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Abstract. Let K be the function field of a p-adic curve, G a semi-
simple simply connected group over K and X a G-torsor over K.
A conjecture of Colliot-Théléne, Parimala and Suresh predicts that if for
every discrete valuation v of K, X has a point over the completion X,
then X has a K -rational point. The main result of this paper is the proof
of this conjecture for groups of some classical types. In particular, we
prove the conjecture when G is of one of the following types: (1) A%,
ie. G = SU(h) is the special unitary group of some hermitian form
h over a pair (D, ), where D is a central division algebra of square-
free index over a quadratic extension L of K and 7 is an involution of
the second kind on D such that L* = K; (2) By, i.e., G = Spin(g) is
the spinor group of quadratic form of odd dimension over K; (3) D}, i.e.,
G = Spin(h) is the spinor group of a hermitian form £ over a quaternion
K-algebra D with an orthogonal involution. Our method actually yields
a parallel local-global result over the fraction field of .a 2-dimensional,
henselian, excellent local domain with finite residue ﬁél_d, under suitable
assumption on the residue characteristic. s
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1. Introduction

Let K be a field and G a smooth connected linear algebraic group over K. "
The cohomology set H' (K, G) classifies up to isomorphism G-torsors over
K, and a class & € H'(K, G) is trivial if and only if the corresponding
G-torsor has a K-rational point. Let Qg denote the set of (normalized) -
discrete valuations (of rank 1) of the field K. For each v € Qg, let K, denote -
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the completion of K at v. The restriction maps H'(K, G) - H(K,, G),
v € Qk induce a natural map of pointed sets

H'(X,G) — [] H'(K»,G).

' veQy

If the kernel of this map is trivial, we say that the Hasse principle with respect
to Qx holds for G-torsors over K.

In the case of a p-adic function field, by which we mean the function field
of an algebraic curve over a p-adic field (i.e., a finite extension of Qp), the
following conjecture was made by Colliot-Théléne, Parimala and Suresh.

Conjecture 1.1 ([6]). Let K be the function field of an algebraic curve over
a p-adic field and let G be a semisimple simply connected group over K.
Then the kernel of the natural map

H'(K,G) — ][] H'(K», G)

veEQk

is trivial. In other words, if a G-torsor has points in all completions K,,
v € Q, then it has a K -rational point.

1.2. Let K be a p-adic function field with field of constants F, i.e., X is
the function field of a smooth projective geometrically integral curve over the
p-adic field F. Let A be the ring of integers of F. It is in particular a henselian
excellent local domain of dimension 1. By resolution of singularities, there
exists a proper flat morphism X — Spec A, where X is a connected regular
2-dimensional scheme with function field K. We will say that X is a p-adic
arithmetic surface with function field K, or that X — Spec A is a regular
proper model of the p-adic function field K.

An analog in the context of a 2-dimensional base is as follows. Let A be a
henselian excellent 2-dimensional local domain with finite residue field & and
let K be the field of fractions of A. Again by resolution of singularities, there
exists a proper birational morphism X — Spec A, where &’ is a connected
regular 2-dimensional scheme with function field K. We will say that Spec A
is a local henselian surface with function field X and that X — Spec A is a
regular proper model of Spec A.

Experts have also been interested in the following analog of Conjecture 1.1:

Question 1.3. Let K be the function field of a local henselian surface
Spec A with finite residue field and let G be a semisimple simply connected
group over K. : ‘

Does the Hasse principle with respect to Qg hold for G-torsors over K ?
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Let K be the function field of a p-adic arithmetic surface or a local
henselian surface with finite residue field. For most quasi-split X -groups, the
Hasse principle may be proved by combining an injectivity property of the
Rost invariant map (cf. [6, Thm. 5.3]) and results from higher dimensional
class field theory of Kato and Saito.

The goal of this paper is to prove the Hasse principle for groups of several
types in the non-quasisplit case. To give precise statement of our main result,
we will refine the usual classification of absolutely simple simply connected
groups in some cases.

1.4. Let E be a field and let G be an absolutely simple simply connected
group over E. We say that G is of type

(1) 'A%, if G = SLj(A) is the special linear group of some central simple
E-algebra A of square-free index;

(2) 2Ax, if G = SU(h) is the special unitary group of some nonsingular
hermitian form A over a pair (D, ), where D is a central division algebra
of square-free index over a separable quadratic field extension L of E
and 7 is an involution of the second kind on D such that L = E; when
the index of division algebra D is odd (resp. even), we say the group
G = SU(h) is of type 2A,’§ of odd (resp. even) index;

(3) C;,if G = U(h) is the unitary group (also called symplectic group) of a
nonsingular hermitian form k& over a pair (D, 7), where D is quaternion
algebra over E and 7 is a symplectic involution on D;

(4) Dj (in characteristic # 2), if G = Spin(h) is the spin group of a non-
singular hermitian form A over a pair (D, t), where D is quaternion
algebra over E and 7 is an orthogonal involution on D;

5) F fd (in characteristic different from 2, 3), if G = Auty,(J) is the group

of algebra automorphisms of some reduced exceptional Jordan E-algebra '

J of dimension 27.
Recall also that G is of type

(6) By (in characteristic # 2), if G = Spin(g) is the spin group of a non-
singular quadratic form ¢ of dimension 2rn + 1 over E;

(7) G2 (in characteristic # 2), if G = Auty,(C) is the group of algebra
automorphisms of a Cayley algebra C over E.

" 1.5. In the local henselian case, we shall exclude some possibilities for
the residue characteristic. To this end, we define for any semisimple simply
connected group G a set S(G) of prime numbers as follows (cf. [30, §2.2] or
[9, p. 44]):

S(G) = {2},if G is of type G, or of classical type B, C,, or D, (trialitarian
Dy excluded);
S(G) = {2, 3}, if G is of type Es, E7, F4 or trialitarian Dy;
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S(G) ={2,3,5},if G isof type Eg;

S(G) is the set of prime factors of the index ind(A) of A, if G = SL;(A)
for some central simple algebra A;

S(G) is the set of prime factors of 2.ind(D), if G = SU(h) for some non-
singular hermitian form A over a division algebra D with an involution of the
second kind.

In the general case, define S(G) = US(G;), where G; runs over the almost
simple factors of G.

When G is absolutely simple, let ng be the order of the Rost invariant of
G. Except for a few cases where ng = 1, the set S(G) coincides with the set
of prime factors of ng (cf. [21, Appendix B] or [17, §31.B]).

We summarize our main results in the following two theorems.

Theorem 1.6. *Let K be the function field of a p-adic arithmetic surface
and G a semisimple simply connected group over K. Assume p # 2 if G
contains an almost simple factor of type 2A; of even index.

If every almost simple factor of G is of type

1AL AL, Be. G DY FE or Gy,
then the natural map
H'(K,G) — [] H' (K., G)
veQy -
has a trivial kernel.

Theorem 1.7. Let K be the function field of a local henselien surface with
[inite residue field of characteristic p. Let G be a semisimple simply connected
group over K. Assume p ¢ S(G).

If every almost simple factor of G is of type

1A%, %A% of odd index, B,, C¥, D, Fi® or G,
then the natural map
HY(X,6) — ][] H'(K., G)
veQyg

has a trivial kernel.

If moreover the Hasse principle with respect to Qg holds for quadratic
forms q of rank 6 over K (i.e., q has a nontrivial zero over K if and only if
it has a nontrivial zero over every Ky, v € Qg), then the same result is also
true for an absolutely simple group of type > A}, of even index.

*R. Preeti [26] has proved results on the injectivity of the Rost invariant which
overlap with the results in this paper. Our work was carried out independently.
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In fact, it suffices to consider only divisorial discrete valuatiofis in the above
theorems.

Remark 1.8. Let K be as in Theorem 1.6 or 1.7. Assume the residue char-
acteristic p is not 2.

(1) By [28, Thm. 3.4] (the arithmetic case) and {13, Thm. 3.4] (the local
henselian case), a central division algebra of exponent 2 over the field
K is either a quaternion algebra or a biquaternion algebra. So for a
group of type C,, say G = U(h) with ~ a hermitian form over a sym-
plectic pair (D, t), the only case not covered by our theorems is the case
where D is a biquaternion algebra. Similarly, for a group of classical
type Dy, say D = Spin(h) with h a hermitian form over an orthogonal
pair (D, t), the only remaining case is the one with D a biquaternion
algebra. o

(2) In Theorem 1.7, the hypothesis on the Hasse principle for quadratic
forms of rank 6 is satisfied if K = Frac(O{t]) is the fraction field of
a formal power series ring over a complete discrete valuation ring O

(whose residue field is finite), by [12, Thm. 1.2]. In the arithmetic case o

this is established in [6, Thm. 3.1].

In the rest of the paper, after some preliminary reviews in Section 2, we
will prove our main theorems case by case: the cases 1A’,"l, C,, F fd and G,
in Section 3; the cases B, and D} in Sections 4 and 5; and the case A} in
Section 6.

Our proofs use ideas from Parimala and Preeti’s paper [23]. In particular,
two exact sequences of Witt groups, due to Parimala—Sridharan—Suresh and
Suresh respectively, play a special role in some cases. Other important ingre-
dients include Hasse principles for degree 3 cohomology of Q/Z(2) coming
from higher dimensional class field theory of Kato and Saito (cf. [15] and
{27]), as well as the work of Merkurjev and Suslin on reduced norm criterion
and norm principles ([31,20]). For spinor groups and groups of type 2ZA¥ of
even index, we also make use of results on quadratic forms over the base field -
K obtained in [25,19] (seealso [11]) in the p-adic case and in [13] in the local
henselian case. : ’

- 2. Some reviews and basic tools - - . ... ... .. .

In this section, we briefly review some basic notions which will be used fre-
quently and we recall some known results that are essenual in the proofs to -
come later.

Throughout this sectlon let L denote a field of characteristic different
from 2. '
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=~ 2.1 Hermitian forms and Witt groups

We will assume the readers have basic familiarity with the theory of invo-
lutions and hermitian forms over central simple algebras (cf. [29,16,17]).
For later use, we recall in this subsection some facts on Witt groups, the “key
exact sequence” of Parimala, Sridharan and Suresh and the exact sequence
of $uresh. The readers are referred to [3, §3 and Appendix 2], [4, §3] and
[23; §81 for more information.

Unless otherwise stated, all hermitian forms and skew-hermitian forms
(in particular all quadratic forms) in this paper are assumed to be nonsingular.

2.1. Let L be a field of characteristic different from 2, A a central simple
algebra over L and ¢ an involution on A. Let E = L°. We say that o is
an L/E-involution on A. To each hermitian or skew-hermitian form (V, k)
over (A, o), one can associate an involution on Endg4 (V), called the adjoint
involution on End4 (V') with respect to k. This is the unique involution 65 on
End,4 (V) such that

h(x, f(y)) =hon(f)x),y) Y x,yeV, ¥V feEndg(V).

For a fixed finitely generated right A-module V, define an equivalence rela-
tion ~ on the set of hermitian or skew-hermitian forms on V (with respect to
the involution o) by

h~h <= thereexists 1 € E*suchthath = 1.h'.

Let H*(V) (resp. H~(V)) denote the set of equivalence classes of hermitian
(resp. skew-hermitian) forms on V and let H¥(V) = H* (V) UH (V). The
_assignment h > op defines a map from H*(V) to the set of involutions on
End4 (V). If ¢ is of the first kind, then the map 4 > g induces a bijection
between H*(V) and the set of involutions of the first kind on End4(V), and
the involutions o and ¢ have the same type (orthogonal or symplectic) if &
is hermitian and they have opposite types if 4 is skew-hermitian. If ¢ is of the
second kind, then the map ~ > ¢, induces a bijection between H* (V) and
the set of L/E-involutions on End 4 (V). (cf. [17, p. 43, Thm. 4.2].)

If A= L and ¢ = id, a hermitian (resp. skew-hermitian) form # is simply
a symmetric (resp. skew-symmetric) bilinear form b. In this case, b > o3
defines a bijection between equivalence classes of nonsingular symmetric or
skew-symmetric bilinear forms on V modulo multiplication by a factor in
L* and involutions of the first kind on Endy, (V). If g is the quadratic form
associated to a symmetric bilinear form b, we also write g, for the adjoint
involution op.

22. Let (A, o) be a pair consisting of a central simple algebra A over a field
L of characteristic 7 2 and an involution (of any kind) ¢ on A. The orthogonal
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sum of hermitian forms defines a semigroup structure on the set of isomor-
phism classes of hermitian forms over (A4, ¢). The quotient of the corres-
ponding Grothendieck group by the subgroup generated by hyperbolic forms
is called the Witt group of (A, o) and denoted W(A, ) = W!(4, ¢). The
same construction applies to skew-hermitian forms and the corresponding
Witt group will be denoted W1 (A4, 7).

If A = L and ¢ = id, then W(A, o) is the usual Witt group W(L) of
quadratic forms (cf. [18,29]). One has a ring structure on W(L) induced by
the tensor product of quadratic forms. The classes of even dimensional forms
form an ideal I (L) of the ring W(L). For each n > 1, we write 1" (L) for the
n-th power of the ideal I (L). As an abelian group, I"(L) is generated by the
classes of n-fold Pfister forms.

2.3. Let D be a quaternion division algebra over a field L of characteristic
# 2. Let 79 be the standard (symplectic) involution on D. The Witt group
W (D, 10) has a nice description as follows (cf. [29, p. 352]).

Ifh : V x V — Dis ahermitian form over (D, 7g), then the map

gn:V — L, qpx):=h(x,x)

defines a quadratic form on the L-vector space V, called the trace form of h.
If & is isomorphic to the diagonal form {41, ..., 4,), then g, is isomorphic
to the form (A1,...,4;) ® np, where np denotes the norm form of the
quaternion algebra D. By [29, p. 352, Thm. 10.1.7], the assignment z — gy,
induces an injective group homomorphism W (D, 79) — W(L), whose image
is the principal ideal of W (L) generated by (the class of) the norm form np
of D. In particular, two hermitian forms over (D, 7o) are isomorphic if and
only if their trace forms are isomorphic.

2.4. Let L/E be a quadratic extension of fields of characteristic different
from 2. The nontrivial element 1 of the Galois group Gal(L/E) may be viewed
as a unitary involution on the L-algebra A = L. The Witt group W(L, 1) can
be determined as follows (c¢f. [29, pp. 348-349]):

As in (2.3), to each hermitian form h : V x V — L over (L, 1), one can
associate a quadratic form g5 on the E-vector space V, called the frace form
of i, by defining

gn(x) :=h(x,x) € E, VxeV.

One can show that & +> g induces a group homomerphism W(L,:) —
W (E) which identifies W(L, 1) with the kernel of the base change homo-
morphism W(E) — W(L). In particular, two hermitian forms over (L, 1)
are isomorphic if and only if their trace forms are isomorphic. (cf. [29,
Thm. 10.1.2].)
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Let § € E be an element such that L = E (JE). Then for a € E*, the trace
form of h = (a) is isomorphic to {(a, —ad) = a.(1, —J). So the image of the
map :

‘ W(L,1) — W(E); h gy

is the principal ideal generated by the form (1, —3d) (cf. [29, Remark 10.1.3]).

2.5. Let A be a central simple algebra over a field L of characteristic
char(L) # 2. Let o be an involution on A and let E = L°. For any inveitible
element u € A*, let Int(u) : A — A denote the inner automorphism
x> uxu L Ifo@u! = :i:l, then Int() o o is an involution on A of the
same kind as g. '

Conversely, let o, T be 1nvolut10ns .of the same kind on A. If ¢ and 7 are
of the first kind, then there is a unit u € A%, uniquely.. determiried up to a
scalar factor in E*, such that 7 = Int(x) o o and o (u) = 4. Moreover, the
two involutions o and 7 = Int(x) o o are of the same type (orthogonal or
symplectic) if and only if o (u) = u. If 6 and 7 are of the second kind, then
there exists a unit u € A*, uniquely determined up to a scalar factor in E*,
such that 7 = Int(x) o 0 and o (u) = u.

Let $(A,0), = $H'(A,0) (resp. H7'(A,0)) denote the category of
hermitian (resp. skew-hermitian) forms over (A, o). Let ¢,¢’ € {%1}. Let
a € A* be an element such that ¢ (a) = ¢’a. Then the functor

2 HE(A, Int(a_l)oa) — (A4, 0); (V,h)—> (V,a.h)

is an equ1valence of categories, called a scaling. There is also an induced
’ 1somorph1sm of Witt groups

ba: WE(A, Int(a™ ) 0 0) > W' (4, 7).

In particular, if o and 7 are involutions of the same kind and type on A, then
there is a scaling isomorphism of Witt groups ¢, : W(A4, ) 5 W(A, o).

2.6. Let A be a central simple algebra over a field L of characteristic # 2
and ¢ an involution of any kind on A. Let (V, h) be a hermitian form over
(A, 0). Let B =End4(V) and let oy, be the adjoint involution with respect to
h. There is an equivalence of categories, called the Morita equivalence,

Dy H(B,oy) — H(A,0)

defined as follows (cf. [3, §1.4], [16, §1.9]): For a hermitian form (M, f) over
(B, o1), define a map

hsf:(M®pV)x (M®pV) — A



Hasse principle for simply connected groups 163

by

(h* f)(m ® v1,my @ v2) = h(vy, f(m1, m2)(v2)).
One verifies that O,(M, f) = (M ®p V,h x f) yields a well-defined
functor H(B, ) — H(A, o), which can be shown to be an equivalence
(cf. [16, p. 56, Thm. 1.9.3.5]). The Morita equivalence induces an isomor-
phism of Witt groups:

én : W(Enda(V), 01) > W(A, o).

2.7. We briefly recall the construction of the key exact sequence of Parimala,
Sridharan and Suresh. The readers are referred to [3, §3 and Appendix 2] for
more details. '

Let (A, o) be a central simple algebra with involution over L. Let E = L°.
Assume there is a subfield M C A which is a quadratic extension of L such
that 6 (M) = M. Suppose ¢ |y = idy if o is of the first kind. Let

Z::{aeAla.m:m.a, Y me M)}

be the centralizer of M in A. This is a central simple algebra over M.
By [3, Lemma 3.1.1], there exists 4 € A* such that o (1) = —p and that
the restriction of Int(ux) to M is the nontrivial element of the Galois group
Gal(M/L).

Set 7 = Int(¢) o ¢ and let ;, 77 be the restrictions of 7 and ¢ to A respec-
tively. Then 77 is an involution of the second kind, 7, is of the same kind and
type as o, and 7 is orthogonal (resp. symplectic) if and only if ¢ is symplectic
(resp. orthogonal).

One has a decomposition A = A®u.A(as right M-modules). Let 7y, 73 :
A — A be the M-linear ‘projections

mi(x 4+ py) =x, mx+py)=y, Vzx,yeA
These induce well-defined group homomorphisms
71 WA, 1) — W(Z, 71) and m@>: W_I(A, ) — W(Z, 72).

On the other hand, let A € M be an element such that A2 € L and M = L.
For a hermitian form (V., f) over (A, 71), define p(f) to be the unique skew-
hermitian formon V = V @ ?,u which extends A.f : V x V — A. This
defines a group homomorphism

piW@A, ) — WA D; (V, ) Ve Vu, ()
The sequence A
WE(A, 7) =5 WEA, 1) > WE(A, 1) =2 WE(A, 1) (2.7.1)

turns out to be an exact sequence (cf. [3, Appendix 2]).
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Since 7 (). = —u, one has a scaling isomorphism (cf. 2.5))

gl WA, 1) = W(A, 7).

We may thus replace W l(A 7) in the exact sequence (2.7.1) by W(A, a)
and rewrite it as

W(A,7) 25 W@, 1) 2> WA, 0) 22 WA, ) 2.7.2)

where p = ¢;1 op and T2 = my o, . This exact sequence is due to Parimala,
Sridharan and Suresh and is referred to as the key exact sequence in [3].

We will only use the exact sequence (2.7.2) in the case where A = Disa
quaternion algebra and ¢ -is an orthogonal involution. This special case was
already discussed by Scharlau in [29, p. 359].

- - 2.8. Now let D be a quaternion division algebra over a quadratic field exten-

- sion L of E and let 7 be a unitary L/E-involution on D (i.e. a unitary involu-
tion such that L® = E). There is a unique quaternion E-algebra Dy contained
in D such that D = Dy ®g L and T = 79 ® 1, where ¢ is the canonical
(symplectic) involution on Dg and : is the nontrivial element of the Galois
group Gal(L/E). Write L = E(+/d) withd € E*. Then D = Dy & Dyd.
For any hermitian form (V, h) over (D, 1), we may write

h(x,y) = hi(x, ) +ha(x,y)Vd with hi(x,y) € Do, for i=1,2

foranyx,ye V.
The projection 4 +> h; defines a group homomorphlsm

p2: W(D, 1) — W (Do, 10).
- For a hermitian form (Vy, f) over (Do, 79), set ' '
V=Vo®pD=V®:L=V® Vp/d

and let 5(f) : V x V — D be the 'rhap extending f : Vo x Vo = Dg by
r-sesquilinearity. One checks that this defines a group homomorphism

P:W(Do,10) — W(D,7);  (Vo, ) — (Vo ® Vov/d, B(f)).

For any quadratic form g over L = E(+/d), there are quadratic forms g1, g3
over k such that g(x) = q1(x) + ¢g2(x)v/d. We have thus group homo-
morphisms

mi: W(L) — W(E); g+ q;, =12
We denote by 71 : W(L) — W(Do, 70) the composite map
W(L) = W(E) — W (Do, 70)
where the map W(E) — W (Do, 7o) is induced by base change.
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Suresh (cf. [23, Prop. 8.1]) proved that the sequence

W(L) 2> W(Dy, 10) -2 W(D,7) & W~1(Do, 1)

~ is exact. We will refer to this sequence as Suresh’s exact sequence in the
- sequel. :

2.2 Invariants of hermitian forms

In this subsection, we recall the definitions of some invariants of hermitian
forms. For more details, see [3, §2], [4, §3] and [23, §5, §7].

2.9. Let (D,o) be a central division algebra with involution over L. Let
E = L°. Let (V, k) be a hermitian form over (D, a). The rank of (V, h),
denoted rank(V, k) or simply rank(k), is by definition the rank of the
D-module V:

rank(h) := rankp (V).

2.10. With notation as in (2.9), let eq, ..., e, be a basis of the D-module
V (so that rank(h) = rankp(V) = n). Let M(h) := (h(e;, ¢;)) be the
matrix of the hermitian form 4 with respect to this basis. The matrix algebra
A = M, (D) has dimension v

dimz A = n?dimg D = (rank(h) - deg; D)2

Put

dimg V _
deg;, D’ o
We define the discriminant disc(h) = disc(V, h) of the hermitian form (V,h)
by o : _ :

m = +/dim; A = rank(h) - deg; D =

disc(h) = (=1) 2% Nrd, (M(h))

E*/E¥ if o is of the first kind
E*/NL/E(E*) -if ¢ is of the second kind

o If i: 1's-?t1—énmt1an form over (D, o), thé image of the cationical map e e
H! (E SU(h)) —> H! (E U(h))

- . consists of classes [#'] € H! (E U(h)) of hermman forms h’ Wthh have the :
. same rank and discriminant as h
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2.11. Let D be a cenral division algebra over L and let o be an orthogonal
involution on D. Note that the Brauer class of D in the Brauer group Br(L)
- lies in the subgroup

2Br(L) :={a € Br(L) | 2.a = 0}.
" Let & be a hermitian form over (D, o). Let
8 : HY(L, SU(R)) — H?(L, u3) = 2Br(L)
be the connecting map associated to the exact sequence of algebraic groups
1 — up —> Spin(h) — SU(h) — 1.

Let i’ be a hermitian form over (D, ¢) such that rank(h’) = rank(k) and
disc(h") = disc(h). Then there is an element c(k’) € H!(L,SU(h)) which
lifts {#’] € H'(L, U(h)). The class of 6(c(’)) in the quotient ,Br(L)/([D])
is independent of the choice of c¢() (cf. [3, §2.1]). Following [2], we define
the relative Clifford invariant €€,(h’) by

2Br(L)
(D1)

When h has even rank 2n and trivial discriminant, the Clifford invariant
F€(h) of h is defined as

Gen(h) ;= [0(c(h)] €

2Br(L)
(D)) °
‘where Hj, denotes a hyperbolic hermitian form of rank 2n = rank(h) over

(D,0).f D = L and h = g is a nonsingular quadratic form over L, then
%t (h) coincides with the usual Clifford invariant of the quadratic form q.

Cl(h) == Cln,, (h) €

2.12. Let (D, o) be a central division algebra with an orthogonal involution
over L. We denote by Uy, (D, 0), SU2,(D, o) and Spin,,, (A, ¢) respectively
the unitary group, the special unitary group and the spin group of the hyper-
bolic form over (D, ¢) defined by the matrix Hp, = (2 16’ ).

Let / be a hermitian form of even rank 2n, trivial discriminant and trivial
Clifford invariant. There is an element & € H!(L, Spin,,(D, ¢)) which is

mapped to the class [h] € H!(L, Uy,(D, ¢)) under the composite map
H'(L,Spin,, (D, 0)) — H'(L,SU2,(D, 0)) — H'(L,Us(D, 5)).

Let
Rspiny, (0,0) : H' (L, Spin,, (D, 0)) — H*(L, Q/Z(2))
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be the usual Rost invariant map of the simply connected group Spin,, (D, ¢)
(cf. [17, §31.B]). It is shown in [4, p. 664] that the class of Rspin,, (D,0)(£) in
the quotient

H3(L, Q/Z(2))
HI(L, u2) U (D)

is well-defined. The Rost invariant % (h) of the form h is defined as

H3(L,Q/Z(2))
HU(L, pu2) U (D)’

Z(h) := [Rspin,, (D,s) ()] €

2.13. Let (D, o) be a quaternion algebra with an orthogonal involution over
L. We will need some further analysis on the map p : W(B, 71) = W(D, o)
in the exact sequence (2.7.2). Note that in this case D=Misa quadratic
field extension of L and 7; is the nontrivial element : of the Galois group
Gal(M/L). Let Uy, (M, 1) and SU,, (M, 1) denote the unitary group and the
special unitary group of the hyperbolic form over (M, 1) defined by the matrix
Hy, = (l?z 8‘) ‘We have

Usn (M, 1)(L) = {A € M3y (M) | A.Hyn1(A) = Hap}.
Note that for A € My, (M), 1(A) = Int(x) 0 6 (A) = uAu~" (cf. (2.7)) and

A.Hy, 1(A) = Hyy, < (A.Hpp (A
= (Hzn)t = l(A).Hz,,.At = Hy,.

Therefore, for A € Uy, (M, 1)(L), we have
A.u" AHy, .0 (AY = A.u" AHy, A
= u (uAu~") Ay A"
= u~'M(A). Hyp A" = = A Hy,
inside My, (D). So we have a natural inclusion
Un(M, 1)(L) € U(u™" A Ha,)(L)
= (B € Ma(D) | B.u™' AHan.0 (B) = p™' A Hpn).
In fact, this defines an inclusion of algebraic groups over L:.
p UM, 1) — U(u"'AHy); A A.

By [17, p. 402, Example 29.19], any element & of HY(L, U, (M, 1)) is
represented by a matrix S € GLj,(M) which is symmetric with respect to
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the adjoint involution 1z, on My, (M), and ¢ is the isomorphism class of the
hermitian forin H,, S~ !. The natural map

H'(L, Up(M, 1)) — H'(L, U(u ™" AHay))

induced by the homomorphism p’ maps ¢ to the class of the hermitian fdrm
,u_I/lenS ~1_On the other hand, by the construction of the homomorphism

P WWM,) ~» W(D,o), the form H,S over (M, 1) is mapped to the
form p~1AH,, S over (D, o). Hence the natural map
H'(L, U2(M, 1)) — H'(L, U(u ™" AH2n))

" is compatible with the restriction of p to forms of rank 2n.

Clearly, the inclusion p’ : Uz, (M, 1) — U(x =11 H,,) induces an inclusion
SUy, (M, 1) — SU(,u‘l/le,l) (cf. {4, p. 671]). A choice of isomorphism of
hermitian forms u~'1Ha, = Ha, over (D, o) yields an injection

SU2, (M, 1) —> SU(H>,) = SUs, (D, o).
This lifts to a hdmomorphisrﬁ
po : SUz, (M, 1) — Spin,, (D, o).
The composition
SUs,. (M, 1) 2 Spin,, (D, 6) — Uz (D, o)

induces a commutative diagram

H(L, SUs, (M, 1)) H(L, Spiny, (D, 0))

H'(L,Uz,(D, 0))

such that the map p : W(M,1) —> W(D, o) restricted to forms of rank
2n and of trivial discriminant is compatible with the map p’ at the level of
cohomology sets. Moreover, for any & € H L, SU,,(M, 1)), one has by
[4, Prop. 3.20}

Rspin,, (D,0)(P0(&)) = Rsu,, (&) € H* (L, Q/Z(2)),

ie., po(&) € HI(L,SpinZn(D,o)) has the same Rost invariant as ¢&.
If » is a hermitian form over (D, o) representing the class p'(£) €
HY(L, Uy, (D, 6)), then the Rost invariant of the form 4 is

H(L,Q/Z(2))

% (h) = [Rspin,, (D,0)(P0(£))] = [Rsu,,m,n ()] € HIL. 22) U (D)

by definition (cf. (2.12)).
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2.14. We shall also use the notion of Rost invariant of hermitian forms over
an algebra with unitary involution. The definition is as follows. Let E be
a field of characteristic # 2, L/E a quadratic field extension and (D, 1) a
central division algebra over L with a unitary L/E-involution. Let Uy, (D, 7)
and SU», (D, 1) denote respectively the unitary group and the special unitary
group of the hyperbolic form (21 16' ) over (D, ). For a hermitian form h of

rank 2# and trivial discriminant over (D, ), we may define its Rost invariant
Z(h) by

H3(E,Q/Z(2))
Coresr/e((L*1) U (D))’

where ¢ € HI(E,SUy, (D, 1)) is any lifting of the class [h] € H!
(E, Uz2n(D, 7)) and

L*' = (R[,;zGm)(E) ={a € L* | Nyy(a) = 1}.
Indeed, by {23, Appendix, Remark B], the class [Rsu,,(p,7)(¢)] is indepen-
dent of the choice of the lifting &, so that this Rost invariant Z(h) is well

defined. Note that if D = Dy ® g L for some central division algebra Dy over
E, then

Z(h) := [Rsu,,(p,:)(&)] €

Coresr g((L*) U (D)) =0
and hence the Rost invariant of 4 is simply the usual Rost invariant of any
lifting & € H'(E, SU,,(D, 1)) of the isomorphism class of 4.

2.3 Spinor norms

2.15. Let E be a field of characteristic different from 2, A a central simple
algebra over E and o an orthogonal involution on A. Let & be a nonsingular
hermitian form over (A, o). The exact sequence of algebraic groups

1 —> uz —> Spin(h) — SU() —> 1,
induces a connecting map '
5 :SUM)(E) — HY(E, u2) = E*/E*?
which we call the spinor norm map. We will write
Sn(hg) := Im(d : SU(h)(E) — E*/E*?)

for the image of the above spinor norm map. if A= E, ¢ =idandh == g isa

quadratic form, the spinor norm map o -SO(g)(E) — E*/E*2 has an explicit o

description as follows (cf. [18, p. 108]): Any element 8 € SO(g)(E) can be
written as the product of an even number of hyperplan reflections associated
with anisotropic vectors v1, ..., v2,. The spinor norm 3(f) is equal to the
class of the product g(v1) . .. g(v2,) in E*/E*2. '

A deep theorem of Merkurjev is the following norm principle for spinor
norms.
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Theorem 2.16 (Merkurjev, [20, 6.2]). With notation as in (2.15), assume
that deg(A).rank(h) is even and at least 4.

Then the image Sn(hg) of the spinor norm map is equal to the sub-
group of E*/E*? generated by the canonical images of the norm groups
Nip/e(L*) over all finite field extensions L/E such that Ay, is split and hy is
isotropic.

The following corollary is immediate from the above theorem.

Corollary 2.17. With notation and hypotheses as in Theorem 2.16, for any
finite field extension E'/ E, one has

Ngye(Sn(hg)) € Sn(hg).

2.18. With notation and hypotheses as in Theorem 2.16, the well-known
norm principle for reduced norms states that the subgroup Nrd(A*) € E*
of reduced norms is generated by the norm groups Ny ,g(L*), where L/E
runs over all finite field extensions such that Ay is split. So Theorem 2.16
implies that Sn(hg) is contained in the canonical image of Nrd(A*) in
E* / E*Z.

2.19. Let (A, o) be a central simple algebra with an orthogonal involution
over a field E of characteristic # 2. Let L/ E be a field extension which splits
Aandlet ¢ : (A, 0)®g L = (My(L), g4y) be an isomorphism of L-algebras
with involution, where o4, is the adjoint involution of a quadratic form go of
" rank n = deg(A) over L. Let & be a hermitian form over (A, o) ® L. Then
by Morita theory (cf. (2.6)), & corresponds via the above isomorphism ¢ to a
quadratic form g of rank n.rank(#) = deg(A).rank(#) over L. The similarity
class [¢q] € W(L) of g is uniquely determined by % and is independent of
the choice of ¢ and gp. The hermitian form 4 is isotropic if and only if the
" quadratic form g is isotropic. So, if deg(A).rank(h) is even and at least 4,
one has Sn(gy) = Sn(hr) by Theorem 2.16.

3. Some easy cases

We shall now start the proofs of our main theorems. In a few cases, as may be
already well-known to specialists, the results basically follow by combining a
general injectivity result for the Rost invariant and a Hasse principle coming
from higher dimensional class field theory.

3.1. Recall that our base field X is the function field of a p-adic arithmetic
surface or a local henselian surface with finite residue field (cf. (1.2)). Namely,
K is either
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(the case of p-adic arithmetic surface) the function field F(C) of a smooth
projective geometrically integral curve C over F, where F is a p-adic field
with ring of integers A and residue field k;

or

(the case of local henselian surface) the field of fractions Frac(A) of a
2-dimensional, henselian, excellent local domain A with finite residue field k
of characteristic p.

In either case, by abuse of language we say & is the residue field of K and
p = char(k) is the residue characteristic of K.

In our proofs of the main theorems, we only use local conditions at divi-
sorial valuations, i.e., valuations corresponding to codimension 1 points of
regular proper models (cf. (1.2)). More precisely, the set Q4 of divisorial
valuations of the field X is the subset of Qg defined as follows:

In p-adic arithmetic case, define

Q= U X(l),
X—Spec A

where X — Spec A runs over proper flat morphisms from a regular integral
scheme X with function field K and X" denotes the set of codimension
1 points of X identified with a subset of Q.

In the local henselian case, define

Q= |J a9,
X —Spec A

where X — Spec A runs over proper birational morphisms from a regular
integral scheme X with function field K and X() denotes the set of
codimension 1 points of X identified with a subset of Q.

3.2. Let L/K be a finite field extension. Then L is a field of the same type as
K if K is the function field of a p-adic arithemetic surface or a local henselian
surface with finite residue field. In the p-adic arithmetic case, let F’ be the
field of constants of L and let A’ be the integral closure of A in F'. In the
local henselian case, let A’ be the integral closure of A in L. Then the set Q4
of divisorial discrete valuations of L is precisely the-set of discrete valuations
w € Q lying over valuations in Q4 C Q.

3.3. By the general theory of semisimple groups (see e.g. [17, p. 365,
Thm. 26.8]), any semisimple simply connected group G over K is a finite
product of groups of the form Ry, x(G’), where L/K is a finite separable
field extension, G’ is an absolutely simple simply connected group over L
and Ry k denotes the Weil restriction functor. For each v € €4, one has
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L®k K, = lev L, and by Shapiro’s lemma, -

H'(K,RyxGYZ H'(L,G) and H (K,,,RL/KG)"“HH (Lo, G.

wlo

Therefore, to prove the Hasse principle for semisimpe simply connected
groups we may reduce to the case where G is an absolutely simple simply
connected group.

3.1 The quasi-split case

We recall the proof bf the Hasse principle for quasi-split groups without Eg
factors (cf. [6, Thm. 5.4]).
The following theorem is of particular importance to us.

Theorem 3.4. Let K be the function field of a p-adic arithmetic surface or
a local henselian surface with finite residue field of characteristic p. Let Q4
be the set of divisorial discrete valuations of K (as defined in (3.1)).

(i) (Kato, [15]) In the p-adic arithmetic case, the natural map

123(1(, Q/Z(2)) — H H3(K,, Q/Z(Z))

I)GQA

is injective.
(i) (Saito, [27], cf. [13, Prop 4.1]) In the local henselian case letn > 0 be
. aninteger prime to p. Then the natural map

H3<K p2 — [ B (Ko, 12?)

vEQ,
is injective.

The next result is an injectivity statement for the Rost invariant of quasi-
split groups.

Theorem 3.5 (cf. [6, Thm. 5.3)). TLet E be a field of cohomological
2-dimension < 3 and let G be an absolutely simple simply connected quasi-
split group over E. Assume that G is not of type Eg. Assume further the
characteristic of E is not 2 if G is of classical type By or D,.

Then the kernel of the Rost invariant map Rg : H(E, G) — H3
(E, Q/Z(2)) is trivial. o

TSee [26] for a recent improvement of this theorem.
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Proof. For a quasi-split group of type 'A, or C, it is well-known that
HI(E, G) = 1 over an arbitrary field E. For exceptional groups (not of type
Eg), the kernel of the Rost invariant is trivial over an arbitrary field by the
work of Chernousov, Garibaldi and Gille (cf. [9, Thm. 5.2], [5,7] and [8]).
If G is of type 2A,, B, or classical type D,, the proof can be done as in
[6, Thm. 5.3], by passing to a quadratic form argument. A 0O

The p-adic case of the following result is [6, Thm. 5.4].

Theorem 3.6. Let K be the function field of a p-adic arithmetic surface or a
local henselian surface with finite residue field of characteristic p. Let G be an
absolutely simple simply connected quasi-split group not of type Eg over K.
Assume p ¢ S(G) in the local henselian case (see (1.5) for the definition of
S(G)).

Then the natural map

H'(K,G) — [] H'(K, G)
vEQ,Y

has a trivial kernel.
Proof. The result follows from the following commutative diagram

H' (K,G) —— Tlyeq, H'(K»,G)

! |

H (K, 1) —— Tlyeq, H> (Ko, 1$?)

where the vertical maps have trivial kernel by Theorem 3.5 and the bottom
horizontal map is injective by Theorem 3.4. 0O

3.2 Groups of type 1A*

For groups of inner type A}, the proof is essentially the same as the quasi-split
case. :

Theorem 3.7. Let K be the function field of a p-adic arithmetic surface or
a local henselian surface with finite residue field of characteristic p. Let A a
central simple K -algebra of square-free index n and G = SL1(A). Assume
p 1 n in the local henselian case.

Then the natural map

H'(K,G) — [] H'(K., G)
UGQA

is injective.
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Proof. A well-known theorem of Suslin ([31, Thm. 24.4]) implies that under
the assumptions of the theorem, the Rost invariant map

H'(E, SL1(A)) = E*/Ntd(A*) — H3(E, u$?); 1 — (1)U (4)

is injective for E = K or K. An argument similar to the proof of Theorem 3.6
yields the result. O

3.3 Groups of type C;

Lemma 3.8. Let K be the function field of a p-adic arithmetic surface or
a local henselian surface with finite residue field of characteristic p. Assume
D # 2in the local henselian case.

Then the natural map

I’(K) — H 13(K,)
DGQA
is injective.
Proof. Consider the following commutative diagram

PK) —  Tlea, I’(K)

| !

H3K,2/2) —— [l,cq, H*(Ks, Z/2)

DGQA

where the vertical maps are induced by the Arason invariants. Since
cd2(K) < 3, we have 14(K) = 0. So the map

ez I3(K) — H3(K,Z/2)
is injective by [1, Prop. 3.1]. The map

H3(K,2/2) — [] H*(X,.2/2)

DGQA

is injective by Theorem 3.4. The lemma then follows from the above com-
mutative diagram. 0

Theorem 3.9. Let K be the function field of a p-adic arithmetic surface
or a local henselian surface with finite residue field of characteristic p. Let
D be a quaternion division algebra over K with standard involution to and
h a nonsingular hermitian form over (D, t9). Assume p # 2 in the local
henselian case. Let G = U(h) be the unitary group of the hermitian form h.
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Then the natural map

H'(K,G) — [] H'(K», G)

VEQ L
is injective.

Proof. The pointed set H' (K, G) = H!(K,U(h)) classifies up to isomor-
phism hermitian forms over (D, 7o) of the same rank as &. Let k1 and h3 be
hermitian forms over (D, 7g) of the same rank as . Put ' = hyL(—h3).
Note that 2’ has even rank, so the class of g in the Witt group W(K) lies in
the subgroup I3(K) = I(K) - I2(K) (cf. (2.3)). Thus

(gn,] — [gn,) = lqu]} € I*(K).

I (h1)y = (ha), for all v € Qg, then by Lemma 3.8, [gn/] = 0 € I3(K).
This implies that g5, = gn, over K. Two hermitian forms over (D, 70)
are isomorphic if and only if their trace forms are isomorphic as quadratic

~

~ forms (cf. (2.3)). So we get from the above that hy = hj, proving the .

" theorem. (]

3.4 Groups of type G, or F;*

Theorem 3.10. Let K be the function field of a p-adic arithmetic surface or

a local henselian surface with finite residue field of characteristic p. Let G

be an absolutely simple simply connected group of type Ga over K. Assume

P # 2 in the local henselian case. '
Then the natural map

H'(K,G) — [] H' (K, G)

UEQA

has a trivial kernel.

" Proof. The group G is isomorphic to Aut,e(C) for some Cayley algebra C
over K. Let ¢ € H (K, G) be a locally t:rivial class and let C’ be a Cayley
algebra which represents . We have Cx, = = Cy forevery v € Qq by
hypothesis and we want to show C ='C’ over K Smce two Cayley algebras

are isomorphic if and only if the1r norm forms are isomorphic and since the.

norm form of a Cayley algebra is a 3-fold Pfister form (cf (17, P 460]) the

_result follows easﬂy from Lemma 3.8. / : o -

Theorem 3.11. Let K be the ﬁmcnon field of a p-adic arithmetic surface or
.a local henselian surface with finite residue field of characteristic p. Assume



176 _ Yong HU

p 1 6in the local henselian case. Let G = Auty, (J) be the automorphism
- group of a reduced 27-dimensional exceptional Jordan algebra over K.
Then the natural map

H'(K,G) — [] H'(k», G)

UEQA

has a trivial kernel.

Proof. Recall that (cf. [30, §9]) to each exceptional Jordan algebra J’ of
dimension 27 over a field F of characteristic not 2 or 3, one can associate
~ three invariants o

" pU) € H3(F,Z)2), (') € H5(F, Z/2) and  g3(J') € H(F, Z/3).

One has g3(J’) = 0 if and only if J” is reduced. Two reduced exceptional
Jordan algebras are isomorphic if and only if their f3 and f5 invariants are the
same.

Now our base field K has cohomological 2-dimension cd;(K) = 3. So the
invariant f5(J') is always zero. Let & € H!(K, G) correspond to the iso-
morphism.class of an exceptional Jordan algebra J' over K. Assume that &
is locally trivial in H'(K,, G) for every v € Q4. By Theorem 3.4, we have
f3(J) = f3(J") and g3(J) = g3(J’). Since J is reduced by assumption, we
have g3(J’) = 0 and hence J' is reduced. Thus it follows that J = J' over K,
showing that & is trivial in H! (K, G) as desired. m]

4. Spin groups of quadratic forms

41. Let E be a field of characteristic different from 2 and g a nonsingular
quadratic form of rank > 3 over E. Recall that Sn(gg) denotes the image of
the spinor norm map
SO(q)(E) — E*/E®,
i.e., the connecting map associated to the cohomology of the exact sequence
1 — u» — Spin(q) — SO(g) — 1.

Proposition 4.2. Let K be the function field of a p-adic arithmetic surface
or a local henselian surface with finite residue field of characteristic p.
Assume p # 2 in the local henselian case. Let q be a nonsingular quadratic
form of rank 3 or 4 over K.
Then the natural map
Sn(gk) Sn(gk,)

D€QA

is injective.
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Proof. If rank(g) = 3, we may assume g = (1, a, b) after‘scalingfLet D be
the quaternion algebra (—a, —b)x over K. Then Sn(g) .= Nrd(D*) modulo
squares. The result then follows from Theorem 3.7.
Assume next rank(g) = 4. If disc(gq) = 1, we may assume after scaling
= (l,a,b,ab). Put D = (—a,—b)x. Then Sn(g) = Nrd(D*) and
the result follows again from Theorem 3.7. If d = disc(g) is nontrivial in
K*/K*2, we may assume g = (1, a, b, abd). Then '

*
Sn(gg) = Nrd(DK a f)) N K* modulo squares

by [17, p. 214, Coro. 15.11]. The field K (+/d) is a field of the same type as
K (cf. (3.2)). Let Q4 denote the set of divisorial valuations of K’ = K (+/d).
If a € K* lies in Sn(gk,) for all v € Q4, then a is areduced norm from D,
for all w € Q4. By Theorem 3.7, a is a reduced norm from Dy = Dy /ay-
This finishes the proof.

Recall that the u-invariant u(E) of a field E of characteristic # 2
is the supremum of dimensions of anisotropic quadratic forms over E
(so u(E) = o0, if such dimensions can be arbitrarily large).

Proposition 4.3. Let E be a field of characteristic # 2 and q a nonsingular
quadratic form of rank r over E. Assume u(E) < 2r.
Then Sn(qg) = E*/E*?, i.e., the spinor norm map

- SO(9)(E) — E*/E*
is surjective.

Proof. The 1mage Sn(gg) of the spinor norm map consists of elements of
- the form ]—[, q(v;), where v; are anisotropic vectors for g (cf. (2.15)).
If g is isotropic over E, then for every & € E*, there is a vector v, such. .
that g(vq) = a. Let vy be a vector such that g(v1) = 1. Then we have
a = q(va) - g(v1) € Sn(gk). ' '

Assume next g is anisotropic. For any a € E*, the form g1l(—a - q)
is isotropic over E by the assumption on the u-invariant. Hence there are’
vectors x, y such that g(x) — a - g(y) = 0. Since g is anisotropic, we have
A= q(y) € E* and qg(x) € E*. It follows that

a=q() 40" -1, q(x) 40) = a()- qu i) e Sn(tJE)

~ whence the desired result _ N o o

Corollary 4.4. Let K be the function field of a p-adic arithmetic surface or =

a local henselian surface with finite residue field of characteristic p. Assume
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p # 2 inthe local henselian case. Let q be a nonsingular quadratic form of
" rank > 5 over K. ' v
Then Sn{qg) = K*/K *2 i.e., the spinor norm map

SO(g)(K) — K*/K*?
is surjective.

Proof. In the p-adic arithmetic case, we have u(K) = 8 by [25] (if p # 2) or
[1'_9] (see also [11]). In the local henselian case, it is proved in [13, Thm. 1.2]
that u(K) = 8. The result then follows immediately from Proposition 4.3.

Theorem 4.5. Let K be the function field of a p-adic arithmetic surface or
a local henselian surface with finite residue field of characteristic p. Assume
P # 2 in the local henselian case. Let q be a nonsingular quadratic form of
rank >3 over K and G = Spin(q).

(i) The natural map

H'(K,G) — [] H'(k., 6)
DEQY

has a trivial kernel.
(ii) The Rost invariant

R : H'(K,G) — H’(K,Q/Z(2)
has a trivial kernel if rank(q) > 5.
Proof. Consider the exact sequence of algebraic groups
1 — pz — Spin(g) =G — SO(g) — 1

which gives rise to an exact sequence of pointed sets

SO(g)(K) - k*/k*2 ¥ HY(K, Spin(q)) —> H'(K,SO(q)).
_ (4.5.1)
The image of the map # is in bijection with isomorphism classes of non-
singular quadratic forms ¢’ with the same rank, discriminant and Clifford
invariant as q.

Let& € H'(K, G) = H'(K, Spin(q)) with (&) € H' (K, SO(q)) corres-
ponding to a quadratic form ¢’. Then in the Witt group W(K) the class of
g1(—q’) lies in I3(K) by Merkurjev’s theorem (cf. [29, p. 89, Thm. 2.14.3])
and its Arason invariant e3([g_L(—g")]) € H3(K, Z/2) coincides with Rost
invariant Rg (&) of ¢ whenrank(q) > 5 ([17, p. 437]).
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For (i), assume the canonical image &, of £ in H I(K,, G) is trivial for every
v € Q4. We have

[Q—L(—q,)]v =0 € 13(Ko), V o eQy.

By Lemma 3.8, we have ¢ = ¢’ over K. This means that ¢ € H! (K, G) lies
in the kernel of
n:H' (K, G) — H'(K,S0(g)).

By the exactness of the sequence (4.5.1), & = w (a) for some a € Coker(d) =

* 2
’I'{s‘n‘{%~ Consider now the following commutative diagram with exact rows
K*/K*? d 1
! Sita) H'(K,G) ——  H'(K,S0(g)

! l l

K* K*2 !
: I sibes —— T[] H'(K,G) —— [I H'(Ky,50(g)
veQdy v veQy veQy

* *2

The canonical image a, of a in % is trivial for all v ¢ Q4. From
Proposition 4.2 and Corollary 4.4, it follows that « = 1 and hence ¢ = y (a)
is trivial.

For (ii), assume the Rost invariant Rg (&) of ¢ is trivial. Then the Arason
invariant e3([gL(—g")]) is zero. Since cd2(K) < 3, the map e3 : I3(K) -»
H3(K,7/2) is injective. So we get ¢ = g’ over K and therefore & = y(a)
for some a € E*/K” \When the rank of g is > 5, we have K*/K*? = Sn(gg)

Sn(gg ...
by Corollary 4.4. So a = 1 and ¢ is trivial. )

Remark 4.6. Assertion (ii) of Theorem 4.5 may be compared with the
following result, which was already known to experts (cf. [6, Prop. 5.2]):
Let E be a field of characteristic # 2 and of cohomological 2-dimension
cd2(E) < 3. Let g be an isotropic quadratic form of rank > 5 over E. Then
-the Rost invariant

H(E, Spin(q)) — H*(E,Q/Z(2))

for the spinor group Spin(g).has a trivial kernel.

e - 5. Groups of type D,

Proposition 5.1. Let K be the function field of a p-adic arithmetic surface
or a local henselian surface with finite residue field of characteristic p.
Assume p # 2 inthe local henselian case. Let (D, a) be a quaternion division
algebra with an orthogonal involution over K and let h be a hermitian form
of rank > 2 over (D, o).
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Then the natural map

KY/K?2 I Ky/Ky?
Sn(hx)

is injective.

Proof First assume rank(h) = 2. Put d = disc(h) e K*/K*2.
Ifd = 1 € K*/K*2, then h is isotropic and Sn(h) = Nrd(D*) modulo
squares by Merkurjev’s norm principle (Theorem 2.16). The result then
follows from Theorem 3.7. Let us assume d = disc(h) € K*/K*? is non-
trivial. Let (A, 6) = (M2(D), o3), where oy, denotes the adjoint involution
~of h on A = M2(D). The even Clifford algebra C = Cy(A, 6) of the pair
(A, &) (cf. [17, §8]) is a quaternion algebra over the field K (\/E). and one has

Sn(hg) = Nrd(C*) N K* (mod K*?).

(cf. [17, p. 94, Thm. 8.10 and p. 214, Coro. 15.11].) As in the proof of
Proposition 4.2, it follows from Theorem 3.7 that an element A € K*/K*? is
a spinor norm for kg if and only if it is a spinor norm for hg, forall v € Q4.

Assume next rank(h) > 3. Let A € K* and assume 4 is a local spinor norm
for hg, for every v € Q4. Merkurjev’s norm principle (Theorem 2.16) implies
that 1 € Nrd(D;}v) for every v € Q4. Hence 1 € Nrd(D*) by Theorem 3.7.

(Note that K*? C Nrd(D*) since D is a quaternion algebra.) Let K’/K be a
field extension such that Dg- is split and A = Nk, (1) for some u € (K')*.
By Corollary 2.17, Nx//x (Sn(hg/)) S Sn(hk). Since A € K*/K*? lies in
the image of Nx//x : (K')*/(K')** — K*/K*2, to show 1 is a spinor norm
for hg it suffices to show that the map

& SUMY(K') —> (K')*/(K')*

is surjective. Note that D splits over K’ by the choice of K’. So we see from
(2.19) that Im(6’) = Sn(hg/) = Sn(gk’), where g is a quadratic form of
rank 2 - rank(h) > 6 over K’. Now the result follows immediately from
Corollary 4.4, O

Proposition 5.2. Let K be the function field of a p-adic arithmetic. surface
or a local henselian surface with finite residue field of characteristic p.
Assume p # 2 in the local henselian case. Let (D, o) be a quaternion
division algebra with an orthogonal involution over K. Let h be a nonsingular
hermitian form of even rank > 2 over (D, o). Assume that h has trivial
discriminant, trivial Clifford invariant and trivial Rost invariant (cf. §2.2).

If the form hg, over (Dg,,0) = (D ®k Ky, 0) is hyperbolic for every
v € QAa, then the form h over (D, o) is hyperbolic.
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Proof. Let L € D be a subfield which is a quadratic extension over K
such that 6(L) = L and o|p = idz. Such an L exists since ¢ is an
orthogonal involution. Let 4 € D* be an element such that o (u) = —g,
Int(u)(L) = L and Int(u)|r = 1, where 1 denotes the nontrivial element of
the Galois group Gal(L/K). The involution 7 := Int(x) o ¢ is a symplectic
involution on D (and hence coincides with the canonical involution on the
quaternion algebra D). The “key exact sequence” of Parimala-Sridharan-
Suresh (cf. (2.7.2)) yields the following commutative diagram with exact
TOWS :

W(D, 1) W(L,1) 2 w(D, o) . W(L)

1T Wy, 1) LN II Ws,?) 753 IT WDy, 0) & 5 IT wWLs)
veQy veQy veEQ PISTON

1

where for any K -algebra B we denote B, = B®y K, foreachv € Q4. (Here
L, need not be a field. It can be a Galois K,-algebra of the form L, x L,,
where wy, wy are discrete valuations of L lying over ». But this does not
affect the construction of the key exact sequence for D,. Indeed, the same
choice of 4 € D* C Dj satisfies the condition that Int(u)|z, is the nontrivial
automorphism of the K,-algebra L,. It is not difficult to check that the key
exact sequence for D, is still well defined.)

The form 72(h) € W(L) has even rank, trivial discriminant and trivial
Clifford invariant by [3, Prop. 3.2.2]. Hence 72(h) € I°(L) € W(L). Let
Q 4 denote the set of divisorial valuations of L. Then for every w € Q4 one
has m2(h) = 0 in W(L,). By Lemma 3.8, 7»(k) = 0in W(L). So by the
exactness of the first row in the above diagram, there exists a hermitian form
of even rank kg over (L, 1) such that p(ho) = h € W(D, o).

Let a = disc(hg) € K*/Nr/x (L*) be the discriminant of #9. One has

Ctp(ho)) = (L, a) € 2Br(K)/(D)

by [3, Prop. 3.2.3]. Since €£(5(ho)) = F¢(h) = 0 by assumption, one has
either (L,a) = Oor (L,a) = (D) in Br(K). If (L,a) = 0 € Br(KX) then
a is a norm for the extension L/K so that disc(ho) = 1 € K*/Nr/x(L*).
If (L,a) = D, writing L = K(4/a) such that D = (a,a)k, one
has disc((1,—a)) = a. €. K*/Np/x (L*). By the construction of the
map 71, one has 7((1)) = (I,—a) € W(L,1) (since D = L & uL
with x> = a). Replacing ko by ho — m1({1)), we may assume that
disc(hp) = 1 € K*/Ny/k (L*). Let 2n = rank(ho) and let SU3, (L, 1) denote
the special unitary group of the hyperbolic form (1?, ™ over (L, 1). The form
ho, having trivial discriminant, now determines a class in H1(K, SU, (L, 1)).
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Let H,, be the hyperbolic form (1(3, 16') over (D, o) and let Uy, (D, o),
SUy,(D, o) and Spin,, (D, o) denote respectively the unitary group, the
special unitary group and the spin group of the form Hs,. By (2.13), there is
a homomorphism

po : SUz, (L, 1) —> Spin,, (D, ).
which induces a commutative diagram ‘

£0

HU(K, SUy, (L, 1) HY(K, Spin,, (D, o))
HY(K, U, (D, 0))

such that the map p : W(L,1) - W(D, o) in the “key exact sequence”
(2.7.2) restricted to forms of rank 2n and of trivial discriminant is compatible
with the map p’ at the level of cohomology sets.

By [4, Prop. 3.20], one has

RSping, (0.0)(P0([h0))) = Rsu,, ) ([hol) € H>(K, Q/Z(2)).
Thus by the definition of the Rost invariant Z (cf. (2.12)),

0 = Z(h) = [Rspin,,(D,0)(po([ho]))]

H> (K, Q/Z(2))
HY(K, 12) U (D)’

= [RSU?n(L,z)([hO])] €

Therefore, there is an element f € K*/K*? = H(K, ) such that

Rsu,, 1o ({hol) = (B) U (D) € H* (K, Q/Z(2)).

A direct computation shows that the element ho = mi ({1, =B)) € W(L,1)
has associated trace form Gy = (1, =) & np, where np denotes the norm
form of the quaternion algebra D. By [17, p. 438, Example 31.44], the class
of Eo has Rost invariant

Rsu, (L, ([ho)) = e3(qz,) = (B) U (D) € H>(K, Q/Z(2)).

Modifying hg by ko = 71({1, —f)), we may further assume that the class
[ho] € HI(K,SUzn(L,z)) has trivial Rost invariant, i.e., e3(gn,) = O.
Since cdy(K) < 3, the Arason invariant e3 : [3(K) — H(K,Z/2) is
injective. Hence [gr,] = 0 € W(K) and [ho] = 0 € W(L,1) by (2.4)
(cf. [29, p. 348, Thm. 10.1.1]). It then follows immediately that
(k] = p(lho]) =0 € W(D, o). U
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Corollary 5.3. Let K be the function field of a p-adic arithmetic surface or
a local henselian surface with finite residue field of characteristic p. Assume
P # 2inthe local henselian case. Let (D, ¢) be a quaternion division algebra
with an orthogonal involution over K. Let hy, hy be hermitian forms over
(D, o) with the same rank and discriminant such that o

€{(h1L(—h2)) =0 € 2Br(K)/(D)
and
Z(h1L(~h2)) =0 € H(K, Q/Z2)/H' (K, p12) U (D).
Then hy = hy if and only if (h1)k, = (h2)k, for everyv € Q4.

Proof. Apply Proposition 5.2 to the form & = hy1(—h2) and use Witt’s
cancellation theorem. a

Theorem 5.4. Let K be the function field of a p-adic arithmetic surface or
a local henselian surface with finite residue field of characteristic p. Assume
P # 2inthe local henselian case. Let (D, o) be a quaternion division algebra
with an orthogonal involution over K, h a nonsingular hermitian form of rank
> 2 over (D, o) and G = Spin(h).

Then the natural map

H'(K,G) — [] H' (K., G)

I)GQA

has a trivial kernel.

Proof. Let& € HY (K, Spin(h)) be a class which is trivial in H1 (K, Spin(h))
for all v € Q4. The image of & under the composite map

HY(K,G) = HI(K, Spin(h)) — H'(K, SU(h)) — H(K,U(h))

is the class of a hermitian form 4’ which has the same rank and discriminant
as h such that
Fe(hL(—h")) =0 €,Br(K)/(D).

Let n = rank(k). Let Spin,, (D, s) and Uy,(D, ¢) denote respectively
0 Iy

the spin group and the unitary group of the hyperbolic form ( I ,0,) over_ . __

(D, 0). Then the class [hL(—h")] € H'(K, Uz, (D, 0)) lifts to an element
¢ € HY(K, Spiny, (D, 0)). By [23, Lemma 5.1], we have

H3(K,Q/Z(2)) -
HY(K, up) U (D()5 '

[RG ()] = Z(hL(—h")) = [Rspin,, (p,0) ()] €
4.1)
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Since ¢ is locally trivial, the commutative diagram y

H'(K,G) —6s  HYK,Q/Z(Q)

/ | ' l l
[1 H'(K», 6) —> [] H3(Kv, Q/Z(2))

veEQY vEQY

shows that the Rost invariant Rg (&) is locally trivial. By Theorem 3.4,
noticing that the Rost invariant R¢ takes values in the subgroup H>(K, ,u?z),
we get Rg (&) = 0 € H3(K, Q/Z(2)). Thus, by (5.4.1),

H3(K,Q/Z(2))

RMhL(h)) =0 € BT ) U D)

Now Corollary 5.3 implies that # = h’ and hence the image of ¢ € H (K, G)
in HY(K, U(h)) is trivial. By [4, Lemma 7.11], the canonical image of & in
HY(K,SU(h)) is also trivial.

Now consider the following commutative diagram with exact rows

* *2
1 Ién{;ﬁ() ? HY(X,G) ———  HYK,SU®))

! ! o

K*/K:z ) H HI(KD,G) - 5 H HI(KU,SU(h))

l—— II stz
veEQY veQa

veQy

which is induced by the natural exact sequence of algebraic groups

1 — uy —> G = Spin(h) — SUMh) — 1.
The exactness of the first row yields & = ¢(8) for some 8 € Is(:_(/i{(fg Th
commutative diagram then shows that & is locally trivial since & is locally

trivial. From Proposition 5.1 it follows that 8 = 1 € % and hence

& = () is trivial in H!(K, G). This completes the proof. O

6. Groups of type 2A*
6.1 Case of odd index \\

AN
Proposition 6.1. Ler K be the function field of a p-adic arithmetic surface
or a local henselian surface with finite residue field of characteristic p.
Assume p # 2 in the local henselian case. Let L/K be a quadratic field
extension, (D, t) a central division algebra of odd degree over L with an
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L /K -involution t (i.e., a unitary involution t such that L* = K). Let hy, hy
be nonsingular hermitian forms over (D, t) which have the same rank and
discriminant,

If the forms (h1)k, = (hp)k, over (Dk,,t) = (D ®L L ®k K,, 1) are
isomorphic for all v € Q4, then the forms h1, hy over (D, t) are isomorphic.

Proof. Let M/K be a field extension of odd degree such that
Dy = DR (L®k M) is split over the field LM = L®x M. (Such an exten-
sion M /K exists by [3, Lemma 3.3.1].) The base extension z)s of 7 is a unitary
involution on the central simple (L M)-algebra Dy such that (LM)™ = M.
Let : denote the nontrivial element of the Galois group Gal(L/K) and regard
iy € Gal(LM/M) as a unitary involution on LM. There is a non-
singular hermitian form (V, f) over (LM,1y) such that (Dpy, tp)
(Endzp(V),15), where 1 s denotes the adjoint involution on Endz» (V) with
respect to f (cf. [17, p. 43, Thm. 4.2 (2)]). We have a Morita equivalence
between the category of hermitian forms over (D, 7a7) and the category of
hermitian forms over (L M, 1) (cf. (2.6)), which induces an isomorphism of
Witt groups
¢f: W(Dy, i) = W(LM, 18).

Leth = hyL(—h2) and let h p be its base extension over (Dyy, 7ps). Via the
Morita equivalence mentioned above, 4 s corresponds to a hermitian form h M
over (LM, 1p). Let gy := Thyy be the trace form of & um (which is a quadratic
form over the field M). Since # has even rank and trivial discriminant, the
class [gy] € W (M) of the quadratic form g7 lies in I3 (M). The hypothesis
on the local triviality (with respect to Q4) of [2] = [k; L(—h7)] implies that
[gm] € I3 (M) is locally trivial (with respect to the set of discrete valuations
of M defined in the same way as Q4). By Lemma 3.8, we have {[gy] = 0
and hence [hy] = 0 in W(LM, 1y). Since W(Dy, ty) = W(LM, M),
[Apm] = 0in W(Dp, tp). Since M /K is an odd degree extension, the natural
map W(D, 7) - W(Dypy, ti) is injective by a theorem of Bayer-Fluckiger
and Lenstra (cf. [17, p. 80, Coro. 6.18]). So we get [k] = 0 in W(D, ), thus
proving the proposition. QO

Lemma 6.2. Let K be the function field of a p-adic arithmetic surface or a
local henselian surface with finite residue field of characteristic p. Let L /K be
a separable quadratic field extension and (D, 1) a central division L-algebra
. of square-free index ind(D) with a unitary involution t such that L’ = K
Assume p t md(D) in the local henselian case.
Then for any nonsmgular hermitian form h over (D, t), the natural map

( L/K m)(K) N H (RL/KGm)(Kv)
Nrd(U(h)(K)) vea, Nrd(UR)(K,))

EQA

is injective.
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Proof. First assume ind(D) = 2 so that Disa quaternion division algebra
over L. By [17, p. 202, Exercise II1.12 (a)], we have

Nrd(U(E)(K)) = {z2(2)~" | z € Nrd(D*)} = Nrd(Uz(D, 7)(K)),

where Uz(D, 7) denotes the unitary group of the rank 2 hyperbolic form ((1) (1))
over (D, 7). So we may assume that & = (9 ). The exact sequence of alge-
braic groups

1 —> SUD, 1) — Us(D, 7) 5 (R} ;4 Gpm) —> 1

gives rise to the following commutative diagram with exact rows

(R},/KGm)(K) @

1
1 Nrd(UR) (K)) H'(K,SUx(D, 7))
(RL  Gm)(K0) .
1 Il seomay I H(K,,SUx(D, 1))
veQy VEQ,

We need only to show that the vertical map on the right in the above diagram
is injective.

By [17, p..26, Prop. 2.22], there is a unique quaternion K -algebra Dg con-
tained in D such that D = Dy ®k L and 1 = 19 ® 1, where 7 is the
canonical involution on Dy and 1 is the nontrivial element in the Galois group
Gal(L/M). Write L = K (+~/d) and letn D, be the norm form of the quaternion
K-algebra Dy. Then by [17, p. 229], we have SU,(D, t) = Spin(g), where
q = (1, —d) ® np,. Now the result follows from Theorem 4.5.

Assume next ind(D) is odd (and square-free). By [17, p. 202,
Exercise HI1.12(b)],

Nrd(U(h)(K)) = Nrd(D*) N (R} /xGm)(K).

Let A € (R;/KG,,,)(K) = {z € L* | N /k (z) = 1} be such that for every

v € Qa, 2 € Nrd(U(h)(K,)) = Nrd((D ®x K»)*) N (R} /¢ Gr)(K,). Since
ind(D) is square-free, it follows from Theorem 3.7 that A € Nrd(D*). Hence

A € Nrd(U(h)(K)) = Nrd(D*) N (R}, x Gm) (K).

Now assume ind(D) is even such that ind(D)/2 is odd and square-free.
In this case we have D = H ®; D’ for some quaternion division algebra
H over L and some central division algebra D’ of odd index over L.
By [3, Lemma 3.3.1], there is an odd degree separable extension K’/K
such that D’ ® K’ = D’ ®p LK’ is split. By Morita theory, there is a
" unitary LK’/K’-involution ¢ on H ®; LK’ and a hermitian form f over
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(H ®; LK’, o) such that the involution z on D ®; LK’ is adjoint to f, and
moreover, the form h g over (D ®7 LK’, t) corresponds to a hermitian form
h' over (H ® LK’, o). Consider the commutative diagram

R}k Gm(K) d kGm(Ky)
Red (U (R H N—;—rd(U(h)(Ku))
LK’/K’G"'(K) 17/ LK/fK’G'"(K )
Nrd(U(r")(X")) H Nrd(U(7)(K))

The map #’ is already shown to be injective. Let 1 € R}J / xkGm(K) C L* be
an element which is a reduced norm for U(h)(K,) for every v. Then, con-
sidered as an element of RII,K'/K'(K/) C (LK"*, A lies in Nrd(U(R")(K")).
By [23, Prop. 10.2], we have

Nk x Nrd(U(R')(K"))) S Nrd(U(R)(K)).

Hence, A7 *! € Nrd(U(h)(K)), where 2r + 1 = [K’ : K]. It is sufficient
to show that 12 € Nrd(U(k)(K)). For this, we choose a quadratic exten-
sion M/K such that H @x M = H ®p LM is split. A similar argument
as above, using the result in the case of odd index this time, shows that
A € Nrd(U(hp)(M)). Thus,

2% = Nimym(A) € Nopym (Nrd(U(hpg) (M))) € Nrd(U(h)(K)).
This completes the proof of the lemma. o

Theorem 6.3. Let K be the function field of a p-adic arithmetic surface or a
local henselian surface with finite residue field of characteristic p. Let L/ K be
a separable quadratic field extension and (D, ©) a central division L-algebra
with a unitary L/K -involution whose index ind(D) is odd and square-free.
Assume further that p 1 2 - ind(D) in the local henselian case.

Then for any nonsingular hermitian form h over (D, 1), the natural map

H'(K,SU(h)) — [] H'(K,, SU(R))

DGQA

has a trivial kernel.

Proof. Let & € HY(K,SU(h)) be a class that is locally trivial in H!(K,,
SU(h)) for every v € Q4. Let 4’ be a hermitian form whose class [A'] €
HY(K,U(h)) is the image of ¢ under the natural map H!(K,SU(h)) —
H'(K, U(h)). The two forms h’ and / have the same rank and discriminant,
and they are locally isomorphic since ¢ is locally trivial. So by Proposition 6.1,
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= h as hermitian forms over (D, 7). This means that f e H(K,SU(h))
maps to the trivial element in H!(K, U(h)).
Consider now the following commutative diagram with exact rows

Rl Gm)(K )
(r“‘ ),2) —2 ,  HYK,SU(R) ——  HNK,U®K)

| l l

(R}, x Cm)(Kp) . )
1 —— [ wommy —— [ H'&Ko,SUR) —— ] H(K,,U(h)
vEQ 4 veQy veQy

]l —

There is an element g e (RL /K Gm)(K)/Nrd(U(h)(K)) such that ¢(0) =
The map 7 is injective by Lemma 6.2. So we have § = 1 and { = ¢(8) is
trivial. The theorem is thus proved. ' 0

6.2 Some observations on Suresh’s exact sequence

6.4. Let E be a field of characteristic # 2. Let D be a quaternion division
algebra over a quadratic field extension L of E. Let t be a unitary L/E-
involution on D. There is a unique quaternion E-algebra Dy contained in D
such that D = Do®Eg L and © = 79®1, where 19 is the canonical (symplectic)
involution on Dy and  is the nontrivial element of the Galois group Gal(L/E).
Then we have Suresh’s exact sequence (cf. (2.8))

W(L) = W (Do, 10) = W(D, 1) 22 WDy, 7).

The goal of this subsection is to analyze the image of the map 7 in this
sequence.

6.5. With notation as in (6.4), let Ag be a hermitian form of rank m over
(Do, 70). Let M(hg) € A := M,,(Dyp) be a representation matrix of hg.
One can define the pfaffian norm Pf(%g) as the pfaffian norm of M(hg) € A
with respect to the adjoint involution of kg on A (cf. [17, p. 19]). This is a
well defined element of the group E*/Nrd(Dg). If hg = (a1, ..., an) with
a; € E*, then Pf(hg) is represented by the discriminant of the quadratic form
(ay, ..., an) over E.

Lemma 6.6. With notation as in (6.4), write L = E(v/d) withd € E*. Let
ho be a hermitian form of even rank over ( Dy, 10).

@) If the class [ho] € W(Dy, t9) lies in the image of 71, then its pfaf-
fian norm Pf(ho) €- E*/Nrd(Dg) lies in the subgroup generated by

Nyp/e(L¥).
(iiy The converse of (i) is true if ho is of rank 2.
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Proof (i) For a + ba/d € L* with a,b € E, the form 71({a + b/d)) is
represented by the matrix
a bd
(bd ad)'

(a,ad(@®—b*d)) ifa#0
(2bd, —2bd) ifa=0#b

One can then verify that
T1{a+bVd)) = [

So it follows easily that Pf(71({a + b~/d ))) is represented by an element of
Np/e(LY).
(ii) Conversely, let ko be a hermitian form of rank 2 whose pfaffian norm
Pf(ho) is represented by an element of Ny ,g(L*). We want to show
[ho] € Im(7). By Suresh’s exact sequence, it suffices to show that the form
p(ho) is hyperbolic over (D, 7).

We may assume hg = {a, —ya) with a,y € E*. The assumption on the
pfaffian norm implies that

to(u)uy = Nrdp,(u)y = a’®—b¥d
for some u € D{ and some a, b € E. Since
<aa _)"1) = (a’ “)’aTO(u)u) over (DOs TO):

replacing y by yro(u)u = y - Nrdp,(u) if necessary, we may assume
y = a? — b?d for some a, b € E. From the definition of the map 7, it follows
easily that the form 5(ho) over (D, 7) is also represented by the diagonal
matrix (a, —ya). But then for v = (a + b/d, 1) € D?, one has

_ d
00,0 = Gta v,z (59 ) (“F7)
=a(@® —b*d -y)=0.

This show that the rank 2 form p (ho) is isotropic and hence hyperbolic. O

Lemma 6.7. With notation as above, ass:;me that the-field E has finite
‘u-invariant u(E) = r. Then for any hermitian form hg of rank m > r/3 over
(Dg, 70), the form p(hg) over (D, 1) is isotropic.

Proof. We may assume Dg' is the underlying space of the form h¢ and
ho = {(a1,...,an) with a; € E*. Then the underlying space of p(ho) is
D™ = Dt @ D v/d. We fix a quaternion basis {1, i, j, ij} for the quaternion
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algebra Dy. The subspace Sym(D, t) € D consisting of z-invariant elements
is a 4-dimensional E-vector space with basis

1,id, j/d,ij/d.

Let V C Sym(D, 7) be the subspace generated by i/d, j+/d and ij~/d. For
w = X} -i\/¢7+x2~j«/c—l+x3 -ijﬁ with x; € E, a straightforward calculation
yields

w? =di? - x? + dj?- x5 + d(ij)? x5 € E.

So the map

¢$: V" — E; v=(01,...,0m) —> p(ho)(v,v) = Zaiv,-z

defines a quadratic form of rank 3m over E. By the assumption on the
u-invariant of E, the quadratic form ¢ is isotropic and hence the hermitian
“form p(ho) is isotropic. . m]

Lemma 6.8. Assume that u(E) < 12. Then for any hermitian form hq of
even rank 2n over (Dy, 19), one has

[ho] € Im(Z)) < Pf(ho) € Ni/e(L*).Nrd(DY).

Proof. In view of Lemma 6.6, we need only to prove that if Pf(ho) €
NL/E(L*)Nrd(DS) then [ho] € Im(71).

To prove this, we use induction on n = rank(ho)/2, the case n = 1
being treated in Lemma 6.6. Now we assume rank(hg) = 2n > 4 and hg is -
anisotropic. Let Vg be the underlying space of kg. Then the underlying space
of the form 5(hg) is V = Vp @ Vo+/d. By Lemma 6.7, the form p(ho) is
isotropic, that is, there is a nonzero vector x1+yiv/d e V= Vy® Vo/d
such that

0 = Bho)(x1 + y1v/d, x1 + y1V/d)
= (ho(x1, x1) — ho(1, y)d) + (ho(x1, y1) — ho(y1, x1))Vd.
Thus

ho(x1,x1) = d.ho(y1,y1) and ho(x1, y1) = ho(y1, x1)- (6.8.1)
Since hg is anisotropic, kg(x1, x1) and ho(y;, ¥1) are both nonzero and hence
lie in :

E* = {x € D§ | to(x) = x}.

In particular, x; # 0, y; # 0 and

ho(x1, y1) = ho(y1,x1) € E = {x € Dg | 7o(x) = x}.
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If x; = y14 for some A € D, then (6.8.1) yields
o(M)A=d and 1o(l) =24

whence d = 12 € E*2. Since d is not a square in E, the two vectors xj,
¥1 € Vo generate a Dg-submodule Wy := x1 D9 4+ y1Do € Vp of rank 2.
Put a = ho(y1, y1) € E* and bd = ho(x1, y1) = ho(y1, x1) € E. Then the
restriction fy of hg to Wy is represented by the matrix

ad bd\ (0 1\ [a bd\ (01
bd a) \10J\bd adJ\1 0}
A direct computation then gives

71(la + bv/d)) = [fol € W(Do, ).

This means that k¢ contains a subform fy of rank 2, which lies in the image
of my. Writing ho = foLgo, we get Pf(go) € N, g (L*)Nrd(Dg) since Pf( fo)
and Pf(ho) lie in Np/g(L*)Nrd(Dg). Now the induction hypothesis yields
{go] € Im(w1), whence [ho] = [ fol + [go] € Im(x1). O

6.3 A Hasse principle for H* of function fields of conics

Lemma 6.9. Let F be a field of characteristic # 2, F a separable closure
of Fand C C ]P’%, a smooth projective conic over F. Put C = C x¢ F and
let F(C), F(C) denote the function fields of C and C respectively.

Then the natural exact sequence

0 — F(O)* ® Q2/Z,(2) —> Div(C) ® Q2/Z,(2)
— Pic(C) ® Q2/Z2(2) — 0

induces an injection
H*(F,F(C) ® Q2/Z>(2)) — H*(F, Div(C) ® Q2/Z2(2)).

Proof. Let CO be the set of closed points of C. For each P € C (1), let Gp
be the absolute Galois group of the residue field F(P) of P. This is an open
subgroup of G = Gal(F/F). Write Mp_= Homg, (Z[G], Z): We have an "
- isomorphism of abelian groups Mp = 6 o+ p L, where the notation Q +— P
means that Q runs over the closed points of C lying over P. On the other
hand, we have an isomorphism of G-modules:

Div(C) = P M».
pec)
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Since C is a smooth projective conic, Pic(C) = Z as G-modules. The natural
map Div(C) — Pic(C) can be identified with the summation map

o: @ @ Z—7Z
Pech) QP _
So the exact sequence in the lemma may be identified with the following
0— F(C)*®Q2/Z2(2) — P MpRQ2/Z2(2) - Q2/Z2(2) — 0.
Pec
For anyi > 0,
H' (F, Mp ® Q2/Z(2)) = H'(F(P), Q2/Z2(2)).

It is thus sufficient to prove that the map

P HAF(P),Q:/22(2)) — H*(F,Q2/Z2(2))

\ "\,\\pec<l>

is surjective. In fact, we can choose a closed point P € C() of degree 2 and
consider the corresponding map

w : H(F(P),Q2/Z>(2)) — H*(F,Q2/Z»(2)),

which coincides with the corestriction map. We claim that this map is already
surjective. To see this, consider for each n € N the corestriction map

wn © H*(F(P),Z/2"(2)) — H*(F,Z/2"(2)).

By the Merkurjev—Suslin theorem, the map y, may be identified with the
norm map
Nrppy/F : K2(F(P))/2" — Kp(F)/2"

in Milnor’s K -theory. The cokernel of this norm map is killed by 2 = [F(P) :
F]. So taking limits yields the surjectivity of the map . This proves the
lemma. =

Theorem 6.10. Let K be the function field of a p-adic arithmetic surface or

a local henselian surface with finite residue field of characteristic p. Assume

p # 2 in the local henselian case. Let C be a smooth projective conic in ]P’%(.
Then the natural map

HYK(C),2/2) — [] H*(K,(C),Z/2)

UGQA

is injective, where v runs over all divisorial valuations of K.
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Proof. By the Merkurjev—Suslin theorem, we may replace Z/2 by Q2/Z2(3).
Also, we may replace the completion K, by the henselisation K (,) for each »
(cf. [14, Thm. 2.9 and its proof}). Let Kbea separable closiire of K. Then we
have a diagram of field extensions

K(C) X

L]

K(v) (C) I — K(v)

]

K(©C) K

which identifies the Galois groups
Gal(K/K) = Gal(K(C)/K(C)) and Gal(K/K()) = Gal(K(C)/K)(C)).
This induces Hochschild-Serre spectral sequences

E}*(K) = HP(K, H(K(C), Q2/Z2(3))) = HPTI(K(C), Q2/Z2(3))
and

EY (K@) = H? (K@), H1(K(C), Q2/Z»(3)))
= HP"9(K,)(C), Q2/Z2(3)).

Using
cd2(K(C)) <1 and cda(Kp) < cda(K) <3,

one finds easily that the above spectral sequences induce canonical isomor-
phisms .

HY(K(C),Q2/Z>(3)) = H*(K, H (K (C), Q2/Z>(3)))
and
H*(K)(C), Q2/Z2(3)) = H3 (K ), H (K (C), Q2/Z1(3))).

s .
~ Since HY(K (C), Q2/Z3(3)) = K(C)* ® Q2/Z3(2), we need only prove the
injectivity of the natural map

HY (K, K(C)* ® Q2/Z2(2)) — [] H?K), K(C)* ® Q2/Z(2))

0eEQy

is injective.
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By Lemma 6.9, we have an injection
E (K, K(C)* ® Q/Z2(2)) <> P H (K(P), Q2/Z1(2)).
peC® ’

For each v, let C(yy) = C Xk K(y) be the base extension of C and let K,)(C)
denote the function field of C(,). By functoriality, we may reduce to proving
the injectivity of the map

L P HEP),Q/Z@) — [] P B Kw(Q), Q/Za2).

Pec) vEQY QGC(I)

For fixed v and P € C(), the corresponding component @o, p of the map ¢ is
given by

oo,p : H (K (P), Q2/Z2(2)) — ) H> (K)(Q), Q2/Z2(2)),
o|p

where Q runs over the points of the fiber C(,) xc P = Spec (K(,) ®k K (P)).
An element a = (ap) € ®pH>(K(P), Q2/Z,(2)) lies in ker(p) if and only
if foreach P € CY, ap lies in the kernel of

o = [J0o.r : H(K(P), Q2/Z2(2))
— [ Ha Koy ®x K (P), Q2/Z2(2).

It suffices to prove that for every P, the map ¢ p is injective.
Replacing K(P) by the separable closure of K in K(P) if necessary,
we may assume that K (P)/K is a finite separable extension. Then we have

K@) ®k K(P) =[] K(P)(w),

wlv

(cf. [10, IV.18.6.8]). So the map ¢ p gets identified with the natural map

H(K(P), Q2/22(2)) — [ [ H* (K (P)(w), Q2/Z2(2)),

where w runs over divisorial valuations of K (P). This map is injective by
Theorem 3.4. The theorem is thus proved. O

Corollary 6.11. Let K be the function field of a p-adic arithmetic surface or
a local henselian surface with finite residue field of charachteristic p. Assume
p # 2 in the local henselian case. Let C a smooth projective conic in IP’%(.
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Then the natural map

Ik (C) — ] 1*&.(c))

veEQY

is injective, where v runs over the set Q4 of divisorial valuations of K.

Proof. For F = K(C) or K,(C), we have cdy(F) =< 4. By the degree 4
case of the Milnor conjecture (cf. [32] and [22]), we have an isomorphism
I*(F) = H*(F,Z/2). (In the p-adic arithmetic case, we can also deduce
this isomorphism from [1, p. 655, Prop. 2] together with [19, Thm. 3.4].) The
result then follows immediately from Theorem 6.10. O

6.4 Case of even index

Proposition 6.12. Let K be the function field of a p-adic arithmetic surface
or a local henselian surface with finite residue field of characteristic p. Let
L/K be a quadratic field extension, (D, 1) a central division algebra over
L with a unitary L/K-involution whose index is not divisible by 4. Let h
be a nonsingular hermitian form over (D, t) which has even rank, trivial
discriminant and trivial Rost invariant (cf. (2.14)). Assume p # 2 if ind(D) is
even. In the local henselian case, assume further that the Hasse principle with
respect to divisorial valuations holds for quadratic forms of rank 6 over K.

Then we have [h] = 0 € W(D, 1) if and only if [h @k K,] = 0 €
W(D ®k K,, 1) foreveryv € Q4.

Proof. If the index ind(D) is odd, the result is already proved in Propo-
sition 6.1. We assume next that ind(D) is even and not divisible by 4.

We first consider the case where D is a quaternion algebra. As in (6.4),
we write D = Dy ®x L with Dy a quaternion division algebra over K and
L = K(+/d) with d € K*, and we have Suresh’s exact sequence

W(L) = W(Do, 10) = W(D, ) B W (Do, 1) (6.12.1)

Let C IP’%< be the smooth projective conic associated to the quaternion
“algebra Dg. Then the algebra D @k K(C) = Dy ®k L(C) is a split central
simple algebra over L(C) with a unitary L(C)/K (C)-involution 7. By Morita
theory, the hermitian form & ® ¢ K (C) over (D ®x K(C), t) corresponds to
a hermitian form 4. over (L(C), 1), where 1 denotes the nontrivial element
of the Galois group Gal(L(C)/K(C)). The trace form gj c of hi. gives a
quadratic form over K(C). By [17, Example 31.44], the quadratic form g ¢
has even rank, trivial discriminant, trivial Clifford invariant and trivial Rost
invariant, since h’C has even rank, trivial discriminant and trivial Rost invariant
(these invariants being invariant under Morita equivalence). Hence in the
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Witt group W (K (C)) we have [gn,c] € I*(K(C)). Since & is locally hyper-
bolic, it follows from Corollary 6.11 that [gn,c] = 0 € W(K(C)), whence
[P @k K{C)] =0 W(D ®k K(C), 7). In the commutative diagram

W (D, 7) P2 W~1(Dy, 70)

l !

W(D ®k K(C),7) —2> W~1(Do ®k K(C), 10)

the right vertical map is injective by [24]. So we have pa(h) = 0 €
W—1(Do, 79). The exactness of the sequence (6.12.1) implies that
{h] = p([ho]) for some hermitian form hg over (Dg, tg) of even rank.

Let A = Pf(ho) € K*/Nrd(Dg) be the pfaffian norm of k. Since & is
locally hyperbolic, by considering Suresh’s exact sequence locally, we see that
(ho), lies in the image of (1), for every v. By Lemma 6.6, this implies that
A € Nrd((Do)}) - N Lu/ &, (L}) for every v. In other words, the quadratic form

¢ = A- nDo - (13 _d):

where np, denotes the norm form of the quaternion algebra Dy, is isotropic
over every K,,. By the assumption on the Hasse principle for quadratic forms
of rank 6 (and [6, Thm. 3.1] in the p-adic arithmetic case), ¢ is isotropic
over K, which shows 4 € Nrd(Dj)- N,k (L*). As was mentioned in the proof
of Corollary 4.4, the field K has u-invariant 8. So by Lemma 6.8, we have
[ho] € Im(71). Hence [A] = p([ho]) =0 € W(D, 7) as desired.

Consider next the general case where ind(D) is even and not divisible
by 4. In this case we have D = Q ®; D’ for some quaternion division
algebra Q over L and some central division algebra D’ of odd index over L.
By {3, Lemma 3.3.1], there is an odd degree separable extension K’/K such
that D' ®x K’ = D’ ®; LK’ is split. By Morita theory, there is a unitary
LK'/K’-involution ¢ on H ®; LK’ and a hermitian form f over (H ®,,
LK', o) such that the involution  on D ®; LK’ is adjoint to f, and more-
over, the form hgs over (D ®; LK’, t) corresponds to a hermitian form A’
over (H®y LK', ¢), which has even rank, trivial discriminant and trivial Rost
invariant. The hypothesis that 4 is locally hyperbolic over every K, implies.
that &’ is locally hyperbolic over every K, , where w runs over the set of divi-
sorial valuations of K’. By the previous case, [#'] =0 € W(H ®_. LK’, o)
and hence [h] = 0 € W(D ®. LK’, ). Since the degree [LK’' : L] =
[K’ : K] is odd, the natural map W(D, t) - W(D ® LK’, t) is injective
by a theorem of Bayer-Fluckiger and Lenstra (cf. [17, p. 80, Coro. 6.18]). So
we get [h] = 0 € W(D, 7). This completes the proof. O

Theorem 6.13. Let K be the function field of a p-adic arithmetic surface or
a local henselian surface with finite residue field of characteristic p. Let L/K
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be a quadratic field extension, (D, t) a central division algebra over L with
a unitary L /K -involution whose index ind(D) is square-free. Let h be a non-
singular hermitian form over (D, 7).

Assume p # 2 if ind(D) is even. In the local henselian case, assume
further that p {ind(D) and that the Hasse principle with respect to divisorial
valuations holds for quadratic forms of rank 6 over K.

Then the natural map

HY(K,SUR) — [] H' (K., SU®))

veQy

has trivial kernel.

Proof. Let& € H (K, SU(h)) be a class that is locally trivial. Let the image
of & in H'(K,U(h)) correspond to a hermitian form 4’. The form k'L (~h)
has even rank, trivial discriminant and is locally hyperbolic. We claim that
the Rost invariant Z(h’' L(—h)) is trivial. Indeed, as ¢ is locally trivial,
Rsur) (&) is locally trivial in H 3(K,, Q/Z(2)) for every v. By Theorem 3.4,
Rsuy (&) = 0. There is a group homomorphism

SU(#) — SU(RL(—h)), f —> (f,id)
which induces a map
a: HY(K,SU(h)) — H'(K, SU(hL(—h))).

The image a(&) of & lifts the class [A' L(—h)] € HI(K,U(hL(-h))).
By general property of the (usual) Rost invariant, there is an integer n, such
that
Rsu(nL(~hy)(@($)) = naRsum)(£)-
We have thus Z(h' L(—h)) = Rsu(nL(~h)) (a(£)) = 0 since & has trivial Rost
invariant. Now Proposition 6.12 implies that the two forms 4’, h over (D, t)
are isomorphic.
Consider the cohomology exact sequence

RL /¢ Gm(K)

¢ 1 1
N &y > H K SUm) — HI(K, U®) - 613.)

arising from the exact sequence of algebraic groups . .- e

1 — SU(h) — U 23 R} G — 1.

The fact that A’ = h implies that ¢ lies in the image of the map ¢ in the above
cohomology exact sequence (6.13.1). Considering the sequence (6.13.1)
locally and using Lemma 6.2, we conclude that ¢ is trivial in H (K, SU®)),
thus proving the theorem. O



198

Yong HU

Acknowledgements

* The author thanks Prof. Jean-Louvis Colliot-Théléne for helpful discussions.

(1]
(2]
(3]
(4]
[5]

(6]

(7]
(8]
(9]

[10]

(11]
(12]

[13]
[14]
(15]

(16]
(171

[18]

[19]
[20]

(21

[22]

References

J. Kr. Arason, R. Elman and B. Jacob, Fields of cohomological 2-dimension three,
Math. Ann., 274 (1986) 649-657.

H.-J. Bartels, Invarianten hermitescher Formen iiber Schiefkorpern, Math. Ann., 215
(1975) 269-288.

E. Bayer-Fluckiger and R. Parimala, Galois cohomology of the classcial groups over
fields of cohomological dimension < 2, Invent. Math., 122 (1995) 195-229.

E. Bayer-Fluckiger and R. Parimala, Classcial groups and the Hasse principle, Ann.
Math., 147 (1998) 651-693, Erratum, Ann. Math., 163 (2006) 381.

V. Chernousov, The kernel of the Rost invariant, Serre’s conjecture II and the
Hasse principle for quasi-split groups 3’6D4, Eg, E7, Math. Ann., 326 (2003) no. 2,
297-330.

J.-L. Colliot-Théléne, R. Parimala and V. Suresh, Patching and local-global principles
for homogeneous spaces over function fields of p-adic curves, Comment. Math. Helv.,
87 (2012) 1011-1033.

S. Garibaldi, The Rost invariant has trivial kernel for quasi-split groups of low rank,
Comment. Math. Helv., 76 (2001) 684-711.

P. Gille, Invariants cohomologiques des Rost en caractéristique positive, K -theory,
21 (2000) 57-100.

P. Gille, Serre’s conjecture II: a survey, in: Quadratic Forms, Linear Algebraic
Groups, and Cohomology, ed. J.-L. Colliot-Thélene, S. Garibaldi, R. Sujatha and
V. Suresh, Developments in Math., 18, Springer (2010).

A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique: IV. Etude
locale des schémas et des morphismes de schémas, Quatrieme partie, Publ. Math. de
I'Inst. Hautes Etudes Sci., 32 (1967).

D. Harbater, J. Hartmann and D. Krashen, Applications of patching to quadratic
forms and central simple algebras, Invent. Math., 178 (2009) 231-263.

Y. Hu, Local-global principle for quadratic forms over fraction fields of two-
dimensional henselian domains, Ann. de [’Institut Fourier, 62 (2012) no. 6,
2131-2143.

Y. Hu, Division algebras and quadratic forms over fraction fields of two-dimensional
henselian domains, Algebra & Number Theory, 7 (2013) no. 8, 1919-1952.

U. Jannsen, Hasse principle for higher-dimensional fields, preprint, available at arXiv:
0910.2803.

K. Kato, A Hasse principle for two-dimensional global fields, J. Reine Angew. Math.,
366 (1986) 142-181.

M.-A. Knus, Quadratic and Hermitian Forms over Rings, Springer-Verlag (1991).
M.-A. Knus, A. Merkurjev, M. Rost and J.-P. Tignol, The book of involutions, Amer.
Math. Soc. (1998).

T. Y. Lam, Introduction to Quadratic Forms over Fields. Grad. Studies in Math., Amer.
Math. Soc., 67 (2005).

D. Leep, The u-invariant of p-adic function fields, J. Reine Angew. Math., to appear.
A. Merkurjev, Norm principle for algebraic groups, St. Petersburg J. Math., 7 (1996)
243-264.

A. Merkurjev, Rost invariants of simply connected algebraic groups, in: Cohomo-
logical invariants in Galois cohomology, University lecture series, Amer. Math. Soc.,
28 (2003).

D. Orlov, A. Vishik and V. Voevodsky, An exact sequence for K ,i” /2 with appli-
cations to quadratic forms, Ann. of Math. (2), 165 no. 1 (2007) 1-13.



(23]
[24]
[25]
[26]

(27]

(28]

[29]
(30]

[31]
[32]

Hasse principle for simply connected groups 199

R. Parimala and R. Preeti, Hasse principle for classical groups-over function fields of
curves over number fields, J. Number Theory, 101 no. 1, (2003) 151-184.

R. Parimala, R. Sridharan and V. Suresh, Hermitian analogue of a theorem of
Springer, J. Algebra, 243 no. 2, (2001) 780-789.

R. Parimala and V. Suresh, The u-invariant of the function fields of p-adic curves,
Ann. Math., 172 (2010) 1391-1405.

R. Preeti, Classification theorems for hermitian forms, the Rost kernel and Hasse
principle over fields with cdy (k) < 3, J. Algebra, 385 (2013) 294-313.

S. Saito, Class field theory for two-dimensional local rings, in Galois Representatioin
and Arithmetic Algebraic Geometry, Advanced Siudies in Pure Math., vol. 12 (1987)
343-373.

D. Saltman, Division algebras over p-adic curves, J. Ramanujan. Math. Soc.,12no. 1,
(1997) 25-47.

W. Scharlau, Quadratic and Hermitian Forms, Springer-Verlag (1985).

J.-P. Serre, Cohomologie galoisienne: progrés et problemes, Séminaire Bourbaki,
exposé, no. 783, 1993/1994, Astérisque, 227 (1995) 229-257.

A. A. Suslin, Algebraic K-theory and the norm-residue homomorphism, J. Soviet
Math., 30 (1985) 2556-2611.

V. Voevodsky, Motivic cohomolology with Z/2-coefficients, Publ. Math. Inst. Hautes
Etudes Sci., 98 (2003) 59-104. :




