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Abstract. In this paper, we construct diagonal cubic surfaces over Q which have a Q-rational point under the 
assumption that the Tate-Shafarevich group of elliptic curve X 3 + Y3 = AZ3 is finite. We can also check that there 
is no Brauer-Manin obstruction for these surfaces without the finiteness assumption of the Tate-Shafarevich group. 
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O. Introduction 

Let V be the smooth projective surface over (Q> defined by 

V : a1 Xi + a2Xl + a3X1 + a4XJ = 0, 

where a1 a2a3a4 -:/=- 0. Without loss of generality we may assume that a; are cube free integers. It is a fundamental 
problem of determining whether an algebraic variety has a rational point or not. If an algebraic variety over (Q> has 
a (Q>-rational point, then obviously it has a (Q>l)-rational point for every place v of (Q>. If the converse is also true, 
then we say that it satisfies the Hasse principle. The Hasse-Minkowski theorem says the Hasse principle holds for 
the projective quadratic hypersurfaces [Coh, Theorem 5.3.3]. However the Hasse principle does not hold in general 
for V. In fact, a lot of counterexamples were constructed, for example, in [CKS], [Com]. All these counterexamples 
are explained by the Brauer-Manin obstruction (See, for example, [Sko] for the Brauer-Manin obstruction). The 
problem here is that if there is no Brauer-Manin obstruction, then it has a rational point or not. It is conjectured that 
the Brauer-Manin obstruction is the only obstruction to the Hasse principle for V (It is conjectured for more general 
algebraic varieties. See [PV, Conjecture 3.2 and Remark 3.3] for this conjecture and its history.). 

As for the existence of rational points on V, there are several results in [BF], [SD], [Sat]. They gave some sufficient 
conditions for V to have a rational point under the assumption that the Tate-Shafarevich group of elliptic curve 
X3 + Y3 = AZ3 is finite. Note that it is known that the Brauer-Manin obstruction is empty without the finiteness 
assumption of the Tate-Shafarevich group under their conditions. In particular, in [Sat], Sato showed the existence of 
a Q>-rational point on V by showing that the curve Con V (e.g., a1Xi + a2Xi + a3X~ = 0) has a (Q>-rational point 
by calculating the Selmer group of the Jacobian of C. More specifically, he showed that the Selmer groups of the 
elliptic curves defined by 

X
3 + Y3 = PIP2P1Z3 

where p; are distinct rational primes such that (p1, P2, p3) = (2, 2, 5) or (5, 5, 2) mod 9 and 

X
3 + Y3 = Pi PiPjZ3 

This research was conducted as part of the KiPAS program 2014-2019 of the Faculty of Science and Technology at 
Keio University. This research was supported in part by KAKENHI 26247004, as well as the JSPS Core-to-Core program 
"Foundation of a Global Research Cooperative Center in Mathematics focused on Number Theory and Geometry". 
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where p; are distinct rational primes such that (PI, p2, p3) = (2, 2, 2) or (5, 5, 5) mod 9 are 7/,,/37/,, x 'lL,/3'1!, 
[Sat, Lemma 2.5, Lemma 2.6]. In this paper, we calculate the Selmer groups of all elliptic curves defined by 

x3 + y3 = P? ... P~' z3 
where r is a positive integer, PI, ... , Pr are distinct rational primes such that PI, ... , Pr = 2 mod 3, and 
nI, ... , nr E {0, 1, 2} and classify curves whose Selmer groups are 7/,,/371,, x 7/,,/371,,. Then we construct new diagonal 
cubic surfaces over (Ql which have a (Ql-rational point under the assumption that the Tate-Shafarevich group of the 
elliptic curve X 3 + Y 3 = AZ3 is finite (Theorem 3.1). For example, we show the following. 

Theorem 0.1 (Theorem 3.1 (i)). Let PI, P2, p3 be rational primes, each congruent to either 2 or 5 modulo 9 and 

V: Pt Xi+ p2Xi + p3Xj + PIP2P3X! = 0 

be a cubic surface over (Ql. Assume that the Tate-Shafarevich group of the elliptic curve over Q defined by 

IX 3 + Y3 = PIP2P3Z3 

X 3 + Y3 = Pf PiP3Z3 

is finite. Then V ((Ql) =I 0. 

Remark0.2. 

if (PI, P2, p3) = (2, 2, 2) or (5, 5, 5) mod 9 

if (pi, P2, p3) = (2, 2, 5) or (5, 5, 2) mod 9 

(i) The statement of Theorem 3.1 (i) is slightly different from the above statement of Theorem 0.1. However note 
that the above statement is also true since the defining equation of V is symmetric. 

(ii) There is no Brauer-Manin obstruction for the surfaces Vin Theorem 3.1 without the finiteness assumption of 
the Tate-Shafarevich group. See Remark 3.3 and Remark 3.5 for the details. 

(iii) We can check easily that we cannot apply [SD, Theorem 1] to Theorem 3.1 (i) ~ (xi) (Remark 3.2). The 
condition in [SD, Theorem 1] is slightly stronger than the disappearance of the Brauer-Manin obstruction. 

We give an overview of this paper. In § 1, we recall the argument on descent developed by Basile and Fisher [BF] 
and introduce some notations. Our assumption that the Tate-Shafarevich group of the elliptic curve 

EA : X 3 + Y 3 = AZ3 

is finite is needed to use their argument. In §2, we calculate the A-Selmer group of elliptic curve EA 
for A = p~ 1 

••• p~' where r is a positive integer, PI, ... , Pr are distinct rational primes such that Pl, ... , 
Pr = 2 mod 3, and nI, ... , nr E {0, 1, 2}. Then we classify curves whose Selmer groups are Z/371,, x 7l,,/3Z. In §3, 
we prove Theorem 3.1 by use of the calculation results of the Selmer groups in §2. 
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1. Descent on x3 + Y3 = AZ3 

In this section, we recall the argument on descent developed in [BF]. Let (3 be a primitive cube root of unity and 
K = Q((3). For a cube free integer A E Z\{0, ±1}, we denote by EA the elliptic curve defined by 

EA : X3 + Y3 = AZ3 
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with identity O = (1, -1, 0). EA admits complex multiplication, so that EndK(EA) = Z[(3]. In fact, (3 acts on EA 
by (x, y, z) r+ (x, y, (3z), and the multiplication-by-H endomorphism on EA is given by 

H: (x, y, z) r+ ((3x3 - (Jy3, (3y 3 - (lx 3, ((3 - (l)xyz). 

Fix the algebraic closure K of K and we denote by GK the absolute Galois group of K. Then we have the following 
commutative diagram with exact row 

where WC(EA/ K) is the Weil-Chaelet group of EA/Kand v runs over all the places of K. 

Lemma 1.1. The group EA (K)[H] of H-torsion points is isomorphic to the group µ3(K) of cube roots of 
unity as a GK -module. 

Proof A calculation shows that the kernel of ✓-3 : EA ➔ 

-T = ((}, -(3, 0). An isomorphism of Galois modules 
z(d) = (d, -(li, 0) where i = 0, 1, 2. 

EA is { 0, T, -T} where T = ((3, -(}, 0) and 

z : µ3(K) -+ EA(K)[H] is given by 
D 

By Kummer theory and Lemma 1.1, H 1(GK, EA[H]) is isomorphic to K* /(K*) 3 and so we get the exact 
sequence 

Lemma 1.2. The above map f sends an element a(K*)3 to the principal homogeneous spases 

CA,a : aX3 + a-1y 3 = AZ3 

Proof Let T and z be the same as the proof of Lemma 1.1. The translation by T map EA ➔ EA, P i--+ P +Tis 
given by (x, y, z) r+ ((3x, ( 3-

1 y, z). Let /J be a cube root of a and If/ : C A,a ➔ EA be the isomorphism K given by 
(x, y, z) r+ (/Jx, p-1 y, z). Then for a E GK, we have 

lfla o lfl-l = translation by z(a(/J)//J) map. 

Therefore the class of CA,a in H 1(GK, EA) is represented by the cocycle a i--+ z(a(/J)//J). This cocycle takes 
values in EA[H] and so also represents an element in H 1 (GK, EA[H]). Finally we note that the identification 
of K* /(K*) 3 and H 1(GK, µ3(K)) coming from Kummer theory identifies a(K*)3 with the class.of a i--+ a(/J)//J. 
This give the description of the map f as desired. D 

We denote by S(A) the ✓-3-Selmer group sCH) (EA/ K) (which is defined to be the kernel of the map gin the 
diagram above) and by C(A) the kernel of the map f. Then C(A) is a subgroup of S(A) and by Lemma 1.2 we can 
write them explicitly 

S(A) = {a(K*)3 I CA,a has Ku-rational points for any prime v of K, a EK*}, 

C(A) = {a(K*)3 I CA,a has K-rational points, a EK*}. 
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Furthermore, we have the exact sequence 

o- C(A) - S(A) - III(EA/ K)[-v'-3]-----'► 0 

where III(EA/ K) is a Tate-Shafarevich group of EA/ K. The following lemma provides the Hasse principle for the 
curve CA,a when S(A) ~ 7/,/371, x 71,/371,. 

Lemma 1.3. Notations are the same as above. Assume that the Tate-Shafarevich group III(EA/<Q) of EA over <Q 
is.finite. If S(A) ~ 7/,/371, x 7l,/3Z, then C(A) = S(A). 

Proof Assume that C(A) is a proper subgroup of S(A). Note that C(A) contains a nontrivial element A(K*)3 since 
CA,A has a point (1, 0, 1). Thus C(A) ~ 7l,/3Z. From the exact sequence 

o- C(A)----+ S(A) - III(EA/ K)[H] - 0 

we have III(EA/ K)[-v'-3] ~ 7l,/3'1l,. However this is impossible by [BF, Lemma 5]. 

2. Calculation of Selmer groups 

D 

Let A be a cube free integer. In this section we calculate the Selmer group S(A) for A = p~ 1 
••• p~' where r is a 

positive integer, Pl, ... , Pr are distinct rational.primes such that Pl, ... , Pr= 2 mod 3 and n1, ... , nr E {0, 1, 2}. 
Then we classify curves whose Selmer groups are 71,/371, x 7l,/3Z. We use this calculation results in §3. In § 1, 
we regard S(A) as a subgroup of K* /(K*) 3 . In the following, we identify an element of K* with its images in 
K* /(K*) 3 . For a prime element q in 'll,,((3], we simply denote by Kq the (q)-adic field K(q)· 

Let a E K.* be_a representative of an element in K* /(K*) 3• Then we may assume that a E Z[(3] is a non-zero 
cube free.integer by multiplication by an element of (K*) 3 . Let A = fr=l q;; be a prime factorization of A in 7/,((3], 
where q; are distinct primes in 7/,((3] and n; E 71,:::.1 · The condition a E S(A) implies that a is of the form 

r 

a= (:3 II qr;' ni, m1, ... ' mr E {0, 1, 2} 
i=l 

by [Sat, Lemma 2.1]. Conversely, if the above a satisfies CA,a (Kq) =I= 0 for every prime q of K dividing 3A, then it 
follows from [Sat, Lemma 2.2] that a E S(A). 

Before calculating the Selmer groups, we show the following three lemmas. 

Lemma 2.1. Let Pl, ... , Pr be distinct rational. primes such that Pi = 2 mod 3 (i = 1, ... , r). Put 
A= P7 1 ···p~' and a= (3p~ 1 ···p':'' wheren1, ... ,nr E {1,2}, m1, ... ,mr E {0,1,2}. Ifthereexists 
i E {I, ... , r} such that Pi ¢=. 8 mod 9, then a r/. S(A). 

Proof Since p; = 2 mod 3, p; remains prime in 'll,,[(3] and z;; C (Q;)3. Therefore the curve C A,a is isomorphic 
to 

over K p;. A valuation-theoretic argument yields that if C has a. K p; -rational point, then we see that (3 is a cube in 
Kp;. On the other hand, asp; '¥=- 8 mod 9, there can't be any elements of order 9 in the residue field (as the residue 
field has cardinality pf, which is not 1 mod 9), and so (3 can't be a perfect cube. This is contradiction. Therefore 
a¢ S(A). □ 

Lemma 2.2. Let Pl, ... , Pr be distinct rational primes such that p; = 2 mod 3 (i = 1, ... , r ): Let 
A = p~ 1 

• • • p~' and a = (j p~ 1 
• • • p';'' where n1, ... , nr E {l, 2}, m, m1, mr E {O, 1, 2}. If m = 0, then 

CA,a(Kp;) # 0forall i E {1, ... , r}. 
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Proof Since Pi = 2 mod 3, the curve C A,a is isomorphic to 

m;x3 + -m;y3 _ n;z3 
Pi Pi -Pi 

over K p; . This has a KP; -rational point. □ 

In the following, we write )c = 1 - (3. 

Lemma 2.3. Let A = p7 1 
••• p~' where PI, ... , Pr are distinct rational primes and n1, ... , nr E {l, 2}. 

If PI=···= Pr= 8 mod 9, then S(A) = ((3, Pl, ... , Pr)~ nr!} Z/3Z. 

Proof As p; = 8 mod 9, the residue field has an element of order 9 and hence (3 is a cube in K p;. The curve C A,(3 

is isomorphic to 

over Kp;· This has a Kp;-rational point. Since Pi = 8 mod 9, Pi is a cube in Ql3 C K;.. Thus the curve CA,(3 is 
isomorphic to 

over K;.. This has a K;.-rational point (X, Y, Z) = (1, 1, -1). Therefore (3 E S(A). The curve CA,p; is isomorphic to 

over KP j for j = i and 

x3+Y3=p~jz3 
J 

over KPj for all j =I=- i. These have a Kpj-rational point. The curve CA,p; is isomorphic to 

x3 + y3 = z3 

over K; .. This has a K;.-rational point. Thus Pi E S(A). Therefore we have S(A) = ((3, Pl, ... , Pr)~ TI~,![ Z/3'11,. 
□ 

Let r be a positive integer and Pl, ... , Pr be distinct rational primes such that Pi = 2 mod 3, and A = p71 
••• p~' 

where n1, ... , nr E {O, 1, 2}. In the following proposition, we show all calculation results of S(A) which have 
order 9 (Even if the order is not equal to 9, we can calculate S(A) in the same way.). 

Proposition 2.4. Let r be a positive integer and PI, ... , Pr be distinct rational primes. 

(i) Let A = PI or Pi- Then 

S(A) = (A, (3) ~ Z/3'1l, x Z/3'1l, if PI = 8 mod 9._ 

(ii) Let A = Pl pz. Then 

S(A) = (A, p1) ~ Z/3'11, x Z/3'1l, if(p1, p2) = (2, 2), (2, 8), (5, 5), (5, 8) mod 9. 

(iii) Let A = Pl Pi- Then 

S(A) = (A, pi) ~ 'll,/3'11, x '11.,/3'11., if (p1, p2) = (2, 5), (2, 8), (5, 2), (5, 8), (8, 2), (8, 5) mod 9. 

(iv) Let A= PiPi· Then 

S(A) = (A, Pl) ~ '11.,/3'11., x '11.,/3'11., if (Pl, pz) = (2, 2), (2, 8), (5, 5), (5, 8) mod 9. 
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(v) Let A = PlP2P3· Then 

S(A) = · I (A, PlP~) ~ 'll/3'11, x '11,/3'11, if (pi, P2, p3) = (2, 2, 2) or (5, 5, 5) mod 9 

(A, Pl p2) ~ Z/3'11, x Z/3Z if (p1, P2, p3) = (2, 5, 8) mod 9. 

(vi) Let A= P1P2Pj- Then 

{ 

(A, Pl Pj) ~ Z/3'11, x Z/3Z if (pi, P2, p3) = (2, 8, 2) or (5, 8, 5) mod 9 

S(A) = (A, PI p~) ~ Z/3'11, x Z/3Z if (p1, P2, p3) = (2, 2, 5) or (5, 5, 2) mod 9 

(A, p1p2) ~ Z/3'11, x Z/3Z if (p1, P2, p3) = (2, 5, 8) mod 9. 

(vii) Let A = PlP~Pj, Then 

{ 

(A, P2Pj) ~ Z/3'11, x Z/3Z if (pi, P2, p3) = (2, 5, 5) or (5, 2, 2) mod 9 

S(A) = (A, Pl p~) ~ Z/3Z x Z/3Z if (pi, P2, p3) = (2, 2, 8) or (5, 5, 8) mod 9 

(A, p2p3) ~ Z/3Z x Z/3Z if (pi, P2, p3) = (8, 2, 5) mod 9. 

(viii) Let A= PiPiPj, Then 

I (A, Pl p~) ~ Z/3'11, x Z/3Z if (pi, P2, p3) = (2, 2, 2) or (5, 5, 5) mod 9 
S(A) = 

(A, P1P2) ~ Z/3'11, x Z/3Z if (p1, P2, p3) = (2, 5, 8) mod 9. 

(ix) Assume Pl, ... , Pr = 2 mod 3. Put A = p;• · · · p~' where n1, ... , nr E {O, 1, 2}. If A is not listed· 
above .(i) ~ (ix), then the order of S(A) is not equal to 9. Thus we cannot apply Lemma 1.3. 

Proof Let PI, ... , Pr be rational primes such that Pl, ... , Pr = 2 mod 3 and A· ==. p7 1 
••• p~' where n 1, ... , 

n, E {0, l, 2}. If (p1; ... , p3) = (8, ... , 8) mod 9, then we have already calculated S(A) in Lemma 2.3. Assume 
(pi, ... , Pr) ;/:- (8, ... , 8) mod 9. By Lemma 2.1, if ( 3m p~• ... p';' E S(A), then m = 0 and CA mi m, has a 

,P1 ···Pr 
Kp;•rational point for i = 1, ... , r by Lemma 2.2. Thus we only have to check whether or not CA m 1 m3 has· 

,Pi ···P3 
a K;._-rational point. We note from [Cora, Proposition 2.2] that since these curves are defined over Q, they have a 
K;._-rational point if and only if they have a ((J13-rational point. As an example, we only prove_ (v). Put A = PIP2P3· 

If (pi, P2, p3) = (2, 2, 2) or (5, 5, 5) mod 9, then it sufficient to show that C A,pi Pi (Q3) -:/=- 0 and C A,p1 (Q3) = 0. 

The curve CA P P2 is isomorphic to 
, I 2 

P2X
3 + Pl Y 3 = p3Z3 

over Q. Since PI = P2 mod 9, PI/ P2 E Zj is a cube in Q3 and· this has a Q3-rational point. The curve C A,p1 is_ 
isomorphic to 

over Q. Modulo 9, this equation becomes 

X 3 + 2Y3 = 4Z3 (resp. X 3 + 5Y3 = 7 Z3) 

if (p1, P2, p3) = (2, 2, 2) mod 9 (resp. (5, 5, 5) mod 9). It has no nontrivial solution in Z/9Z. Therefore CA,p1 

has no Q3-rational points. If (pi, P2, p3) = (2, 5, 8) mod 9, then it sufficient to show that CA,p1p2 (Q3) -:/=- 0 and 
CA,p1 (Q3) = 0. The curve CA,p 1p2 is isomorphic to 

X3 + pip2Y3 = p3Z3 

over Q. Since PIP2 = I mod 9, this has a Q3-rational point. The curve CA,pi is isomorphic to 

X 3 + Pl Y 3 = p2p3Z3 
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over (Q. Modulo 9, this equation becomes 

x3 + 2Y3 = 4Z3
. 

It has no nontrivial solution in Z/9Z. Therefore CA,p, has no (Q3-rational point. □ 

Remark 2.5. The case (p1, p2, p3) = (2, 2, 5) or (5, 5, 2) mod 9 in Proposition 2.4 (vi) was proved in 
[Sat, Lemma 2.5] and the case (p1, P2, p3) = (2, 2, 2) or (5, 5, 5) mod 9 in Proposition 2.4 (viii) was proved in 
[Sat, Lemma 2.6]. On the other hand, none of the cases in the above proposition were proved in [Sat], [BF], and [SD]. 

Remark 2.6. In particular, if r :::=: 4 in Proposition 2.4 (ix), the order of S(A) is greater than 9. Indeed, we can 
easily find at least three generators of S(A). 

3. Proof of the main theorem 

In this section, by use of the calculation results of the Selmer groups in §2 we construct_diagonal cubic surfaces 
which have a (Q-rational point under the assumption that the Tate-Shafarevich group of the elliptic curve EA is finite 
(See also Remark 3.3 and Remark 3.5). 

Theorem 3.1. Let V be the diagonal cubic su,face over Q defined by the equation in Table 1 (!) below where 
Pl, P2, p3 are rational primes satisfying the condition in Table 1@. Assume that the Tate-Shafarevich group of the 
elliptic curve EA is finite for A in Table 1 Q). Then V(Q) =j=. 0. 

Q) V @ (p1, P2, p3) mod 9 @A 

(i) Pl Xi+ P2X~ + p3Xj + P1P2P3XJ = 0 
(2, 2, 2), (5, 5, 5) PlP2P3 

(2, 2, 5), (5, 5, 2) pfp5p3 

(ii) x3 x3 x3 2 x3 - o (2, 2, 2), (5, 5, 5) PlP2P3 
Pl 1 + P2 2 + P3 3 + P2P3 4 -

(2, 2, 8), (5, 5, 8) PlPiP~ 

(iii) Pl Xi + P2Xi + p3X5 + P2P3XJ = 0 
(2, 2, 2), (5, 5, 5) PlP2P3 
(2, 2, 8), (5, 5, 8) PlP5P3 

(iv) x3 x3 3 2 3 0 
(2, 2, 5), (5, 5, 2) Pf P5P3 

Pl 1 + P2 2 + PlP2P3X3 + PlP2P3X4 = 
(2, 2, 2), (5, 5, 5) pfp5p~ 

(v) x3 x3 2x3 2x3 0 
(2, 2, 8), (5, 5, 8) p1p;p? 

Pl 1 + P2 2 + P2P3 3 + PlP2P3 4 = 
(2, 2, 2), (5, 5, 5) pfp;p? 

(vi) x3 x3 x3 2 x3 - o (2, 2, 8), (5, 5, 8) PlP5P3 
Pl 1 + P2 2 + P2P3 3 + Pl P2P3 4 -

(2, 2, 2), (5, 5, 5) pfp;p? 

(vii) x3 x3 2 x3 2 x3 _ 0 
(2, 2, 5), (5, 5, 2) P1P2P~ 

Pl 1 + P2 2 + P3 3 + P2P3 4 -
(2, 2, 8), (5, 5, 8) PlPiP? 

(viii) x3 x3 2 x3 x3 - o (2, 2, 5), (5, 5, 2) P1P2P? 
Pl 1 + P2 2 + P3 3 + P2P3 4 -

(2, 2, 8), (5, 5, 8) PlP5P3 

(ix) x3 x3 2 x3 x3 - o (2, 2, 8), (5, 5, 8) PlPiP~ 
Pl 1 + P2 2 + P2P3 3 + PlP2P3 4 -

(2, 2, 5), (5, 5, 2) pf p;p3 

(x) Pl Xi+ P2X~ + P2P3X5 + P1P2P3XJ = 0 
(2, 2, 8), (5, 5, 8) PlP~P3 

(2, 2, 5), (5, 5, 2) pf P~P3 

(xi) x3 x3 2 3 2x3 0 
(2, 2, 5), (5, 5, 2) P1P2P? 

Pl 1+P2 2+P3X3+P1P2P3 4= 
(2, 2, 2), (5, 5, 5) pfp~p~ 

(xii) P1X1 + p2X? + p3Xj + p~Xl = 0 
(2, 2, 2), (5, 5, 5) PlP2P3 
(2, 2, 5), (5, 5, 2) P1P2P~ 
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\ 

Proof We can prove by the following way. Note that the surfaces V are of the form 

. 1 · I . . +I . +I . 
Put A = p;1+ p~2+ p;3 or p{1 pf p~3 according to the condition of (p1, P2, p3) mod 9 and assume 

that Ill(EA/<Ql) is finite. If PIP~ E S(A) and S(A) ~ Z/3Z x Z/3Z, then C A,pip? ~ {p1 X3 + p2 Y 3 = 
p;1p~2p~Z3} (resp. CA,PiP? ~ {p1X3 + p2Y3 = p{1 p~2pi3Z 3}) has a K-rational point if A = p;1+1p~2+1p;3 

(resp. A = pf1+1 p~2+1 pi3
) by Proposition 2.4 and Lemma 1.3. Thus the surface V clearly has a K-rationai point. 

Then it follows from [Cora, Proposition 2.2] that V has a <Ql-rational point. As an example, we only prove (i). Note 
that we may assume that Pl, P2, p3 are distinct. If (p1, P2, p3) = (2, 2, 2) or (5, 5, 5) mod 9 (in this case we 
assume that III(Ep1p2p3/Q) is finite), then the curve 

CPIP2P3,PIP? ~ {p1X3 + p2Y3 = p3Z3} 

has a K-rational point by Proposition 2.4 (v) and Lemma 1.3. If (p1, P2, p3) = (2, 2, 5) or (5, 5, 2) mod 9 (in this 
case we assume that III(E Pf P?P/<Ql) is finite), then the curve 

c Pf P~P3,P1P~ ~ {p1X
3 + P2Y

3 = P1P2P3Z
3

} 

has a K -rational point by Proposition 2.4 (vii) and Lemma 1.3. Thus V has a Q-rational point. D 

Remark 3.2. Theorem 3.1 (xi) was proved in [Sat, Theorem 2.8] and we can apply [SD, Theorem 1 (i)] 
to Theorem 3.1 (xii). On the other hand, We can check easily that we cannot apply [SD, Theorem 1] to 
Theorem 3.1 (i) ~ (xi). 

Remark 3.3. The surfaces V in Theorem 3.1 have a Qp-rational point for any rational prime p (without the 
finiteness assumption of the Tate-Shafarevich group) by the following lemma. 

Lemma 3.4. Let V be a diagonal cubic surface over Q defined by 

where a1, ... , a4 are non-zero cube free integers. Assume that if q I a1 a2a3a4, then q = 2 mod 3 for any rational 
prime q. Then V(Qp) ::fa 0/or any rational prime p. 

Proof. Assume that pf 3a1a2a3a4. Then V(Qp) ::fa 0 by Chevalley-Warning theorem and Hensel's lemma. Assume 
that p I a1a2a3a4. Since p = 2 mod 3, Vis isomorphic to 

over <Qlp where i1, i2, i3, i4 E {O, 1, 2}. This has a Qp-rational point. Assume that p = 3. Since <Ql3/(Q;)3 is 
generated by the image of 3 and 2 as a group, at least two of the coefficient in Qj/(<Qlj)3 are the same. Therefore V 
has a <Ql3-rational point. D 

Remark 3.S. For the surfaces V in Theorem 3.1, there is no Brauer-Manin obstruction to the Hasse principle 
(without the finiteness assumption of the Tate-Shafarevich group). In fact, the surfaces Vin Theorem 3.1 (ii), (iii), 
(vii), (viii) are not birationally equivalent to a plane over Qp1, the surfaces Vin Theorem 3.1 (v), (vi), (ix), (x) are not 
birationally equivalent to a plane over Qp2 , the surfaces Vin Theorem 3.1 (i), (xi) are not birationally equivalent to 
a plane over Q3 and the surfaces V in Theorem 3.1 (iv), (xii) are not birationally equivalent to a plane over <Qlp1 and 
Qp2 by use of [CKS, Lemma 8]. Thus it follows from [CKS, Proposition 2] that there is no Brauer-Manin obstruction 
to the Hasse principle. 
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