J. Ramanujan Math. Soc. 29, No.4 (2014) 413-458

Subtle invariants of F-crystals

Xijao Xiao

Mathematics Department, Utica College, 1600 Burrstone Road, Utica, NY 13502
e-mail: xixiao@utica.edu

Communicated by: Dipendra Prasad

Received: November 15th, 2013

Abstract.  Vasiu proved that the level torsion €4 of an F-crystal M
over an algebraically closed field of characteristic p > 0 is a non-negative
integer that is an effectively computable upper bound of the isomorphism
number n o4 of M and expected that in fact one always has naq = €.
In this paper, we prove that this equality holds.

1. Introduction

1.1 Notations

Let p be a prime number and k an algebraically closed field of characteri-
stic p. For every k-algebra R, let W(R) be the ring of p-typical Witt vectors
with coefficients in R. For every integer s > 1, let Ws(R) be the ring of
truncated p-typical Witt vectors of length s with coefficients in R. Let og be
the Frobenius of W(R) and W;(R). Let 8z be the Verschiebung of W(R) and
Ws(R). Recall that 6gfg = Ogror = p. When there is no confusion of the
base ring, we also denote og by o and 8z by . Set B(R) = W(R)[1/p].
When R = k, B(k) is the field of fractions of W (k). An F-crystal M over k is
a pair (M, ¢) where M is a free W (k)-module of finite rank and ¢ : M —> M
is a o -linear monomorphism. Unless mentioned otherwise, all F-crystals in
this paper are over k. We denote by M g the pair (M @w ) W(R), ¢®ar). For
every W (k)-linear automorphism g of M, we denote by M(g) the F-crystal
(M, go) over k.

- T U122 Aimandscope =t = e—mm - e oo

The isomorphism number n x4 of an F-crystal M = (M, ¢) is the smallest
non-negative integer such that for every W(k)-linear automorphism g of M
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with the property that g = 1 modulo p"M, the F-crystal M(g) is isomor-
phic to M. This is the generalization of the isomorphism number np of a
p-divisible group D over k, which is defined to be the smallest non-negative
integer such that for every p-divisible group D’ over k with the same dimen-
sion and codimension as D, D’[p"P?]-and D[p"P] are isomorphic if and only
if D’ is isomorphic to D. The isomorphism numbers of p-divisible groups are
known to exist as early as in [8], as a consequence of Theorems 3.4 and 3.5
of the loc. cit. Recently, the isomorphism numbers of F-crystals are known to
exist by [13, Main Theorem A].

Traverso proved that np < c¢d + 1 in [11, Theorem 3], where ¢ and d are
the codimension and the dimension (respectively) of the p-divisible group D.
He later conjectured that np < min{c, d} in [12, Section 40, Conjecture 4].
In search of optimal upper bounds of np, the following theorem plays an
important role: - : :

Théorem 1.1 ([7, Theorem 1.6]). If D is a non-ordinary p-divisible group
over an algebraically closed field k, then its isomorphism number np is equal
to its level torsion €p.

For the definition of £p, see [16, Subsection 1.4] and [7, Definition 8.3].
We point out that the two definitions are slightly different. In the case when D
is a direct sum of two or more isoclinic ordinary p-divisible groups of differ-
ent Newton slopes, we get {p = 1 by the definition in [16, Subsection 1.4];
on the other hand, we get £p = 0 by [7, Definition 8.3]. If we assume that D
is non-ordinary, then the two definitions coincide.

Vasiu proved that np < €p in [16, Main Theorem A], and that

np = {p provided D is a direct sum of isoclinic p-divisible groups, that is,
. of p-divisible groups whose Newton polygons are straight lines. Later Lau,
Nicole and Vasiu proved the equality np ‘= £p in [7] for all p-divisible
groups D over k. Theorem 1.1 builds a bridge between the isomorphism
number np and other invariants of D, such as the level torsion € p, the endo-
morphism number e¢p, and the coarse endomorphism number fp, which turn
-out to be all equal by [7, Theorem 8.11]; see {7, Definitions 2.2 and 7.2] for
their definitions. Using Theorem 1.1, Lau, Nicole and Vasiu were able to find
the optimal upper bound of np < |2cd/(c + d)] (see [7, Theorem 1.4]),
which provides a corrected version of Traverso’s conjecture.

The level torsion €£a¢ of an F-crystal M is well-defined; see
[16, Section 1.2] or Subsection 4.4 for its definition. Therefore it is natural to
ask if the similar equality n a4 = €4 holds or not in general. As mentioned
before, Vasiu has already proved that npy < £xq and the equality holds
when M is a direct sum of isoclinic F-crystals. He expressed the expecta-
tion that the equality is true in general; see the paragraph after [16, 1.3 Main
Theorem A]. In this paper, we confirm this expectation.
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Theorem 1.2 (Main Theorem). If M is a non-ordinary F-crystal over an
algebraically closed field k, then its isomorphism number n aq is equal to its
level torsion € pmq.

See Theorem 5.5 for its proof. The definition of the level torsion £aq in
our paper is slightly different from the definition in [16, Subsection 1.2]; see
Remark 4.9. When M is a non-ordinary F-crystal, the two definitions are
exactly the same just as in the case of p-divisible groups.

1.3 On the proof of the Main Theorem

The proof of the Main Theorem uses many ideas from [7], [14], and [4].
It involves two major steps:

Step 1. Generalize the level torsion € a4, the homomorphism number eaq,
and the coarse homomorphism number faq to F-crystals M over k. Then
prove that they are all equal via a sequence of inequalities faqr < eam <
€m < fam that are the generalization of the inequalities fp <ep <¢€p < fp
obtained in [7].

The main difficulty in Step 1 is to have the right generalizations of €4,
e and fagq so that they remain unchanged under extensions of algebraically
closed fields. This requires the constructions of suitable groups schemes
End; (M) (resp. Aut;(M)) whose k-valued points are the endomorphisms
(resp. automorphisms) of F-truncations modulo p* of M for all s > 1.
The F-truncations modulo p* of F-crystals are the generalization of trun-
cated Barsotti—Tate groups of level s associated to p-divisible groups. They
are first introduced by Vasiu in [13] and will be recalled in Section 2; see
Definition 2.1. We will show that £, eaq and fa4 are invariant under exten-
sions of algebraically closed fields. This allows us to generalize the proof in
[7, Section 8] to our case.

Step 2. Prove that faoy = naq by showing that both faq and naq are equal
to the smallest number m defined by the property that the image of the natural
reduction homomorphism 7; 1 : End; (M) — End; (M) has zero dimension
ifandonly if s — 1 > m. :

In Step 2, the main result (see Theorem 3.15) is to show that 11 o4 is the place
where the non-decreasing sequence (dim(Auts(M)))s>1 stabilizes, which
generalizes a similar result for p-divisible groups in [4]. In order to show
this,- we construct a.group action for each s > 1 whose orbits parametrize
isomorphism classes of F-truncations modulo p*’; see Sibsection 321t turns -
out that the dimension of the stabilizer of the identity element of this action is
equal to the dimension of Auts(M) (Lemma 3.11). This allows us to use the -
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machinery of group actions to work with the sequence (dim(Auts(M)))s>1
in a way similar to [4] and [14]. ’

We note that the proof of our Main Theorem does not rely on the known
fact that noq < £ proved in [16]. ‘

Notes. After this manuscript was finished, we learned that Sian Nie had a
proof of the fact a4 < naq where M is defined over the ring k[[¢]] of formal
power series instead of over W (k); see [9]. He expressed the hope that the
same strategy might be used to prove Theorem 1.2. ‘

2. F-truncations of F-crystals

In this section, we recall F-truncations modulo p* of an F-crystal M over &
and provide several equivalent descriptions of homomorphisms and isomor-
phisms between them.

2.1 Filtrations of F-crystals

Let r be the rank of M. Throughout this paper, the integerse1 < - - - < e, will
always be the Hodge slopes of M and the integers f; < --- < f; will always
be all the distinct Hodge slopes of M; thus {fi,..., f;} = {e1,..., e/} as
sets. Clearly f1 = e; and f; = e,. For each integer s > 0, let &5 be the Hodge
number of M, thatis, hy; = #{e; | e; = 5,1 <i < r}. Clearly, hy, > 1 for all
1 <1 < t. We say that a W(k)-basis {v1, 02, ...,0,} of M is an F-basis of
Mif{p~ey), p~2p®2), ..., p ¢ (v,)} is as well a W (k)-basis of M.
Every F-basis of M is also an F-basis of M(g) for all g € GLy(W (k)). For
each isomorphism of F-crystals A : M; — M) and an F-basis B of M,
it is easy to see that 2([3) is an F-basis of M.

For each positive integer 1 < j < ¢, wedefineI; = {i | ¢ = f;,1 <
i < r}. Foran F-basis B of M, let Fj;(M) be the free W (k)-submodule of M
generated by all v; with i € 1;. We obtain two direct sum decompositions of
M that depend on B (and thus on M):

t 13
M = B F500) = P o FY)).

For each 1 <i <t, by letting Fg(M) = @3=i F?é(M), we get a decreasing
and exhaustive filtration of M

FR(M) : F5(M) = F(M) C F5'(M) C - C Fp(M) = M.
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For each F5(M), let R - FL(M) — M be the restriction of p~fig to

Fl‘;.(M). For every integer s > 0, let F3(M); be the reduction modulo p*® of
the filtration Fg(M), namely

FE(M)/p* FE(M) C Fg ' (M)/p*F ' (M) C --- C Fi(M)/p* F5(M).

Foreach 1 < i < t, we denote by ¢ Fiy (M) [s] the o-linear monomorphism
PFL(m) modulo p®, and by ¢ F,;(M)[S] the sequence of the o -linear monomor-
phisms ¢ Fis( M)[s] With 1 < i < t. By a filtered F-crystal modulo p® of an
F-crystal M, we mean a triple of the form

(M/p°M, Fg(M)s, ¢ Fammls])-

Let M; and M, be two F-crystals with the same Hodge polygons as
M, By and B; two F-bases of M; and M respectively. By an iso-
morphism of filtered F-crystals modulo p* from a filtered F-crystal
modulo p® of Mj to a filtered F-crystal modulo p* of M>,, we mean a
W; (k)-linear isomorphism f : M;/pM; — My/p*M, such that for all
| <i <t wehave f(Fg (Mi)/p°Fg (M1)) = Fj (M2)/p*Fj (M) and
¢F;'32(M2)[S]f = f‘PFg’(M,)[S]-

2.2 F-truncations

In this subsection, we recall the F-truncation modulo p® of an F-crystal
defined in [13, Sect. 3.2.9]. It is the generalization of the D-truncation
(M/p*M, p[s], 8(s]) of a Dieudonné module (M, ¢, 8); see [13, Sect. 3.2.1]
for the definition of D-truncations.

Definition 2.1.  For every integer s > O the F-truncation modulo p® of an
F-crystal M is rhe set Fg(M) of isomorphism classes of filtered F- crystals
modulo p® of M as B varies among all possible F-bases of M. Let M, and
M, be two F-crystals with the same Hodge polygon. A W (k)-linear isomor-
phism f : My /p° My — M, /p® M is an isomorphism of F-truncations mod-
ulo p® from Fs(M;) to Fs(My) if for every F-basis By of M, there exists
an F-basis By of M3 such that

o f (MI/P M1, FBI(Ml)s:(oFB (M,)[S])

(Mz/PSMz, Fg,(M2)s, 9y (s ])

is an isomorphism of filtered F -crystals modulo p°.
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’

Suppose f is an isomorphism of F-truncations modulo p* from Fs(M)
to Fs(M(g)). Define a set function I'ys : Fg(M) — F(M(g)) as fol-
lows: the image of the isomorphism class represented by (M/p*M, Fg, (M)s,
Py, (m[s]) under Ty is the isomorphism class represented by (M/p*M,

Fg,(M)s, (89)Fy, mn[s]) if A
(MM, Fg, (M)s, 9y onyls]) = (M/p* M, Fg,(M)s, (¢0) g, ) (5])

is an isomorphism of filtered F-crystals modulo p*. It is easy to see that this
function is well-defined and we shall prove that I f,s is a bijection of sets in
Corollary 2.4.

The following lemma is a generalization of [13, Lemma 3.2.2] to F-crystals
for G = GL .

Lemma 2.2. For each F-crystal M and every g € GLy(W(k)), the
Jollowing two statements are equivalent:

(1) There exist h € GLp(W(k)), F-bases By and B, ofM and M(g)
respectively, such that the reduction hls] of h modulo p°® induces an iso-
morphism

Bis): (M/p* M, P8, (M)s, o7y onls))
> (M/p° M, P, (M), (80)r an)lsD) @.1)

of filtered F-crystals modulo p°. -
(2) There exists an element gs e GLy(W{k)) wn‘h the property that it is
congruent to 1y modulo p* such that M(g;) is isomorphic to M(g).

Proof. To prove that (2) implies (1), suppose i € GLp(W(k)) is an iso-
morphism from M (g;) to M(g). For every F-basis B of M(g;), there is an
F-basis h(B) of M (g), and the reduction of & modulo p* is an isomorphism
of filtered F-crystals modulo p*:

v

his]: (M/p°M, Fg(M)s, (8s9) ry(m)[s])
— (M/p° M, Fijzy(M)s, (89) Fy 5, 0 [SD-

As gs = lp modulo p* and B is also-an ordered F-basis of M, we have a
canonical identification of filtered F-crystals modulo p*:

51 (M/p*M, Fg(M)s, o rgynls]) = (M/p° M, Fg(M)s, (85¢) gy (s])-

Composing the two isomorphisms h[s] o id[s] = h[s],'we get the desired
isomorphism (2.1) by taking B = B and B; = h(B).
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To prove that (1) implies (2), let gs = h~'gphp~'. We claim that g
belongs to GLy (W (k)), which is equivalent to h(p~ (M) c ¢~ (M).
As M = @3-:] p‘fi(p(Fé,l (M)), it is enough to show that

t .
h(Fg (M)) ¢ @ pCIi=DFL (M) =9~ (plimM) N M.
i=1

Indeed, for each v € ffél M) C Fljﬂ (M), we have ]1'¢F,§|(M)(v) —

g(pFé (M)h(v) € p*M, therefore ho(v) — goh(v) e p*HiMm.
2 .

Asv € Fj (M), weknow that ¢ (v) € p/i M and thus ho(v) € p/iM. By the

last two sentences, we know that gph(v) € pfiM, whence ph(v) € pfiM.
This implies that h(v) € ™ (pfiM) N M. As

(M, g0) = (M, h™ goh) = (M, g,9),

it remains to prdve that g; is congruent to 1y modulo p*. As B, is an
F-basis of M(g), h~!(B3,) is an F-basis of M(gs). We have an isomorphism
of filtered F-crystals modulo p*® as follows:

h='[s]: (M/p° M, Fg,(M)s, (80)Fy mylsD)
— (M/P M, F, /, (B, )(M)S: (g.s'¢)F,:_|(32)(M)[S])-

Composing the isomorphism (2.1) with the last isomorphism, we have an
isomorphism

id(s]: (M/p*M, Fg, (M)s, 0rg ()[s])

—> (M/P’M, Fy_y 5,y (M)s, (gs0)re_, s

L3y
Forevery 1 < j <t,and foreachv € ?él (M), we have

(gS¢)FJ (52)(M)(U) ¢F1 (M)(U) € I)SM-
This means that gs(p fig()) — p~Tip() € p*M, that is, g, fixes every
element ofp‘J(a(FB (M)) modulo p*. Because M = EB] 1p"ffgo(FB (M)),
we know that g ﬁxes every element of M modulo p®, whence g; = 1y
7modulo p : : O

Proposntlon 2 3. For all g, h € GLM (W(k)) rhe reduction of h modilo 5=

is an isomorphism from Fs(M) to Fs(M (g)) lfand only ifh~lgphp™! =1y
modulo p°.
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Proof. For every h € GLjp(W(k)), if the reduction of A modulo p* is an
isomorphism from Fs(M) to F3(M(g)), then h : M(g;) — M(g) is an
isomorphism of F-crystals where g; = h=lgphp~1 = 1, modulo p* by
Lemma 2.2.

If h~gphep~! = 13 modulo p*, then there exists g, = h~gphop~! con-
gruent to 1) modulo p* such that # induces an isomorphism from M(g;) to
M(g). For every F-basis B of M, which is also an F-basis of M(g;), we get
an isomorphism of filtered F-crystals modulo p*: '

his): (M/p* M, F5(M)s. 0 rgmy[s])
- (M/p°M, F;:(B)(M)s: (8¢)F,;(B)(M)[S])- =

1

Corollary 2.4. Let s be a positive integer. We recall that T 55 : Fs(M) —
Fs(M(g)) is the function defined by an isomorphism f of F-truncations
modulo p* from F3(M) to Fs(M(g)) (see the paragraph after Definition 2.1
for its definition). Then the function I s is a bijection.

Proof. Let h € GLp(W(k)) be a preimage of f € GLp(W;(k)) via the
canonical surjection GLy (W (k)) — GLy(W;(k)). By Proposition 2.3,
we have h~!gphp~! = 13 modulo p*. Taking inverses on both hand sides,
we have ph '~ lg™1h = 1)y modulo p®. After multiplying 4 on the left and
k=1 on the right on both hand sides, we get hph~'p~1g™! = 1 modulo p°,
that is, hph~1(gp)~! = 1) modulo p°. Hence h~! defines an isomorphism
of F-truncations modulo p® from F;(M(g)) to Fy(M). This implies that.

I' s is a bijection. O

The next corollary justifies that the isomorphism number of F-crystals is
the right generalization of the isomorphism number of p-divisible groups.

Corollary 2.5. Let tn be the smallest integer such that for all
g € GLy(W(k)), if Fr, (M) is isomorphic to Fy, (M(g)), then M is
isomorphic to M(g). We have tpq = ng.

Proof. If F,,,(M) is isomorphic to F,,,(M/(g)), then by Lemma 2.2, there
exists g,,, € GLpy (W (k)) with the property that g,,, = 1p modulo p"M
such that M(gp,,), which is isomorphic to M by the definition of isomor-
phism numpbers, is isomorphic to M(g). Thus tpm < nag.

Let g, = 1p modulo p’™. By Proposition 2.3, 1 [taq] € GLp (Wi, (k)
is an isomorphism from F;,, (M) to Fy,,(M(g:,,)). By definition of £p1, M
is isomorphic to M(gs,,). Thus nayg < taq. O

Proposition 2.3 motivates the following definition of a homomorphism
modulo p® between two F-crystals.
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Definition 2.6. A W (k)-linear map hls] : Mi/p*My — Mp/p°*M, is
a homomorphism from Fs(M) to Fs(My) if a preimage h € Homy )
(M1, M>) of hls] under the canonical surjection Homyy ) (M1, Mz)
Homyy, k) (M1/p* M1, Ma/ p* My) satisfies p2he]' = h modulo p*. We call
h a lift of h[s] and h[s] a homomorphism modulo p* from M to Ms.

Remark 2.7. A homomorphism A[s] modulo p® between M; and M>
implicitly implies that there exists a lift 2 of A[s] in Homw (M1, M2) such
that (pzh(ol_l is also an element in Hom ) (M;, M,). Note that k[s] is not
just a Wy (k)-linear homomorphism A[s] : My /p* M1 — M3/ p®M> such that
hg1 = p2h modulo p*, although this is a consequence of the definition but it
is not equivalent to the definition.

Remark 2.8. Note that the definition of an isomorphism between two
filtered F-crystals modulo p°® requires that the two F-crystals have the same
Hodge polygon described in Subsection 2.1. In Proposition 2.3 we also
require that the two F-crystals have the same Hodge polygon. On the other
hand, in Definition 2.6, we do not require that the two F-crystals have the
same Hodge polygon. It is reasonable to ask if 2[s] € GLy (W; (k)) and there
exists a lift » € GLp(W(k)) of h[s] such that (pzh(pl_l = h modulo p*,
do (M, ¢1) and (M, ;) have the same Hodge polygon so that k[s] induces
an isomorphism between F;(M) and F;(M>3)? The answer is yes because
if gozhgol_] = h modulo p®, then we know that ¢2h(pl—1 € GLy (W(k)). Thus
qozhgol_l((pl(M)) = p2h(M) = ¢2(M). As a result, (pzhgol_l induces an iso-
morphism from M/@1(M) to M/p>(M) and thus (M, ¢;) and (M, ¢2) have
the same Hodge polygon. Therefore if AM; and M, have different Hodge
polygons, then F;(M) and F;(M>) are not isomorphic modulo p*.

Proposition 2.9. Let s > 1 be an integer A homomorphism
his]: M1/p* My — M,/ p* M, is a homomorphism from Fs(M,) to Fs(M>)
if and only if there exists a lift h of h[s] in Homy (M1, M>) such that for
every x € Mi\pM,, if pi(x) € p'My\p'™' My, then ho;(x) = ¢2h(x)
modulo p**'. Moreover, if we fix an F-basis By = {v1,v2,...,0,} of My,
then the condition “for every x € Mi\pM1” in the prior sentence can be
strengthen to “forall x € B, ”.

Proof. Let h[s] be a homomorphism from Fy(M) to F;(M3), then there
exists n € Homw (M, M) such that (oth)l_l = h modulo p®. Let
x € Mj;\pM; be such that ¢1(x) € p'Mi\p'T!M;, whence —gol(x) €

M\ pM,. Plugging 1, ¢1(x) into (pzhgol‘ =h modulo p° gives the desuedv

congruence hg1(x) = ¢2h(x) modulo p**
~ Suppose h[s] € Hom(M,/ ple,Mz/ p°*My) satisfies that for every
x € Mi\pMy, if p1(x) € p'Mi\p'T! My, then ho1(x) = @ah(x) modulo
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~ p*. For every x € M;\{0}, there exists [ > O such that x € pIM\p My

We write qpl_](x) = p/x’ for some j € Z and x’ € M;\pM. Therefore
p1(x") € p'=i M\ p!=i+t1 My Plugging x’ = p‘jq)l_l_(x) into the congruence
@2h = hg; modulo pS_‘""f, we get goghgol_l(x) = h(x) modulo p® asl > 0.

To prove the strengthening part, for all x. € Mi\pM;, x = D> [_; xiv;
for some x; € W(k), we have ¢;(x) = >|_, p%o (x;)w; for some F-basis
{wy, w2, ..., wy} of My. Leti = min{e; 4+ ord,(x;) | 1 < i < r}. Then
p1(x) € p'M;\p'1 M,. Suppose for every 1 < i < r, hoi(v;) — p1h(v;) =
p**v! for some v/ € My\pM,, we conclude the proof by considering the
difference

hor(x) — p1h(x) = 0 (k1) = 3 0 (x)1 (h(v3))
i=1

i=l

r
— Zps_'_eia(xi)v,{ e ps+iM2.

i=1

O

Corollary 2.10. Let M be an F-crystal over k and let B = {vy, 02, ..., 0}
be an F-basis of M. For all g, h € GLjys (W(k)), the reduction of h modulo
p¥ is an isomorphism between Fs(M) and F;(M(g)) if and only if for all
v; € Bwe have hoi(v;) = p2h(v;) modulo p**% wheree; < ey < --- < e,
are the Hodge slopes of M.

We denote by Homg (M, M3) the (additive) group of all homomorphisms
modulo p* from M to Mp, that is, all homomorphisms from F;(M/) to
Fs(My).Fori = 1,2,if h;[s] € GLa (W, (k)) is an automorphism of F;(M),
and h; € GLp (W (k)) is a lift of h;[s] such that ph;p~! = h; modulo p*,

* then (h1h2)[s] is also an automorphism of Fs(M) as h1hy € GLy (W (k)) is

a lift of (1h2)[s] that satisfies

(111h2)_1go(111112)¢_] = 112_1(111_](011@"1)40112(0"1

= hz_lgohz(p_] = 1 modulo p°.

Thus all automorphisms of Fg (M) form an abstract group Auts(M) under
composition.

2.3 W, functor

For every affine scheme X over Spec W (k), there is a functor W (X) from the
category of affine schemes over & to the category of sets defined as follows:
For every affine scheme Spec R,

W, (X)(Spec R) := X(W(R)).
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If X is of finite type over W (k), it is known that this functor is representable
by an affine k-scheme of finite type (see [5, p. 639 Corollary 11), which will be
denoted by W (X). ¥ in addition X is smooth over Spec W (k), then W, (X) is
smooth. Indeed, for every k-algebra R and an ideal / of R such that /2 = 0,
the kernel of W;(R) — W;(R/I) is of square zero. As X is smooth, we get
that

W, (X)(R) = X(W; (R)) = X(W;(R/1)) = W(X)(R/)

is surjective by [1, Ch. 2, Sec. 2, Prop. 6], whence W;(X) is smooth by the
loc. cit. Suppose X is a smooth affine group scheme over Spec W (k), then
W (X) is a smooth affine group scheme over k. The reduction epimorphism
Wst1(R) = W (R) naturally induces a smooth epimorphism of affine group
schemes over &

Red3+1’x . W;n+] (X) - WIH (X).

The kernel of Red,y1 x is a unipotent commutative group isomorphic to

GS““(X"). Identifying W (X) = X, an inductive argument shows that
dim(W; (X)) = s - dim(X;) and W;(X) is connected if and only if Xy is
connected. ) : :

2.4 Group schemes pertaining to F-truncations modulo p*

In this subsection, we construct a smooth (additive) group scheme
Hom; (M, M3) of finite type over k such that its group of k-valued points
is Hom; (M, M3), and a smooth (multiplicative) group scheme Auts(M)
of finite type over k such that its group of k-valued points is Aut; (M).

Fix s > 1. Let M; and M3 be two F-crystals over k. Let r; and r; be
the ranks of M; and M, respectively. We fix W(k)-bases By of M; and B;
of M5 (they are not necessarily F-bases.) Thus a W (k)-linear homomorphism
h:M; — M, corresponds to an rp xr) matrix X = [h]gf = (Xij)1zi<r.l<j<r
with respect to By and B,. Here and in all that follows we adopt the following
convention: for any » € M, [h(v)]ls, = X[v]s,. The Frobenius of M cor-
responds to an vy X r) matrix U = [¢z1]g: = (u;j)1<i,j<n With respect to B,

and the Frobenius of M corresponds to an r; X rp matrix V = [(oz]g; =
(vij)1<i,j<r, With respect to Bs.

ceeeec et W= (w,J)1<, ,j<r, be the transpose of the cofactor matrix of U.
We have w, ;i € W(k) ‘The matrix représéntation of - q;thol ~with.respect to
Bj and B; is Vo (X)o (W/det(U)). We would like to find conditions on X so

that the reduction of 2 modulo p*®, denoted by %[s], is a homomorphism from
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Fs(My) to Fs (My). By definition, the condmon (pthol = h modulo p°® is
equivalent to the system of equatlons

r ¥

= dul 2.2

a(det(U)) Z:l’;vma(xnm)a(wm]) xl, modulo p°, (2.2)

forall 1 <i <ryand1 < j <ry. Let! := ord,(det(U)), and det(U)~! =

p~td where d € W(k)\ pW (k). Then the system of equations (2.2) is equi-
valent to

non
D> 6 (@)0ino Gnm)o (wmj) = p' i = 8' (e (xi;)) modulo p . @23)
m=1n=1

If R is .a perfect ring, two elements u = (@, u®, . ..) and

w = WO, wh ) of W(R) are-congruent modulo’ p°® if and only if
u® = 1® forall 0 < i < s— 1. This is true because P’ = (0rOR)* = oxby,
and og is an automorphism of W(R) when R is perfect. Thus over perfect
rings, the system of equations (2.3) is equivalent to

rn.orn
2 20 (@)vin0 (inm)a (wpj) = 0'(0" (xij)) modulo 0+ (W (R)). (24)

m=1n=1

Let xpm = (x,S‘,Q, x,(,l,),, ...) and Py, the polynomial with integral coeffi-
cients that computes the g-th coordinate of the p-typical Witt vector which is
~‘a product of r p-typical Witt vectors. Then the system of equations (2.4) is
equivalent to

rn.on
3> Pagai@ (@), vin, 0 Giam), 0 (wm)) — D) =0 @.5)
, © m=1n=1 _
foralll <i <r,1<j<r,and0 < g <s — 1, and the equations

] rz

D> Pag(e(d), vin, 0 Fam), 0 (wj)) =0 (2.6)

m=1n=1

foralll <i<r,l1<j<r,and0<g <l-1.

For any three non-negative integers n1, ny and n3, let R, , », be the poly-
nomial k-algebra with variables x(jq) where 1 < i <mny,1 < j < np and
0 < g < na. Let J be the ideal of R, ,, s+i—1 generated by equations (2.5)
and (2.6). Let Y be the scheme theoretic closure of X = Spec Ry, ., s+1-1/J
under the canonical morphism Spec R,, ,, s+1—1 — Spec Ry, r,s—1 induced
by the natural inclusion i : Ry, r, s—1 <> Ry r,s+i—1. Thus Y is affine and
is isomorphic to Spec Ry, ,.s—1/i~}(J) =: Spec R;.
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o If s < I, then i~} (J) is generated by equations (2.6) for all 1 < i < ry,
I<j<rnandld<g<s—1

o If s > [, then i~'(J) is generated by equations (2.6) for all 1 < i < ry,
l1<j<rand0 < g <[ -1, and also equations (2.5) forall1 <i < ry,
l<j<rpandl0<g<s-—-1-1

For each k-algebra R (not necessarily perfect), the set of R-valued points
Y (R) is set of all W;(R)-linear maps

his] : M1 ®w,x) Ws(R) = M2 ®w, (1) Ws(R)
with the property that there exists a lift
h: M; Qwry W(R) — M2 ®wxy W(R))
such that for each x € M, if pij(x) € p' M\p'*!' M, then we have
ho (p1 Qwky or)(x @ 1w(r)) = (92 wx) oR) 0 h(x ® IW(a))

modulo M Q@wyy 8'F(W(R)). It is clear that Y;(R) has a functorial
group structure under addition, and thus Y, is a group scheme. Let
Hom;(M ), M3) = (Y)rea- If no confusions can occur, we denote
Hom; (M, M>) by H;. From the construction of (R;)req, it is clear that H; is
a smooth group scheme of finite type over k, and H; (k) = Hom (M1, M3).

The definition of H; would not be very useful if it would depend on the
choices of BB) and B,. We now show that H; does not depend on the choices
of By and B;. Let B} and B} be other W (k)-bases of M and M, respectively.
Let T = (#;;) be the change of basis matrix from B; to B} and 71 = (ti’j)
be its inverse. Let S = (s;;) be the change of basis matrix from B; to 3 and

S = (s,fj) be its inverse. Let U’ = [(01]2/' and V' = [(oz]g? be the matrix
I 2
representations of ¢ and ¢, with respect to 8] and B} respectively. We get
that 7-'U'6(T) = U, S™'V'6(S) = Vand TU le 1 (T™)) = U'™). Let
W’ be the transpose of the cofactor matrix of U’, then W’ /det(U’) = U’~}.
Let Y be the r, x r; matrix [h]g, = (y,J)]<,<r2 1<j<r, Tepresenting h

with respect to B] and Bj. Therefore we have X = S™'¥T. By solving
Ve (Y)o (W /det(U’)) = Y modulo p®, we get a similar system of equa-
" tions like (2.5) and (2.6), with d replaced by d’, vix replaced by v/, Xpm

~ replaced by yum, and wp; replaced by wm i They generate an ideal J' of

a polynomial algebra er rp,5+i—1 with variables y(q) We now construct
_.an 1somorphlsm Lt R,, T stl-1 = er ra,5+—1 mduced by the equalrty
X = §7'Y'T. More precisely, as thé (i; 7)-entry of S™1Y T-is 3y 55/ Yimlmjo
we deﬁne 1(x,.(]‘.’)) = > m P3.g(5/;, Yim, tmj). It is easy to see that ¢ is an iso-
morphism as its inverse # can be constructed by the equality ¥ = SX T-1
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in a similar way. Now we show that z induces a well- deﬁned homomorphism

t: Rerpsti-1/3 — r] a5l /¥ . Suppose that f € J, then we want to

show that 1(f) € 7. This is equivalent to show that if V¢ (X))o (U™!) =

then V'o(Y)o(U'~!) = Y, assuming that X = S~!'YT. Indeed, we have
TU e 1@ =01, and S71V/6(S) = V, we get

Y =SXT™ = SVe(X)o(U™HT™! = ST Vo (8)o(X)o (U HT™
= Voo (X)o (T 'U e (TNT ' = Ve (V)o(U'HTT™!
= V'e(Y)o (U'™H.

Thus the induced 1 is well-defined. By the same token, we can show that
the inverse # also induces a well-defined homomorphism at the level of
quotient k-algebras. As 1 and x are inverses of each other, we know that
R rs+1-1/3 = R;l ra st /3. Let Y be the scheme theoretic closure
of Spec Rr] ry.s+i—1 /3’ under the canonical morphism Spec er rpstl—1
Spec er rys— ; induced by the natural inclusion i’ R;l rs—1 > R;],VZ,J‘ IRE
It is clear that Y, is isomorphic to Y} as k-schemes. To see that they. are
also isomorphic as k-group schemes under addition, it is enough to see
that the definition : and # respect addition because if X; = S~'¥;T and
Xy = S71Y,T, then X1 + Xy = S™1(¥; 4 Y»)T. Thus the definition of H;
does not depend on the choice of basis. v

If My = My = M, then r;y = r, = r. In this case, we denote
Hom; (M, M3) by End;(M) or for simplicity E; if no confusions can
occur.

Now we assume that My = My = M (thus r; = rp = r) and construct
a group scheme Aut,; (M) whose k-valued points is Aut, (M). Here we make
use of a simple fact of Witt vectors: for any k-algebra R, anelement x € W(R)
is invertible if and only if x@ is a unit in R. Put

1 R
Ts := Ry 51 PRVEON /l I(J)-
det(x )

Then Spec 7;(R) contains all the multiplicative invertible elements in Y (R).
It is the set of all W, (R)-linear automorphisms

his]: M ®w,x) Ws(R) = M Qw, ) Ws(R)

with the property that there exists a lift & € GLasgyygw(r) (W(R)) of hls]
such that for each x € M, if p(x) € p'M\ p'*' M, then we have

ho(p ®ww or)(x ® lw(r)) = (¢ Owk) or) © h(x ® lw(r))
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modulo M ®w ) (Ji"‘S(W(R)). If hi[s], ho[s] € Spec Ts(R), then (hih2)[s]
is in Spec T;(R). Here (h1hy)[s] is h1hy modulo 6. It coincides with the
notation that A[s] is £ modulo p* when R is perfect. Hence Spec T (R) has
a functorial group structure under composition and thus Spec T is a group
scheme. Let A; = Autg(M) := Spec (T)req. Then A (k) = Auty (M)
is the group under composition of automorphisms of F-truncations modulo
p¥ of M. From the construction of (T)red, it is clear that A; is a smooth
group scheme of finite type over &k and, as a scheme, it is an open subscheme
of E;. We now study an important invariant ya¢(s) := dim(Aut;(M)) asso-
ciated to M. As E; is smooth, all connected components of E; have the same
dimension. Therefore y o4 (s) = dim(Ey).

Proposition 2.11. For every [ > 0, the sequence (yp(s + 1) — yar(s))s>1
is a non-increasing sequence of non-negative integers. Therefore, we have a
chain of inequalities 0 < yp1(1) < ypm(2) < --- .

Proof. For each pair of integers ¢+ > s, there is a canonical reduction
homomorphism #; s : E; — E;. For every perfect k-algebra R, and every
h(s] € E4(R), there is a lift & of h[s] such that php~! = h modulo p°,
then pp'~Shp~! = p'~*h modulo p’. Hence we get a monomorphism
p'~% : E; — E, that sends h[s] to p’~Sh[s] at the level of R-valued points.
For every perfect k-algebra R and every h[t] € E,(R), h[t] = p'*(A'[s]) for
some h'[s] € E;(R) if and only if 4[s] belongs to the kernel of z; ,_;. Hence
we have an exact sequence on the level of R-valued points

0 —> E;(R) —>— E,(R) 2= E,_,(R).

The dimension of Im(z;;—,) is equal to yar(r) — yam(s) > 0. Because
Ts+14l,] = Tstll © Tstltls+l> IM(wsq140,0) is a subgroup scheme of
Im(zs4+1,7). Hence the dimension of Im(7s414.1), whichis yp(s +1+1) —
yam(s + 1), is less than or equal to the dimension of Im(zs4;;), which is
Yam(s +1) — ya(s). o

Recall an F-crystal M is ordinary if its Hodge polygon and Newton poly-
gon coincide. It is well known that the ordinary F-crystals over k are precisely
those F-crystals over k which are direct sums of F-crystals of rank 1.

Proposition 2.12. Let M be an ordinary F-crystal, then y pq(s) = 0 for all
s> 1.

Proof. If M- is ordinary, then M = @!_, M; where M; are isoclinic ordi-
nary F-crystals. Thus there exists an F -basis B = {v1,v2, ..., v} of M such
that ¢(v;) = p%v; for 1 < i < r. The ideal J that defines the representing
k-algebra of E (M) is generated by equations of the following two types:
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) a(xi(;)) - x,.(;) forall randi, j € [y forall 1 < <t¢;
¥)) xi(;) for all r and i, j that don’t belong to the same I;.

It is clear now that representing k-algebra is finite dimensional over k. Thus
E; is of dimension zero, so is A;. O

3. Isombrphism classes of F-truncations

In this section, we follow the ideas of [4] and [14] to define a group action for
each s > 1 whose orbits parametrize the isomorphism classes of F;(M(g))
for all g € GLj (W (k)). We show that the stabilizer of the identity element
of this action has the same dimension as Aut; (M), which allows us to study
the non-decreasing sequence (ypm(i))i>1 via the orbits and the stabilizers of
the action. The main result of this section is Theorem 3.15, which is a partial
. generalization of [4, Theorerh 1]. It will play an important role in the proof of
the Main Theorem in Section 5.

3.1 Group schemes

In this subsection, we will introduce some .affine group schemes that are
necessary to define the group actions in order to study isomorphism classes of
F -truncations. A ‘

Let M = (M, ¢) be an F-crystal over k. Recall GLyy is the group scheme
over Spec W (k) with the property that for every W (k)-algebra S, GL s (S) is
the group of S-linear automorphism of M @w ) S. Put V.= M Qw) B(k),
then we have canonical identifications

GLyv = GLuy X W (k) Spec B(k) = GL(p—l(M) X w (k) Spec B(k).

Let G be the scheme theoretic closure of GLy in GLy X GL,-1(3r) embedded
via the composite homomorphism

GLy 5 GLy x GLy — GLy x GL,-1¢4yy.

For any flat W (k)-algebra S, G(S) contains all & € GLygy () s(S) with the
property that h(qo—l(M)®w(k) §) = ¢! (M)®w)S-Let Pg : G — GLy be
the composition of the inclusion and the first projection GLy x GL 100y —
GLy,.

Let B = {v1,v2,...,0,} be an F-basis of M. There are two direct sum
decompositions of M = @@'_, Fim)y = <y p~Jip(FL(M)), which
implies that o =1 (M) = = p~fi Fj,(M). With respect to B, the represent-
ing k-algebras of the following affine group schemes are clear:
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o GLy = Spec B(k)[xij | 1 <i,j < r)[z= |s

det(x;;)

o GLy = Spec W(k)[x;; | 1 <i,j < r][det(lx,-j)];

o GL, 14y = Spec W(k)[p%ixi; | 1 < i,j < r][m], where J;; =
fi — fmifi € Iy and j € I,; see Subsection 2.1 for the definition of
I; and I,,,. Note that det(p%ix;;) = det(x; ;) as for each permutation z of
{1,2,...,r}, wehave [T7_, p°=Ox;ri) = [Ti_) XizGi)- .

o G = SpecW(k)pix;; | 1 < i?j < r][m], where ¢;; = min(0, J;;).
For any affine scheme H, let Ry be the ring such that H = Spec Ryg. Let £
be the kernel of the composition

RerLy ® ReL — RgLy ® RgL, — RgLy-
¢

=T(a)

Then Rg = RgLy, ® R(;L(p_1 o /K. 1t is easy to see that the natural homo-
morphism

ReLy ® Rer, .y,

. s ! 1
/K — W) pxij | 1<i,j<r] [det(xij)]

is an isomorphism of W (k)-algebras.

Proposition 3.1. The scheme G is a connected smooth, affine group scheme

over Spec W (k) of relative dimension r?.

Proof As G is a principal open subscheme of the affine space
Spec W(k)[pixij | 1 < i,j < r]over W(k), it is affine, smooth, integral
and of relative dimension 2. From this the lemma follows. ]

Fix an F-basis B of M.Ifl # m, let G; ,, be the maximal subgroup scheme
of GL, that fixes both

FAMe - o F ' Mo Fit' M) @ - @ Fy(M)

and
F(M) ® Fg (M)/Fg(M).

With respect to the F-basis B, the (multiplicative) group scheme Gy, is
isomorphic to Spec W(k)[x;; | i € I, j € I,,]. If R is a W(k)-algebra, then

Gi,m(R) = lygyg r + Hom(F2 (M), F5(M)) ®wgy R, -
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bk '
and thus G, = G, L (- m;let Gy be GL*ﬂ L (M- With respect to the
F-basis B, Gy is isomorphic to Spec W(k)[xi; | i, j € Il)| 30— det(x ] Put

Gt = H Gl,m
1<m<I<t

=Gr,-1 X G2 X612 xG32x 61 X - xG31 X G,

G-= ][] Gin

1<l<m<t

=G12xG13x - xG1; xGo3 x--Grogr—1 XGr2r X Gro1,,
t .
Gy := HGl,l, and G =Gy x Gy xG_.

With respect to the F-basis B,

_ 1
G =SpecW{E)[x;; [1<i,j<r] .
Y ITi=1 det(xij)i,jer,

Let Py, : G — GLs be the natural product morphism, and let Pg be the
composition
Pno[le, xlg,x [] ™" }:G G- GLy.
I<l<m<t

For any morphism Q : H; — Hj of affine schemes, let Q' RH2 — RH1
be the natural homomorphism induced by Q.

Lemma 3.2. There is a unique morphism P : G — G such that
PG oP = Pg.

Proof. The morphism Pg : G — GLjs at the level of W (k)-algebras

1
PG WEBxij |1 <i,j <r] [det(x-)]
ij

— WEpixij|1<i,j< r]|:

1
det(xij)jl

is such that P(’;(xi i) = x;j; see the coordinate description of G for the defini-
tion of ¢;;. Note that ¢;; < 0. The morphism Pg : G — GL /s at the level of
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W (k)-algebras

, . I3 1
Pt W) [xijll <4,/ <r] [det(xz’j):l

1
[T} det(xij)i,jen, ]

is such that P(i;(xi i) = P, (p~Cix;;). It is easy to check (at the level of
R—vallied points) that PL(det(x;;)) = [Ti_; det(x;;)i,jer,- This forces
P : G — G tosatisfy P'(pSix;;) = P,(x;;) and it indeed defines a
W (k)-algebra homomorphism

— Wk)xi;]1 <1i,j Sr]l:

P -WHE)pSixi; |1 <i,j<
®)p Xij | __laJ._r]l:det(xij)jl

1
- WE)xi; |1 <i,j <r] ,
! ITi—; det(xij)i, jer,

as

P'(det(xi)) = det(P'(xij)) = det(P,,(p~“Ux;j)) = det(Pg (xi;))

t
=[] detCxi)ijer,- ]
1=1

Lemma 3.3.  For every k-algebra R, the morphism P induces a bijection on
W; (R)-valued points for all positive integer s.

Proof. We first show that P induces a bijection on W (R)-valued points.
We start by showing that the image of Pg(W(R)) is the same as the image
Pg(W(R)) in GLp(W(R)), which is

S = {(p"rijh<ij<r | rij € W(R), det(r;j) € W(R)*}.
As t x t block matrices, these are matrices of the type

Nu pfz—le12 pf3—f11\/13 pfz—lem

Nay No2 i)f3_f2N23 pfl"f2N2r
N =

N# N;p . N3 oo _N",

where Ny, is an arbitrary hy, x hy, matrix for 1 <[, m < t with entries in
W(R), and det(N) € W(R)*. We claim that N;; are invertible for 1 <i <¢.
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After reduction modulo (W (R)), the matrix N is a lower triangular block
matrix. The determinant of N modulo (W(R)) is J]}_, det(V;;) modulo
6(W (R)), which is a unit in R, this implies that det(N;;) modulo 8(W (R)) is
a unit in R and hence det(N;;) is a unit in W (R).

Let X be an arbitrary ¢ x ¢ block matrix in Go(W (R)) so that the diagonal
blocks are denoted by X;;. If | > m, let Y, be an arbitrary r x ¢ block matrix in

Gi,m (W(R)) with ?1,,, at (I, m) block entry and 0 at everywhere else. If | < m,

let Zn be an arbitrary £ x  block matrix in Gy, (W (R)) with pf»=fiZ,,, at
(I, m) block entry and 0 at everywhere else. We need to show that the set

H YimX H Zim | X, Y1, 21y, satisfy the conditions stated above
l<m<I<t I<l<m<t

is equal to the set S of all ¢+ x ¢ matrices N as described above. Here the
order of the product {[;,, .j<, Yim is the same as the order in the definition
of G+. The order of the product [, ;. <, Z;,,, is the same as the order in the
definition of G_.

We use induction on ¢. The base case when 1 = 1 is tr1v1al Suppose it is
true for ¢ — 1. Then

X1 pfz—flx12 pfl—l"flAl,'_] 0

X21 X2 o pliThxy, 0

IT Ytwx I zZm=| : : , : :
1<m<l<i—1 I<l<m=<t—1

X101 Xi—12 o Xi-14-1 O

0 o 0 X

satisfies det(X;;) € W(R)*, and each )’(v,;,, is an arbitrary hy, x hf, matrix if
I # m. We abbreviate this matrix by (i){ XO ), then
tt

T e) I 2=GNE )6 )

Here the matrix Y ()7,1, Yo,.. Y,r 1) has size hy, x (r — hy,) and
the matrix Z = (pf' AN pf' f222,, Pl I Z 0 )T has size
(r —hyp) x hy. As X is invertible, the right multlphcatlon of X induces a
bijection from the setof all hy, X (r — hy,) matrices to itself. Thus YX can be
any hy, x (r — hy,) matrix with X fixed and ¥ varied. Multiplying X and Z,
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we get
Xll pf2_f1X12 e pﬁ_l_flxl,t’“—l pfl_flzlt
X21 X2 e plT Ryt pli=12zy,
X110 Xem12 oo Xt 1,-1 pli=fi- Z‘—l,t

pF (X Zy 4+ X1p1Zi-1,)
- phh(plhmhiXyZy 4+ + X2,:-1Z1-1,1)

pli I (pfi = NX, 0 Zy 4+ Xim1m1Zi1y)
To show that XZ can be any matrix of the type '
(p" TNy, pf 2Ny, o pF TN )T
with X fixed and Z varied, it is enough to show that the matrix

Xn X12 o X1
plr Xy X2 e Xo41

pft—l_let_l,l pf'—l—f?lX,_l,z s X101

1s invertible. But this is so because X;; are invertible. When X , Y and Z are
fixed, X;; + Y XZ can be an arbitrary invertible A, x A, matrix with X;; varied
because ¥ X Z modulo p is zero. Thus we have shown that Pg(W(R)) and
Pg(W(R)) are the same in GL 3 (W(R)).

To show that P(W(R)) is a bijection, it is enough to show that Pg(W (R))
is an injection. If this is true, as Pg(W(R)) is an injection and the image
of Pg(W(R)) and Pg(W(R)) are the same, then P(W(R)) is a bijection.
Suppose

IT tmx [ Zm= ] YuX [] Zn (3.1)
l<m<i=<t isl<m5t l<m<i=<t 1<l<m<t ’
and we want to show that ¥, = Yl’m foralll <m <l <t, X = X' and
Zim = Zj, forall 1 <1 < m < t. By the definition of Y}, and Z;, it
suffices to show that [T <, <1< Yim = [li<m <<t Yim 204 [i<tam<s Zim =
IT1<i<m<t Z},,- Equality (3.1) is equivalent to
-1

1 . IT twx=x [T zi.{ ] &~} -

l<m<i<t 1<m<lI<t 1<l<m<t I<l<m<t
3.2)
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Let ([Tj<mer<t Vi) ™! H]<m <<t Yim =1+ Y where Y is strictly lower tri-
angular and [T« cpm<s Zim T li<tam<s Zm)~" = I + Z where Z i strictly
.upper triangular. The equality (3.2) is equivalentto YX = X Z. It is easy to
see that Y = Z = 0 as X is a diagonal block matrix with invertible blocks
Xi. This completes the proof that P(W(R)) is a bijection.

To show that P(W;(R)) is injective, let f1, f» € G(Ws(R)) with lifts
fi, € G(W(R)) respectively such that P(Ws(R))(f1) = P(Ws(R))(f2).
The images of P(W(R))(fi) and P(W(R))(f2) under the reduction epi-
morphism G(W(R)) — G(W;(R)) are the same. Hence P(W(R))(f1) and
P(W(R))(f,) are congruent modulo 8°. As P(W(R)) is a bijection, f; and
f2 are also congruent modulo 8° as well. Hence fi = f>.

To show that P(W(R)) is surjective, let f € G(W;(R)), a lift
f € G(W(R)) of f has a preimage g € G(W(R)) such that
P(W(R))(g) = f because P(W(R)) is surjective. Thus the image of g in
G(W;(R)) is a preimage of f. This shows that P(W;(R)) is bijective and
thus completes the proof the lemma. O

Corollary 3.4. Themorphism P : G — G induces an isomorphism Pw, (k) :
Gw, ) = Gw, ) for each s > 1.

Proof. If s = 1, then Pw ) = F. It is an isomorphism by Lemma 3.3.
Suppose that s > 1. As Rg and Rg are W;(k)-flat algebras, we get that
p*'Re/P°*Rc = Rg/pRg and p*~'Rg/p*Rg = Rg/pRg by the local
criteria on flatess. As a result, p* ' Rg/p*Rg = p*~'Rg/p*Rg. We have
the following commutative diagram:

0 —> p*~'Rg/p*Rg —> Re/P*Re — Rg/p*~'Rg —>0..
l’=” l” We k) l” Wy ()
0 — p* 'Rg/p*Rg — Rg/P*Rg — Rg/p* ' Rg—0

An easy induction on s using the five lemma concludes the proof of the
lemma. ) o

Let B3 be an F-basis of M. The Spec W (k)-scheme GLyy is represented
by the W (k)-algebra W(k)[x;; | 1 < i, j < r][1/det(x;;)]. We construct the
cocharacter 1 : G, — GLjs (that depends on ) defined by the k-algebra
homomorphism

p o WEx 11 <, j < rlll/det(xij)] = Wk)[x, 1/x]

with the property that u'(x;;) = 0 if i # j and w (xii) = (1/x)% for
1 < i < r where ey,ep,...,e, are the Hodge slopes of (M, ¢). Put

\
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om = pu(Bk))(p). It is a o -linear isomorphism of M defined by the rule
om(x) = p~ligx) forx e I?lé(M). It is well known {3, A.1.2.6] that there is
a Zp-submodule My = {x € M | opq(x) = x} of M, whose rank is the same
as the rank of M and such that M = M ®z, W (k). Note that the construc-
tion of My also depends on B. We fix a Z,-basis of By = {w1, w2, ..., w,}
of Mp. It induces a Z-basis Bf = {¢;; | 1 <i,j =< r}of Endgz,(Mo) such
that €ij (w]) = w;. Note that

Endwr)(M ®wx) W(R)) = Endz,(Mo) ®z, W(R).

Let h = Zi,j a;je;; € Endwr)y(M ®@wxy W(R)), a;j € W(R) for all
1 <i,j <r.Define

om : Endw gy (M Qwxy W(R)) — Endw gy (M Qwx) W(R))
by the formula 4(h) = Zi,j or(ajj)ei; and similarly, define
a2 Endwr) (M Qwky Ws(R)) — Endw, (r)(M ®w ) Ws(R))

by the formula ¢ (h[s]) = (X; ; or(ai;)eij)[s], where h[s] is h modulo 6°
(again this does not contradict to the previous convention that & [s] is # modulo
p°® when R is perfect.) One can easily show that the definition of 6 o4 does not
- depend on By and B but does depend on B. If R is a perfect field, then 614
satisfies 6 pq(h) = o Mha/r,l] , which is a formula that does not depend on the
choice of By or B but does depend on B since oo does.

For every h € Endw (r) (M ®wx) W(R)), define

@ (h) = opm(u(B(R))(1/p) o h o u(B(R))(p))-
A priori, the definition of ¢ (%) depends on the choice of the F-basis B of M
asorand pdo. Ash =3, s ajjeij, aij € W(R), we get

9(h) = om(u(B(R))(1/p) o h o u(B(R))(p))

=G m Z(ﬂ(B()())(l/])) oejj o u(B(k))(é)) ® aij
ivj
= > dm(u(BKR)(A/p)oeij o u(BE))(p) ® or (aif)
ij
= 2 omuBO)/p) o eij o p(BERN (PO @ or(aij)
- i((p oeij o9~ ) ® ar(aij).
i,j .
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Thus ¢(h) is a B(R)-linear endomorphism of M ®w ) B(R) defined by the
following rule: let h = >, h; ® ¢; under 'the natural identification (basis free)

Endw @) (M ®@ww) W(R)) = EndW(k) (M) ®wry W(R).

For any m @ b € M Qwky W(R), we have p(h)(m ® b) = > (¢ o hj o
9™ )(m) ® or(ci)b € (M Qwy BK)) @px) B(R) = M ®wy B(R). Thus
the definition ¢ (k) does not depend on the choice of 3. Note that ¢ (h) might
not be an element in Endw gy (M ®w k) W (R)) in general, but it is always an
element in Endw(R) (M Qw (k) B(R)).

Lemfna 3.5. For simplicity, set ',u BR)Y(p) = p(p)and n(B(R))(1/p) =
w1/ p). For every g € G;,(W(R)), the following three formulae hold.

(1) Ifm <1, then u(p)g?" ™ u(1/p) = ¢.
() Ifm =1, then u(p)gn(l/p)=g8.
@) Ifm > I, then u(p)gu(1/p) = g "

Proof. ‘We first prove (1) when m < [. By de@nition, g € G m(W(R)) if and
only if g = lyewr) + e where e € Hom(Fg (M), F[lg(M)) Rwk) W(R).
If m < [, then

w(p)g"" " u(1/p) = u(p)(lmw(k)wm) +pf’ Ime)u(1/p)
1M®W(k)W(R) + P ﬂ(P)eﬂ(l/P)

Thus it suffices to show that p/i=f» u(plep(1/p) = e.

Ase € Hom(FB (M), FB(M))®W(k)W(R) 1(1/p) actson FB (M)®w
W(R) as pfm, and u(p) acts on FB(M) ®wry W(R) as p~ i, we get the
desired equality.

The cases when m = [ and m > [ are similar and are left to the
reader. O

Corollary 3.6. For every g € Gy, (W(R)), the following three formulae
hold.

(1) Ifm <1, then Gm(g”" ™) = 0(g).
@) Ifm =1, then Gm(g) = 0 (g).
@3) Ifm > 1, then Gm(g) = 9(g?™ ™).

3.2 The group action T

Set G = W(G) and Dy = W,(GLy). As Gw,i) = Gw, 9, we have
G, := W,(G) = G;. The group action

Ts : Gy xx Dy — Dy
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is defined on R-valued points as follows: For every hl[s] € Gs(R),
gls] € Ds(R), let h € G(W(R)) be a lift of h{s] under the reduction epimor-
phism G(W(R)) - G(W;(R)) and g € GL (W (R)) be a lift of g[s] under
the reduction epimorphism GL (W (R)) — GL(Ws(R)). Define

T (R) (hls], gls]) := (hgp(h™")[s).

It is clear that the definition does not depend on the choices of lifts of i[s] and
gls] and does not depend on choice of basis.

To see that (hgo(h™1))[s] € D;(R), let us first recall the identification
Gw,xy = GWS () from Corollary 3.4, thus a[s] € Gs(R) = G(W;(R)) =
Gw, (k) (W (R) is an element of Gws k)(Ws(R)). We can g (non- unlquely) h(s]

as a product
fm—1i
[T mmlsirotst JT L, ’[s],

I<m<l<t l<l<m=<t

where [T, ., i<, Pim(s] € (G)w, ) (Ws(R)), hols] € (Go)w, ) (Ws(R)),

and [T, cmer Bimls] € (G)w,x)(Ws(R)). Therefore (hgo(h™'))[s] is
equal to

t

H himho H hﬁ:m_ﬁg(p H h”fl ™ H A1) ) [s]

l<m<l<t I<l<m<t I<l<m<t 1<m<li<t

= H himho H hf:,fm_flg

1<m<i<t 1<l<m=<t

< T1 ol ™Metsy T etih] s

I<l<m<t l<m<i<t

fm—1i _ N _
= I tmho T] ®5" "¢ JI omhomtgh

1<m<lI<t I<i<m<t I<l<m<t
- —1\ pfi—fm
x [ am@phP" " nls)
l<m<l<t
fm—1fi
= [I Pmisirots1 [] h" [s1gls]
I<m<i<t 1<l<m<t

X H 5M(hl_m1[s])5M(h51[s])_ H 5M((hl—,,3[s])pﬂ_fm

1=l<mzt . I<m<l<t

which is in Dg(R). The above formula proves that T is a morphism.
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- For later use, we record the following formula when R = k and s = 1.
- Ti(k)(R(1], g[1])

= [] mminelligltl [] G, 1)@y 111)

l<m<l<t I<l<m<t

(3.3)
3.3 Orbits and stabilizers of T

Let 1p7[s] € D;(k). The image of the morphism
¥ :=T,o (Ig, xx 1mIs]) : Gs = G xk Speck — G xx Dy — Dj.

is the orbit of 1y4[s], which we denoted by Oy. Its Zariski closure O, is a
closed integral subscheme of D;. The orbit O; is a smooth connected open
subscheme of O;.

Proposition 3.7. Let g;,g0 € GLpy(W(k)). Then gi[s], g2ls] €
GL (W, (k)) = D, (k) belong to the same orbit of the action T if and only
if Fs(M(g1)) is isomorphic to Fs(M(g2)).

Proof. We know that g1[s] and g2[s] belong to the same orbit of the action
. Ty if and only if there exists h[s] € Gg(k) such that T,(h[s], g1ls]) =
(hg1oh~ Y9~ 1[s] = ga[s]. This implies that A[s] is an isomorphism from
Fs(M(g1)) to Fs(M(g2)). ,
If hls] is an isomorphism from Fg(M(gy)) to F;(M(gz)), then
. hgioh~'9™! = g modulo p°. To conclude the proof, it is enough to
_ show that 2 € Gg(k), but this is clear from the facts that 7(M) = M and
h(p™! (M) C ¢~ (). O

Corollary 3.8. The set of orbits of the action Ty is in natural bijection to
the set of isomorphism classes of F-truncations modulo p* of M(g) for all
g € GLy (W (k)). '

Let S; be the fibre product defined by the following commutative diagram:

Ss — Speck
l JIM[S]
G, ——D;

It is the stabilizer of 1y/[s] and is a subgroup scheme of G;. We denote by C;
the reduced scheme (S)req, and C? the identity component of C;. Clearly,

dim(S;) = dim(Cy) = dim(C?) = dim(G;) — dim(Oy). (3.4)
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Example 3.9. In this example, we follow the ideas of [14, Section 2.3]
to discuss Tj(k). As a result, we will see that C] is a unipotent group
scheme over k. Let (M, ¢) be an F-crystal over k such that ¢y = 0.
By (15, Section 1.8] or [17, Theorem 1.1], there exist an element
g € GLy(W(k)) with the property that g = 1p modulo p, an F-basis
B = {v,02,...;0,} of M, and a permutation = on the set I = {1,2,...,r}
that defines a o -linear monomorphism ¢, : M = M with the property that
¢z (Vi) = pozy forall i € 1, such that M is isomorphic to (M, ggz). Let
4 be the cocharacter defined with respect to 5 and let G4 be the o-linear
endomorphism of Endw (ry(M ®w ) W(R)) defined with respect to . Set

I =(G, )eIxT|iel,jel, whee m>Il);
Io={(,j)elx1]i, jel forsome l};
I_={G,j)elxIliel, jel, where m <I}.

See Subsection 2.1 for the definition of I; and I,,. For 1 < i,j < r, let
fi,j € End(M) be such that f; j(v;) = v; and f; j(v;) = O for ! # j. For
every 1 + f,, € GLum(k), where fi j is fi; modulo p, ol + f_‘,',) =
oz (1 + f; )P =1+ f,,(,)’,,(J) For every h = hphoh— € G(k) = G*(k);
where hy € Gt for T € {+,0, —}, we know that 4[1] € S;(k) = C; (k) if and
only if

h [11ho[1] = G m (hol1D) A (h— [1])

by (3.3). This is equivalent to

(h4ho)[1] = Gm((hoh-)[1) (35)
Let o
ko)1)= 1n(11+ D xijéi
(i,/)e1+Vlp
and

(hoh )11 = 1[I+ D xijéij..
(i, j)elui_
Then (3.5) can be rewritten as ' _
> xmgeay= Y xlEa«g (3.6)
(i,j)el Uy (G, j)elpUl

This is equivalent to three types of equalities:

e Kr @) () = )_cfj ifr(i, Nel-uly and (x(),n(j) eI Ul (3.7)

Xaa(y =0 i (G, ) € Iy AR (r@sn()-e e Ul (38)

xl;=0 if(i,j)el-Uly and. (x(i),=(j)) € I-. (3.9)
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We decompose the permutation 7 X z on I x I into a product of disjoint
cycles [, (= x ), To ease language, we say that a pair (i, j) € / x I isin
(r x )y if (r x ), (@, j) # (i, j). To study the system of equations defined
by (3.7) to (3.9) we consider the following three cases:

(1) Consider (# x m), such that all (i, j) in (x x =), are in fo. By (3.7),

pord((rr X7 Yu)
Xij =X j . Thus there are finitely many solutions for x; ;.

(2) Consider (z x m), such that all (i, j) in (x x ), are in Iy U I and at
least one (i, j)isin /. By (3.8), x; j =0 forall (i, j)in (7 x 7).

(3) Consider (m x 7), such that at least one (i, j)in (x x z), isin I_. Let
v (i, j) be the smallest positive integer such that

(nvn(t J)(,) n—”n(’ })(])) el UI_.
By (3.7), xgm@y,am(jy = x for all 1 <m <v.(,J).

o If (7[”"(”/)(1’),n”"(”f)(j)) € I_, then xgm(y) om(jy = O for all
0<m=<v, (i, ).

0 If (ﬂv”(l J)(l) 7[””(1 j)(])) € I+, then Xgm@),z™(j) = ij for all
1 <m=<v,(, j).

Thus xm(j) zmjy forall 1 <m < v, (i, j) has finitely many solutions.

o If (xV~ (t,/)+1 @), (6, )+1 (J)) € 1. U Iy, then x vz i jy+1 (i), e G+ ()
equals 0 by (3.8).

o If (nUx@GDH(G), gvx D)) e I_, then X gvr G141 iy, vm G4 () 1S
not related to x; ;.

Let I” be a subset of J_ that contains pairs (i, j) such that (V=D (),
zV= @ (j)) € I;+. We conclude that h[1] € CO(k) if and only if the following
equations hold:

v (i, )
I
hi[1lhol1) = Im(1] + Z z x,] €xl(i),n!(j)>
(i,/)ell I=1
ve (7, -1
holl] = 1yl + > Z xP ey el iy
(el 1=
or (i) =1
rolh-[ =1yl + > > % e iy
G, jyell  1=0

where x; ; € IZ ™ can take mdependently all values in k such that hg[1] €
G (k). This shows that Lle(C ) = @(, jer kei,j, which contains no non-

zero semi-simple elements. Thus C? has no subgroup isomorphic to G,, and
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hence it is unipotent. We also get that the dimension of C? is equal to the
cardinality of /”. Therefore the dimension of O is equal to the cardinality of
the set /2 — J*. :

Proposition 3.10. For every s > 1, the connected smooth group scheme Cg
is unipotent.

Proof. We proceed by induction. The base case s = 1 is checked in
Example 3.9. Suppose CO 118 unipotent The image of C? under the reduc-
tion map Reds ¢ :'Gs = Gs-1 isin CS 1» and thus is unipotent. The kernel
of C(s) — Cg_l is in the kernel of Red; g, and thus is unipotent. Therefore

C¥ is an extension of unipotent group schemes, and thus is unipotent; see
{2, Exp. XVII, Prop 2.2]. 0

We construct a homomorphism A; : C; — Aj; as follows. For every.
k-algebra R, let h[s] € C,(R). Thus ¢(h[s]) = h[s]. Fix a Zp-basis
By = {v1,...,0,} of My. Let Bf = {e;;} be the standard Z,-basis of
Endz, (Mo) 1nduced by Bo. If h =3, i.j €ij ®aij € Endz, (M) ® W(R) =
Endw gy (M ®@w@ky W(R)), where a;; € W(R), then (p(h[s]) h[s] is
equivalent to

Z(oeij(p"] ®0’R(a,'j) = Ze,-j ® ajj modulo HS(W(R)) (3.10)
ij i,j .

Let C = (ci;) be the matrix representation of ¢ with respect to By and

cl= (c] j) be its inverse. Using the matrix- notation, (3.10) can be restated as

(cij)(or(aij))(or(c};)) = (aij) modulo 6°(W(R)). (3.11)

This implies that a lift & of h[s] satisfies the equation that defines A;. Thus
we can define A;(R)(h[s]) = Als].

Lemma 3.11. The homomorphism As(k) : Cs(k) — Ag(k) is an isomor-
phism. Therefore, A; is a finite epimorphism and thus dim(C;) = yaq(s).

Proof. The group Cs(k) consists of all 2 € G,(k) such that h = phg™!
modulo p®, which are exactly all automorphisms of Fs(M). As A (k) is also
the group of automorphisms of Fs(M) and Ag(k) is the identity map, we
know that they are isomorphic.

As Ag(k) is an isomorphism, A is a finite epimorphism. There-
fore dim(C;) = dim(C% = dim(A% = dim(A;), which by definition

is ypm (). - 0

Let TS+1 be the rediiced g group-of-the-group. subscheme Red_ﬂ G(Cs) of
G;+1, and let T 41 be its identity component. We have a short exact sequence

1 — Ker(Red41,6) — Tf = CY > 1. (3.12)
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Thus Tg 41 is unipotent as Ker(Red;11,G) and C? are. We have the following
equality ‘

dim(TY, ) = dim(Ker(Red,11,6)) + dim(C?) = r? + dim(C?).  (3.13)
By Lemma 3.11 and (3.13), we know that '
dim(T?, ) = % + ym(s). (3.14)

By (3.4) and the fact that Reds41,G is an eplmorphlsm whose kernel has
dimension 72, we know that

ym(s + 1) — yaq(s) = r? — dim(Oy41) + dim(Oy). (3.15)

Let V41 be the inverse image of the point 1p[s] € Dy(k). It is iso-
morphic to the kernel of Redy11 p and thus isomorphic to A,’cz. The inverse
image of O; under Reds_ll’D in Dy 1s a union of orbits and Oy is one of
them. Let Oy 5 be the set of orbits of the action T4 that is contained in
Red;ﬂl,D (Os). Every orbit in Oy intersects V4.1 nontrivially.

We now give another description of &1 in terms of F-truncations
modulo p* of F-crystals. Let .%; be the set of all F-crystals M(g) with
g € GLy(W(k)) up to F-truncations modulo p® isomorphisms. In other
words, if F3(M(g1)) is isomorphic to Fs(M(g2)), then we identify M(g1)
and M(g2) in .%;. By Proposition 3.7, we know that there is a bijection
between the set of orbits of T and .Z.

Proposition 3.12. There is a bijection between Os.1 s and the subset of
511 that contains all M(g) (up to F-truncation modulo p*+' isomorphism)
such that Fg(M(g)) is lsomorphzc to Fs(M). Therefore, Usy1 s has only one
“orbitif s > npg.

Proof. The first part of the proposition follows from the following fact:
for every g € GLy(W(k), an orbit of Ty; that contai'ns the F-truncation
modulo ps*! of the F-crystal M(g) is in Red] el p(Os) if and only if
F;(M(g)) is isomorphic to Fs(M).

If s > naq, let M(g) be an F-crystal such that F;(M(g)) is isomorphic to
Fs(M). By Corollary 2.5, M(g) is isomorphic to M. Thus &s4 s contains
only one element by the first part of the proposition. O

3.4 Monotonicity of y (i)

Lemma 3.13. The following two statements are equivalent:

(i) dim(Os41) = dim(Oy) + r?;
(i) Vsi1 C Os41.
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Proof. As Redsy1p : Os41 — Oy is faithfully flat, the fibers of this
morphism are equidimensional. Hence we have

dim(Oy41) = dim(O;) + dim(Vi41 N Og41). (3.16)

If (i) holds, as dim(Vsyy N Ogyy) = dim(Oy4) — dim(Q;) = 72 =
dim(Vs41), Vo1 N Oy s openin Vyyy.
Consider the action 'II‘?H : T?H Xx Vsr1 — Veuy. By (10, Propo-
sition 2.4.14], we know that all the orbits of 'JI‘S 41 are closed. As the orbits
of the action T4 : Tsy1 Xz Vi1 = Vsy is a finite union of the orbits of
the action 'II‘? 410 We kncw that the orbits of the action T is also closed.
The orbit of 1 [s+-1] under the action of T4 is (V541 NOs41)rea- Because it
1s an open, closed and dense orbit of T, we know that V4 1NOsq1 = V.
Hence V41 C Os41.

If (i1) holds, as d1m(Vc+1 N Os-H) = dim(Vs4)) = r2, (i) follows
from (3.16). 0

Corollary 3.14. ya(s + 1) = yaq(s) if and only if Os4y s has only one
element. .

Proof. The first part of the Lemma 3.13 is equivalent to y a4 (s + 1) = paq(s)
and the second part of the Lemma 3.13 is equivalent to &) s has only one
element. =

Theorem 3.15. For every F-crystal M, we have
0<ym) <ym@) < <ymlapm) =ymrpm+1) =---

Proof. We first show that for every 1 < i < nap — 1, ypmq(@) #
yam (@ + 1). Suppose the contrary, then by Proposition 2.11, ya (i) =
ym(§) for all j > i. In particular, we have yar(nag) = ymag — 1).
By Corollary 3.14, &, ,,n\—1 contains one element. Let M(g) be an
F-crystal such that Fy,,—1(M(g)) is isomorphic to F,,,—1(M), by
Proposition 3.12, there is a unique M(g) up to F-truncation modulo p"M
such that F; ,,_1(M(g)) is isomorphic to F,,,—1(M), thus F,,, (M(g))is
isomorphic to F, ,,(M). By Lemma 2.2, M(g) is isomorphic to M. Hence
we conclude that nas — 1 is the isomorphism number of M, which is a
contradiction.

If s > naq, then every F-crystal M(g) such that Fy(M(g)) is isomor-
phlc to Fy(M), is isomorphic to M. Therefore F;y1(M(g)) is isomorphic
Tt Fort (M) whence~0;s.y.4,5..has_only @e_ilement By Corollary 3.14,

Bt

yM(s +1) = ypm(s) forall's > nme D B S

‘We have a converse of Proposition 2.12.
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Proposition 3.16. If there exists an s > 1 such that ypm(s) = O, then M is
ordinary. .

Proof. For some s > 1, if ypm(s) = 0, we know that yp(1) = O by
Theorem 3.15. By Lemma 3.11, we can assume that dim(C(l)) = 0. Hence
|I”| = 0; see Example 3.9 for the definition of I7.

As (M, ¢) is isomorphic to (M, g¢,) for some ¢ = 1 modulo p and
the isomorphism number of an ordinary F-crystal is less than or equal to 1
(for example, see [18, Section 2.3]), in order to show that M is ordinary, it
is enough to show that (M, ¢;) is ordinary. Write 7 as a product of disjoint
cycle my, it is clear that (M, ¢z) = @, (M, ¢,). To show that M is ordinary
we can assume that 7 is a cycle and show that (M, ¢, ) is isoclinic ordinary.
Let r be the rank of M. _

As 7 is an r-cycle, we know that (# x z) = [],_,(z x =), and each
(m x 1), is an r-cycle (as a permutation of I x I). Recall a pair (i, j) € I x I
is said to be in (z x 7)), if and only if (# x 7), (i, j) # (i, j). It is easy to see
that if there is a pair (i, j) € I+ in (x x )y, then there is also apair (i, j) € I-
in (1 x ), and vice versa. Since I” is an empty set, we know that there is’
no (r x z), such that (x x =), sends an element in /_ to an element in I
by an argument used in Example 3.9. This means that if there is an element in
I_ (ot I respectively) that is also in (x X =)y, then there are elements also
elements in Ip and in I+ (or I_ respectively) that are in (x X 7).

The fact that I” is empty means that for all (i, j) € I, if v; (i, j) is the
smallest positive integer such that (z =% (), zV= &7 (5)) € I, U I_, then
it is in J_. Start with an element (i, j) € I_, and apply this fact recursively.
We can see that for every integer n, (" (i), z"(j)) ¢ I+. This is a contradic-
tion as we know that there must be some element in 7 that is in (x x 7).
" Therefore we conclude that every element in (x x 7), is in p. This means
that all the Hodge slopes of (M, ¢, ) are equal and hence (M, ¢, ) is isoclinic
ordinary. ' a

Corollary 3.17.  The inequality y (1) > 0 is an equality if and only if M
is ordinary. When the equality holds, we have y pq(s) = Q for all s > 1.

4. Invariants

In this section, we introduce several invariants of F-crystals over k. They are
the generalizations of the p-divisible groups case introduced in [7]. It will
turn out that these invariants are all equal to the isomorphism number. They
provide a good source of computing the isomorphism number from different
points of view. All the proofs of this section follow closely the ones of [7].
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4.1 Notations

Recall that for every F-crystal M = (M, ¢) and every field extension k C k’
with k' perfect, we have an F-crystal over k'

My = My, o) :== (M Q@wiy WK'), 9 ® o).

We denote by M* = (M*, ¢) the dual of M, where M* = Homyy)
(M, W(k)) and ¢(f) = ofe~! for f € M*. Note that the pair (M*, p) is
not an F-crystal in general, it is just a latticed F-isocrystal (meaning that ¢
is an isomorphism after tensored with B(k) but ¢(M*) ¢ M™ in general).
We denote by Hy = Hom(M;, My) the (additive) group of all homomor-
phisms of F-crystals from M to Mj. It is a finitely generated Z ,-module.
For every integer s > 1, let H; = Hom(M,, M3) = Hom;(M |, M>3)(k)
be the (additive) group of all homomorphisms from F;(Mj) to Fs(M3y).
 Itis a Z,/p*Zy-module but not necessarily finitely generated in general.
We denote by 7o s : Hoo — Hs and @5 : H; — Hg,t > s the natural
projections. We have two exact sequences:

s
Too,s

0 Hoo —2— Hyo —> H,,

and
p Ts+1,1
0 — H, — H;.1 —> H;j.

Let r; and r, be the ranks of M; and M, respectively.
4.2 The endomorphism number

In this subsection, we generalize the endomorphism number defined in
[7, Section 2] for p-divisible groups. The following proposition is a generali-
zation of [7, Lemma 2.1]. For the sake of generality, we will work with the
homomorphism version.

Proposition 4.1. There exists a non-negative integer ea; m, Wwhich
depends only on M| and M with the following property: For every positive
integer n and every non-negative integer e, we have Im( o ) = Im(p4e.n)
ifand only if e > ey, M,-

Proof. We first prove that e a1, A, exXists for each n and then prove that it does
not depend on n. Note that Teo , = Tn41,n © Moo,nt1 ANA Tpien = Tnpin ©
- Tnten+1:  IM(Too nt1) = Im(ﬂn+e,n+1) foralle — 1 > eM1,M2(’1 + 1),
then Im(7o,n) = IM(7pte,n). Thus epq, pm, (1) < ep;, m,(n+1)+ 1. Hence
to show that e, a1, (1) exists for all positive integer n, it is enough to show
that e aq,, pm, (1) exists for sufficient large n. '



446 Xiao Xiao

Let H,; = Homw,y((My/p" M, ¢1), (My/p" My, 92)). It is the
(additive) group of all W,(k)-linear homomorphisms » : M;/p"M; —
M3/ p" M such that g2 = hg1 modulo p". Thus H, is‘a subgroup of H},.

The existence of e, a1, for each n relies on the following commutative

diagram:
Too,n Enten ’
Hoo Hn Hn+e
X\. ‘[j 7 ’
oco,n P
7 n+e,n
Hn Hn+e

/ ’ et
where 7, , and 7, ., , are the natural projections.

By {13, Theorem 5.1.1(a)], we know that for any sufficient large »
(in fact n > nj2), there exists a positive integer eaq,, am, (1) such that for all
e 2 epmy My (), Im(zy, ) = Im(x,,, ,). Therefore the images of Im(7oo,x)
and Im(7 4. ) in H, are the same. Thus Im(Tpe,n) = Im(7oo ) for all
e > epm;, M, (n). This proves that eaq,, A, (n) exists for each n.

Now we show that eq, a1,(n) does not depend on n. The proof relies on
the following commutative diagram:

00— Im(Toon) — > Im(Too pnt1) ——> IM(To0,1) —> 0

FLT

14
00— Im(”n—l—e,n) — Im(”tz+l+e,n+1) - Im(”l—!—e,l)

- with horizontal exact sequences and with all vertical maps injective. By the
snake lemma, we have an exact sequence

0 — Coker(i1) — Coker(i) — Coker(i3).

If we take e > eaq;, A, (n + 1), then Coker(i) = 0. Thus Coker(i;) = 0 and

epmy My (n+1) > ear) am, (n). If we take e > max(epq;, a1, (1), ert M, (1)),
then Coker(iz) = 0. Thus eaq;, m, ( + 1) < max(ep;, am, (1), eat,,Mm,(1)).
An easy induction on n > 1 using the sequence of inequalities

eM],Mz(n) =< eM],Mz(n + 1) =< maX(EMI’Mz(I’l), eMl,Mz(l))
gives that eaq, A, (1) = eaq, m, (1) for all n. O

Definition 4.2. The non-negative integer e, m, of Proposition 4.1 is
called the homomorphism number of My and M>. If M1 = My = M, we
denote e, p by ea and call it the endomorphism number of M.

The following lemma is a generalization of [7, Lemma 2.8(c)] and is proved
in a similar way.
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Lemma4.3. Let k C k' be an extension of algebraically closed fields.
We have e, m, = €M, My '

Proof. When m > n, let Tmun © Hy — H, be the canonical reduction
homomorphism and let H,, , be the scheme theoretic image of =, ,, which
is of finite type over k, and whose definition is compatible with base change
k C k. Il = m, then H; , is a subgroup scheme of H,, ,,. By the definition of
em,, My, We have m — n > epq m, if and only if Hy, ,, (k) = Hy (k). As k
and k’ are algebraically closed, we have H,, ,(k) = H; , (k) if and only if
H,, » (k) = H; (k). This is further equivalent to (H,, )i (k") = (Hy p)p (k'),
thus eat), My, = €M, My O

4.3 Coarse endomorphism number

In this subsection, we generalize the coarse endomorphism number defined in
[7, Section 7] for p-divisible groups. The following proposition is a generali-
zation of [7, Lemma 7.1]. Again for the sake of generality, we will work with
the homomorphism version.

Lemma 4.4. There exists a non-negative integer faq, m, that depends on
My and My such that for positive integers m > n, the restriction homomor-
phism wy n © Hy — H, has finite image if and only if m > n + faq, m,-

Proof. As Hy -is a finitely generated Z,-module, Im(7e,,) inside the
p"-torsion Z ,-module H, is finite. By Proposition 4.1, there exists faq,, m, (1)
such that for all m.> n + faq,, m, (1), Im(mp, p) = Im(7eo p) is finite.

To show that fa4, am,(n) is independent of n, we consider the exact
sequence

00— Im(ﬂm,n) _P> Im(.”m,n«}-l) —— Im(”m,]) .
1t implies that '
fM],Mz (I’l) = fM],Mz(n + 1) =< max(fM'l,Mz(n)a fM]',Mz (1))

An easy induction on n > 1 shows that thM2 (n) = fay,m, (1) for all

n>1. O

Definition 4.5. The non-negative integer faq, m, of Lemma 4.4 is called
the coarse homomorphism number of M 1 and M. If M = My = M, we
denote—-fM- 4-by—f; M—andfcall“’zt hecoarse endomorphism number of r of M.

Proposition 4.6. We have an inequality fi,, m, < ery,M,-

Proof. Itis clear as Im(noo,n) is finite. - _ O
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Lemma 4.7. Let k C k' be an extension of algebraically closed fields.
We have fMl,Mz = fMl,kUMZ,k”

Proof. For positive integers m > n, we have m — n < faq, m, if and only if
the image of 7, 5 is infinite by definition. It is further equivalent to the image
of H,, — H,, having positive dimension. This property is invariant under base
change from & to k” and hence the lemma follows. O

4.4 Level torsion

In this subsection, we generalize the level torsion defined in [7, Section 8.1]
for p-divisible groups.

Let Hy, be the set of all W (k)-linear homomorphisms from M to M>.
We have a latticed F-isocrystal (Hiz, ¢12) where ¢12 : Hi2 ®wy) Bk) —
Hy; ®w) B(k) is a o-linear isomorphism defined by the rule p12(h) =
p2ho, ! By Dieudonné-Manin’s classification of F-isocrystals, we have finite
direct sum decompositions

(M @way BO), o) = P E}", (M ®way B(R), 92 = P E””Z
e Aredy

~where the simple F-isocrystals E;, and E;, have Newton slopes equal to 4,
and A respectively, the multiplicities m,,ms, € Zs¢ and the finite index
sets J1, J» C Qs are uniquely determined. From these decompositions, we
obtain a direct sum decomposition

(Hi2 ®wy BK), o12) = L, © LY, ® L,
where

m my _ m .
L), = @ Hom(E 4 EA;2), L, = @ Hom(E/ll/11 E, 12)
A1 <iy A1> A2

mj mjy
LY = EB Hom(E, "', E, ).
A=

Define

oo o0
0f =(\ep (HNLY), 0 =(el(H2NLy),
i=0 i=0

o0
0}, = ﬂ 053 (HaNLY,) = ﬂ ol (Hi2 N LY.
i=0 i=0
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Let A(l)2 = {x € Hyz | ¢12(x) = x} be the Z-algebra that contains the

elements fixed by ¢12. For ¥ € {4, 0, —}, each O;fz is a lattice of L;fz. We have
the following relations:

p(0) c of, ¢ (0Op) C O,
p(0)) = 07, = AY, ®z, W(k) = 0~ 1(0Y)).

Write O3 = 012 ® 012 ® Oy;; itis a lattice of Hi» Qw ) B(k) inside Hya.
The W (k)-module Oq; is called the level module of M; and M5.

Definition 4.8. The level torsion of My and Mj is the smallest non-
negative integer € pq,, M, such that

piMiMiHy, € 012 C Hy.
If My = My = M, then € pq,, pm, will be denoted by € pq.

Remark 4.9. The definition of level torsion in this paper is slightly different
from the definition in [16]. When M is a direct sum of two or more isoclinic
ordinary F-crystals of different Newton polygons, its isomorphism number is
nap = 1. According to the definition in [16], the level torsion £ 44 = 1 but the
definition in this paper gives a4 = 0.

For the duals M7 and M} of M; and M, respectively, we can define
€ pmx, pp In @ similar way.

Lemma 4.16. We have a1, py = Eptp, My = gM’l‘,M;'

Proof Write Hy := Hom(M,, M1) = Hom(Hyp, W(k)) =: H},. There is a
direct sum decomposition

HY) ®way B(k) = Hy ®wqy Bk)=L}; @ LY, & Lj;.
It is easy to see that
L} =Hom(L,, B(k)) =: Lj;, Ly =Hom(L},, B(k))=:L{;,
21 = Hom(le, B(k)) =: L12
are isomorphic as B(k)-vector spaces. One can define O»; in the same way:
021 := 05, ® 03, ® 05, = 0., ® 003 & O
and thus O2; = O7,. Therefore o
ngZ’Ml H,, C 031 C Hpy if and only if p’[Ml’M2 Hyy C O12 C Hyip,

whence ‘a,Mm, = faomy- As HY, = Hpy, we get fapm, =
fMT,M;i m]
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Lemmad4.11. faqom, = max{f,, My, CMmy M)

Proof. Thé direct sum decomposition into W (k)-modules of

End(M; @ M) = End(M1) @ Erd(M3) ® Hom(M;, M) & Hom(M3, M)

gives birth to the direct sum decomposition of the level module of M; & M
0=011®02&012® 0.

Hence £ pt;9Mm, = max{€a,, ay; EaMy, My EMa My} = Max{fagy, Ea,,
{ My, M, } by Lemnma 4.10. ' O

Lemma 4.12. Let k C k' be an extension of algebraically closed fields.
We have €, My = €My, My -

Proof. For M p and Mj i, we can define H{, and 012 in an analogous
manner. One can check that

H{Z = Hip Qw (k) W(k’)_, 0;2 =02 KW k) W(k/)

The lemma follows easily. ' O

5. Proof of the Main Theorem

The proofs of this section follow closely the ones of [7, Section 8].
5.1 Notations

For this section, we denote by H := Hj, the group of W (k)-linear homomor-
phisms from Mj to M3, and H; the group of homomorphlsms from Fy(Mj) to
Fs(M3). For simplicity, we denote O}, by O, 0 5 by ot fort e {+,0, — -1,
and A9, by AC.

5.2 The inequality epq, pm, < Eady, M,

We will follow the ideas o_f [7, Section 8.2] and prove that Im(zoo,1) =

Im(neMl,Mz‘l"_l’l)' For any h € Im(ﬂng,M2+1,1), leth € Hng,Mz_H be a

preimage of h. Hence qozh(ol_l = h modulo p*Mi-r2t! | that is, gozh(ol'l -

h € prl’MZHHom(M], M,) C pO. By Lemma 5.1 below, there exists
" € pO such that

(ozh(/)l_l —h = (Dzh//(l)l_l _ h".

Thus 7’ := h—h" € Hy is a homomorphism whose image in Hj is exactly A.
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Lemma 5.1. For each x € O, the equation x = ¢12(X) — X in X has a
solution in O that is unique up to the addition of elements in A°. Moreover, if
x € p® O, then there exists a solution X € p°O.

Proof. Writing x = xt + x0 + x~ withx" € OT for t € {+, 0, —}, we will
find y* € O such that x™ = ¢12(y") — y' for each t € {+, C, —}. Therefore
y = y* 4+ y9 4+ y~ is a solution of the given equation.

Let y© = —>F ¥l (xh), and y~ = F¥ ¢, (x7). Because
912(0") c O" and (pl‘zl(O‘) C O ,wehaveyt € Ot andy~ € O~.Itis
easy to check that x¥ = g12(y") —yt andx™ = p12(y) —y~.

Let {v1,02,...,0,} be a Z,-basis of A" it is also a W (k)-basis of 0°.
We also write x° = Zle xiv;. Forl <i < r,letz; € W) be a solu-
tion of o (z;) — z; = x; and put y0 = Z;’Ll ziv; € 0%, Using the fact that
p12(vi) = v; forall 1 <i < r,itis easy to check that x9 = gplz(yo) — yo.

If y, y' € O satisfy the equation x = ¢12(X) — X, we have p12(y) — y =
912(Y) — ¥, ie. p12(y —y) =y — ¥/, whence y — y’ € A°.

. Ifx = px’ € p*O, then y = p’y’ € p*O will be a solution of
x = ¢12(X) — X where y’ € O is a solution of x’ = ¢12(X) — X. O

5.3 The inequality € a1, My < fAM, My

We follow the ideas of [7, Section 8.3]. By Lemmas 4.7 and 4.12, we can
assume that k O k’[[a]] = R where k D k' is an extension of algebraically
closed fields and for i = 1, 2, we have

(M;, i) = (M Qwary W(k), ¢} ® 5),

where (M}, ¢]) are F-crystals over k’. Let m be the ideal of R generated by a.
Let H' and O’ be the analogues of H and O obtained from (M, ¢}) instead
‘of (M;, ¢;). Itis easy to check that

H=H Qwu)yWk), O =0 QwuyW(k),
and p/ O N O’ = p/ O’ for j € Zso.
Letx = xt + x%+x~ € O’ where xT € 0T, te{+,0, —~}.

Lemma 5.2, For each n € W(m), the equation nx = ¢12(X) — X has a
solution x, € O, that is unique up to the addition of an element of A,

Proof. Put

[o.¢] x
x5 == o) € 0F xp = D 0 x7) € 07—

T =0 i=1
L]

and

o
x,(; = — Zqoiz(nxo) e»OO.
i=0 ’
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The elements x,ﬂf are well-defined as {¢§2(x+)},-ezzo and {(p’iz‘(x_)}iezzo are
p-adically convergent in O'* and O'~ respectively. As {o'(1)}iez,, is a
a-adically convergent in W (R), xg is convergent in O°. One can check that
Xy = x;7F +x2+x,7_ e 0
satisfies 7x = @12 (xy) — xy.
Suppose nx = p12(x,) — x4 and 7x = @12(x7) — x5, we have x, — x; =

n
P12(xy — xf;), hence the lemma. O

We define a homomorph1sm of abelian groups Q, : W(m) — H/A? by the
formula Q, () = x, + A0 where xy € O C H satisfies nx = (/)12(x,7) — Xy
By Lemma 5.2, it is well-defined.

Let x € prl M2 H'\pO'. For all 7 e W(m), p12(x,) — xy = 7x €
piMiMHY | thus ¢12(xy) = x, modulo p ¢y My This implies that x, is a
homomorphism modulo p EmiMr from M, to M. Hence Xy € Hepgpay-
Clearly, every homomorphism of F-crystals is a homomorphism modulo
powers of p. Hence A? C Heji) pmy - Thus the image of Q, isin Hepg a, /AO.

Suppose fat;, M, < Emy My, we will show that x € pO’, which is a
contradiction! Let i@M]) Myl H; My My / A? — Hy/ AY be the homomorphism
induced by LIRS The image of

Topy aay.1 © R 1 W(M) — Hng,MZ/AO — H;/A°

takes only finitely many values Hj/A° as Im(z, My.my,1) 18 finite by the
assumption that faq,, M, < €aq;,M,. Since m is infinite (and thus W(m)
is infinite), the kernel of 7?ng’ Myl © Q, is infinite. There exists
= (n0,m1,...) € W(m) with 79 # O such that x, € pH. Thus
Xy € 0ONpH =:N.LetN' = O' N pH', wehave N = N’ Qw) W(k).

Lemma 5.3. An element z € O/pO lies in N/pO if and only if for every
k'-linear map p : O'/pO’ .— k' with p(N'/pO’) = 0 we have
(p ®11)(2) =0

Proof. Forevery k'-linear map p : O'/pO’ — k' with p(N'/pO’) =0,
Ker(p ® 1) =Ker(p) Qv k D N'/pO' Qv k= N/pO.

SetS={p:0'/p0" — k| p(N'/pO’) = 0}. We have [ ,cs Ker(p®@ i) =
N /pO. This concludes the proof. 0

By Lemma 5.3, for every k’-linear map p : O'/pO’ — k' such that
p(N'/p0O’) =0, we have (p ® 1x)(x,) = 0. Therefore the following equality
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holds in R
Zp(wlz(ﬁ))no + Zp(qon(x wnd Zp(q),; Gl
i=0 ]
= (p ® 1) (y) =0. (5.1)

Because the Newton slopes of (O, ¢12) and (0™, ¢J1—21) are positive, there
exists a big enough n such that ¢!,(x4) € pO'* and ¢}, (x_) € pO’~ for
i >n.Asp(N'/pO") =0,

p@i,GET) =0, plp; ) =0, Vi>n. (5.2)
Thus (5.1) is reduced to

-1 ) n '
= > p@h GO + D (el GH)

i=—n i=0
. i 0 . i
+p@h GG + D ple,GO)nf =o0. (5.3)
i=n+1

Write

n—1

o) =~ plpi" G +Z<p(¢ "G+ plply" GO

i=0 i=n

+ Z 3" @)Y € KA.

i=2n+1
Then (5.3) is equivalent to @(ng_n) = 0 where ng_” e a? " K[[aP .
As ng - # 0, we deduce that ®(f) = 0 by [7, Lemma 8.9]. Combining (5.2),
we get
plop GTN=0,Vi=1 p@HE =0, plppG*) =0,Vi>n
p@, )+ ppl, %) =0, Vi=0,...,n (5.4)
As ¢ is bijective on O and thus on O°/p0O”, the subspace

V C O’O/pO’0 generated by {¢},(x%) | i > 0} satisfies p12(V) = V and

thus ¢12(V) = V for every j > 0. This implies that V is generated by
{(/’12(x0) | i > n}and hence for 0 <i <n, (p12 (xXo) is a linear combination of
_ elements in {¢12(x0) | i > n} whence p((plz(xo)) =O0foralli =0,.

This allows us to extend (5.3) to get

P @ N=0,Vix>1, plpLGE"N=0 /,pl,ac")=0viz0.
. (5.5)
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Finally, since x € p‘*oH’ and €a M, > fmum, > O, we have
x € pH andthus x € pH' N O’ =: N'. As p(N'/pO’) = 0, we have
0 = p() = pGt +x°+ %) = p@7). Thus (5.5) can be further
extended to

PLEN) =0, LGN =0, PG =0, Viz0. (56)

By Lemma 5.3 and (5.6), we have ¢}, (x+), ¢!, (x%), 915 (x™) € pH and
thus in pH’ for all i > 0. By the definition of O’, we have x = x* +
x% 4+ x~ € pO’. This reaches the desired contradiction.

5.4 The equality far = nam

In this subsection, we show that fay = naq when M is not an ordinary
F-crystal. Thus in this case, naq > 0. Recall E; is the set of all endo-
morphisms of F;(M) and E;(k) = E;. The restriction homomorphism 7, ; :
E; — E; has finite image if and only if the image of 75, : E; — E; has
zero dimension, if and only if s > 1 + fa¢ by definition. The dimension of
Ts,1 18 Y A1(s) — y m(s — 1). It is zero if and only if s > n A by Theorem 3.15.
- Ass > 1+ faqifand only if s > naq, we conclude that faq = nag.

v 5.5 Conclusion

By Subsections 5.2, 5.3, 5.4 and Proposition 4.6, we have the following two
theorems: '

Theorem 5.4. We have equalities fa1, My == epty, My = Epy M,
Theorem 5.5.  If M is not ordinary, then np = fm = eapm = Em.

Corollary 5.6. We have equalities fap M, = frpmy = farrpmz and
EM| My = EMy, My = EMT M-

Proof. This is clear by Theorem 5.4 and Lemma 4.10. o

6. Application to F-crystal of rank 2

In [18, Theorem 1.4], we proved that if M is a non-isoclinic F-crystal of
rank 2, and is not a direct sum of two F-crystals of rank 1, then naq < 241
where 11 is the smallest Newton slope of M. Now we show that the inequality
is in fact an equality. For the sake of completeness, we state the theorem of
isomorphism number of rank 2 in all cases.
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Theorem 6.1. Let M be an F-crystal of rank 2 with Hodge slopes 0 and
e > 0. Let 11 be the smallest Newton slope of M. Then we have the following
three disjoint cases:

(@) i M is a direct sum of two F-crystals of rank 1, then npq = 1;
(i) if M is not a direct sum of two F-crystals of rank 1 and is isoclinic, then
M = e
(i) if M is not a direct sum of two F -crystals of rank 1 and is non-isoclinic,
then napq = 221.

Proof. Parts (i) and (i) are proved in [18, Theorem 1.4 (i) and (ii)]. In the case
of Part (iii), [18, Theorem 1.4 (iii)] proves only the-inequality nyq < 24;.
The proof of [18, Theorem 1.4 (iii)] has a minor mistake that can be easily
fixed. In this paper, we will only prove the equality na¢ = 24 in the case of
Part (iii).

We show that 41 > O by showing that the assumption that 1; = 0 leads to
a contradiction. If A; = 0, then the Hodge polygon and the Newton polygon
of M coincide. By [6, Theorem 1.6.1], we can decompose M into a direct
sum of two F-crystals of rank 1. Hence 4; > 0. Let 1, be the other Newton
slope of M. As M is not isoclinic, A; < Ap. It is easy to see that A; and A,
are two positive integers. Hence there is a W (k)-basis By = {x1,x3} of M
such that ¢(x;) = p*'x; and @(x2) = ux; + p*2x; where u € W(k). If u
1s a non-unit and belongs to p W (k), then ¢ (M) C pM and thus the smallest
Hodge slope of M must be positive. This contradicts the assumption of the
proposition, hence u is a unit. By solving equations of the form ¢(z) = p*iz
and ¢(z) = p’?z, we find a B(k)-basis By = {y; = x1, y2 = vx| + p*ix3} of
M[1/p] with v a unit in W (k) such that o (v) +u = p*2~*1p_ Itis easy to see
that there is a unique v satisfying this equation.

Let By ® B be the W(k)-basis of End(M) that contains x; ® x}‘ for all
1 <i,j <2, where (x; ® x;‘)(Xj) = x;. It is a B(k)-basis of End(M[1/p]).
We compute the formula of ¢ : End(M[1/p]) — End(M[1/p]) with respect
to B; as follows:

P @x]) =x1 @xf — P Mux; ® x5,
92 @x7) = pMux; @ x} + p Hxy @ x}
— p"'“‘b-u X @ x5 — p")“‘uxz ® x5,
p(x ® x3) = p"'M2x; @ x5,
P2 ®x3) = p~M2ux1 ® x5 + x2 ® x3.

Similarly the set B, ® B is another B(k)-basis of End(M[1/p]).
As p(y1)) = p*y; and ¢(y2) = p*y,, we compute the formula of



456 Xiao Xiao

¢ : End(M[1/p]) — End(M[1/p]) with respect to B; as follows:

270y, @ yE, o1 ® ¥)) = y1 ® ¥},

).]—.22

p(»2®y))=p

¢(2®y3)=»n®y;, p(y1®y3)=p 1 ® ;.

Therefdre, we have found B(k)-bases for

LT =(n®y)ews L'=01®y,92®y) 8w, L™= (y1®¥)5w.

We compute the change of basis matrix from B; ® Bf to B, ® Bj as follows:

h v
N®Y =x1 @] — Fxl ® x3,

2
. v
y2 ® y] = vx1 ® xf +p)"x2 ®x] — p_ll_xl ® x5 —vx2 @ X3,

. . 1
Y1 Qy; = p—):xl ® x5,

* ~ v * *
2@y, = ?Tx1®x2 + x2 ® x5.

It is easy to see that p*'y; ® y} € End(M)\pEnd(M) fori, j € {1,2}. We get
that

(@ 0t =(p'»me® )’I)W(k), h
®) N:=(n ® YE+ 120 95, 1 y2 ® yHway C 00 is a lattice;
© 0~ ={p"y1® ¥} we-

We now show that in fact N = 0°. As 00 = A° @ W (k), it is enough to show
that A’ < N. Suppose
ax1 @ x} +bxy @ xF + cx1 ® x5 +dx, ® %5 € A,

we have

\,

(p(ax1\® xi + bxa ® xf +cx) @ xy +dxa ® x3)
= (s(a) — o B)p™Mu)x; @ x4+ a(b)p)'2_)"x2 ® x}

+(=o(O)p™Mu + ()2 ® x3

+ (—a(a)p—)‘zu — a(b)p_)"_;‘zu2 + a(c)p)“_'12 + a(d)p_)‘zu)xl x;
=ax; @ x{ + bx2 @ x| -i;cxl ®x; +dx2 ® x;.
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Hence

a=0@) —ob)p ™ u, _ (6.1)
b=om)pH, | 6.2)
c=—o(@)pu—-oc®)p U +a()p" ™ +o(d)p P, (6.3)
d=—~c(b)pMu+a(d). (6.4)

By (6.2), we kn_oW that » = 0. Hence a = o (a), d = o (d) by (6.1) and (6.4),
and ’
c=—ap Pu+o(c)pt " +dp~*2u,

by (6.3), namely ‘
| pr(p*He —a(0) = (d - a)u.

In order to have a solution for ¢, we need d —a € p*' W (k). Letd —a = p*la
for some o € Zj, as a,d € Z,. Then we have a unique solution ¢ such that

plz_’“c —o(c) =au.

Asu = p”2~"1p — g (v), we get ¢ = av. It is now easy to see that
. ax1 @ x{ +bx; @ xf +cx1 ® x5 +dx2 @ x5
= a(x; ® x} +x2 ® x3) + (av)x1 ® X3+, (d — a)x2 ® x3
=a(n®y;+»®y) +ap'n®y; €N.

Hence N = 0°. :
The change of basis matrix from {y; ® ¥} + 2 ® 3, p*'y2 ® ¥}, p11y1 ®
¥i Py, ® ¥3)to By @ Bt is |

1 p’“v_ 0 0)
0 p*f1 0.0
A= p ‘5
: 0‘ —0 1
1 —p’llv 0 p)‘1

To find an upper bound of £ o4, we compute the inverse of A:

p*h '—p_’“v 0 0 *

Al = L .0 1 | »0 0
Lo p?h 'PMD" 2 ~p211 ‘A
-ph 20 0 p

_Pllv'
A

Thus the smallest number £ such that all entries of p"'A“? € W(k)is.24;.
Hence £oq = 2A1. By Theorem 1.2, we have npq = 24;. : m]
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