a to be non-degenerate if neither of x, y lies in the kernel of a. In [5] it is 
proved that there is a one to one correspondence between the conjugacy classes of non-degenerate homomorphisms 
from PGL(2, Z) to PGL(2, q) and the elements 0 =j=. 0, 3 of Fq under the correspondence which maps each 
class to its parameter 0. As in [5], the coset diagram corresponding to the action of PGL(2? Z) on PL(Fq) via a 
homomorphism a with parameter 0 is denoted by D(0, q). 

2. Occurrence of fragments in D ( (), q) 

By a circuit in a coset diagram for modular group, we mean a closed path of triangles and edges. For a sequence of 
positive integers n1, n2, ... , n2k, the circuit which has a vertex fixed by the word 

w = (xyt1 (xy- 1t 2 ... (xy- 1t2k E PSL(2, Z), where k EN, 

we mean a closed path having n 1 triangles with one vertex inside the circuit and n2 triangles with one vertex outside 
the circuit and so on. Since it is a cycle (n1, n2, ... , n2k), so it does not make any difference if n1 triangles have one 
vertex outside the circuit and n2 triangles have one vertex inside the circuit and so on. 

For a given sequence of positive integers n1, n2, ... , n2k the circuit of the type (n1, n2, ... , n2k', n1, n2, ... , 

n2k', ... n 1 , n2, ... , n2k') where k' divides k, is said to have a period of length 2k'. A circuit which is not of this type 
is called non-periodic circuit. A circuit is simple circuit, if its each vertex is fixed by a unique word w. 

3. Joining of Circuits 

Thrpuglwut this paper, by joining of a vertex v; in (n1, n2, ... , n2k) with the vertex v j in (m1, m2, ... , m2k), we 
-~.. J_'vP'' 

meani' ~e vertices Vi and v j melt together and become one node. Let v; and v j be fixed by the words w; and w j 
respectively. In order to join these two circuits at Vi and vi, we choose, without loss of generality (n 1, n2, ... , n2k) 

and apply w i on Vi in such a way that w i ends at Vi. In this way, a fragment say y is created. In other words by y , 
we mean a non-simple fragment whose one vertex v = Vi = v j is fixed by a pair of words w;, w j. 
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Example 1. Let us join the vertex u in (3, 2) with the vertex v in (4, 3) to create a fragment y. In figures 2 and 3 
one can see that the vertices v and u are the fixed points of (xy)(xy-1)3(xy)3 and (xy)3(xy-1)2 respectively. 

V 

Figure 2. 

Figure 4. 

It can be seen in figure 4 that the vertex v = u in y is fixed by 

(xy)3(xy-1)2, (xy)(xy-1)3(xy)3. 

For more on joining of circuits of coset diagrams, we refer to [6]. 

u 

Figure 3. 

There is a question, going back to Higman, as to the structure of coset _diagram D ( 0, q). Specifically, for a given 
0 and q, what types of circuits appear in them? Some progress was made by Mushtaq in the late 1980's with the 
appearance of certain "fragment" in a diagram D(O, q) determined by vanishing of a certain polynomial associated 
to it [3]. In this paper, we also provide some combinatorial data in this direction. 

The method to compute a polynomial from a fragment is presented in [3]. Here we narrate this process briefly. 
Since a fragment is created by joining (n1, n2, ... , n2k) and (m1, m2, ... , m21c) at a common point v, so there is a 
pair of words Wi = (xyi1(xy- 1i2 ... (xy-1)121<1, Wj = (xyr1 (xy-1r 2 ... (xy-1r21c2 such that (v)wi ;, V and 
( v) w j = v. Let X and Y be the matrices corresponding to x and y of PG L (2, q). Then Wi and w j can be expressed 
as 

wi = (XY)11(xy-I)12 ... (xy-1)12,'I 

wj = (XYr 1(xY-1r 2 •.• (xy-1
r2k2 

where k1, k2 EN. The matrices X and Y having entries from Fq and satisfying 

x2 = y3 = ;u 

can be represented by 

X = (a kc), 
C -a 

. (d kf ) 
y y= f -d-1 . 

(3.1) 
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Of course a, c, d, f, k E Fq. We shall write 

a 2 + kc2 = - I::!. =I 0 (3.2) 

and require that 
(3.3) 

This gives us the elements, which satisfy the relations 3.1. 
Since det(Y) = 1, so I::!. = -(a2 + kc2) and r = a(2d + 1) + 2kcf are determinant and trace of XY respectively. 

Also trace (X) = 0 and det(X) = I::!.; therefore the characteristic equation of X can be written as 

X 2 + I::!./ = 0. (3.4) 

Similarly, since trace(Y) = -1 and det(Y) = 1, so 

Y 2 + Y +I= 0. (3.5) 

is the characteristic equation of Y. Moreover, trace (XY) = r and det(XY) = 6., implying that the characteristic 
equation of the matrix XY is 

(XY)2 - r(XY) + I::!./ = 0. (3.6) 

On recursion, Equation 3.6 yields 

(XYt = { e ~ l)rn-1 - e ~ 2)rn-3 6. + .. ,} XY - { e ~ 2)rn-2 I::!.. - (n ~ 3)rn-4 l::!.2 + ... } /. (3.7) 

After suitable manipulation, Equations 3.4, 3.5 and 3.6 give the following equations 

XYX = rX + 6./ + 6.Y. 

XYY = -X-XY 

YXY = rY +X. 

YX = r/-X-XY.' 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

Thus, by making use of Equations 3.4 to 3.11 the matrices the matrice.s W; and W1 can be expressed linearly as 

W; = Aol + },1X + ,hY + J,.3XY 

Wj = µof + µ 1 X + µ2Y + µJXY 

where },1 and µz for l = 0, 1, 2, 3 are polynomials in rand 6.. Since (v)w; = v and (v)w1 = v, the 2 x 2 matrices 
W; and Wj have an eigenvector in common. This by Lemma 3.1 of [3], we have the algebra generated by 
W; and Wj has dimension 3. The algebra contains /, W;, W1, W; Wj and so these are linearly dependent. Using 
Equations 3.4 to 3.11 the matrix W; WJ can be expressed as 

W; WJ =vol+ v1X + v2Y + v3XY 

where v;, for i = 0, 1, 2, 3 can be computed in terms of the A; andµ;, using 3.4 to 3.11. The condition that/, W;, 
Wj and W; WJ are linearly dependent, can be expressed as 

AJ A2 J,.3 

µ1 µ2 M = 0. (3.12) 

vi v2 v3 

If we carry out the calculation of v1, v2, 03 in terms of A; andµ; and use in 3.12, we find the following homogeneous 
equation. 

- (),2µ3 - µz},3) 2 - 6.(J,.3µ1 - µ3)q)2 - (),1µ2 - µ1A2) 2 

- r(A2M - µ2J,.3)(J,.3µ1 - µJ},1) - (J,.2µ3 - µzJ,.3)(J,.1µ2 - µ1A2) = 0. (3.13) 

In [5], 0 is defined as ~, so we can substitute l::!.0 for r 2 to get a polynomial in 0. 
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Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree, there are 
finite number of such polynomials. In this paper, we consider a family n of fragments such that each fragment in 
n contains one vertex fixed by (xy)q 1(xy- 1)q2 , (xy- 1)S1(xy)S2 , where s1, s2, q1, q2 E z+, and prove the Higman's 
conjecture for the polynomials obtained from n. 

Uz 

V2 

Figure 5. 

Consider two circuits (n 1, n2) and (m 1, m2) n is constructed by joining 

e3n1 with u1 and 

hn2 with u1 and 

U3m1 with e1 and 

V3m2 with e1 and 

4. Main results 

Theorem 1. Number of triangles in any fragment y E n is 

VI, 

v1, 

Ji, 

Ji. 

U5 

V5 

Figure 6. 

Proof Let y be any fragment inn. Then its one vertex say v, is a fixed point of the circuits_ (xy)q1 (xy-1)q2 and 
(xy- 1y1 (xy)s2 , where s1, s2, q1, q2 E z+. Diagrammatically, it means: 

s1 - 1 triangles 1 

--...----, ............... .--........ ---

q 1 - 1 triangles 

Figure 7. 

From figure 7, it is clear that, y E n has s1 + s2 + q1 + q2 - 2 triangles. □ 
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Total number of triangles in the circuit (xy)q1 (xy-1)q2 are q1 + q2, let q1 + q2 = r1. Since (xy)q1 (xy-1 )q2 can 
be expressed linearly as 

(XY)q1(XY- 1)q2 =µof+ µiX + µ2Y + µ3XY 

where µi, for i = 0, 1, 2, 3 is polynomial in r and Ii, we use max(µi) for the term containing the highest 
power of r, in µi. 

Proposition 1. 

(i) If w = xy(x y-1)q2 where q2 E z+. Then the corresponding matrix can be expressed linearly as 

XY(XY- 1)q2 = (-l)q2 { (q
2 ~ 1)rq2 - (q

2
; 

2
)rqi-21i + ... } X 

+ (-l)q2 { (q2 ~ l)rq2-I Ii - (q2; 2)rqz-31i2 + ... } y 

+ (-l)q2 { (~)rq2 - e2
; 

1
)rq2- 2

!l + ... } XY. 

(ii) lf w = (xy)q1x y-1 where q1 E z+. Then the corresponding matrix can be expressed linearly as 

(XY)q1xy-l = {-(q1 ~ I)rq1 +el; 2)rq1-21i - ... } X 

+ {-(q1 ~ 2)rq1-lll +(qi; 
3
)rq1-31i2 _ ... } y 

The proof is obtained by using mathematical induction. 

Proposition 2. If w = (;y)q1 (xy-1)q2 , where q1, q2 E z+"-._{1}, then the corresponding matrix can be expressed 
linearly as W = µol + µ1 X + µ2Y + µ3XY, such that 

Proof. By Proposition I, 

Now 

max(µo) = (-l)q2<!'rr1.:_4 ll2, where i; E Z, 

max(µ1) = (-l)q2rr1-l, 

max(µ2) = (-l)q2rr1-21i, 

max(M) = (-l)q2rr1-l. 

(XY)2 (XY-1)2 = r2XYX + rllXYY +(-Ii+ r2 )XYXY. 

By making use of Equations 3.4 to 3.11, we get 

(XY)2(XY-1)2. r2(lll + r X + llY) + rll(-X - XY) +(-Ii+ r 2)(-ll/ + r XY) 

= r2 lll + r 3 X + r2 llY - r llX - r llXY + !l 21 - r2 lll - r llXY + r 3 XY 

= !l2 I+ (r3 - r ll)X + r2 llY + (r3 - 2r ll)XY. 

Hence the result is true for (XY)2(xY-1)2. 
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Let the result be true for (XYl(XY- 1l, that is 

(XYl(xY-l)k = (-ll{c;rk+k-4 fl.2 - ... }/ + (-ll{rk+k-1 - ... }X 

+ (-ll{rk+k-2 fl. - ... }Y + (-ll{rk+k-l - ... }XY. 

Now 

(XY)k+1(xY-1l+1 = (-ll{c;rk+k-4 fl. 2 - ... }XY / xy-l + (-ll{rk+k-l - ... }XYxxy-l 

+ (-ll{rk+k-2 fl. - ... }XYY xy-l + (-ll{rk+k-l - ... }XYXYxy-l. 

By making use of Equations 3.4 to 3.11, we get 

(XY)k+1(XY-l)k+l = (-ll{c;rk+k-4 fl. 2 - ... }(-rX - fl.Y - rXY) 

+ (-1/{rk+k-l - ... }(-fl.X) + (-ll{rk+k-2 fl. - ... }(-fl./+ rX + rXY) 

+ (~ll{rk+k-l - ... }{(-r2 + fl.)X + -rfl.Y + (-r 2 + fl.)XY} 

= (-l)k+l {r(k+l)+(k+l)-4 fl. 2 _ ... }/ + (- l)k+l {r(k+l)+(k+l)-1 _ ... }X 

+ (-l)k+l{r(k+l)+(k+l)-2 fl._ ... }Y + (-ll+l{r(k+l)+(k+l)-1 _ ... }XY. 

Hence the result is true for (XY)q1 (XY-1F2 such that q1 = q2 E ~+"'{l} and in this case, we have¢' = 1. So, for 
k1 = k2 

(XY)k1 (XY-ll2 = (-1/2{rk1+k2-4 fl.2 _ ... }/ + (-1l2{rk1+k2-l _ ... }X 

+ (-1l2{rk1+k2-2 fl. - ... }Y + (-1l2{rk1+kz-l - ... }XY. 

Therefore 

(XYl1+l(xY-ll2 = (-ll2{rk1+k2-4/}.2- .. . }XYI + (-1l2{rk1+kz-l _ . .. }XYX 

+ (-l)k2 {rki+kz-2 fl. - ... }XYY + (-ll2{rk1+k2- 1 - ... }XYXY. 

By making use of Equations 3 .4 to 3 .11, we have 

(XYl1+1(xY-l/2 = (-1l2{rk1+ki-4 fl.2 - ... }XY + (-1l2{rk1+k2-1 - ... }(fl./+ rX + fl.Y) 

+ (-ll2{rki+ki-2 fl. - ... }(-X - XY) + (-l)k2{rki+kz-l - ... }(-fl./+ rXY) 

= (-1l2{c;rk1+k2-3 fl.2 _ ... }/ + (-ll2{rk1+k2 _ ... }X 

+ (-l)k2{rk1+k2-l fl._ ... }Y + (-l)k2{rk1+k2 _ ... }XY 

= (-ll2{c;r(k1+l)+k2-4 fl.2 _ ... }/ + (-ll2{r(k1+l)+kz-l _ ... }X 

+ (-ll2{/ki+i)+k2-2 fl._ ... }Y + (-ll2{r(fi"+l)+k2-l _ ... }XY. 

Hence the result is true for (XY)q1 (XY-1 )q2 such that q1 - q2 = 1. 

Let the result be true for (XY)q 1 (XY-1 )q2 such that q1 - q2 = n, that is 

(XY)k2+n(xy-ll2 = (-:- 1l2{c;r(k2+n)+k2-4 fl.2 _ ... }/ + (-ll2{r(k2+n)+kz-l _ ... }X 

+ (-ll2{r(k2+n)+kz-2 fl._ ... }Y + (-1/2{r(k2+n)+k2-l _ ... }XY. 
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Now 

(XYl2+(n+l}(xy--ll2 = (-1l2{¢r(k2+n)+kz-4 /},.2 _ ... }XY [ + (-ll2{r(k2+n)+k2--l _ ... }XYX 

+ (-ll2{r(k2+n)+k2--2/:i - ... }XYY + (-ll2{r(k2+n)+kz-l - ... }XYXY. 

By making use of Equations 3.4 to 3.11, we have 

(XYl2+(n+l}(xy-ll2 = (-1l2{¢r(k2+n)+k2--4 /},.2 - ... }XY + (-1l2{/k2+n)+k2-l - ... }(/:i/ + rX + /:iY) 

+ (-,-ll2{r(k2+n)+k2--2 /:i _ ... }(-X _ XY) 

+ (-ll2£r(k2+n)+k2--l _ ... }(-1:i/ + rXY) 

= (-1/2{¢r(k2+n)+kz-3 /:i _ ... }/ + (-1/2{r(k2+n)+k2 _ ... }X 

+ (-ll2{r(k2+n)+kz-l /:i _ ... }Y + (-1/2{r(k2+n)+k2 _ ... }XY 

= (-ll2£¢r(k2+n+l}+k2-4 /:i _ ... }/ + (-1/2{r(kz-tn+l}+kz-l ~ ... }X 

+ (-l/2{r(k2+n+l}+k2-2 /:i _ ... } y + (- l/2{r(k2+n+l}+kz-:l _: ... }XY. 

Hence the result is true for (XY)q1 (XY-1 )q2 such that q1 > q2. For kr = k2 

(XYlI(XY-ll2 = (-1l2{rk1+kz-4/:i2- ... }/ + (-ll2{rk1+k2--l _ ... }X 

+ (-l/2{rk1+kz-2 /:i _ ... }Y + (-l/2{rk1+kz-l _ ... }XY. 

Therefore 

(XY/1 (XY--l/2+1 = (-l/2{rk1+kz-4 /),.2 _ ... }/ xy-1 + (-l)k2{rk1+k2-l _ ... }XXY-1 

+ (-1l2{rk1+k2--2 /:i - ... }Yxy--1 + (-1/2{rk1+kz-l - ... }XYxy~l. 

By making use of Equations 3.4 to 3.11, we have 

(XY/1 (XY--ll2+l = (-1/2{rk1+kz-4 /:i2 - ... }(-X - XY) + (-1l2{rk1+ki-l - ... }(!:ii+ /:iY) 

+ (-1/2{rk1+kz-2 /:i - ... }(-r i - rY + XY) 

+ (-1/2 {rk1+k2 --l - ... }(-r X - /:iY - r XY) 

= (-1/2 {¢rk1 +kz-3 /:i2 _ ... }/ + (-1l2+l {rk1 +k2 _ ... }X 

+ (-1l2+l{rk1+k2--l /:i- ... }Y + (-1l2+l{rk1+k2 _ ... }XY 

= (-ll2{¢rk1+(k2+l)--4 /:i2 _ ... }/ + (-l/2+l{rk1+(k2+l)--l _ ... }X 

+ (-1/2+1 {rkl +(k2+1)--2 /:i - ... } y + (-1/2+1 {rkl +(k2+l)-l - ... }XY. 

Hence the result is true for (XY)q1 (XY-1 )q2 such that qi - q1 = 1. 
Let the result be true for (XY)q1 cxy--l )q2 such that q2 - q1 = n, that is 

(XYll (XY--ll1 +n = (-l)(k1+n) {rk1 +(k1 +n)-4 /:i 2 _ ... } / + (--l)<k1+n) {rk1+(k1 +n)--1 _ ... }X 

+ (- l)<k1 +n) {rk1 +(k1 +n)--2 /:i _ ... } y + (- l)(k1 +11) {rk1 +(k1 +11)-l _ ... } XY. 
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Now 

(XYl1cxy-ll1+(n+l) = (-1/k1+n){rk1+(k1+n)-4 t:,.2 - ... }/xy-1 

+ (-l)(k1+n){rk1+(k1+n)-l _ ... }XXY-1 

+ (-l/k1+n){rk1+(k1+n)-2 t:,. _ ... }Y xy-1 

+ (-l/k1+n){rk1+(k1+n)-l _ ... }XYXY-1. 

By making use of Equations 3.4 to 3.11, we have 

(XY)kt (XY-l)kt +(n+l) = (-l)(k1+11){rk1+(k1 +n)-4 t:,.2 _ ... }(-X _ XY) 

+ (-l)(k1+n){rk1+(k1+n)-l _ ... }(!),./ + !).Y) 

+ (-l)(k1+n){rk1+(k1+n)-2t:,. _ ... }(-rl _ rY + XY) 

+ (-l)<k1+n){rk1+(k1+n)-l _ ... }(-rX _ t:,.y _ rXY) 

= (-l)(k1+11){rk1+(k1+n)-3 t:,.2 _ ... }/ 

+ (-l)<k1+n)+l{rk1+(k1+n) _ ... }X 

+ (-l)<k1+n)+l{rk1+(k1+n)-l t:,. _ ... }Y 

+ (-l)(k1+n)+l{rk1+(k1+n) _ ... }XY 

= (-l)(k1+11){c:;'rk1+{k1+(n+l)}-4 /),.2 _ ... }/ 

+ (-1l1+(n+l){rk1+{k1+(n+l)}-l _ ... }X 

+ (-1l1+(n+l){rk1+{k1+(n+l)}-2 /),. _ ... }Y 

+ (-ll1+(n+l){rk1+{k1+(n+l)}-l _ ... }XY. 

Hence the result is true for (XY)q 1 (XY- 1 )q2 such that q1 < q2. 

299 

□ 

Theorem 2. If w = (x y)q1 (xy-1 )q2 , where q1, q2 E z+, then the corresponding matrix can be expressed linearly 
as W = µol + µ1X + µ2Y + µ3XY, such that 

max.(µ1) = (-l)qzrri-1, 

max.(µ2) = (-l)q2rT1-2t:,., 

max.(µ3) = (-l)q2rri-l_ 

The Proof is an immediate consequence of Propositions 1 and ?? . 

Total number of triangles in the circuit (xy- 1y1 (xyf2 are s1 + s2, let s1 + s2 = r2 and a = 

Since (xy-1)51 (xyf2 can-be expressed linearly as 

{ 01 

/ 

if s2 = 1 
otherwise· 

where Ai, for i = 0, l, 2, 3 is polynomial in r and !)., we use max(.,1,;) for the term containing the highest 
power of r, in Ai. 

Again by using mathematical induction, we have the following Theorem. 
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Theorem 3. If w = (xy-1 y1 (xyY2 where sr, s2, E z+, then the corresponding matrix can be expressed linearly 
as W = ),ol + )q X + },zY + J..3XY, such that 

max(.?..r) = (-l)s,+lari-2-3 !)., 

max(J..2) = (-1r+lri-2-2/}., 

max(},3) = (-lY'ri-i-I. 

Theorem 4. Let y E .Q then degree of the polynomial f(0) obtained from y is sr + s2 + qr + q2 - 2. Moreover 
f(0) is monic. 

Proof Since y E .Q, therefore its one vertex v, is a fixed point of the circuits (xy- 1 y1 (xyY2 and (xy )q1 (xy- 1 )q2, 
where s1, s2, q1, q2 E z+. The matrices corresponding to (xy- 1yi (xyY2 and (xy)q 1 (xy- 1)q2 are (XY-1Y1 (XYY2 

and (XY)q1 (XY- 1)q2 respectively, and these can be written as a linear combination of/, X, Y and XY, that-is 

(XY-1Y1(XY)52 = .?..ol + J..1X + .?..2Y + A3XY 

and 
(XY)q1(XY- 1)q2 = µol + µ1X + µzY + µ3XY 

where.?..;. andµ; for i = 0, 1, 2, 3 are polynomials in rand 6. By Theorems 2 and 3, we have 

max(µi) = (-l)q2ri-1-l, 

max(µ2) = (--:-l)q2r'1- 2 6, 

max(M) = (-l)q2 r•1-
1. 

max(},J) = (-l)51+1ari-i-3 6, 

max(J..2) = (-1y1+lri-2-26, 

max(J..3) = (-I)8 1ri-i-I_ 

Now 

and 

Then 
(4.1) 

shows that 
(4.2) 

Now 
(4.3) 

and 
(4.4) 

together imply that 
(4.5) 

or 
(4.6) 

Now 
(4.7) 
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and 
(4.8) 

So 
(4.9) 

and 
max.(}c1µ2 - 22µ1)2 = r2(r1+r2-3) 112. (4.10) 

By using Equations 4.1 and 4.5, we obtain 

max(r(22M - 23µ2)(23µ1 - 21M)) = -2r2(ri+rz-2) 11. (4.11) 

Also by using Equations 4.1 and 4.9, we get 

max((22µ3 - 23µ2)(21µi - 22µi)) = -2r2(ri+rz-3) ti 2. (4.12) 

The term containing the highest power of 0, in the polynomial equation 3.13 yields degree and leading coefficient of 
the polynomial obtained from y. By using Equations 4.2 to 4.12, we have 

(

-(22µ3 - µ223) 2 - ti(2w1 - µ321)2 - (21µ2 - µ122)2 · ) c ) 
max · = r2 r1+r2-2 /1. 

-r(22µ3 - µ223)(2w1 - µ)21) - (),2µ3 - µi23)(21µ2 - µ122) 

Since r 2 = 110, therefore 

Since polynomial equation 3.13 is homogeneous in 11 and r 2 [3], so after replacing r 2 by 110, we get the same 
degree, that is r1 + r2 - 1, of ti in all the terms of polynomial equation. Also 11 = det (X) f=. 0, therefore, we can 
omit ti ri+rz-l = 11si+sz+qi+qz-1 . Hence the degree of the polynomial obtained from y is s1 + s2 + q1 + q2 - 2. 
Also this polynomial is monic. D 

Theorem 5. Let y E n and T (y) and Deg (f) denote the number of triangles in y and the degree of the polynomial 
obtained from y respectively. Then Deg (f) = T(y ). 

The Proof is an immediate consequence of the Theorems 1 and 4. 

Theorem 6. For a fixed degree n, there are finitely many polynomials inn. 

Proof By Theorem 4, degree of polynomials in the family Q of fragments, contammg a vertex fixed by 
(xy- 1f 1(xyf2 , (xy)q 1 (xy-1)q2, where s1, s2, qi, q2 E z+ is q1 + q2 + s1 + s2 - 2. Since there are finite number of 
possibilities for s1, s2, q1, q2 E z+ such that q1 + q2 + s1 + s2 - 2 = n, therefore there are finitely many polynomials 
of a fixed degree n, evolved from the fragments in n. D 

5. Method to find the number of polynomials of a fixed degree 

By Theorem 4, the degree of all the polynomials obtained from the family Q of fragments containing one vertex 
fixed by (xy-1)s1 (xyf2 , (xy)q 1 (xy-1)q2, where s1, s2, q1, q2 E z+ is q1 + qz + s1 + s2 - 2. So in order to find the 
number of polynomials of a fixed degree n, we first have to find the number of possibilities for s1, s2, q1, qz E z+ 
such that q1 + q2 + s1 + s2 = n + 2. For this, here we reproduce the statement of a well known combinatorics result. 

Theorem 7. (;) is the number of possibilities for x1, x2, x3, ... , Xr+l E z+ such that L~!i Xi = n + 1. 

'\ 

Remark 1. By using above Theorem we have (n! 1) possibilities for s1, s2, q1, q2 E z+ such that q1 +q2 +s1 +s2 = 
n+2. 
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Each possibility Pi for SJ, s2, qJ, q2 E z+ such that qJ + q2 + SJ + s2 = n + 2, gives a pair of words 
(xy)q' (xy-J)q2 , (xy-Jy, (xyf2 that fixes a vertex in a fragment y E Q and hence a polynomial is evolved. 

Definition 1. Two distinct possibilities Pi and p j for SJ, s2, qJ, q2 E z+ such that qJ + q2 + SJ + s2 = n + 2, are 
equivalent if and only if they have the same polynomial. 

Proposition 3. For the possibility qJ = CJ, q2 = c2, si = eJ, s2 = e2, there is no equivalent possibility but 
qJ = eJ, q2 = e2, s1 = CJ, s2 = c2. 

Proof The pair of words obtained from the possibility qJ = CJ, q2 = c2, s1 = eJ, s2 = e2 is (xyY'(xy-Jyi, 
(xy-Jy 1(xyy2 and the pair of words obtained from the possibility q1 = eJ,q2 = e2,sJ = ci,s2 = c2 
is (xyr(xy-Jyi, (xy- 1f 1(xyf2 • Let (xyf1(xy-Jf2 , (xy-JY1(xyY2 fix a vertex in y and (xyr(xy-Jyi, 
(xy-1yi (xyY2 fix a vertex in <5. Then by Remark 1 in [6], y and <5 are the mirror images of each other, and henc.e have 
the same polynomial. This shows that qJ = CJ, q2 = c2, SJ = eJ, s2 = e2 and qJ = eJ, q{' = e2, SJ = CJ, s2 = c2 
are equivalent possibilities. Next we show that there is no other equivalent possibility for the possibility 
qJ = CJ, q2 = c2, s1 = eJ, s2 = e2. 

Let v and u be the vertices in y and <5 respectively, such that u is fixed by (xyY' (xy-Jy2 , (xy-Jr (xyy2 and v 
is fixed by (xyyi (xy-J y;, (xy-J yi (xyy;_ Now if at-least one of the following is true 

(i) CJ -/= ei (ii) c2-::/- e; (iii) eJ -::/- c; (iv) e2-::/- c;. 

Then it is obvious from the figure 9 that, y and <5 are neither the same nor the mirror image of each other. That is, 
they are distinct fragments and therefore have different conditions for the existence in D(0, q), implying that they 
have different polynomials. Hence for the possibility qJ = CJ, q2 = c2, SJ = eJ, s2 = e2, there is no equivalent 
possibility but qJ = eJ, q2 = e2, SJ =CJ, s2 = c2. D 

Definition 2. Let qJ = CJ, q2 = c2, SJ = CJ, s2 = c2 be one of the possible values ofs,, s2, q,, q2 E z+ such that 
q, + q2 + s, + s2 = n + 2. Then this possibility for SJ, s2, qJ, q2 E z+ such that qJ + q2 + SJ + s2 = n + 2 is called 
symmetric. 

Remark 2. 

(i) Symmetric possibility exists only if qJ + q2 + si + s2 E 2z+. 
(ii) Symmetric possibility does not have any equivalent possibility. 

(iii) Corresponding to each non-symmetric possibility Pi for SJ, s2, qJ, q2 E z+ such that qJ + q2 + SJ + s2 = n + 2, 
there is a unique equivalent possibility p j for SJ, s2, qJ, q2 E z+ such that qJ + q2 + si + s2 = n + 2. 

Proposition 4. The number of symmetric possibilities for SJ, s2, qJ, q2 E z+ such that qJ + q2 + si + s2 = n + 2 

{ 

!! if n + 2 is even positive integer 
are 

0
2 

if n + 2 is odd positive integer 

Proof Let n + 2 be an even positive integer, and Pi be a symmetric possibilities for s1, s2, qi, q2 such that 
qJ + q2 + SJ + s2 = n + 2. Then qJ =SJ, q2 = s2 that is qJ + q2 = SJ + s2 = nt2

. By Theorem 7 the number of 

possibilities for SJ, s2 E z+ such that s1 + s2 = nil are (l) = ~. Hence if n + 2 is even, then there are ~ symmetric 
possibilities for SJ, s2, qJ, q2 E ;E,+ such that qJ + q2 + SJ + s2 = n + 2. 

If n + 2 is odd then it is quite trivial that there is no symmetric possibility. D 

Theorem 8. For a fixed degree n, there are 

if n is odd 

if n is even 

polynomials, obtained from the fragments in n. 
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Proof By Remark 1, the total number of possibilities for s1, s2, q1, q2 E z+ such that q1 + q2 + s1 + s2 = n + 2 are 
(ntl). 
· If n is odd, then by Proposition 4, all of these possibilities are non-symmetric. Since for each non-symmetric 

e+l) 
possibility there is a unique equivalent possibility. Thus there are + non-equivalent possibilities, which implies 

C+l) 
that there are + polynomials. 

If n is even, then by Proposition 4, ; possibilities are symmetric and the remaining (n!1
) - ; possibilities 

are non-symmetric. Since for each non-symmetric possibility there is a unique equivalent possibility and for the 
symmetric possibility there is no equivalent possibility. Thus there are 

non-equivalent possibilities, so there are 

(n+l) _ !! (n+l) + !! 
3 2+~= 3 2 

2 2 2 

distinct polynomials. 
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