
RESEARCH PAPERS

THROUGHPUT VARIANT COMPONENT RANKING
IN DYNAMIC FTCLOUD FRAMEWORK

BY

T. SUDHESHNA * C . SHOBA BINDU **
* Deportment of CSE, JNTUA College of Engineering, Anonthopurom, Indio

** Associate Professor & Head, Deportment of CSE, JNTUA College of Engineering, Anonthopurom, Indio

ABSTRACT

FTCloud is an emerging cloud paradigm that orchestrates multiple cloud technologies and is becoming the main

stream aspect of providing service. As sottvvare, Fault Tolerance (FT] mechanisms mask failures earlier to improve

reliability. To address this challenge, Zibin Zheng proposed a component ranking framework with fault tolerance named

FTC/oud to tolerate failures in software. In FTC!oud more characteristic factors like throughput and dynamic fault­

tolerance mechanisms are not implemented. To ensure reliability ' Dynamic FTCloud ' framework mainly concentrates

on throughput with random graph model in FTCloud1 while employing response time for services. The FTCloud2 focuses

on failure probability of components as extension to the FTC loud. In this paper, dynamic optimal fault-tolerance strategy

is implemented in the framework along with the previous algorithm of design diversity techniques . The prospecting

results show that tolerating faults of significant components are having enormous improvement with reliability.

Keywords: Dynamic FT Strategy, Throughput, Cloud Application, Fault Tolerance.

INTRODUCTION

The cloud computing phenomenon is the backbone of

various internet services (computing, storage, data

access etc.] in which end users do not depend on

physical locations of their system. The key concept of

c loud computing is to give low cost unit of computing

pool from the shared resources which are distributed in

different places[l].Nowadays cloud provides

infrastructure management for each service . The

advantage of cloud computing is to provide services on

demand basis with pay and use concept. For providing

the composition of services, it is required to combine all

legacy services into a component where availability

becomes a major concern [l 5], but sometimes the

services become unavailable due to fault occurrence.

Many giant companies like Amazon, Google, and

Microsoft, web hosting companies such as Rack space

and GoGrid, and new start-ups such as Flexiant and

Heroku are becoming service providers. A practical

challenge thus arises which is to provide services without

wastage of time and data.

To analyze the availability of cloud services, assessment

of components is a reasonable solution. As cloud can

host applications as Software as a Service (Saas), many

applications are being deployed in cloud [2] .However,

ease of availability, maintenance and reliability [4] is

becoming complex, while providing services. Hence

multiple redundant components are going to be copied

at various distributed places .One of the reasons for the

unavailability of cloud components is the lack of fault

tolerance [8].To provide services through components,

building highly reliable environment is a challenging task.

In order to build reliable software, the corresponding

engineering disciple in traditional approaches uses fault

tolerance, fault removal, fault prevention and fault

forecasting [6] . Software fault tolerance techniques

provide protection against errors in translating the

requirements into components, but they do not provide

explicit protection against errors. Design diversity [7] is a

famous fault -tolerance technique, where the

components are designed to tolerate faults. It is an

identical service through separate implementation

where diversity in the design of software is independent.

However, developing fault tolerant components is a costly

6 i-manager's Journal on Cloud Computing, Vol. 1 • No. 1 • November 2013 - January 2014

RESEARCH PAPERS

affair and thus it is appl ied only for machine critical

applications such as spare research systems, flight

control systems etc. As cloud applications have large

number of components, it is really expensive to develop

fault tolerant components. In order to reduce the effort

and time to make the system robust, only the

components which are critical are to be identified and for

them only fault tolerance has to be built. As reported by

Microsoft, it is important to fix top 20 percent bugs with

respect to critical components which can avoid 80

percent of crashes and failures [5]. Based on this 80-20

rule, Zheng et al [25] proposed a component ranking

framework by name "FTCloud" which makes the cloud

applications reliable _[6] as they are fault tolerant. It

identifies critical components and makes them fault­

tolerant. Its two ranking algorithms identify critical

components and apply appropriate fault tolerant

strategy to ensure the best performance of cloud

applications. However, FTCloud can be further enhanced

by considering throughput characteristics of the

components in the cloud applications. To focus on

reliability, our contributions include:

• Making use of throughput to calculate the amount of

work that applications perform concurrently at

runtime. It also enables the framework to choose the

best component.

• Proposed adaptive n-version algorithm includes the

weight factor at voting part where it increases

reliability at faulty components.

• Fuuy voting algorithm determines the correct output

component based on different voting methods to

decrease the latency on innovation.

The rest of the paper is organized as follows. Section l

describes related fault tolerant cloud applications

literature. Section 2 introduces the proposed component

ranking framework. Section 3 specifies the Throughput

significant ranking. Section 4 implements Dynamic FT

Strategy. Section 5 analyzes the experimental results.

1 . Related Work

The traditional software reliabil ity engineering

concentrates in demand customer's perspective and

fault tolerance is widely used for building multiple

redundant copies and reliable applications [9]. There are

many fault tolerance techniques to obtain reliability by

preventing fault occurrence in their phases. FT-Software

provides service complying with the relevant

specification inspite of faults. The FT techniques include

distributed recovery blocking [l O] , N-version

programming [l l], N self-checking programming [l 2].

The fault tolerance strategies are classified into active

and passive strategies based on the replication of

redundancy components [l 3] .The applications such as

WS-Replication [22], FTWeb[23] send requests atthe same

time to various replicas and accept first response as final

result. Passive strategy sends request in sequence, while

primary web services use final result as response such as

FT-SOAP[24].Software fault tolerance is considered as a

feasible approach for building high reliable cloud

computing environment, However, making such

components reliable and fault tolerant is very important.

Zheng et al. [25] proposed a component ranking

framework "FTCloud" which is used to build fault tolerant

cloud applications.

Nowadays, significant research problem is the

design issues to invoke and rank components [17] with

weight calculation for high reliability QoS. However, our

approach in this paper is influenced by design [25] which

is used to improve the component ranking framework by

considering more fault tolerant approaches to select a

critical component in a significant manner. However,

Dynamic FTCloud framework contributes to enhance

robustness and reliability for building cloud applications

1. 1 Demerits of FTC loud

l . Identification of significant component through

normal random graph Is difficult.

2. Different Dynamic FT-Strategies are not included to

specify critical component.

3. In cloud environment, throughput is not considered to

define invocation structures.

To address the above issues, we propose a component

ranking including throughput which ranks the significant

component dynamically. Next, for acquired

i-manager's Journal on Cloud Computing, Vol. 1 • No. 1 • November 2013 - January 2014 7

'

'RESEARCH PAPERS

components, dynamic FT Strategies ore applied by which

optimal fault tolerance strategy is dynamically suggested

for application designers.

2. Proposed Component Ranking Framework

Component rank model is a repository of software

component libraries which ore off-the-shelf programs with

a novel graph-representation at the end of result. Often,

used components ore ranked as prior so that designers

have quick access to that component. Components ore

divided into critical and noncritical components in clouds

which reduce the fault tolerance for providing reliable

services to laaS users that is mainly focused in this paper.

In the proposed framework, component ranking

structures and use of dynamic fault strategies Dynamic

FTCloud enhances the performance of component

ranking framework by.

• Including characterist ics like throughput in

component ranking framework.

• Identification of significant component failures for

fault tolerance which is easy with random graphs.

• Challenging task for the application designer which is

selection of fault-tolerance strategies and to find out

optimal results, dynamic FT-Strategy is implemented.

By the Implementation of the above framework, the

designers of cloud appl ications can build dynamic,

highly rel iable and robust system which is extremely fault

tolerant.

2.1 SystemArchitecture

Dynamic FT- framework includes throughput based

ranking and dynamic optimal FT selection [8].Dynamic

FTCloud components ore ranked by invocation

relationship and performance is evaluated by designers

to design the structure of cloud components.

Figure l shows the significant components to be

identified, arrow specifies input, dotted line specifies

output of the application and intermediate results ore

recorded at every step of transition in document.

3. Throughput Significant Ranking

Cloud c omputing is the internet based service provider

G,--,,b
buildin

. ~
Compon ..

...akin&

S-i,piifiC"a.at ,-,,---=c-;
comJ)oDRl.t ----~ S~=t I
~an ~

FTOoud
Appl,atjoa

[~.a) ~:~:
D-1.F,d.iVaily I)yaamc. Ft-

Optmul
FT-Sttn,gy

Sclccnon
n.sinH,ai• Stmbt.si•

Fault Tolenmce

Figure l . Architecture of the Dynamic FTCloud framework

where each software component interacts with other

components as nodes. These nodes ore represented in

the form of graph with internet connections as edges. By

taking component graph as input which is proposed by

Michael R.Lyu (25], performance of the service is to be

measured by throughput, which is the solution to FT

Cloudl .

The throughput, TH is the average of the output services

provided by a component per unit time, e .g ., number of

services through internet per hour. Being time­

dependent, throughput is calculated by a component as

a set of services/messages and by using the following

equation,

TH = number of service requests c ompleted / time taken

to complete the service

The main goal is to get the performance of cloud

components services with different concurrent cloud

components. They ore many tools existing for the

performance evaluation. Examples ore JMeter, LoadUI,

jovo bench, etc.

The above services is compared with the performance of

the services output as shown in Figure 2. As user services

11)1)

1000

No .ot .serva,

1500 lOOO

Figure 2. Throughput analysis

8 i-manager's Journal on Cloud Computing, Vol. 1 • No. 1 • November 2013 - January 2014

RESEARCH PAPERS

Compon- Methods Recovery N- Parallel Adaptive Fuzzy
ent FP block Version N-version voting

0.4% FTCloudl 0.11 7 0.4115 0.020 0.0081 0.020

FTCloud2 0.117 0. 11 7 0.020 0.00408 0.0102

0.5% Proposed 0.037 0.037 0.14285 0.02040 0.006802
FTCloud l 0.055 0.055 0.00936 0.00374 0.00936

FTCloud2 0.05 0.11 7 0.009365 0.0018730 0.004682

Proposed 0.083 0.0833 0.096 0.009365 0.003121

0.6% FTCloudl .25 0.25 0 .00071 0.003086 6.20181 •
l 0 A -9

FTCloud2 0.25 0.25 0 .00714 2,143*1 0 A l .24*10 A
-6 -9

Proposed .166 0. 1666 0.00001 4,46*10 A 2,236*10 A
605 -7 -7

Table 1. Impact of Application Failure Probabilities

increase, throughput gradually increases upto a certain

threshold point after which services are provided in same

throughput order.

4 . Dynamic FaultTolerance Strategies

Sustainability of fault tolerance is crucial for critical

components where there is no significance for non­

c ritical components.

There are many fault tolerant strategies proposed in (19]

which are design dependency of structure. Example:

Recovery Block (RB) , N-Version Programming (NVP) and

Parallel Programming. By these techniques, the dynamic

reliability in cloud cannot be achieved. Hence we

implement dynamic FT-strategies for FTCloud 1 and

FTCloud2 for dec reasing failure probability as shown in

Table 1 . Ex: Adaptive N-version Programming, Fuzzy

voting.

4. 1 Adaptive N-version Programming

It is similar to N- version where an individual weight factor

for a ll comp onent version and actual, uptime utilization of

adaptive services[l 4] are included [20]. Then, based on

the maximum c apacity of weight fac tor, the voting

procedure is conducted as shown in Figure 3. In the

RB NVP Parallel Adaptive Fuzzy Voting

N - Version

Response Time Middle Middle Good Good High

Required Resources Middle High High Middle Low

Fault Tolerance Crash Crash. Crash Crash. Value, Crash
Value, reliability

Table 2. Comparision of FT Strategies

-0
Adapui evorer

Figure 3. Adaptive N- Version

component-based strategies, for bui lding the individual

versions of the system component, throughput is

considered. Here N-version programming is defined as

the functionally generated independent equivalent

programs of N > = 2 from same initial specification.

J

R.nodl.n = TT Rm/ n (1)
1-1

Where R rr1.n is the reliability of module stage I comprising n

version modules. Failure probability is identified based on

equation 1 as it is subtracted from one giving the failure

rate.

4.2 Fuzzy Voting

In this, correct output is selected from different outputs

which are obtained from various redundant software

versions. Traditional voting method is based on an output

classification of disjoint subsets [16]. This is similar to the N

version programming with

• Majority voting (NVP-MV)

• Consensus voting (NVP-CV)

• Maximum likelihood voting (MLV)

Fuzzy relation is the degree of interconnecting set of

elements that comprises the relation [18] . The fuzzy

equivalence relation exists if and only if all properties of

reflexivity, symmetry, transitivity are satisfied.

This paper focuses on dynamic fault tolerant strategies.

The performance comparison of four fault tolerance

strategies are presented in Table 2.

5 . Expe rimental Results

The experimental solution for this application is built in

Java programming language. The application was

developed by java frames where the database used is

Xampp server. Pajek tool [21] is used to model various

i-manager's Journal on Cloud Computing, Vol. 1 • No. 1 • November 2013 - January 2014 9

RESEARCH PAPERS

--- R e-GOVlf',Y BtoG k

-~~-+-~~~~:-,:=:i:~~-"---+--+----~
IA •

:u ff ~D
Yal•es of C••,i e■l!­

FT CLOUD 1

GIi

Figure 4. Impact of Component Failure Probability in
FTCloudl

025

0..20

t
1 0 .15
.a
e
L 0 .10
~
:::,

:us

o.ao

30 40 5111 60
Values d Component.

FTCLOUD2

Figure 5. Impact of Compo nent Failure Probability in FTCloud2

~ -11
,0

l
• 1
ii
IL

O.Jl -r----,---------,,--r----,----,

1.15

1 .10

....
·- ··· ········ ····· ' ~-----·-------·-------~ • • y_,. • .,~

ALL FT CI.OUD

..
Figure 6. Impact of Component Failure Probability in AIIFTCloud

cloud application components. After generation, the

values are going to take out for specification of

throughput and failure probability. The impact of failure

probability of cloud applications with respect to fault

tolerant strategies and component rankings are

represented in Table2 .

The dynamic component ranking algorithms namely

FTCloudl and AIIFTCloud Include throughput where

FTCloud2 includes extra FT Strategies .The results are

visualized as shown in the graphs.

In Figure 4, the resultant graph performance of all

strategies are shown expect N-version, remaining are

linear because it inc lude ranking of significant

component structure in serial while parallel structuring is

followed In N-version.

Figure 5 shows that, the fa ilure probability is tolerated by

including FT Strategies only for critical components. In

recovery block and N-version, as components increase,

the failure probability increases bec ause it is a static

strategy where parallel includes the throughput for

responding so that its probability is decreased, while

Adaptive N-version and fuzzy include the throughput

dynamically where probabilities are linear even when the

components are increased in cloud environment.

Figure 6 shows that, all strategies are applied and are

included for all components in the cloud system. So,

performance drastica lly changes due to failure

probabilities which are seen for all strategies. Throughput

is included for every component for getting response

time.

To study the impact of dynamic component ranking

approach of failure probabilities on system

performances, each dynamic FT-strategy with FTCloud l ,

FTCloud2 and All FT Cloud by Impact factor as number of

components 50 is taken as 'top-k' which is necessary for

analyzing the results. In this, FTCloud2 shows variant

resultant curve where the performance is highly

increased. When All FT Cloud is applied, then the impact

of components on every strategy is identified clearly. The

above results show that FTC1oud2 and All FT Cloud

achieve the best performance.

Conclusion

The "Dynamic FTCloud" framework is used to build highly

reliable fault-tolerant distributed cloud appl ications. For

providing services to user's component ranking

10 i-manager's Journal on Cloud Computing, Vol. 1 • No. 1 • November 2013 - January 2014

I

RESEARCH PAPERS

framework, one can employ not only tolerance towards

crashes and faults, but also identify the malicious

component on the asynchronous environment.

To gain more insight, proposed through that impacts

ranking of components with new techniques of optimal

fault tolerance strategies. Hence the failure probability at

each redundant component levels is decreased and

reliability is increased. In this work the throughput is taken

as parameter for providing service and ranking of

components. By the random graph model in cloud

environment, performances of components are

increased. The empirical results revealed that the

proposed framework is more robust and very highly fault

tolerant.

References

[1] . "Cloud Computing in wikinvest",http;//wikiinvest.

com/concept/Cloud Computing.

[2] . "Software Fault Tolerance"-Reliable Software

Technologies-Ada-Europe 2003. Lecture Notes in

Computer Science, Volume 2655, pp45-67, 2003.

[3] . Elmendorf,w.r., (1972) . "Fault-Tolerant Programming,"

ProceedingsofFTCS-2 , Newton, MA, pp. 79-83.

[4]. kanoun, K., et Al.,(1 993) . "Reliability Growth of Fault­

Tolerant Software," IEEE Transactions on Reliability, Vol. 42,

No. 2, pp. 205-129.

[5]. P. Rooney (2002). "Microsoft's CEO: 80-20 Rule Applies

to Bugs, Not Just Features," ChannelWeb.

[6]. S.S.Gokhale and K.S. Trivedi (2002). "Reliability

Prediction and Sensitivity Analysis Based on Software

Architecture," Proc. Intl Symp. Software Reliability Eng.

(ISSRE '02) , pp. 64-78.

[7] . LYU , M. R. (ed .) (1995) . Software Fault Tolerance, New

York: John Wiley & Sons.

[8] , Z. Zheng and M.R. Lyu (2008), "A Distributed

Replication Strategy Evaluation and Selection Framework

for Fault Tolerant Web Services," Proc. Sixth Intl Cont. Web

Services, pp, 1 45- 1 52 .

[9]. S. Gorender, R.J. de Ara ujo Ma cedo, and M . Rayna!

(2007) "An Adaptive Programming Model for Fault­

Tolerant Distributed Computing," IEEE Trans. Dependable

and Secure Computing, Vol. 4, No. 1, pp. 18- 31, Jan.­

Mar. 2007.

[10] . B. Randell and J. Xu (1995) . "The Evolution of the

Recovery Block Concept," Software Fault Tolerance, M. R.

Lyu, ed., pp, 1-2 1, Wiley, 1995.

[11]. A. Avizienis (1995) . "The Methodology of N-Version

Programming," Software Fault Tolerance, MR. Lyu, ed.,

pp, 23-46, Wiley, 1995.

[12]. J. Laprie, J. Arlat , C . Beounes, and K. Kanoun (1990) .

"Definition and Analysis of Hardware- and Software-Fault­

Tolerant Architectures," Computer, Vol. 23, No. 7, pp. 39-

51 .

[1 3]. Z. Zheng and M.R. Lyu (2008) . "A Distributed

Replication Strategy Evaluation and Selection Framework

for Fault Tolerant Web Services," Proc. Sixth Intl Cont. Web

Services, pp. 145-152.

[1 4]. D. Ardagna and B. Pernici (2007) . "Adaptive Service

Composition in Flexible Processes," IEEE Trans. Software

Eng., Vol. 33, No. 6, pp. 369-384, June 2007 .

[15]. S. Brin and L. Page (1998) . "The Anatomy of a Large­

Scale Hypertextual Web Search Engine," Proc. Intl Cont.

World Wide Web .

[1 6]. z. Tong and R. Kain (1991). "Vote assignments in

weighted voting mechanisms". IEEE Transactions on

Computers, Vol(40), pp. 664-667,May 1991.

[1 7] . Zib in Zheng, Xinmiao Wu , Yilei Zhang, Michael R.

Lyu , Jianmin Wang (2013). "QoS Ranking Prediction for

Cloud Services," IEEE Transactions on Parallel and

Distributed Systems, Vol. 24, No. 6, pp. 1213-1222, June

2013,

[1 8]. Y.W. Leung (1 995). "Maximum Likelihood Voting for

Fault Tolerant Software with Finite Output Space", IEEE

Trans. Rel, Vol. 44(3), pp. 419-427 .

[19]. Zaipeng Xie, Hongyu Sun and Kewal Saluja. "A

Survey of Software FaultTolerance Techniques".

[20] . Avizienis, A (1 997) . "On the Implementation of

NVersion Programming for Software Fault- Tolerance

During Execution," COMPSAC '77, Chicago, IL pp.

149- 155,

[21]. Vladimir Batagelj and Andrej Mrvar. "Pajek -

i-manager's Journal on Cloud Computing, Vol. 1 • No. 1 • November 2013 - January 2014 11

RESEARCH PAPERS

Program for Large Network Analysis" http://vlado.fmf.uni­

lj .si/pub/networks/pajek/.

(22) . J. Salas, F. Perez-Sorrosal , M. Patin - o-Mart1 , nez, R.

Jandime , nez- Per is (2006) . "WS-Replication : A

Framework for Highly Available Web Services," Proc. 15th

Inf/Cont. World Wide Web, pp. 357-366.

(23). G.T. Santos, L.C . Lung , and C. Montez (2005) .

"FTWeb: A Fault Tolerant Infrastructure for Web

Services,"Proc. IEEE Ninth Int'/ Cont. Enterprise

Computing, pp. 95-105.

[24) . Q .Z. Sheng, B. Benatallah , Z. Maamar, and A.H . Ngu

(2009) . "Configurable Composition and Adaptive

Provisioning of Web Services", IEEE Trans. Services

Computing, Vol. 2, No. 1, pp. 34-49, Jan-Mar, 2009.

(25) . Zibing Zheng and M.R.Lyu (2011). "Component

Ranking for Fault-Tolerant Cloud Applications", IEEE

Transaction on Service Computing. Vol. 5[4).

ABOUT THE AUTHORS
T. Sudheshna is currently pursuing her M. Tech in Software Engineering at Jawaharlal Nehru Technological University, Anantapur. She
received her B. Tech Degree in Information Technology from G.Puffalah College Of Engineering & Technology. Kurnool, Andhra
Pradesh, Ind/a in 2011 . Her research interests are in the fields of Service Computing, Cloud Computing.

C. Shoba Bindu is currently working as a Professor and Head In the Department of Computer Science & Engineering at Jawaharlal
Nehru Technological University, Anantapur. She obtained her Bachelor's Degree In Electronics and Communication Engineering,
Masters and Ph.D. degrees in Computer Science and Engineering from Jawaharlal Nehru Technological University, Anantapur.
She has published several research papers in National, International Conferences and Journals. Her research interests includes
Network Security and Wireless Communication Systems.

12 i-manager's Journal on Cloud Computing, Vol. 1 • No. 1 • November 2013 - January 2014

