2-BIT EX-OR LINK BASED REVERSIBLE MULTIPLIER FOR LOW POWER DSP APPLICATIONS

By
M. BHARATHI *
NEELIMA KOPPALA **
*.** Assistant Professor, Department of ECE, Sree Vidyanikethan Engineering Coilege (Autonomous), Tirupatl, Andhra Pradesh, India.

Abstract

The multiplier in any arithmetic unit dissipates significant amount of energy as large number of computations are required if the number of bits in the design increase. Thus, if efficientreversible logic is used, then the power consumption can be reduced drastically as the information bits are not lost in case of reversible computation. This paper focuses on the design of two-bit multiplier using a synthesis approach called Exorlink which reduces quantum cost compared to the technique Disjoint Sum of Products (DSOP). The design is coded in VHDL NHSIC Hardware Description Language), simulated using ISim and synthesized using Xilinx ISE 10.1 i for the device Spartan3E FPGA.

Keywords: Reversible Multiplier, Disjoint Sum of Products (DSOP), Exorlink, Quantum Cost.

INTRODUCTION

With the high demand of low power digital systems, energy dissipation in the digital system is one of the limiting factors. Reversible logic is one of the alternates to reduce heat/energy dissipation (R. Landauer, pg.1961) in the digital circuits and has a very significant importance in bioinformatics, optical information processing, CMOS circuit design, Nanotechnology, etc.

A reversible logic circuit (M.Bharathi, K.Neelima, 2012) (V.K.Puri, 2006, A.DeVos, 2010) has important features like usage of minimum number of reversible gates, garbage outputs and constant inputs. Among these, the minimization of the garbage outputs is one of the major goals in reversible logic design and synthesis. Each Reversible gate has a cost associated with it caiied as Quantum Cost, which is defined by the total number of elementary quantum gates needed to realize the given function. The Quantum Cost (M. Bharathi, K. Neelima, 2012) of a circuit is proportional to the heat dissipation in the circuit. For any function realized using various types of gates, the Quantum Cost is given by the sum of the Quantum Costs of all the gates used to realize that function.
Arithmetic calculation is the one of the important part of any digital hardware. The squaring calculation has its own
advantages in different fields like digital signal processing: Convolution, deconvolution, cryptography etc. where numbers of times we have to calculate fast square of the number. In order to calculate the square of the binary numbers, there are number of faster reversible multipliers by which we can calculate the square of the numbers. The reversibie multipiiers proposed in the literature are generally based on the recursive method. But, to design any of the digital hardware, the circuit complexity is one of the important measures which directly correlate with the delay. So, the main motivation behind this work is to investigate the implementation of efficient and low power squaring circuit architecture for the digital hardware industries (V.K. Puri, 2006).

In this paper, we are proposing a reversible 2-bit Multiplier circuit for the fast squaring calcuiation instead of using multiplier for the squaring which increases the complexity and the delay in the circuit. The design of new 2 -bit binary multipiier circuit is used in most of the digital signal processing hardware using standard reversible gates. The designed multipiier circuit is having less garbage outputs, constant inputs, Quantum cost and Total logical calculation i.e. less quantum cost as compared to the Disjoint Sum of Products method (DSOP). The simulation results and quantized results are also shown in the paper

RESEARCH PAPERS

which show greatest improvement in the design against the previous methodology.

In section 1, the existing method called DSOP method of computing quantum cost is discussed. Section 2 deals with the efficient method, Exoriink for evaluating the quantum cost. In section 3 , the results are discussed and compared. Last Section conciudes the paper.

1. DSOP Method

The basic differences between the various definitions are given below.

A Boolean expression is an algebraic clause representing a relationship among a set of Booiean valued literals (P. Kemtopf (2002), Ning Song and Marek A. Perkowski 1996). A Boolean function can be represented by an equation containing Boolean expressions.

$$
\begin{equation*}
F=x^{\prime} y^{\prime} z^{\prime}+z \tag{1}
\end{equation*}
$$

A Boolean expression containing a set of literals conjuncted together (i.e. ANDed) is called a Product/Cube.

$$
\begin{equation*}
F=x^{\prime} y^{\prime} z^{\prime} \tag{2}
\end{equation*}
$$

The inclusive OR function in Boolean algebra is called Disjunctive Sum.

$$
\begin{equation*}
F=x^{\prime}+z \tag{3}
\end{equation*}
$$

Two or more AND functions are ORed together to form a Sum-of-products expression. In this form, the product terms may or may not cover a common minterm.

$$
\begin{equation*}
F=w y+x+y \cdot z \tag{4}
\end{equation*}
$$

Two cubes are said to be disjoint if their intersection of the set of minterms is nulli.e., Disjoint cubes.
$F(w, x, y, z)=w^{\prime} x$ and $G(w, x, y, z)=x^{\prime} z$
The distance of two min terms is the number of variables for which the corresponding literals have different sets of values.
i.e. ، the distance between 0011 and 0111 is 1

A cube cover corresponds to the famlliar sum-of-products representation in Boolean Algebra with each cube corresponding to a product term and the function being the sum (logical OR) of those terms. Since a single cube represents a Boolean function on its own, the set of cubes
representing a Boolean function need not necessarily be unique (C.H.Bennett, 1998). When each pair of cubes in the cover is disjoint, i.e., when the two cubes do not share a common minterm, is the case of interest. Such a situation corresponds to a Disjoint Sum-of-Products (DSOP) expression (M.Bharathi, Neeiima Koppaia, 2014).
The example for conversion of SOP Expression to DSOP Expression (C.H.Bennett, 2014, Lokesh Shiva kumaralah and Mitchell A. Thornton) is as shown in Figure 1.
Let the Sum of Product Expression (Ning Song and Marek A. Perkowski 1996) be
$F=a b c^{\prime}+b c^{\prime} d+a b c^{\prime} d+a^{\prime} b c d+a b^{\prime} c+a c d^{\prime}$
Then the Disjoint Sum of Product Expression from Figurel is given byeq. 7 .
$F=a^{\prime} c^{\prime} d^{\prime} \oplus a^{\prime} b^{\prime} c^{\prime} d \oplus a b c^{\prime} d \oplus a a^{\prime} b c d \oplus a b c d^{\prime} \oplus a b^{\prime} c$
Hence if no two product terms cover a common minterm, they are called a disjoint-sum-ofproducts (DSOP).

2. Exorlink Method

Exorlink Operation between two terms is as shown below

- Replace the bit changed with 'x' or ' 0 ' or ' 1 ' depending on the bits in the two terms (Lokesh Shiva Kumaraiah and MitchellA. Thornton).
- The left side of the changed bit is replaced with the bits in the first term.
- The right side of the changed bit is replaced with the bits in the second term.
Eg.: $1011 \otimes 0111=\times 111 \oplus 1 \times 11$
$x 0 \times 1 \otimes 1001=0001 \oplus x 01$
The Reversible Circuit's (M.Bharathi, K.Neelima, 2012, Mitchell Aaron Thornton, Rolf Drechsler and D.Michael Miller) DSOP. and Exorlink equations are as shown in Figure 2 and Figure 3 respectively (M.Bharathi, Neelima Koppala,

Figure 1. DSOP K-map for eq. 6

RESEARCH PAPERS

2014) and their corresponding Quantum Cost is given below.
The DSOP Expression is given by

The Exorlink expression is given by
$\mathrm{F}=\mathrm{a}^{\prime} \mathrm{c}^{\prime} \oplus \mathrm{bd} \oplus \mathrm{ac}$
The process of converting the DSOP form to Exorlink form is shown in Figure 4 which includes 7 steps excluding the calculation of Quantum Cost.

3. Results and Discussion

A Full Adder is a combinational circuit that forms the arithmetic sum of three input bits. It consists of three inputs and three outputs (Ning Song and Marek A. Perkowski 1996). Two of the input variables denoted by A and B,

Figure 2. Reversible circuit for DSOP

Figure 3. Reversible Logic for Exorlink

Algorithm for conversion of DSOP to Exorlink

1. Convert the terms in DSOP equation into binary form.
2. Find the distance between all possible pair of terms.
3. Select a pair of terms having minimum distance (1 or 2 or 3) if exist.
4. Choose the order of the terms to perform exorlink operation such that the resultant terms will have minimum distance with the other terms.
5. Perform Exorlink operation and replace the xorlinked terms with resultant terms and ifany pair has distance 1, perform exorlink operation on the pair. b. If not, check for links in k-map.
6. a) If links are not formed between all the pairs, repeat from step 2.
b)If links are formed between all pairs, write the corresponding exorlink equation.

Figure 4. Algorithm for Conversion of reversible circuit from DSOP to Exorlink
represent the two significant bits to be added. Tine third input, represents the carry from the previous iower significant position.

2 BitMultiplier for Low Power DSP Applicotion

Figure 5 shows the biock diagram of 2-bit muitiplier where AO, A1 --- multiplicand bits, BO, B1 --- muitiplier bits and Z3, z2, z1, z0-output bits.
The truth table of 2 -bit Muitipier is shown in Table 1 .
From Table 1, the actual expressions reiating to the output bits and input bits of multiplier and multipicand are derived using SOP method in K-Maps. The reiated expressionsare
SOP: $Z 3=$ AIAOB1BO
$Z 2=A 1 A O^{\prime} B 1+A I B I A O^{\prime}$
$Z 1=A 1 A O B O+A 1 B 1 B O+A 1 A O B 1+A O B 1 B O$
$Z 0=A O B O$

Figure 5. Block diagram af 2 -bit multiplier

INPUTS					OUTPUTS			
A1	AO	B1	BO	Z3	Z2	Z1	ZO	
0	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	0	
0	0	1	0	0	0	0	0	
0	0	1	1	0	0	0	0	
0	1	0	0	0	0	0	0	
0	1	0	1	0	0	0	1	
0	1	1	0	0	0	1	0	
0	1	1	1	0	0	1	1	
1	0	0	0	0	0	0	0	
1	0	0	1	0	0	1	0	
1	0	1	0	0	1	0	0	
1	0	1	1	0	1	1	0	
1	1	0	0	0	0	0	0	
1	1	0	1	0	0	1	1	
1	1	1	0	0	1	1	0	
1	1	1	1	1	0	0	1	

Table 1. 2-bit Multiplier Truth Table

RESEARCH PAPERS

The corresponding DSOP and Exoriink based reversible circuit representations are shown below. Figure 6 shows the DSOP K-map for $Z 3$ as a function of AlAO and BIBO inputs of multiplier and the corresponding DSOP reversible Circuit implementation is shown in Figure 7. The quantum cost of implementation is found to be 29.

Z3:
DSOP:AIAOBIBO
Quantum Cost $=29$
Figure 8 shows the Exorlink K-map for $\mathrm{Z3}$ as a function of A 1 AO and BIBO inputs of multiplier and the corresponding Exorlink reversible Circuit implementation is shown in Figure9. The quantum cost of implementation is found to be 29.

Exorlink: AIAOB1BO
Quantum Cost $=29$
Figure 10 shows the DSOP K-map for 22 as a function of A 1 AO and B 1 BO inputs of multiplier and the corresponding DSOP reversible Circuit implementation is shown in Figure 11. The quantum cost of implementation is found to be

Figure 6. DSOP K-map for 23

Figure 7. DSOP Reversible Circuit for 23

Figure 8. Exorlink K-map for $Z 3$
46.

Z2:
DSOP: A1AO'Bl $\oplus A 1 A O B 1 B O^{\prime}$
Quantum Cost $=4+13+29=46$
Figure 12 shows the Exorlink K-map for $Z 2$ as a function of AlAO and B 1 BO inputs of muitipiier and the corresponding Exorlink reversible Circuit impiementation is shown in Figure 13. The quantum cost of implementation is found to be 34 .
Exorilink: $\mathrm{Al} \backslash \mathrm{AOB} 1 \mathrm{BO} \oplus \mathrm{A} \mid \mathrm{B} 1$
Quantum Cost $=29+5=34$
Figurel 4 shows the DSOP K-map for Zl as a function of AIAO and B1BO inputs of multipiler and the corresponding DSOP reversibie Circuit impiementation is shown in Figure 15. The quantum cost of implementation is found to be 92.

Z1:
DSOP: A 1 B 1 'BO \AA Al $1 \mathrm{AOB} 1 B O \AA \AA A 1 A O$ 'B1BO $\AA A O B 1 B O^{\prime}$
Quanturn Cost $=8+13+29+29+13=92$

Figure 9. Exorlink Reversible Circuit for 23

Figure 10. DSOP K-map for $Z 2$

Figure 11. DSOP Reversible Circuit for $Z 2$

RESEARCH PAPERS

Figure. 16 shows the Exoriink K-map for $\mathrm{Z1}$ as a function of A 1 AO and B 1 BO inputs of multiplier and the corresponding Exorlink reversible Circuit implementation is shown in Figure.17. The quantum cost of implementation is found to be 10.

Exorlink: AIBO ÅAOB1
Quantum cost $=5+5=10$
Figure 18 shows the DSOP K-map for $Z 0$ as a function of AlAO and B 1 BO inputs of multiplier and the corresponding DSOP reversible Circuit impiementation is shown in Figure 19. The quantum cost of implementation is found to be 5 ,

Z0:

Blfin

A1AO

Figure 12. Exorlink K-map for Z2

Figure 13. Exorlink Reversible Circuit forZ2

Figure 14. DSOP K-map for 21

Figure 15. DSOP Reversible Circuif for Z1

DSOP: AOBO

Quantum Cost $=5$

Figure 20 shows the Exorlink K-map for ZO as a function of $\mathrm{A} \backslash \mathrm{AO}$ and BIBO inputs of multiplier and the corresponding Exorlink reversible Circuit implementation is shown in Figure 21 . The quantum cost of implementation is found tobe 5.

Exorlink: AOBO
Quantum Cost $=5$

Figure 16. Exorlink K-map for Z 1

Figure 17. Exorlink Reversible Circuit for 21

Figure 18. DSOP K-map for $Z 0$

Figure 19. DSOP Reversible Circuif for $Z 0$

Figure 20. Exoriink K-map for $\mathbf{Z O}$

RESEARCH PAPERS

Figure 21. Exorlink Reversible Circuit for $Z 0$

2-bit Reversible Multipller	Total Quantum Cost
DSOP	$29+46+92+5=172$
EXORLINK	$29+34+10+5=78$

Table 2. Total Quantum Cost for 2-bit Multiplier
Thus from Table 2, it is clear that there is a drastic decrease in the Quantum Cost for Exorlink when compared to DSOP for a 2-bit reversible multipiier. Hence Exorllnk based multiplier design is the one with more power efficient operation, as it can link any two cubes in an array of cubes having any arbitrary distance. Also, when compared to the DSOP Iogic, the output bits of multipiler realized by Exorlink can have fewer gates, fewer connections and less Quantum Cost.

Conclusion

Exorlink logic employed in the design of multiplier proves to be the more power efficient method in Reversible logic synthesis. It can link any two cubes in an array of cubes of an arbitrary distance. Hence by using this method, a large number of variables in the expression gets minimized, thereby reducing the Quantum Cost compared to the Disjoint- Sum of Products (DSOP). Employing Reversible Logic and optimizing the Quantum Cost by using Exorlink technique reduces the heat dissipation in the circuits which leads to new approach for integrated Circuit design and helps in continuing Moore's Law. The designed multiplier circuit is proved to have less garbage outputs, constant inputs, Quantum cost and Total logical calculation i.e. less quantum cost as compared to the Disjoint Sum of Products (DSOP) method.

References

[1]. M.Bharathi, Neelima Koppala, (2014). "Efficient Approach to Optimize Quantum Cost for Combinational Reversible Circuits", International Journal of Research in computer Applications and Robotics, Vol.2, Issue.7, pp.: 1-9. ISSN-2320-7345.
[2]. M. Bharathi , K. Neelima, (2012). "Scope Of Reversible Engineering At Gate-Levei: Fault-Tolerant Combinational Adders", International Journal of VLSI design \& Communication Systems (VLSICS), Vol. 3, No. 2, Page No.: 85-98, ISSN - 0976-1357(Online), 0976-1537 (Print).
[3]. A.DeVos, (2010). "Reversible Computing: Fundamentals, Quantum Computing, and Appllcations", Weinheim: Wiley-VCH.
[4]. P. Kemtopf, (2002). "Synthesis of multipurpose reversible logic gates" Euromicro Symposium on Digital System Design (DSD'02), pp.259-267.
[5]. C.H.Bennett, (1998). "Notes on the History of Reversible Computation", IBM Journal of Research and Development, Vol. 32, pp. 16-23.
[6]. Lokesh Shivakumaraiah and Mitchell A. Thornton (2002). "Computotion of Disjoint Cube Representations Using a Maximal Binat Variable Heuristic", Department of Electrical and Computer Engineering, Mississippl State University.
[7]. Mitchell Aaron Thornton, Rolf Drechsler and D.Michael Miller, (2001). "Spectral Techniques in VLSI CAD", Kluwer Academic publishers. ISBiV 0792374339.
[8]. Ning Song and Marek A. Perkowski, (1996) "Minimization of Exclusive Sum-of-ProductsExpresslons for Multiple-Valued Input, Incompletely Specified Functions". IEEE Transactions on Computer-Aided Design of integrated Circuits and Systerns, Vol. 15, No.4، April.
[9]. V.K.Puri, (2006). "Digital Electronics Circuits and Systems", Tata McGrow-Hill.
[10]. R. Landauer, (1961). "irreversibility and heat generation in the computational process", IBM J. Res. Develop., Vol. 5. pp. 261-268.

RESEARCH PAPERS

ABOUT THE AUTHORS

Bharathi is currently working as an Assistant Professor in the ECE Department of Sree Vidyanikethan Engineering College, Trupatt. She has completed M. Tech In VLSI Design, In Satyabhama University. Her research areas are Digltal System Design, VLSI Signal Processing.

Neellma Koppala, is currently working as an Assistant Professor in ECE Depantment of Sree Vidyanikethan Engineering College, Tirupati. She has completed M. Tech in VLSI Design, in Salyabhama University. Her research areas are Digital System Design, VLSI Signal Processing

