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This article presents an extension of Joreskog and Yang's (1996) method of estimat
·ing interaction effects among latent variables to latent growth curve models. Models 
involving a product of 2 latent factors of either static or dynamic variables (parental 
monitoring and rule-setting) predicting an outcome growth variable (adolescents' ini
tial status and rate of change in antisocial behavior) are used as substantive illustra
tions. The results are discussed in terms of practical and statistical problems associ
ated with interaction analyses in latent curve models, and in structural equation 
models with latent variables in general. 

A recent methodological focus in the structural equation modeling (SEM) 
literature has been the extension and application of standard linear models 
to situations involving nonlinear relations between latent variables (see 
Jaccard & Wan, 1996; Schumacker & Marcoulides, 1998). Two tech
niques now available for SEM application are (a) multisample analysi s 
and (b) indicant product analysis (Rigdon, Schumacker, & Wothke, 1998). 
Generally , in situations where one or both of the interacting variables are 
discrete or categorical , the multiple sample approach is the analysi s of 
choice . The indicant product approach, on the other hand , is used when 
both interacting variables are continuous in nature . Within the indicant 
product approach , several procedures are available , including methods 
proposed by Jaccard and Wan ( 1995) , Joreskog and Yang (I 996), and Ping 
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( 1995 , 1996). Each of these relies on the pioneering work of Kenny and 
Judd ( 1984) but provides variations that are simpler in their procedural 
implementation . 

Recently, the analysis of intra- and inter-individual trajectories in the con
text of developmental models of growth and change has been of growing in
terest. These growth trajectory models enable more integrated and flexible 
approaches for the study of group change and individual differences in 
change. Growth modeling techniques in the context of latent variable model
ing (McArdle, 1988; Meredith & Tisak, 1990; Muthen, 1991) have been well 
demonstrated (e.g. , Duncan & Duncan, 1995; McArdle & Epstein, 1987; 
Raykov, 1996; Stoolmiller, 1995 ; Willett & Sayer, 1994). Although it is clear 
that latent curve analysis can be a useful tool for analyzing patterns of 
change and predictors of change, the method can be extended to the analysis 
of more complex dynamic models (e.g. , McArdle, in press; Muthen, in 
press) . In the case of this article, it involves interactive relations between 
growth parameters . Modeling the interaction among change scores (growth 
factors) may be of substantive interest in longitudinal studies involving hy
potheses testing of how changes in latent attributes interact to produce a joint 
effect on growth of an outcome variable. 

Although there are various techniques for estimating latent interaction effects 
(see Schumacker & Marcoulides, 1998, for a review of currently available proce
dures), among the full information-based methods, the Joreskog and Yang ( 1996) 
procedure is the most relevant for applications within the latent growth curve mod
eling framework. This is because the Joreskog and Yang approach involves speci
fication of both first and second moments (i.e., the mean vector and covariance 
matrix) in the model estimation. 1 Other procedures (e.g., Jaccard & Wan, 1995; 
Ping, 1995, 1996) require centering of the raw scores (Jaccard & Wan, 1996) and 
are, therefore, not directly applicable to latent curve analysis that utilizes both 
covariance and mean structures. 

In this article, the potential utility of Joreskog and Yang's ( 1996) procedure to 
the analysis of latent growth models is explored. To facilitate the presentation, a 
two-factor linear growth curve model is briefly presented. This is followed by a 
model incorporating an interaction effect between two static (time-invariant) la
tent predictors on growth of an outcome variable (i.e. , predictors of the initial level 
and rate of change). This model is further expanded to include estimation of an in-

'Bollen (1995) proposed a two-stage least squares analysis oflatent variable interactions, which re
lies on a limited information rather than a full information method of estimating parameters. Although 
the procedure involves the use of the mean vector in addition to the covariance matrix, we chose to use 
Joreskog and Yang's (1996) procedure in this article because latent curve analysis to date has relied 
heavily on the use of the full information approach (e.g., fitting the moment matrix implied by the model 
to the corresponding sample moment matrix by minimizing a fit function with respect to all parameters 
simultaneously). 
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teraction tenn between two latent growth, or shape, factors describing changes in 
the growth fonn. Each of these models is followed by an example using empirical 
data. Model parameterizations are presented within the LISREL framework 
(Joreskog & Sorbom, 1993). 

A TWO-FACTOR LATENT GROWTH MODEL 

For presentation purposes, an unconditional linear growth model, shown in Figure 
I , consisting of four measurement data points, is briefly discussed (for further de
tails see McArdle & Epstein, 1987; Meredith & Tisak, 1990; Willett & Sayer, 
1994). The basic latent growth modeling, using the LISREL Y-measurement 
model , is specified by the following equation: 

(I) 

where Yis thep x I vector of repeated measures, "tis ap x I vector of constant inter
cept terms that is set to zero (Equation 5; Willett & Sayer, 1994, p. 369), A is the p x 

m parameter matrix of sequential known values of the growth curve records, Tl is an 
m x I vector of latent growth parameters, and£ is ap x I vector of unique variances 
in Y, where it is assumed that the covariance matrix 0 E is a diagonal matrix (0t = 
Cov(E) = {cr!,, cr!, . a !,. cr!, } ). Equation I is expressed in the following matrix 
form to represent the model depicted in Figure I: 

(2) 

The A parameter matrix to the right of the equal sign is a product matrix repre
senting known times of measurement (1 1 through t4) and constraints (the values 
oft should reflect the spacing between measurement occasions), and a latent 
growth vector containing the initial level (Tl 1; intercept) and rate of change (T12 ; 
slope) . The two-factor linear growth model in this case is specified so that the 
intercept factor ( constrained to a constant value of I) serves as the starting 
point (i .e., initial status) for any change (growth) across time and the slope fac
tor captures the rate of change of the trajectory over time. The scaling of the 
slope can be specified by using either fixed value restrictions ( e.g., 0, I , 2, 3) 
representing a traight-line growth, or unspecified value restrictions (where the 
first two loadings are fixed , i.e., t1 = 0, t2 = I , for model identification purposes 
and the remaining two, t3 and t4 , are freely estimated) allowing estimation of 
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an optimal pattern of change over measurement occasions (Meredith & Tisak, 
1990). 

The equation for the latent growth parameters (intercept, slope) can be 
written as 

(3) 

where a is an m x I vector of the population averages of the latent individual growth 
parameters, B is a m x m matrix of coefficients expressing the structural relations 
between the T] variables, and ~ is an m x I vector of equation residuals or random 
disturbances. With the B matrix constrained to zero (Equation 1 0; Willett & Sayer, 
1994, p. 3 70), the simplified equation becomes 

(4) 

where a is the latent mean vector ( where a 1 = intercept, a 2 =slope), and the~ vector 
contains the deviations of the latent growth scores from their respective population 
means with their covariance, Cov(~2, ~ 1) , as indicated by \j/21 in Figure 1, 
parameterized in the LISREL 'I' matrix. 

~ 

l 

FIGURE 1 A linear trend growth curve model. 
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LATENT GROWTH CURVE MODELS WITH 
INTERACTION EFFECTS 

The latent growth model presented in the preceding section can be quite flexible in 
addressing various questions related to growth or change ( e.g., Duncan, Duncan, 
Strycker, Li, & Alpert, 1999; MacCallum, Kim, Malarkey, & Kiecolt-Glaser, 1997; 
Muthen, 1997; Mu then & Curran, 1997; Willett & Sayer, 1994, 1996). In addition to 
evaluating hypotheses about differences in initial levels of an attribute and intra-in
dividual variability in the rate of change, predictors may be specified in the models to 
account for the variation in these growth parameters. For example, questions and hy
potheses about determinants and outcomes of growth can be parameterized by fo
cusing on predictors of slope scores and/or slope scores as predictors (e.g., 
Stoolmiller, Duncan, Bank, & Patterson, 1993; Walker, Acock, Bowman, & Li, 
1996). In the following sections, an extension of SEM interaction techniques to la
tent growth curve models is provided. Specifically, two models are illustrated: (a) a 
cross-sectional model incorporating the effect of an interaction between two static 
factors on change in an outcome, and (b) a longitudinal model incorporating the ef
fect of an interaction between two growth factors on change in an outcome. 

Latent Growth Model With Time-Invariant Latent Predictors 

In this section, a model incorporating an interaction effect between two time-in
variant static latent predictors is illustrated using the method outlined by Joreskog 
and Yang (1996). This static model is tested prior to creation ofa dynamic model to 
determine whether an interaction effect exists on an outcome variable of interest. 

In longitudinal research, a major focus with regard to individual development is 
the evaluation of predictors of variation in change over time. What variables pre
dict why some individuals have a dramatic change and other individuals have little 
or no change? In a cross-sectional regression model with two static variables, X 
and Z, for predicting a latent growth outcome variable, Y, consisting of initial sta
tus and rate of change, one asks the question, "Does the influence of predictor X on 
the initial status of Y depend on the level of Z predictor ( a moderator)?" Longitudi
nally, one asks, "Does the influence of predictor X on individual differences in 
change of Y depend on the level of Z predictor?" These questions involve modera
tion (in the sense defined by Baron & Kenny, 1986) and/or the joint effect ofXand 
Zin predicting the dynamic variable Y. Here, the interaction is conceptualized in 
terms of the effect of the product.XZ on Y, where.XZ is a latent multiplicative term 
as described by Kenny and Judd ' s (1984) work. 

To illustrate this, the hypothetical model in Figure l is expanded to include two 
latent exogenous traits (~ 1 and ~2), each measured by two observed indicators (x , 
and x2 for~, , and x3 and x4 for~2). The third factor, denoted by ~1~2, represents a la-
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tent product term of ~I and ~2, with its cross-product indicators formed by multi
plying each of observed indicators of~1 and ~2. Details on the formulation of these 
product terms are presented in Appendix A (see also Joreskog & Yang, 1996). 
There is a two-factor linear latent endogenous growth outcome variable (symbol
ized by 111 [intercept] and 112 [slope]), measured by four observed indicators taken 
at four measurement time points. The initial status factor (intercept), 11 1, specifies 
the initial levels of individual growth whereas the linear growth factor (slope), 112, 
specifies the rate of change over the four-measurement period. The model de
scribed is shown in Figure 2 with model parameterization in LISREL notation pre
sented in Appendix B . 

The central focus of the presentation here is (a) the interaction between the two 
latent exogenous static factors (~1 and ~2) on the latent endogenous outcome, con
sisting of the initial status and growth factors, and (b) the interpretation of the in
teraction. Substantively, it examines the composite hypothesis that the influence 
of ~1 on 111 (initial status) and 112 (rate of change) is moderated by the level of ~2-
This hypothesis is examined in terms of the effect of~1~2, the latent product term, 
on the latent outcome growth factors, 111 and 112. This multiplicative interaction ef
fect can be observed in the value ofy13 and y23 in each of the following structural 
regression equations: 

(5) 

(6) 

The regression coefficients, y11 , y, 2, and y13 , in Equation 5, can be interpreted as 
putative, synchronous effects on 11 1, estimated with all variables measured 
cross-sectionally, because the operationalization of~ 1, ~2, and 11 1 is with respect to a 
single point in time (assuming the initial status, 11 1, is defined as t, = 0). Ify,3 is 
significant, then the effect of~, on the initial level of Yis contingent on the level of 
~2, indicating the interaction effect. Moreover, the influence of either ~1 or ~2 on 112, 
expressed in Equation 6, may be viewed as a moderator affecting the relation 
between repeated measures Yvariable (t = 0) and time (the slope of the Yvariable on 
T = 4 measurements). That is, y21 and y22 represent the effect of ~' and ~2, 
respectively, on the rate of change in Y as expressed by the Y slope factor, 112. If both 
of these values are positive, then people who are high on ~1 and~2 change more on Y 
than people who are low. The exogenous product factor, ~1~2, tests for an 
interaction between ~1 and ~2. The value of y23 measures the extent to which the 
influence of~, is contingent on the level of~2. A positive value ofy23 signifies that 
the higher the score a person has on ~2, the stronger the effect of~' on the rate of 
change in 112-
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FIGURE 2 A latent vari able model including two static variables and one latent growth outcome variable. 
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Selection of product indicators for the interaction term. A relevant is
sue in testing the cross-sectional interaction effect is the selection of product indica
tors for defining the latent product variable 1; 11;2• With two observed variables for 
each latent factor, four observed product variables (i.e., x 1x3, x 1x4, x2x3, x2x4) can be 

formed as indicators of the latent product variable 1;,1;2 (Kenny & Judd, 1984). 
However, assuming measurement of the latent variables is reliable, Joreskog and 
Yang (1996) showed that only one observed product indicator (e.g. , x 1x3) is suffi
cient to identify all the parameters of the model. Thus, the exact number of product 
indicators to be used in the model is a decision to be made by the substantive re
searcher on the basis of either statistical and/or empirical justifications. 

AN ILLUSTRATION OF LATENT GROWTH MODELING 
WITH STATIC PREDICTORS OF CHANGE 

The following section provides an empirical example of the latent growth curve 
model involving an interaction term between the latent time-invariant (static) pre
dictors shown in Figure 2. The data used in this example came from a longitudinal 
study of the prevention of problem behavior among middle school students 
(Metzler, Biglan, Ary, & Li , 1998). Participants (N = 221) were asked to provide 
self-report data about parenting practices, family interactions, youth problem be
havior, and peer behavior every 3 months over a 4-year period. Only the data col
lected during the first year were used in this article. Of all the students, 36% were in 
fifth grade, 35% were in sixth grade, and 29% were in seventh grade at the initial as
sessment. 

Measures of adolescents' antisocial behavior, parental monitoring, and paren
tal rule-setting were used in this example. They were youth-report measures as
sessed on four occasions (t1 , t2 , t3, and t4) with 12 observed variables (i.e., y 1, y2, 
Y3, and y4 for antisocial behavior; x1 , x2, x3, and X4 for monitoring; xs, X6 , x1, and 
xs for rule-setting). The parental monitoring variable was defined by five items, 
each anchored with a 5-point scale ranging from I (never) to 5 (always; see 
Metzler et al. , 1998). These items reflected the degree to which parents moni
tored their children 's activities, whereabouts, and plans. An average of these 
items was taken as a measure of parental monitoring with a high score indicative 
of high levels of parental monitoring. For the variable of rule-setting, there were 
four items reflecting rules or expectations that students reported their parents 
had (e.g., do homework everyday, don't smoke/chew, etc.). For each item, stu
dents indicated the degree to which their parents had a clear rule or expectation 
on a 4-point scale ranging from I (My parents don't have a rule or expectation) 
to 4 (My parents have a clear rule or expectation). An average of these items 
was taken as a measure of parental rule-setting with a high score indicative of 
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high levels of rule-setting. Finally, seven items such as stealing, skipping school, 
staying out all night without permission, destroying property, and hitting others 
were used to assess students' antisocial behavior. These items were adapted 
from Elliott, Ageton, Huizinga, Knowles, and Canter ( 1983). Students reported 
the number of times they had engaged in these behaviors in the past month on a 
6-point scale. Scores were summed to form a composite score and used as an 
outcome variable in the interaction model analysis. 

Preliminary analyses indicated that there were no differences in the variables of 
interest across the three grades in the sample. For tests of the model presented in 
Figure 2, baseline measures of parental monitoring and rule-setting taken from 
Wave I (t = 1, two observed indicators for each construct via random splitting of 
the measure) and time series measures of antisocial behavior taken from the four 
repeated measurement points (t = 1,2,3,4) were used. Therefore, in this first exam
ple, both parental monitoring and rule-setting constructs were treated as static pre
dictors-( at t = I) of change in adolescents ' antisocial behavior. 

As is typical in longitudinal studies, there are missing data for many partici
pants at several of the four time points. Assuming implicitly that the data were 
missing at random as defined by Little and Rubin ( 1987), missing values were im
puted using NORM (Schafer, 1997; Schafer & Olsen, 1998), a program for the 
analysis of incomplete multivariate data. 

Theory Underlying the Empirical Data 

Evidence suggests that parenting practices are highly influential in the development 
of adolescent problem behavior (Dishion, French, & Patterson, 1995; Loeber & 
Dishion, 1983; Patterson, Reid, & Dishion, 1992). Although it is beyond the scope of 
this article to develop a sound theoretical rationale for studying the relations, we note 
that the parenting practices variables are central to the Patterson et al. ( 1992) coer
cion theory of the development of antisocial behavior. Coercion theory postulates 
that early antisocial behavior is the product ofunsk.illed and coercive parenting. Al
though yet to be empirically examined, the effectiveness of parental monitoring and 
rule-setting was hypothesized to interactively influence adolescents' disruptive be
havior. The hypothesized interaction between the two parenting practices is such 
that the relation between parental monitoring and adolescents ' antisocial behavior 
becomes more negative as the level of parental rule-setting increases. In other words, 
parental monitoring helps the most when there is a high level of parental rule-setting. 
This hypothesized interaction effect is examined both cross-sectionally (i .e. , moni
toring and rule-setting defined as latent time-variant predictors) and longitudinally 
(i.e., monitoring and rule-setting defined as latent growth predictors). The following 
section presents the cross-sectional results, where monitoring and rule-setting were 
treated as static predictors. 
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Results 

As a preliminary analysis examining change on the dependent variable of ado
lescent antisocial behavior over the four measurement occasions, a univariate 
growth model was first tested. A two-factor growth model consisting of inter
cept and slope for the four repeated measures of antisocial behavior found a sig
nificant positive mean for the slope factor (µslope = .052, p < .05). This showed 
that the overall group reported increases in adolescent antisocial behavior over 
time (i.e., an increase in the rate of change of the trajectory over time on antiso
cial behavior). The equally spaced factor loadings (0, I, 2, 3) reflected that this 
increase was linear. A significant variance component in both the intercept 
( '1'in1ercep1 = .06, p < .05) and the slope ('l'slope = .004, p < .05) factors indicated 
that there were significant individual differences in both initial levels and 
growth in adolescent antisocial behavior over time. 

The estimated interaction model resulted in a chi-square value of x2(62, N = 
221) = 215.29, p < .00 l , and goodness-of-fit indexes of Nonnormed Fit Index 
(NNFI) = .97, Comparative Fit Index (CFI) = .97, and Root Mean Squared Error of 
Approximation (RMSEA) = .10, indicating a marginal fit of the model to the data. 
The maximum likelihood (ML) estimates of gammas (-ys), standard errors, and z 
statistics for Equations 5 and 6 are presented later, where ~1 represents parental 
monitoring and ~ 2 represents rule-setting: 

TJ 1 = 1.280 + (- .176)(~1) + (- .086)(~2) + .252(~1~2) 
(.035) (.065) (.060) 
- 5.097 - 1.337 4.175 

TJ2 = - .007 + .024(~1) + (- .025)(~2) + (-.053)(~1~2) 
(.015) (.029) (.027) 
1.561 - .869 - 1.986 

Results indicated a statistically significant interaction effect for the estimate ofy13 
and Y23 (p < .05), showing a positive interaction (y13 = .252 unstandardized and .436 
standardized) between ~1~2 and TJ 1 and a negative interaction (y23 = -.053 unstan
dardized and - .506 standardized) between ~1~ 2 and Th. Substantively, the y13 in the 
aforementioned first equation is difficult to interpret. The main effects (y,, and Y12) 
are negative, showing that both parental monitoring and rule-setting decrease the 
initial level of antisocial behavior (TJ 1), although rule-setting is not significant. 
However, the positive interaction, y13, partially offsets this effect when both paren
tal monitoring and rule-setting are high. This positive interaction effect is 
counterintuitive. To further understand the nature of this interaction, we substituted 
values for parental monitoring and rule-setting that were 1 SD below and I SD 
above their means. For rule-setting we used values of- .48 and .48 , and for parental 



INTERACTIONS WITH LA TENT GROWTH CUR VE MODELS 507 

monitoring we used values of- . 76 and . 76. 2 Substituting these values for y,, and Y12 

in the first equation, we found that the highest level of antisocial behavior occurred 
when both rule-setting and parental monitoring were low (i.e., 1 SD below their 
means); however, antisocial behavior was slightly higher when both rule-setting 
and parental monitoring were high (i.e., 1 SD above their means), than when 
rule-setting was low and parental monitoring was high. 

Because the measures of parents' monitoring and rule-setting were Time I vari
ables, the effect of the interaction term, y13, represents a synchronous effect on the 
intercept (Tl 1, initial level). However, the second equation is predicting the longitu
dinal change in antisocial behavior (1'12, the rate of change). This means that the in
teraction term found in the second equation, y23 , represents a lagged negative 
effect on the rate of change in antisocial behavior. The simplest interpretation of 
the negative value ofy23 is that when parents both set rules and monitor their chil
dren, there will be a decrease in the rate of change in antisocial behavior (i .e., there 
will be less antisocial behavior) beyond the additive effects of parental monitoring 
and rule-setting. Parents who have high scores on both monitoring and rule-setting 
reduce the growth rate of antisocial behavior for their adolescents. This result ap
pears to conform to coercion theory (Patterson et al., 1992). Because this is an in
teraction effect, it is in addition to the additive effect of parental monitoring and 
rule-setting. The combination of close monitoring and rule-setting can reduce the 
rate of growth of antisocial behavior beyond what the variables do additively. 

As a way of further probing this interaction effect, it is possible to substitute 
various values into the second equation to estimate the effect of particular joint 
combinations of parental monitoring and rule-setting. For example, if parents are 
high on monitoring, but low on setting rules, according to our hypothesis, there 
will be an expected increase in the rate of longitudinal change on antisocial behav
ior (i.e. , more antisocial behavior). Using a value of .76 for high monitoring and 
- .48 for low rule-setting, we estimate the slope, TJ2, to be .042. This shows a posi
tive effect, confirming the preceding supposition. By contrast, using a value of .76 
for high monitoring and .48 for high rule-setting we estimate the slope to be -.021. 
This shows a negative effect indicating lower incidents of antisocial behavior 
when parents are high on both monitoring and rule-setting. When parents were low 
in both rule-setting (- .48) and monitoring(-. 76), a negative slope (- .032) was also 
produced. This needs to be understood in the context of the extremely high inter
cept for this configuration. The interaction model indicates that parents who are 
low on both monitoring and rule setting may have a reduction in the growth of anti
social behavior on the part of their children, but these children start at a relatively 
high level of antisocial behavior based on the intercept (the first equation). 

2These values are derived from the variance of the latent variables. The variance for the latent vari
able of parental monitoring (~1) is .578 and the variance for the latent variable of rule-setting is .23 (~2)
The square root of the variance is the estimated latent variable standard deviation. 
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The model just described accounted for approximately 70% of the variance in 
initial level and approximately 40% of the variance in rate of change in adoles
cents' antisocial behavior. The effect size of the interaction, defined as the incre
ment in squared multiple correlation (R2) beyond a main effect, was assessed by 
the difference in R2 between the interactive model and the "individual effect only" 
model (result not shown). The interactive model was defined as one in which the 
parameters y13 and y23 were freely estimated, whereas the individual effect model 
was defined as one in which the interaction effects were fixed at zero (y13 =y23 = 0). 
The chi-square difference test, X2ctifT(2) = 17 .878, p < .001 , indicated that the model 
without the interaction effect had a poorer fit, x2(64, N= 221) = 233.166,p < .001. 
The difference in R2 was .122 (.697 to .575) for the initial level and .179 (.403 to 
.224) for the rate of change, indicating a noticeable increment in variance ac
counted for over the "individual effect only" model. The LIS REL program used to 
test the model shown in Figure 2 is provided in Appendix C (the sample data are 
available on request from the authors). 

Latent Growth Models With Interaction Between Latent 
Growth (Shape) Factors 

Findings from the previous model provide useful information about the static joint 
effect of parental monitoring and rule-setting practices on the development of ado
lescent antisocial behavior. It is possible that this effect unfolds over time. Ex
tending the previous model to a full multivariate latent growth model context, how
ever, further tests the hypothesis about the influence of X and Z on Y by 
operationalizingX and Z as time-changing latent growth predictors. In this extended 
hypothetical model, the researcher is able to examine the extent to which the impact 
of joint changes inX and Z influences changes in Y. More specifically, the model al
lows for an examination of whether the effect of changes inX on Yis influenced or 
moderated by the level of simultaneous change in Z, and tests the interactive relation 
between the two growth parameters (i.e., shape factors) on the slope of Y. As such, 
the researcher examines whether there is an interaction between two dynamic pre
dictors,X and Z. In the following section, the time-invariant predictor model (Figure 
2) is expanded to accommodate the situation where two latent exogenous variables, 
consisting of growth curve factors, are hypothesized to interact with each other to in
fluence an endogenous growth factor. This model is shown in Figure 3. 

Although the model shown in Figure 3 is acknowledged to be complex and the 
data analysis is an extension of existing procedures, this approach is central to ba
sic questions that are asked by many social science researchers: Does the change in 
predictor variables influence the rate of change in an outcome variable? Does the 
simultaneous change in predictor variables (interaction effect) influence the rate of 
change in an outcome variable? Social science and clinical research have a long 
standing interest in how change in one variable or set of variables is related to 
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FIGURE 3 A latent growth curve model involving interaction between two latent growth curve factors. 
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change in another variable. The model shown in Figure 2 only allows us to exam
ine how initial monitoring and rule-setting and their interaction at Time I influ
ence the rate of change in antisocial behavior. Recognizing that families can 
change in their parenting practices (Dishion et al. , 1995), the model shown in Fig
ure 3 is directed to assess how changes in monitoring and rule-setting and the inter
action of these changes between Time I and Time 4 influence growth of 
adolescent antisocial behavior. 

When the two latent growth factors are measured by different indicators taken at 
the same time intervals ( e.g. , Time I measure of factor X corresponds to Time I mea
sure of factor Z), it is reasonable to form cross-product indicators based on measures 
corresponding to the same time point. In this example, a two-factor (level-shape), 
unspecified growth model (Meredith & Tisak, 1990) is parameterized for the predic
tors . The model requires only the first two time points to be constrained (i.e. , 0, I) to 
identify the model. The remaining two loadings are freely estimated providing a 
"shape model" that approximates curvilinear trajectories (Meredith & Tisak, 1990). 
Because the shape factor loadings for the first time point are fixed to zero, only the 
measurement of t2, !3, and t4 for monitoring and rule-setting are used to form product 
variables to be used as indicators of the latent product variable. 

Measures of the latent variables were selected from !2 and subsequent time points 
to form cross-productterms ofx2x 6,X:.X1, andx4Xs, as shown in Figure 3. Note thatthe 
x1xs product variable was not used in the model because the two original non product 
variables (x1 andxs) were constrained to zero for identification purposes (see Figure 
3). Therefore, instead of using the x1xs product indicator as a reference variable for 
scaling the latent product variable ~2~4, the product indicator X2X6 was used. The 
LIS REL specification for the Y-measurement model expressed in Equation 2 is used 
for the dependent growth variable, TJ; (i = 1, 2 for the intercept and slope, respec
tively), with factor loadings for t1 through t4 constrained to 0, 1, 3, 6, as shown in Fig
ure 3, to reflect equally spaced 3-month measurement intervals. Although the full 
model gives estimates of all model parameters, for the purpose of demonstrating the 
interaction effect, we restricted the presentation to the fol lowing structural equation : 

(7) 

In Equation 7, the prediction of either ~2 - >Thor ~4 - > Th represents the effect ofa ~' s 
slope on the slope ofTt2• A negative value means that as monitoring or rule-setting in
crease between Time l and Time 4, there is a decrease in the slope (growth) of antiso
cial behavior. 1n other words, an increase in monitoring or rule-setting over time 
leads to a decrease in adolescent antisocial behavior over time. The ~ 2~4 interaction 
signifies that the regressi~n ofTt2 on ~2 depends on the specific value of~ ( a modera
tor) at which the effect of~2 slope on theTt2 slope is measured. For example, to exam
ine the regression of Tt 2 on ~2 at the particular value of ~4, Equation 7 can be rear
ranged as 
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The term [(Y22 + Y2sl;4)l;2] is often referred to as the simple slope of the regression of 
l1 2 on 1;2 for a given 1;4 (Aiken & West, I 991; Joreskog, 1998). Because of the 
slope-to-slope relation in the growth model depicted in Figure 3, this effect reflects 
the dynamic influence of the exogenous latent variable I; (operationalizing the 
slope ofX) on the endogenous latent variable Tl (operationalizing the slope ofY). 
Therefore, Equation 7 represents a complex form of the dynamic interaction por
tion of the growth model shown in Figure 3. 

The LISREL specification for the X-measurement model of exogenous latent 
variables, l;s, is outlined in matrix form here: 

X 
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(9) 

Cross-products of the observed variables for the latent product variable (a 
set of nonlinear constraints necessary for model estimation) in Equation 9 
can be derived using the same method shown previously (see Appendixes A 
and B) . These constraints are necessary for model estimation. The latent ex
ogenous mean vector (K) and variance/covariance matrix (<l>) of 1;s (l;1, 1;2, 
l;3, 1;4, l;2l;4) are 

0 <1>1 1 (IO) 

0 <1>21 <1>22 

K= 0 <l>= <1> 31 <Pn <1> 33 

0 <l>.1 <l>.2 <1>.3 <1>44 

<l>.2 0 0 0 0 <1> 22 <1>44 + <1>!2 
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Note that, because the observed intercepts (the X-intercept vector 'tin Equation 9) 
are allowed to be freely estimated, the nonproduct exogenous latent variable means 
are constrained to zero (K1 = K2 = K3 = ~ = 0) to impose model identification restric
tions. This specification implies that the means ofK have been recast into the vector 
of 'ts. Alternatively, 't can be set at zero while estimating the means of KS. The mean 
of the product variable ~2~4 equals Cov(~2,~) = <!)42. The only nonlinear constraint in 
the <I> matrix is the variance of the latent product variable that must equal 
Var(~2)Var(~4) + Cov(~2~)2. 

The variance/covariance matrix of uniquenesses, 0 0, is 

01 (11) 

0 02 
0 0 83 
0 0 0 04 
0 0 0 0 es 

0s= 0 0 0 0 0 06 
0 0 0 0 0 0 87 
0 0 0 0 0 0 0 08 
0 892 0 0 0 096 0 0 89 

0 0 010,3 0 0 0 010, 7 0 0 0 IO 

0 0 0 011,4 0 0 0 0 1, .8 0 0 0, 1 

Readers are referred to Appendix A for the derivation of uniqueness terms in Equa
tion 11 (i .e., 09, 0 t0, 011 , 092, 096, 0 ,o,J, 0t0,1, 011 ,4, 011 ,8), 

AN ILLUSTRATION OF LATENT GROWTH MODELING 
WITH GROWTH PREDICTORS OF CHANGE 

The model presented in Figure 3 is estimated using the same empirical data 
used in the previous example but extended to include multiple time points (ti 
through t4) for the two exogenous latent growth variables (monitoring and 
rule-setting). 

Results 

This model test resulted in x2(91, N= 221) = 776.75,p < .001 , NNFI = .88, CFI = 
.89, RMSEA = .18, indicating a marginal fit of the model to the data. The ML esti
mates for the ~sand ~2~ on the growth factor (T1 2) and their corresponding test sta
tistics are as follows: 
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112 = - .003 + (-.02)(~2) + .002(~) + (-.006)(~2~) 
(.004) (.012) (.003) 

-3. 736 1.292 - 2.240 

The interaction effect {y25 = -.006 unstandardized and -.298 standardized coeffi
cient) in the aforementioned regression equation was statistically significant, as in
dicated by the z value of - 2.240 (p < .05). This significance term indicates an inter
action between the two dynamic latent shape variables {~2 and~), suggesting that a 
joint effect of longitudinal changes in parental monitoring and rule-setting over 
time was predictive of longitudinal changes in adolescent antisocial behavior.3 

Substantively, the relation between longitudinal change in parental monitoring (in 
the sense of increasing monitoring) and longitudinal change in adolescent antiso
cial behavior becomes more negative over time as parents increase their rate of 
change in rule-setting (i.e. , setting more rules for their children). Thus, to reduce the 
rate of growth in antisocial behavior by their children, parents must simultaneously 
increase their monitoring and rule-setting practices over time. 

Another way of interpreting this interaction involves considering separate 
slopes for longitudinal change in antisocial behavior on growth in parental moni
toring (i.e., at 1 SD above its mean, 1.334). One slope applies when the rate of 
change in rule setting is increasing (i.e., 1 SD above its mean, .502) and the other 
slope applies when there is a decrease in the rate of change in rule-setting (i.e., 1 
SD below its mean, -.502).4 Substituting the values into the earlier predicted equa
tion shows that both of these slopes are negative, indicating that the more parental 
monitoring increases over time the more negative the slope for antisocial behavior 
(i .e., a main effect of parental monitoring). However, there is also an interaction 
effect. The negative slope relating slopes on parental monitoring and slopes on an
tisocial behavior is steeper at higher levels of slopes on rule-setting (i.e., when 
rule-setting is at 1 SD above its mean). This indicates that the relations between 
longitudinal change in parental monitoring and longitudinal change in antisocial 

3To further confirm this interaction effect, a multisample method (see Rigdon, Schumacker, & 
Wothke, 1998) was used via chi-square difference tests. First, the sample was split into low- and 
high-rule-making groups based on levels of individual slopes ( on the t = 4 measurements). A model that 
allowed the slope of monitoring to predict the slope of antisocial behavior was specified for each level 
condition. There were two models estimated. The first model specified all parameters, including the 
monitoring slope-antisocial behavior slope relation, to be constrained to be equal across low- and 
high-rule-setting groups, whereas the second model estimated the interaction by allowing the monitor
ing slope-antisocial behavior slope relation path to differ across groups. The chi-square statistic was 
x ' (65) = 213 .031 , for the first model , and x' (64) = 207.243, for the second model , respectively, with a 
chi-square difference ofx' .m(l) = 5. 788,p < .025, suggesting the constraint in the second model was not 
consistent with the data, and thus an interaction effect existed. 

4The variance for the latent shape variable of parental monitoring (l;.2) is 1.780 and the variance for the 
latent shape variable of rule-setting is .252 (I;.). Taking the square root of these values gives the standard 
deviation of 1.334 for parental monitoring and .502 for rule-setting. 



514 LI, DUNCAN,ACOCK 

behavior is more negative when the increase in parental rule-setting is high. Thus, 
parents who increase their rule-setting over time while increasing their monitoring 
will reduce the growth in antisocial behavior the most. 

This model involving growth shape predictors accounted for approximately 96% 
of the variance in rate of change in adolescents ' antisocial behavior. The chi-square 
difference test between the interactive model and the "individual effect only" model 
was statistically significant, X2ctiff{J) = 73 .965,p < .001. The difference inR2 was .05 
(. 960 to .910), indicating a small increment in the variance accounted for over the 
" individual effect only" model. Although the increment was small, this needs to be 
understood in the context of being close to the upper limit of 1.0. The LISREL pro
gram specifications used for this example can be found in Appendix D. 

DISCUSSION 

The search for the best methods to address complex issues in behavioral develop
ment has been a major concern of developmental research (e.g., Collins & Hom, 
1991; Nesselroade & Baltes, 1979; Collins & Sayer, in press). Using standard 
SEM-based procedures (i.e., Joreskog & Yang, 1996), this article presented an ex
tension of interaction effects in latent growth curve models including interactions 
between latent growth (shape) parameters. 

Using an empirical data set on parenting practices, two examples of latent 
growth models were given. The first example illustrated tests of interactions be
tween two static latent variables in predicting a growth outcome variable, whereas 
the second example illustrated an interaction between two dynamic latent growth 
variables. In both examples, the interaction effect in latent growth models showed 
the dynamic influence of parental monitoring and rule-setting on the development 
of adolescent antisocial behavior. When the latent interaction variable was 
operationalized as a time-invariant static predictor in a cross-sectional model, the 
interaction between parental monitoring and rule-setting was related to a lower 
rate of change in adolescents' problem behavior. In a longitudinal model, the inter
action between the two slopes of parenting practices variables had a significant ef
fect on development of problem behavior, suggesting that simultaneous increases 
in parental monitoring and rule-setting reduced the rate of change in adolescent an
tisocial behavior. 

SOME PRACTICAL ISSUES IN THE INTERACTION 
ANALYSIS 

Methodologically, the modeling techniques illustrated in this article show that in
teraction analysis with latent variables can be extended to the analysis of more com-
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plex, dynamic models involving interactive relations between growth parameters. 
Applications of modeling interactions among change scores (growth factors) are 
likely to expand theoretical models in which structural relations among a set of 
variables have been conventionally specified as either direct or indirect. These ana
lytic tools will also allow researchers to more vigorously test hypotheses relating 
interactions between dynamic latent attributes to development of important behav
ioral outcomes. In the remaining sections, we discuss practical issues that research
ers need to consider when conducting interaction analysis in the context oflongitu
dinal data. These include (a) using multiple indicators versus single indicators for 
latent product variables, (b) interpretation of interaction effects in latent growth 
models, (c) data normality, and (d) issues related to the application of interaction 
analysis in latent growth modeling (for an excellent discussion on several related 
practical issues with SEM-based analyses of interaction effects, see Jaccard & 
Wan, 1996). 

Multiple Indicators Versus Single Product Indicator 

One of the fundamental issues in applying the method of J oreskog and Yang ( 1996) 
used in this article and those of others (e.g. , Jaccard & Wan, 1995; Ping, 1996) con
cerns the use of either multiple or single product indicators in operationalizing the 
latent product variable. In the first example in this article (the model in Figure 2), 
we used multiple product indicators of constituent observed variables because of 
the uncertainty about the consequence of using one or two product indicators in re
gard to the validity of the interactions. Although the use of multiple indicators per
mits the estimation of parameters with correction of measurement error in regres
sion equations involving interactions (a distinct advantage of the SEM-based 
approach; Aiken & West, 1991 ; Jaccard & Wan, 1995, 1996), these multiple indi
cators create estimation problems in interaction models (e.g., nonconvergence, im
proper solutions). That is , increases in the number of product indicators necessarily 
increase the size of the covariance matrix, and also the likelihood of making the ma
trix analyzed nonpositive definite, a problem that can occur as a result of 
nonnormality, empirical underidentification, and model misspecification (see 
Wothke, 1993). 

From a model estimation perspective, one product indicator is sufficient to 
identify the model using Joreskog and Yang ' s (1996) method. This procedure, 
therefore, represents a much simpler method to that outlined by Kenny and Judd 
( 1984 ). However, a simulated study by Yang-Jonsson ( 1997) showed that parame
ter estimates with three or four product variables in the model provided less bias 
and a smaller mean square error, but severely underestimated standard errors com
pared to models with one product variable. Although no specific recommendation 
was provided by Yang-Jonsson, a number of methodologists have adopted and/or 
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proposed specific strategies for the use of product indicators. For example, rather 
than using all product indicators, Jaccard and Wan ( 1995) adopted the approach of 
using a subset of them. Ping ( 1995, 1998) proposed a single-indicator specification 
to interaction modeling. Yang-Jonsson ( 1998) also used two product indicators in 
her illustration of the Ji:ireskog and Yang ( 1996) method. 

Substantively, however, the extent to which the use of one or more product in
dicators in a model impairs the content validity of the interaction remains un
known. As noted by Ping (I 998), it would be practically useful to understand the 
conditions under which product indicators in the model could safely be dropped 
without impinging on the content validity of the resulting latent variable interac
tion. Although there is no clear guidance in this regard in the literature, a conserva
tive recommendation would be to use at least two indicators in simple to 
moderately complex models, based strictly on the assumption that the observed in
dicators and product variables have high levels of content validity and reliability. 

In the level-shape growth interaction model shown in this article, the formation 
of observed product variables was based on corresponding occasions of measure
ment ( e.g., x2 at t2 on construct X and z2 at t2 on construct Z), although the multiple 
indicators ( e.g., x2z3, x2z4) approach discussed earlier could have been considered. 
Therefore, only one product indicator was used at each time point to specify the 
underlying latent variable representing the interaction of rate of change in X and 
rate of change in Z. Additionally, it should be noted that because identification re
striction in latent growth modeling requires that one of the loadings be fixed to 
zero (in this case the Time I measure), the product ofx1z1 was not used as one of 
the indicators for the latent product variable in the model. Although the choice of 
selecting a reference is largely arbitrary, the selection of what is excluded from the 
product terms might have substantive consequences. 

Interpreting the Interaction Effects Within Latent Growth 
Models 

Although it was shown in this article that the specification of interactions between 
latent growth parameters is possible using Joreskog and Yang's (1996) method, a 
substantive question is how these interaction effects within the context of latent 
growth models can be interpreted meaningfully from a theory testing perspective, 
an issue that is not often discussed in the literature (Wood & Erickson, 1998). 

The interpretation of the model interaction depicted in Figure 2 is straightfor
ward. The interaction effect of~1~2 on T11 (intercept) represents a synchronous ef
fect. This is the same interpretation as in any cross-sectional data. However, 
because the T12 slope factor is operationalized as Y's slope over time, the individual 
effect of ~1 or 1;2 may serve as a moderator between Y (t- 1) and Y slope in the con
text oflatent growth models. Given this, the joint effect of 1; 11;2 may be viewed as a 
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higher order interaction in the S1S2 -> 1'12 relation, representing a longitudinal pro
spective prediction or lagged effect over time. Alternatively, it can be said that the 
effect of StS2 on 1'12 actually represents a three-way interaction effect; that is, that 
the moderator effect that St has on the relation between Yand time is itself moder
ated by values on s2.5 

The interpretation of the interaction effect in the model depicted in Figure 3 is 
not as straightforward as the model of Figure 2 because it involves simultaneous, 
dynamic change scores of the latent continuous predictors. In multiple regression 
involving interactions, values of change in 1'12 are predicted by a regression coeffi
cient (slope) that gives the increase in 1'12 resulting from a one-unit increase in S2S4• 
In the context of latent growth modeling, this would indicate change in 1'12 that is 
predicted by simultaneous and joint change in s2 and S4· So the interaction in this 
context represents a joint and concurrent change between two latent growth shape 
factors, s2 and S4. In the example of parental practices, this would mean that when 
there are concurrent changes in monitoring and rule-setting practices (assuming in 
the same direction) their joint effect is enhanced (i.e., lowering developmental tra
jectories of adolescent problem behavior). 

Normality Issue 

It is well known that the ML fitting function, as used in this article, assumes the 
observed variables are multivariately normally distributed to produce reliable 
standard errors and a chi-square test of overall model fit (Bollen, 1989; 
Joreskog, 1993). Even though the observed variables are distributed normally, 
the product variables in the structural equation are known to be nonnormal 
(Joreskog & Yang, 1996). However, there are several alternatives for remedying 
the nonnormality situation. 

One way to deal with data nonnormality is to use corrected test statistics. This 
involves the use of a scaled Satorra-Bentler chi-square statistic (Satorra & Bentler, 
1988) implemented in EQS (Bentler & Wu, 1995) and LISREL (8.30; Joreskog, 
Sorbom, du Toit, & du Toit, 1999). The scaled statistic has been shown to perform 
better than the standard statistics (Chou & Bentler, 1995). The idea of this scaled 
statistic is to modify the standard test statistics to make them more appropriately 
chi-square distributed. Use of this scaled statistic in the context of latent variable 
interaction analysis has been demonstrated by Li et al. (1998) and Ping (1998). 

Some researchers have proposed methods that take into account the problems 
of nonnormality. For example, Schermelleh-Engel, Klein, and Moosbrugger 
(1998) described a method called latent moderated structural equations that takes 

5We thank an anonymous referee for providing insightful comments on the overall interpretation of 
the interaction effect in the latent curve analyses conducted in this article. 
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the nonnormality of the variables explicitly into account. However, as indicated by 
Joreskog (l 998), its use remains limited in practice. Bollen ( 1995) proposed a 
two-stage least squares (2SLS) procedure to estimate nonlinear effects that makes 
no assumptions regarding the underlying distribution of the unobserved variables. 
The procedure uses a limited information approach and is known to be simple for 
implementation (Bollen & Paxton, 1998; Joreskog et al. , 1999). Although viewed 
as an alternative, the 2SLS approach has not been applied to latent curve analysis 
in which both fixed constants and freely estimated factor loadings are necessary on 
the growth parameters (i .e. , intercept, slope) . Recent work by Arminger and 
Mu then ( 1998) presents another way of dealing with the problems of nonnormality 
and a general specification of nonlinear latent variable models as well as with the 
problem of small sample sizes. Arminger and Muthen proposed use of a Bayesian 
framework that employs two Markov Chain Monte Carlo procedures (the Gibbs 
sampler and Metropolis- Hastings) to estimate the posterior distributions of the pa
rameters and the latent variables given the data. Both the simulated and empirical 
data show promising results in recovering model (true) parameters. In short, al
though these are promising developments, more research is needed to explore the 
relative merits of each approach in applied settings. 

Finally, one frequently advocated approach for problems of nonnormality is the 
use of an asymptotic distribution free (ADF) method (Browne, 1984). However, to 
obtain asymptotically unbiased estimators of the chi-square statistic test, parame
ter estimates, and standard errors, the ADF estimator requires sample sizes that 
may be in the range of 1,000 to 5,000 observations (West, Finch, & Curran, 1995). 
An ADF-based weighted least squares (WLS) approach using an augmented mo
ment matrix (Joreskog & Yang, 1996; Yang-Jonsson, 1997) also requires large 
sample sizes for establishing the asymptotic properties. Clearly, it may not be suit
able for most social science research, in particular longitudinal studies of small or 
medium sample sizes. 

Application Issues 

Several additional issues evolved from this article that deserve consideration when 
applying interactions within the latent growth modeling framework. First, we pre
sented a common model of interest in latent growth models: the level-shape model. 
This model contains a complex model specification involving latent intercepts of 
the growth parameters that may complicate model estimation as well as interpreta
tion. A much simpler specification of the level-shape model is a shape-only model 
that involves only a growth shape factor. However, the highly restrictive set of 
model expectations (i.e., zero mean and zero variance in the intercept) often makes 
justification of these assumptions in practice unlikely. Thus, in practice the choice 
between the level-shape and shape-only models must be made based on substantive 
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theory and empirical data. Therefore, ifit is reasonable to assume that the intercept 
factor can be eliminated, or if it is strictly proportional to the slope, the predictive 
model with the fewer parameters (in this case the shape model) represents the 
model of choice (see Duncan et al., 1999). 

A second concern is model convergence and the appropriateness of obtained es
timates. There are estimation problems associated with the inclusion of latent 
product terms. Techniques such as those proposed by foreskog and Yang (1996) 
and Jaccard and Wan (1995) frequently encounter the problem ofnonconvergence 
and improper solutions (e.g., Jaccard & Wan, 1996; Li et al. , 1998; Ping, 1995, 
1998; Wood & Erickson, 1998), particularly with the inclusion of all possible 
cross-products of observed variables as indicators for a latent interaction model. 
Nonconvergence may be compounded by factors such as nonnormality of the data 
being analyzed, and noncentering of the product indicators, which results in model 
estimation that is more sensitive to starting values than usual (Rigdon et al. , 1998). 
One possible remedy to such improper or inadmissable solutions, as noted by Ping 
( 1998), may be to include user-specified starting values for the latent variable vari
ances and covariances, the structural coefficients, and the variances of the struc
tural disturbances. This is because better starting values imply faster model 
convergence. In our examples, we encountered a number of unacceptable solu
tions. Through a trial-and-error process, starting values can be chosen so that the 
model converges to an acceptable solution. This may be less likely when simpler 
methods of estimation procedures such as 2SLS (Bollen, 1995) are considered. 

A third issue involves sample sizes. The sample in this article was small in light 
of the results on sample sizes reported by Yang-Jonsson (1997). Yang-Jonsson in
dicated that large sample sizes (at least 400) are often necessary to avoid estima
tion problems such as nonconvergence and nonadmissible solutions. We selected 
the sample size for our illustrations because it is typical of longitudinal studies. 
However, because most fitting functions in SEM such as ML rely heavily on as
ymptotic properties, and these properties may only be satisfied with the use of rela
tive large sample sizes (Rigdon et al. , 1998), results from all models illustrated in 
this article may be limited in terms of their generalizability. Further work is neces
sary to assess the extent of these small sample size problems. 

Finally, although it is a useful tool for studying nonlinear dynamic relations, the 
extension of foreskog and Yang's (1996) procedure requires careful model 
parameterizations because as in standard structural equation models with interac
tions, model parameterizations in latent growth models are quite complex. In addi
tion to its complexity, the procedure is also a tedious and error-prone task of 
writing the nonlinear equations for the covariances of cross-products as functions 
of the model parameters. This is a common concern that has been echoed by a 
number of researchers (Jaccard & Wan, 1996; Joreskog & Yang, 1996; LaPlante, 
Sabourin, Cournoyer, & Wright, 1998; Li et al. , I 998; Neale, I 998; Ping, 1998) 
and as such "utmost care must be taken to specify the constraints in the model cor-
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rectly" (Joreskog & Yang, 1996, p. 85). One solution to this is to simplify the esti
mating procedure. For example, Joreskog et al. ( 1999) have shown a simple way of 
estimating the nonlinear models by means of latent variable scores. This method 
involves estimating a measurement model using observed variables and the latent 
variables scores are saved. In a follow-up step, the structural model of interest is 
estimated using these latent variable scores as observed variables. As illustrated by 
Joreskog et al. ( 1999) and Yang-Jonsson ( 1998), the method may represent a sim
pler way of modeling interaction compared to the one proposed by Joreskog and 
Yang (1996). 

Summary 

Although there has been an increasing application of latent growth models in the 
social sciences, models with interactions representing different rates of change that 
test complex hypotheses for both lagged and longitudinal designs have not been 
widely applied in practice. The method presented in this article is considered pre
liminary and requires further work to establish its viability. It can, however, be a 
useful method for detecting whether inter-individual differences in change (growth 
parameters) in one domain interact with change in another domain to jointly predict 
time-varying outcomes. 
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APPENDIX A 

The following demonstrates how the cross-product indicators of the latent product 
variable (~1~2) are formulated. Readers are referred to Joreskog and Yang ( 1996) 
and Yang-Jonsson ( 1997) for more detailed descriptions. For ease of presentation, 
let a; be x1 andx2 for the latent factor~ 1, and~ be x3 and x4 for the latent factor~2. The 
measurement equation for the observed product indicators using the symbol a; (i = 
1,2) and ~ (j = 1,2) can be expressed as 

Substituting the four cross-product terms (a 1d1, a1d2, a2d1, and a2d2) into the preced
ing equation, the following measurement equations are obtained: 

(13) 

a1d2 =(1:. , +A., ~1 +8., )(-cd, +Ad, ~2 +8d, ) (14) 

= 1:. , -c d, +-c. , Ad, ~2 + -cd, A., ~1 + A., Ad, ~1 ~2 + e .,d, 

wheree.,d, =1: . 8d +,:d 8. +A. ~18d +Ad ~28. +8. 8d; 
I 2 2 I 1 2 2 I I 2 

a 2d 1 =(1:., +A., ~1 +8. , )(-c d, +Ad, ~2 +8d,) (15) 

=1: -c +-c A i: +-c A i: +A 'A i: i: +0 
a 2 d 1 a 2 d1 1-:,2 d 1 a 2 ~I a 2 d 1 ~I ~ 2 a 2d 1 

(16) 

Specification of these uniqueness terms can be seen in the LISREL A and E> 
matrices presented in Appendix B. For example, for the cross-product indicator 
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a 1d1 (i.e., x 1x 3 in Equation 24, see Appendix B), the term 't
0 1 

'td, is the intercept ( 
'tx 'tx ), the term 'td A.

0 
1;1 is the fifth loading for the latent variable 1;1 (A.51 = 't3), 

th~ te:m 't
0 

').,d 1;2 i~ th~ fifth loading for the latent variable 1;2 (A.52 = 't1), the term 
A.

01 
Ad, 1;11;2

1 

is 
1

the first loading for the latent product variable (A.53 = I, where the 
constant value of l is used for scaling purposes), and, finally, the term 0 d is the 
uniqueness term (0s) for a1d1 (or x 1x3) shown as the fifth diagonal elemen~

1

i~ Equa
tion 25 in Appendix B. 

A total of 12 pairs of covariances are specified in the LIRESL 0 matrix. These 
include the covariances between observed indicators (i .e. ,051, 061, 012, 082, 053, 073, 
064, and 0s4) and product indicators (065, 015, 0s6, and 0s1) . ote that the 
covariances between the cross-product terms are those that share the ame ele
ments (Jaccard & Wan, 1995; e.g., the covariance between a 1d1 and a1d2 (06s) both 
have an a1 indicator). The covariance between 8

0
; and 8

0
,d

1 
(i .e ., 051, 051, 0n, 0s2, 

0 53, 073, 064, and 0s4) must equal 'td
1 
Var(.8

0 1 
) . Similarly, the covariance between 

8d and 8
0 

d must equal 't
0 

Var(8d ). For example, the covariance between 8
0 J I J I J I 

and 80 d (i .e ., 051) equals 0 51 = 't d 8
0 

and the covariance between 8d and 8
0 

d 
(i .e., e s;) equals 0 53 = 't a 8d . Th~ c~variances between the product' indicat~r~ 
(065, 015, 0 6, 0s1) are deri~ed by multiplying the corresponding uniqueness com
ponent, 0 

0 
d , of the measurement equation shown in Equations 13 through 16. For 

I I 
example, the covariance between 0 65 = Cov(0 d 0 d ) is derived by multiplying 
0

0 
d by 0

0 
d in Equations 13 and 14, then ~g ~h; expectation using the fact 

I I I 2 

that the l; ' s and o ' s have a joint multinormal distribution (with the assumptions of 
O; being independent of Oj for i -::t= j , and of 9- for i = 1, ... ,4; k = 1,2): 

065 = Cov(0a,d,. 0a,d ) =Cov[('t., Od, +'td, 8., +Aa, 1;18d, +Ad, s28., +8., 8d,) 

(-i:., 8d, + 'td, 8., + " ·, S18d, + "-d, ~ 8., + 8., 8d,)] 

= Cov(-i:01 8d
1
_'t

01 
8d,) + Cov(-i:d, 8

01 
_-i:

01 
8d,) + Cov( t..

01
l;18d, .'t

01
8d,) + 

Cov(t..d, s28., .-i:. , 8d,) + Cov(o. , 8d, _-i:. , 8d,) + Cov(-i:., 8d,.'td, 8. ,) + 

Cov( 'td, 8. , _'td, 8.,) + Cov( t..., S18d,. 'td, 8.,) + Cov(t..d, s28., _'td, 8. ,) + 

Cov(8. , 8d, .'td, 8.,) + Cov(-r., 8d,, " · I S18d,) + Cov('td, 8., ,"-a, S18d,) + 

Cov(t... , S18d, '" ·, S18d,) + Cov(t..d, S28., '" · I s 18d,) + Cov(8., 8d, ,"-a, S18d,) + 

Cov(-i:. , 8d,. Ad, s28. ,) + Cov('td, 8.,. "-d, S28.,) + Cov(t..., S18d,. "-d, 1;28. ,) + 

Cov(t..d, 1;28.,. "-d, s28. ,) + Cov(8., 8d, ' "-d, 1;28. ,) + Cov(-i:., 8d, '8., 8d,) + 

Cov('td, 8., . 8., 8d,) + Cov( t..., s 18d, '8., od, ) + Cov(t..d, 1;28., 'o., 8d,) + Cov(8. , 8d,. 8., 8d,) 

U ing the earlier assumptions, all covariances that are zero are removed, resulting 

in Cov(e.,d,. e. ,d,) = Cov('t d, 8. , . 't d, 8., ) + Cov(A.d, 1;2 8a,' Ad, 1;2 8. , ), which 
gives 0 65 ='td, -rd, 8

0 1 
+Ad, q>22 80 1

• ote that there is no covariance between <!>22 
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and 8 a, because these two terms are assumed to be independent of each other. All 
terms are listed as follows: 

0 51 = 't d 8a 
I 1, 

0 53 = 't a, 8d,. 

E) 61 = 'C d, 8d,, 

8 73 = 't a, 8d,, 

872 ='Cd, 8a,, 082 ='Cd, 8a,, 

064 = 't a, 8d, , 084 = 't a, 8d,, 

0 65 ='Cd, 't d, 8a, +Ad, <J>228a,, 875 ='ta, 't a, 8d, +Aa, <l>118d, , 

0 86 ='ta, 1a, 8d, +A.a, <1>1 18d,, 0 87 ='td, 'C d, 8., +Ad, <1>22 8., 

Finally, the uniqueness terms of (05, 06, 07, and 08) are 

(17) 

It should be noted that these variances and covariances are not estimated independ
ently but are entirely constrained to nonlinear functions of the free parameters in the 
model. All these constraints are imposed with reference to the Theta Epsilon matrix 
in LISREL 

APPENDIX B 

This appendix provides a brief description of the parameterization of the interac
tion model presented in Figure 2 using LISREL measurement models for the vec
tors of endogenous variables Y and exogenous variables X These include nonlinear 
constraints in the X measurement model on parameters related to the interaction 
term that need to be implemented for model estimation. The Y-measurement com
ponent of the model has the following matrix form 

(22) 
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Note 'ty in Equation 22 is a null vector. The matrix form for the structural compo
nent of the model is 

(23) 

Unlike standard latent growth models (Willett & Sayer, 1994), elements in a ands 
vectors have different interpretations in this regression-type model (i.e. , the model 
with predictors). The as represent the regression intercepts of the structural equa
tion model, or that part of the endogenous variable mean that is not explained by the 
additional predictor variables, and the ss are deviation-from-predicted-value vari
ables, generally referred to as disturbance terms. 

The LIS REL X-measurement model of Figure 2 is 

X ='tx + A, ~+ o (24) 

X 1 't ,, I 0 0 0 1 

X i 't , , A-21 0 0 0 2 

X 3 't x, 0 0 ~, l 0 3 

X 4 't '• 0 /1,42 0 
~ 2 + 

04 
+ 

0 5 X 1X 3 't x, 'tx, 't3 't i 
~ 1~ 2 

X1 X 4 'tx
1 
'tx

4 't 4 't I A,42 /1,42 0 6 

X 2 X 3 't,, 't,, 't 3 A.21 't 2 A.21 0 7 

X 2 X 4 't x, 't x, 't 4 A. 21 't 2 A-42 A. 21 A.42 0 8 

Derivations of cross-product indicators of the latent product variable ~1~ 2 are pro
vided in Appendix A . The variance/covariance matrix for uniqueness 0 t. where k 
ranges from 1 to 8, is 

el (25) 

0 0 2 

0 0 0 3 

0 0 0 0 4 
0 5 = 

0 51 0 0 53 0 0 5 

0 61 0 0 0 64 0 65 0 6 

0 0 72 0 73 0 0 75 0 0 7 

0 0 82 0 0 84 0 0 86 0 87 0 8 
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Note that correlations among certain uniqueness terms are allowed in the 0 8 matrix. 
Derivations of these terms are provided in Appendix A. 

For this nonlinear structural equation model , the assumptions specified by 
foreskog and Yang (1996, p. 58) apply: 

1. x1, • •• , J'4 are multivariate normal with zero means. 
2 . s, and S2 are bivariate normal with zero means. 
3. O; is normally distributed with zero means, i = I, ... , 4. 
4. ss are normal with zero mean. 
5. O; is independent of oi for i -:t j. 
6. O; is independent of Sk for i = I , ... ,4; k = I , 2. 
7. ss are independent of O; and Sk for i = I , ... , 4 and k = 1,2. 

Within the LISREL framework, the mean of the exogenous s variables are col
lected in a vector K. The mean vector, K, and variance/covariance matrix, <I>, 
among the s latent factors are as follows: 

(26) 

Also, note that the latent mean values of s, and s2 are fixed to zero (i.e., K1 = K2 
= 0). This constraint puts the two latent variables in deviation score form (i.e., 
mean centered). Following the assumption that the latent variables of s, and s2 are 
multivariately normally distributed and mean centered in the population (foreskog 
& Yang, 1996), the covariance of each with the latent product variable (S1S2) is set 
to zero, as shown in the last row of the <I> matrix (i .e., q>31 = q>32 = 0). 

The variance for the latent product term, S1~2, is 

as per Joreskog & Yang (1996, p. 59) and shown in the third diagonal element in the 
last row of the <I> matrix . 

APPENDIX C 

The following LISREL script can be used for estimating the interaction model 
shown in Figure 2. 

Analysis of Interaction Effects Using LIS REL 8 



Da Ni= l2 No=221 
La 
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yl y2 y3 y4 xl x2 zl z2 xlzl xlz2 x2zl x2z2 
Mo Ny=4 Nx=8 Ne=2Nk=3 Lx=Fu Ly=Fu Td=SyTe=sy Ph=Sy Ps=Sy,frGa=Fu c 
ka=fu tx=fu ty=ze al=fu,fr 
File= cov.cm 
File = mean.me 
Lk 
Ksi_l Ksi_ 2 Ksi_l 2 
Le 
Eta_ lnt Eta_Slp 
ti ly(l , l) ly(2, l) ly(3, l) ly(4, l) 
va 1 ly(l , l) ly(2, l) ly(3 , l) ly(4, l) 
fi ly( 1,2) ly(2,2) ly(3,2) ly( 4,2) 
va O ly(l ,2) 
va l ly(2,2) 
va 3 ly(3,2) 
va 6 ly(4,2) 
PaLx 
l O 0 
1 0 0 
010 
0 1 0 
I I 1 
1 l 1 
1 1 1 
I I I 
co lx(5, l)=tx(3) 
co lx(6, l)=tx(4) 
co lx(7, I )=tx(3)*lx(2, I) 
co lx(8, l)=tx( 4)*lx(2, 1) 
co lx(5,2)=tx(l) 
co lx(6,2)=tx( I )*lx( 4,2) 
co lx(5,3)=1x(l,l)*lx(3,2) 
co lx(6,3)=lx(4,2) 
co lx(7,2)=tx(2) 
co lx(7,3)=1x(2, l) 
co lx(8,2)=tx(2)*lx( 4,2) 
co lx(8,3)=lx(2, I )*Ix( 4,2) 
Pa Te 
I 
0 I 
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0 0 1 
0 0 0 1 
Pa Td 
1 
0 1 
0 0 1 
0001 
I O 1 0 1 
IO O I l 1 
0 l IO l O l 
0101011 l 
Pa Ph !Variance for the latent variables 
l 
l l 
0 0 l 
Pa Ga 
111111 
Paka 
0 0 1 
Pa Al 
l l 
Pa Tx 
llllllll 
co tx( 5)=tx( 1 )*tx(3) 
co tx(6)=tx(l)*tx(4) 
co tx(7)=tx(2)*tx(3) 
co tx(8)=tx(2)*tx( 4) 
co ka(3 )=ph(2, l) 
co ph(3,3)=ph( l, l)*ph(2,2)+ph(2, l )**2 
co td(5,5)=tx(l )**2*td(3,3) + tx(3)**2*td(l, l )+ c 

ph(l,l)*td(3,3) + ph(2,2)*td(l,l) + td(l,l)*td(3,3) 
co td(6,6)=tx(l)**2*td(4,4) + tx(4)**2*td(l,l) + c 

ph(l ,l)*td(4,4)+lx(4,2)**2*ph(2,2)*td(l, 1) + td(l ,l)*td(4,4) 
co td(7,7)=tx(2)**2*td(3,3)+tx(3)**2*td(2,2)+ c 

lx(2, 1 )* *2 *ph( 1, 1 )*td(3 ,3)+ ph(2,2)*td(2,2)+td(2,2)*td(3,3) 
co td(8,8)=tx(2)**2*td(4,4)+tx(4)**2*td(2,2) + c 
lx(2, 1 )**2*ph( 1, 1 )*td( 4,4) + Ix( 4,2)*1x( 4,2)*ph(2,2)*td(2,2) + c 
td(2,2)*td( 4,4) 

co td(5, 1 )=tx(3)*td(l, I) 
co td(6,l)=tx(4)*td(l,l) 
co td(7,2)=tx(3)*td(2,2) 
co td(8,2)=tx(4)*td(2,2) 
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co td(5,3)=tx( I )*td(3,3) 
co td(7,3)=tx(2)*td(3,3) 
co td(6,4)=tx(l)*td(4,4) 
co td(8 ,4)=tx(2)*td(4,4) 
co td(6,5)=tx(3)*tx( 4)*td( I, 1 )+lx( 4,2)*ph(2,2)*td{l, I) 
co td(7,5)=tx( I )*tx(2)*td(3,3)+lx(2, I )*ph(I, I )*td(3,3) 
co td(8,6)=tx(l )*tx(2)*td(4,4)+lx(2, l )*ph(I , l)*td(4,4) 
co td(8, 7)=tx(3)*tx( 4)*td(2,2)+lx( 4,2)*ph(2,2)*td(2,2) 
fi lx( I, l) lx(3,2) lx(5,3) 
val lx(l , l)lx(3,2)1x(5,3) 
ou Sc it=300 ad=off nd=4 ns ep=.O I 

APPENDIX D 

The following LISREL script can be used for estimating the interaction model 
shown in Figure 3. 

Interaction model with a LGM 
- an intercept-slope factor model 

Da Ni= 15 No=22 l 
la 
yl y2 y3 y4 xl x2 x3 x4 zl z2 z3 z4 x2x6 x3x7 x4x8 
file = cov .cm 
file = mean.dat 
Mo Ny=4 Nx=l l Ne=2 Nk:=5 Td=Sy Te=Di Ps=Sy Ga=Fu ka=fr c 

tx=fu ty=fu 
Lk 
KSIA_int KSIA_slp KSIB_ int KSIB_slp K.AB_Int 
Le 
ET A_int ET A_slp 
fi ly(l , l) ly(2,l) ly(3, l) ly(4, l) 
val ly(l , l) ly(2, l) ly(3, l) ly(4, l) 
fi ly(l ,2) ly(2,2) ly(3 ,2) ly(4,2) 
va O ly(l ,2) 
va 1 ly(2,2) 
va 4 ly(3,2) 
va 8 ly(4,2) 
!setting metric for KISA_int 
fi lx(l , l) lx(2, l) lx(3,1) lx(4, I) 
va 1 lx(l , l) lx(2, l) lx(3, l) lx(4, l) 
!setting metric for KISA_slp 
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fi lx(l,2) lx(2,2) lx(3,2) lx(4,2) 
va 0 lx(l,2) 
va 1 lx(2,2) 
fr lx(3,2) 
fr lx(4,2) 
st I lx(3 ,2) Ix( 4,2) 
!setting metric for KSIB_int 
fi lx(5,3) lx(6,3) lx(7,3) lx(8,3) 
va 1 lx(5,3) lx(6,3) lx(7,3) lx(8,3) 
!setting metric for KSIB_slp 
fi lx(5,4) lx(6,4) lx(7,4) lx(8,4) 
va 0 lx(5,4) 
va 1 lx(6,4) 
fr lx(7,4) 
fr lx(8,4) 
st I lx(7,4) lx(8,4) 
Pa Ph 
I 
I 1 
I 1 1 
I I 1 I 
00001 
Pa Ga 
I 0 1 0 0 
0 I 0 1 I 
!constraints for the interaction terms 
fi lx(9,5) 
va 1 lx(9,5) 
co lx(l 0,5) = lx(3,2)*lx(7 ,4) 
co lx(l l ,5) = lx( 4,2)*lx(8,4) 
co lx(9,2)=tx(6) 
co lx(9,4)=tx(2) 
Co lx(l 0,2)=tx(7)*lx(3,2) 
co lx(10,4)=tx(3)*lx(7,4) 
co Ix( l l ,2)=tx(8)*lx( 4,2) 
Co lx(l l,4)=tx(4)*lx(8,4) 
Pa Al 
1 l 
pa tx 
1 l 1 l l l l 1 1 1 l 
co tx(9)=tx(2)*tx(6) 
co tx(l0)=tx(3)*tx(7) 
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co tx(l l)=tx(4)*tx(8) 
Co ph(5,5)=ph(2,2)*ph(4,4) + ph(4,2)**2 
Co td(9 ,9)=tx(2)**2 *td( 6,6)+tx( 6)* *2 *td(2,2)+ph(2,2)*td( 6,6)+ c 

ph( 4,4 )*td(2,2)+td(2,2)*td(6,6) . 
Co td(l0, l 0)=tx(3)**2*td(7,7)+tx(7)**2*td(3,3)+lx(3 ,2)**2*ph(2,2)*td(7, 7) + c 

lx(7,4)**2*ph( 4,4)*td(3 ,3)+td(3 ,3)*td(7, 7) 
Co td(l l , 11 )=tx(4)**2*td(8,8)+tx(8)**2*td(4,4)+lx( 4,2)**2*ph(2,2)*td(8,8) + c 

lx(8,4)**2*ph( 4,4 )*td( 4,4)+td( 4,4)*td(8,8) 
Co td(9,2)=tx(6)*td(2,2) 
Co td(9,6)=tx(2)*td(6,6) 
Co td( 10,3)=tx(7)*td(3,3) 
Co td(J0,7)=tx(3)*td(7,7) 
Co td(J l,4)=tx(8)*td(4,4) 
Co td( 11 ,8)=tx( 4)*td(8,8) 
Pa Ka 
00001 
Co ph(5,5)=ph(2,2)*ph( 4,4)+ ph( 4,2)**2 
Co ka(5) = ph(4,2) 
Ou Sc add=offit=300 ns ep=.001 nd=3 xm 




