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By giving counterexamples where the covariance matrix provides crucial informa­
tion about consequential model misspecifications, this article cautions researchers 
about overinterpreting Rogosa and Willett 's (1985, p. 104) conclusion that "the 
covariance matrix is a severe summary of the longitudinal data, one that may discard 
crucial information about growth." 

Structural equation modeling (SEM) methodology is an attractive means of 
studying behavioral, social, and educational phenomena. Research into its spe­
cifics has at the same time increased our awareness of its potential and limita­
tions (e.g. , Freedman, 1987; Rogosa, 1987; Rogosa & Willett, 1985). In a 
cautionary article 15 years ago, Rogosa and Willett (1985) used SEM in a longi­
tudinal modeling context to fit a simplex structure to data arising from a con­
stant rate of change (CRC) model. They concluded that "The covariance matrix 
is a severe summary of the longitudinal data, one that may discard crucial infor­
mation about growth" (p. 104). The purpose of this article is to raise caution 
against overinterpreting this statement and particularly its generalization across 
longitudinal settings, by giving counterexamples where the covariance matrix 
provides crucial information about consequential model misspecifications. The 
intent is to contribute to the study of the potential of SEM to sense deviations 
from assumed latent relation patterns. 

In the remainder of this article, a simulated linear change data set with two, 
rather than single, indicators at assessment points is considered. The example is 
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based on similar parameters as those presented by Rogosa and Willett ( 1985). 
Fitting a corresponding simplex structure, however, suggests serious model 
misspecifications. Subsequently, an example is presented with data following a 
quadratic true score relation in which model misspecifications cannot be sensed 
by the overall fit indexes or measures of variance accounted for both at the latent 
and observed levels . Rather, it is indicated by other parts of the output of the nu­
merical minimization routine. Finally, empirical conditions are stated that can 
generally provide good chances for structural equation models to sense latent 
pattern misspecifications, and some issues pertaining to model fit evaluation in 
SEM are discussed. 

FITTING A MULTIPLE-INDICATOR SIMPLEX 
STRUCTURE TO DAT A FOLLOWING A CRC MODEL 

Longitudinal modeling has recently attracted increased interest in the behavioral 
and social sciences, a trend that has followed a similar earlier tendency in 
biostatistics, applied statistics, and the life sciences (for a brief overview ofleading 
lines of these research streams, see Collins & Hom, 1991 ; Gottman, 1996; Raykov, 
1998). 

CRC and Simplex Models 

Within the repeated assessment context, Rogosa and Willett ( 1985) analyzed a 
covariance matrix arising from a CRC model that maximally violated Guttman' s 
( 1954, pp. 99- 100, 105- 106) condition for the simplex. The CRC model is based 
on the following latent relations: 

(1) 

where t; = i, i = 1, 2, 3, 4, 5 (using the same notation used in Rogosa and 
Willett's article) . In Equation 1, T\ stands for latent variable, i is the repeated 
measurement index denoting five consecutive assessment occasions, and p is 
the person index (p = I, 2, . . . , 500; N = 500 being the sample size). Thereby, 
T\ 1,p is the true initial status of subject p; that is, T\ I,p is his or her true score at 
ith assessment, i = 2, 3, 4, 5; and Sp, p = I , 2, . . . , N, is his or her rate of change 
over time, which remains constant across- all repeated assessments. That is, at 
each of the five consecutive assessments there is possible variability among 
participants' rates Sp of latent change, p = 1, 2, .. . , N, but within participants 
there is no variability over time in their rates of change between the measure­
ment occasions. 
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Rogosa and Willett (1985) fit a simplex model (e.g., Joreskog, 1970) defined 
with the latent relations 

TJ; +1.,,=~;TJ;,p+0;+1.,,,i= 1,2,3,4,p= l, .. . ,N (2) 

to the simulated covariance matrix presented in Table l. In Equation 2, ~; is the oc­
casion-specific true regression slope assumed constant across participants within 
assessment points, and oi is the structural residual at the ith measurement occasion, i 
= 2, 3, 4, 5. Rogosa and Willett (1985) postulated the observed variables as 

Y; = TJ; + £; (3) 

where f.; denotes measurement errors, i = I, 2, . . . , 5; that is, the observed variables 
represented each a single indicator of the contemporaneous latent construct. 

When fitted to the covariance matrix in Table l, the simplex model defined by 
Equations 2 and 3 was found to exhibit close to perfect overall goodness-of-fit in­
dexes (see Rogosa & Willett, 1985, p. 100). These were reported as follows: x2 = 
2.13, df = 5, p = .831, root mean square residuals less than .0 l, and adjusted good­
ness-of-fit index (AGFD = .995. Rogosa and Willett (1985, p. l 00) concluded that 
the "quasi-simplex covariance structure model provides an excellent fit to the 
covariance matrix in Table l."1 

Model Performance in a Multiple Indicator Context 

A major characteristic of the simplex model fit by Rogosa and Willett (Equations 2 
and 3), as well as the CRC model they used for data generation purposes (Equations 
l and 3 ), was that each construct was measured with only one indicator. Use of sin­
gle indicators oflatent variables has been frequently criticized in the psychometric 
literature because of the very limited information that a fallible measure usually 
contains about the latent construct of actual interest and hence about its temporal 
change ( e.g., Bollen, 1989). It is therefore ofinterest to see if a similar general state­
ment like Rogosa and Willett's {I 985, p. l 04, cited in the preceding section) about 
crucial limitations of the associated covariance matrix can be made also in cases 

10ne covariance structure residual is in this author's view of importance. This is the residual of .009, 
which relative to the other residuals appears inordinately large. (The next largest residual is Jess than half 
its size; this comparison is sensible because the magnitudes of the observed variable variances are fairly 
comparable.) It is associated with the element that reflects the relation between two assessments furthest 
away from each other according to the fitted simplex model, the first and last measured variables. This 
observation suggested the example discussed later in this section. 
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TABLE 1 
Observed Score Covariance Matrix From Rogosa & Willett (1985, Table I) 

Variable Y1 Yi Y1 Y, Y5 

Y1 .619 
Y2 .453 .595 
Y3 .438 .438 .587 
r. .422 .430 .438 .595 
Ys .406 .422 .438 .453 .619 

Note. Y1, Y2, Y3, r., and Ys represent single indicators of a latent construct following the constant rate 
of change model in Equation I, which has been assessed five consecutive times. From "Satisfying a 
Simplex Structure Is Simpler Than It Should Be," by D. R. Rogosa and J. Willet, 1985, Journal of 
Educational Statistics, I 0. Copyright 1985 by the American Educational Research Association and the 
American Statistical Association. Reprinted with permission. 

where one uses at least two indicators per latent construct. Addressing this issue 
constitutes a main concern of this article. 

To respond to it, a counterexample is considered where the associated 
covariance matrix is not necessarily a severe summary of the longitudinal data in 
the sense of being insensitive to deviations from the CRC model that are built in a 
fitted simplex model. This example is based on similar latent and observed level 
parameters as those cited by Rogosa and Willett (see Equations 1 and 3). The dif­
ference between the two examples is that here two, rather than only one, indicators 
are simulated at each assessment. Like Rogosa and Willett's example, this data set 
is based on the straight-line constant growth rate model in Equation 1, and uses the 
following measurement model: 

Yi =111 +E1 

Y2 = 111 + E2 

YJ = 112 + E3 

Y4 = 112 + ~ 

Ys = 113 + Es 

y6 = 113 + E6 

Y1 = 114 + E1 

Ys = 114 + Es 

Y9 = lls + Eg 

Y10 = lls + E10 

(4) 

Based on Equations 1 and 4, 10 normally distributed random variables were 
generated for N = 500 cases (Y1 through Y1o). (Thereby, the reliabilities of the sim­
ulated indicators Y1 to Y1o were at least .75 ; cf. Rogosa & Willett, 1985.) The re­
sulting covariance matrix is displayed in Table 2. 
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TABLE 2 
Observed Score Covariance Matrix Following the Constant Rate of Change Model With 

Two Indicators per Assessment 

Variable Y, Yi Y1 Y, YJ y6 Y1 Ya Y9 y/0 

Y1 1.20 
Y2 .93 1.24 

Y3 .96 .94 2.28 
Y, .99 .94 2.04 2.39 
Y s 1.00 .87 3.00 3.12 5.45 
y6 1.05 .93 3.08 3.15 5.19 5.52 
Y 1 1.09 .88 4.12 4.20 7.34 7.39 10.91 
Ya 1.06 .92 4.03 4.10 7.14 7.22 10.34 10.41 
Y9 1.13 .87 5.07 5.19 9.32 9.34 13 .55 13.23 17.77 

Y10 1.14 .91 5.05 5.17 9.24 9.29 13.48 13.14 17.29 17.50 

Note. Each consecutive pair of variables represents two indicators of a latent construct following 
the constant rate of change model in Equation (I), which has been assessed at five successive times. 

Exploration of the raw data suggested that the assumption of normality 
could be considered plausible. Specifically, (a) Mardia's normalized 
multivariate kurtosis was nonsignificant (Bentler, 1995), (b) the simulated 
variables each appeared normally distributed (Joreskog & Sorbom, 1993b ), 
and ( c) pairwise scatterplots of variables exhibited no marked deviations from 
linearity as well as cigar-shaped dispersion patterns (e.g., Tabachnick & Fidell, 
1996). The application of the maximum likelihood method was therefore con­
sidered justified. 

Fitting the simplex model given by Equations 2 and 4 yielded an unacceptably 
high chi-square value: x2 = 570.89 for df = 31, with associated probability level (p 
< .0000 I) and very high root mean square error of approximation (RMSEA), 1t = 
.19. (LISREL indicated that it could not compute confidence interval limits due to 
the too small probability associated with the chi-square value; Joreskog & 
Sorbom, l 993a.) In addition, even though the estimated factor loadings were close 
to the simulated ones, and the percentage explained variance for most latent vari­
ables was relatively high, the Q-Q plot of the standardized residuals was very neg­
atively skewed (some 80% of the residuals being negative), suggesting lack of 
model fit. Specifically, the line (fitted) through their representative signs in the 
plot had a nearly horizontal slope. Furthermore, the modification indexes for the 
fixed parameters in the matrix reflecting regressions among the latent variables 
(the matrix "Beta" in LISREL's terminology) were very high (far above 10), par­
ticularly those for the parameters relating the first and last two latent variables. 
These results indicate that the fitted simplex model could not be accepted as a 
means of describing the covariance matrix in Table 2, and that (at least in the case 
of a pair of indicators per assessment occasion) the observed variable covariance 
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matrix contained crucial information about the pattern of temporal change. Inter­
estingly, the model was also fit with three different sets of starting values, and 
identical results were obtained. 

SENSITIVITY OF SEM TO NONLINEAR LATENT 
RELATION MISSPECIFICATIONS 

The discussion thus far was concerned with the issue of sensitivity ofSEM to such 
misspecifications of the underlying latent relation pattern that remained in the class 
of linear relations. This section's aim is to address the problem of sensitivity of 
SEM to nonlinear latent relation misspecifications. In particular, as in the preced­
ing section, the interest here is in presenting a counterexample where the 
covariance matrix is not a severe summary oflongitudinal data and does not discard 
(all) crucial information about model misspecifications in the sense ofbeing insen­
sitive to them. 

To address this concern, in the remainder of this section the results of a simula­
tion study based on a model with a quadratic relation at the true score level are pre­
sented. In this study, data on N = l 000 observations were simulated in accordance 
with the true relation 

(5) 

with two indicators per true score, Tl 1 and fl 2. (The sample size was chosen 
to be twice as high as that in Rogosa & Willett, 1985, and that in the pre­
ceding section because the weighted least squares [WLS] fitting method 
will be used later due to the induced lack of multivariate normality in the 
simulated data; see later.) The extreme relation of IO to I between the coef­
ficients of the linear and quadratic terms in the right-hand side of Equation 
5 was chosen to provide empirical evidence that , even under rather unfavor­
able conditions for detecting model misspecifications, the associated 
covariance matrix can contain crucial information suggesting lack of model 
fit. This extreme relation of IO to I of the linear to quadratic coefficients in 
Equation 5 facilitates obtaining a high percentage of explained latent vari­
ability in a linear regression of the simulated Tl 2 upon 1'11 to begin with. 
Thus it makes sensing deviations from latent linearity more difficult for 
SEM (which has generally been viewed as a linear modeling methodology) . 
(In a preliminary regression analysis relating the simulated Tl2 upon Tl 1, the 
proportion of latent explained variance in the former was found to be 98%. 
Raykov & Penev, 1997, discussed a case where the relation of linear to qua­
dratic coefficients is only I to I and the amount of explained latent variabil­
ity was fairly low, viz. 30%; cf. later.) 
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When simulating the data, four error terms as well as a true score Tl I were ob­
tained as realizations of zero-mean normal variates (the variance ofT]1 was postu­
lated to be unity). The measurement model used for data generation purposes was 

Y1 = TJ1 +£1 
Y2=2T]1+E2 

f3 = 1'12 + €3 
y4=21'12 + C4 

providing the covariance matrix presented in Table 3. 

(6) 

Initial data exploration suggested that the assumption of normality of the four 
indicators Yi , Y2, Y3, and Y4 was not plausible. Specifically, the univariate distribu­
tions of the last two variables exhibited marked deviations from normality. This 
was not surprising because Y3 and f4 by definition each represented the sum of two 
normal variables, T]1 (2T11) and £3 (£4), respectively, and a (proportionate to) x2 

variable with a single degree of freedom, T] 12. Given these findings, the WLS 
method was considered appropriate (e.g., Joreskog & Sorbom, 1993a; the follow­
ing results did not change substantially however when using the maximum likeli­
hood method and suggested similar conclusions as those stated later). 

The misspecified, simplex model in Equations 6 and 2 (for two assessments) 
was fit to the covariance matrix in Table 3. The resulting goodness-of-fit indexes 
were as follows : x2 = 1.174, df= 1,p= .279, and RMSEA with its 90%confidence 
interval 7t = .013 (0; .086). These appear excellent (overall) fit indexes, and there 
does not seem to be indication oflow power as judged by the length of the reported 
confidence interval (e.g., Joreskog & Sorbom, 1993a). In addition, there are high 
proportions of explained latent (97%) and observed (in excess of73%) variability. 
However, the residuals of the model were mostly positive (80% of them), and their 
distribution was very skewed. Moreover, the standardized residuals exhibited a 
very platykurtic distribution. Their Q-Q plot had a clear nonlinear pattern suggest­
ing model misspecifications (e.g., Joreskog & Sorbom, 1989). Further, although 

TABLE 3 
Observed Score Covariance Matrix Following a Nonlinear True Relationship Pattern 

Variable Y, 

Y, 1.286 
Y2 1.934 

Y3 4.599 

Y4 9.218 

Y, 

5.226 
9.616 

18.802 
32.110 
46.502 

Y, 

123.520 

Note. Y,, Y2 and Y3, Y4 = two pairs of simulated indicators of a latent construct that follows, over two 
assessments, the quadratic relationship in Equation 5; indicator reliabilities larger than .75 (cf. Rogosa 
and Willett, 1985). 
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with a single degree of freedom for the overall model test such residuals ' behavior 
may not be very surprising, the standard error of the latent disturbance term vari­
ance was inordinately large relative to the remaining parameter standard errors 
pertaining to the latent structure of the model. (Note that this term is not present in 
Equation 5 but a linear structural model with such a term, viz. with the structural 
equation 112 = ~ll 1 + ~2, is fitted to the data here.) For example, the standard error of 
this residual variance was more than nine times larger than the standard error of the 
latent predictor variance (i.e., the variance of111). In addition, the standard errors 
of the error variances for the indicators Y3 and Y4 of the latent dependent variable 
TJ2 were each more than 20 times higher than the standard errors of these variances 
for the corresponding indicators Yi and Y2, respectively, of the latent predictor ll 1-

These three inordinately large standard errors suggested considerable lack in pre­
cision of estimation of their corresponding parameters, which in this empirical 
case reflects deviations from linearity. This finding of large parameter estimate 
imprecision, too, was taken as an indication of nonlinearity misspecifications at 
the ability level of the fitted linear model. (This model was also fit with three dif­
ferent sets of initial starting values, and identical results were obtained.) 

Thus the conditions underlying this example were rather unfavorable for SEM 
to detect the built-in model misspecifications, relative to the fitted model, in the 
data simulation process. Specifically, the ratio oflatent linear to quadratic coeffi­
cients was very high, namely l O to 1. As such, it ensures substantial domination of 
the linear over quadratic term in Equation 5 defining the data simulation model, in 
addition to there being only two assessment points.2 Nonetheless, the associated 
covariance matrix in Table 3 was found to contain important information about 
model misspecifications. Consequently, this matrix is not insensitive to the serious 
build-in model misspecifications, and hence cannot be considered a severe sum­
mary of the analyzed two-wave data. 

DISCUSSION AND CONCLUSION 

This article contributes to the di scussion of sensitivity of SEM methodology to 
model misspecifications. In particular, it provides counterexamples in which the 
covariance matrix is not a severe summary oflongitudinal data to the extent ofren­
dering it incapable of sensing latent pattern misspecifications. As indicated previ­
ously, the article does not make general statements but only aims at cautioning 
against such, particularly against generalizations of possible interpretations of 

2lt is stressed that the concern of this structural equation modeling (SEM) application is not with fit­
ting a latent growth curve based on only two consecutive assessment points, but rather to explore the po­
tential of SEM to sense deviations in the analyzed data from latent linearity. 
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some ofRogosa and Willett's (1985) statements to suggestions that the covariance 
matrix is in its very nature insensitive to the important aspects of latent change. 

At the same time, the developments in this article do not invalidate the message 
by Rogosa and Willett ( 1985) that fundamentally distinct patterns oflatent change 
over time can generate observed covariance matrices that are (nearly) identical. In 
fact, this message is plausible in light of a broader interpretation of the problem of 
equivalent models in SEM, which has received wide recognition in the behavioral 
and social sciences (e.g. , Lee & Hershberger, 1990; MacCallum, Wegener, 
Uchino, & Fabrigar, 1993; Raykov & Penev, 1999; Stelzl , 1986; see also Raykov, 
1998). Accordingly, more than a single structural equation model can fit a given 
data set (statistically) acceptably well ( e.g., Breckler, 1990). Instead of aiming at 
general statements, which are very hard to make in this complex area of model 
choice, this article provided counterexamples against a potential 
overinterpretation of Rogosa and Willett's findings as proposing that covariance 
structure analysis is inherently insensitive to latent change patterns. 

In this context, this article also raises the issue of enhancing the ability of struc­
tural equation models to sense underlying misspecifications, particularly at the la­
tent level. This is a major theoretical and empirical issue in applications of SEM, 
and one that awaits more comprehensive theoretical developments. The approach 
followed here was intuitively appealing, namely increasing the amount of empiri­
cal (sample) information against which a model is tested. Specifically, more than a 
single indicator was used per latent construct in this discussion. This represents a 
direct- though not always easily followed in practice-method of such empirical 
information increase. The article also illustrates in a longitudinal setting the widely 
accepted view that more than one indicator per construct are highly desirable in 
empirical practice. 

This major issue of increasing likelihood of sensing model misspecifications 
has been addressed by insightful developments in modeling longitudinal data, 
which have taken place in the more recent methodological literature. In particular, 
the development and popularization of the so-called latent curve analysis (LCA; 
Meredith & Tisak, 1990; see also Raykov, 1998) has provided applied researchers 
in the behavioral and social sciences with a comprehensive instrument for model­
ing developmental processes. A specific feature ofLCA is the inclusion of the in­
dicator means in the modeling approach, which was not a concern of Rogosa and 
Willett's (1985) discussion and hence not followed in this article dealing with their 
contribution. LCA achieves the aforementioned accumulation of empirical (sam­
ple) information about the studied phenomenon by incorporating the longitudinal 
means, in addition to variances and covariances of the analyzed variables. It is em­
phasized, however, that LCA accomplishes this in a specific way that follows a 
general modeling framework based on the assumption of existence of a number of 
basis curves representing main features of temporal change in a studied group 
(Meredith & Tisak, 1990). This yields such a parsimonious way of inclusion of 
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variable means into the analysis, which allows their parameterization only in terms 
oflatent construct means. As a result, the manifest variable means' structure ofan 
LCA model is not saturated, but rather over identified. In this way, saturation of 
this structure when simply including the observed means into the analysis is 
avoided, which otherwise leads to a mean structure model that is just as informa­
tive as a model with the same covariance structure specification and not including 
any variable means. 

Being concerned with the findings in Rogosa and Willett ( 1985), this article fo­
cused on the longitudinal modeling context used by those authors. In this regard, it 
is interesting to know if the lack of discernable implied covariance matrices by 
structural equation models-as exemplified by those authors-is unique to the 
longitudinal design context. To respond to this query in a more qualified manner 
requires a more comprehensive investigation. However, it can be said here that at 
least for some parameter values of appropriately constructed models this lack of 
discernable covariance matrices can hold with other than longitudinal data. This is 
perhaps most easily seen by realizing that the covariance matrix of any longitudi­
nal data set does not know where it is coming from and hence is unaware of its re­
sulting in a repeated assessment setting rather than say from a cross-sectional 
design. Thus, because repeatedly observed constructs can be formally 
viewed-after their assessment-also as latent variables in a fictitious cross-sec­
tional design, it is possible that in a cross-sectional study and for certain parameter 
values two structural equation models yield nearly identical implied covariance 
matrices.3 Furthermore, at a general level, equivalent models for a given data set 
(studied phenomenon) can be considered representing yet another case of (cur­
rently) statistically indistinguishable means of description and explanation. Thus, 
for a nonlongitudinal data set resulting from a fixed member of a class of equiva­
lent models, any other member of the class can be considered a "misspecified" 
model that fits the data equally well (e.g., MacCallum et al., 1993). 

In addition to a notable body of pertinent literature ( e.g. , Bollen, 1989), this arti­
cle exemplified a limitation of overall Goodness-of-Fit Indexes, such as the 
chi-square value and a host of related descriptive fit indexes (e.g., GFI, AGFI, and 
many other derivatives of the chi-square; Joreskog & Sorbom, 1993a). Spe­
cifically, their value cannot be generally interpreted as providing evidence for fit in 
all portions ofa given model. As in Rogosa and Willett's (1985) finding, a good 

3The discussion in this paragraph of the main text is distinct from, though related to, the problem of 
equivalent models in structural equation modeling (e.g., MacCallum, Wegener, Uchino, & Fabrigar, 
1993). Although equivalent models yield identical reproduced covariance matrices for any set of admis­
sible values of their parameters, the near identity of implied covariance matrices (mentioned in that para­
graph) can hold only for some sets of values of the parameters of two (or more) models (see Raykov, 
1998, for this relation between the particular constant rate of change and simplex models in Rogosa & 
Willett, 1985). Furthermore, unlike the definition of equivalent models (e.g., Stelzl, 1986), the discus­
sion in the main text does not require (complete) identity of these implied matrices. 
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overall fit index does not imply lack of serious misspecifications across all parts of 
the model. As this article illustrates, a careful study of model residuals and param­
eter standard errors (as well as modification indexes) for signs of model 
misspecification(s) is always recommended when evaluating the fit of a structural 
equation model under consideration. Thereby, this recommendation is valid re­
gardless of how favorable (acceptable) its overall goodness-of-fit indexes are. 

In conclusion, the developments in this article suggest that the following ac­
tions by applied researchers can substantially enhance the likelihood of an SEM 
application to sense consequential model misspecifications ( cf. Bollen, I 989; 
foreskog & Sorbom, 1989; Raykov & Penev, 1997). These are (a) an increase in 
the number of valid indicators of(repeatedly assessed) latent constructs under in­
vestigation; (b) a thorough examination of all parts of the output of the numerical 
minimization procedure underlying routine utilizations of SEM, not only those 
pertaining to the overall measures of fit; ( c) increased measurement precision; ( d) 
using SEM for purposes of individual latent change modeling (e.g. , Meredith & 
Tisak, 1990; Raykov, 1998; Rogosa, 1987; Rogosa, Brandt, & Zimowski, 1982; 
Rogosa & Willett, 1985; Willett & Sayer, 1994); and (e) extensive preliminary 
data exploration to determine appropriate data modeling approaches and modeling 
classes. When dealing with a substantively sound structural equation model that 
capitalizes on all relevant previous research and accumulated theoretical knowl­
edge in a domain of application, these points can ensure a good chance of detecting 
model misspecifications in empirical behavioral and social research using the pop­
ular SEM methodology. 
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