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This simulation study demonstrates how the ch0ice of estimation method affects in­
dexes of fit and parameter bias for different sample sizes when nested models vary in 
terms of specification error and the data demonstrate different levels of kurtosis. 
Using a fully crossed design, data were generated for 11 conditions of peakedness, 3 
conditions of misspecification, and 5 different sample sizes. Three estimation meth­
ods (maximum likelihood [ML], generalized least squares [GLS], and weighted least 
squares [WLS]) were compared in terms of overall fit and the discrepancy between 
estimated parameter values and the true parameter values used to generate the data. 
Consistent with earlier findings , the results show that ML compared to GLS under 
conditions of misspecification provides more realistic indexes of overall fit and less 
biased parameter values for paths that overlap with the true model. However, despite 
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recommendations found in the literature that WLS should be used when data are not 
normally distributed, we find that WLS under no conditions was preferable to the 2 
other estimation procedures in terms of parameter bias and fit. In fact, only for large 
sample sizes (N= 1,000 and 2,000) and mildly misspecified models did WLS provide 
estimates and fit indexes close to the ones obtained for ML and GLS. For wrongly 
specified models WLS tended to give unreliable estimates and over-optimistic values 
of fit. 

The degree to which models are correctly specified and data are multivariate nor­
mal are two important issues in structural equation modeling (SEM). When the hy­
pothesized model is correctly specified and observed variables are multivariate 
normal , it can be analytically derived that different estimation procedures such as 
maximum likelihood (ML), generalized least squares (GLS), and weighted least 
squares (WLS) will produce estimates that converge to the same optimum and have 
similar asymptotic properties (Browne, 1974, 1984). Under ideal conditions the 
choice between methods is thus arbitrary. Under the more realistic assumption of 
misspecified models and data that are not multivariate normally distributed, the dif­
ferent procedures may not converge to the same optimum. The question can then be 
raised: Which estimation procedure, if any, is preferable when ideal conditions are 
not met? To answer this question we address alternative criteria that can be used for 
judging the adequacy of structural equation models and in a simulation study apply 
these criteria to solutions provided by different estimation procedures. 

Olsson, Troye, and Howell ( 1999) suggested a distinction between measures of 
"theoretical fit" and "empirical fit. " Theoretical fit refers to the degree of 
isomorphism between structure and parameter values of a theoretical model and 
those of the "true" model that generates the data. Empirical fit refers to commonly 
used indexes of fit that reflect the discrepancy between observed covariance struc­
ture and the one implied by a theoretical model. Theoretical fit is the isomorphism 
between the theoretic model (Mtheory) and its parameters (0) on one hand and the 
true model (M1rue) and actual parameters (81rue) on the other. Empirical fit is the 
correspondence between the observed covariance matrix (S) and the one implied 
by the estimated model (I:(0)). The correspondence between the population 
covariance matrix (I:) and the covariance structure implied by the theoretical 
model (I:(0)) is the "true" empirical fit. The true empirical fit is a population value 
(e.g., error of approximation [EA]). The distinction between empirical and theo­
retical fit is explicated in Figure I. The figure reflects the idea that the purpose of 
research is to bridge the gap between three different domains: Reality refers to 
some unknown generative mechanism (Mirue) that generates population states and 
variance-covariance structures (I:). The empirical domain consists of the data and 
corresponding sample variance-covariance structures (S). Finally, the theoretical 
domain consists of the theoretical model (Mtheory) of the unknown generative 
mechanism. In substantive research, theoretical fit, or the correspondence between 
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FIGURE 1 Three different domains of fit. 

Mtrue and M1heory, can never be proved, but in SEM it is typically assessed from the 
degree of empirical fit, that is, the congruence between the observed vari­
ance-covariance (S) matrix and the one implied by the theoretical model 1:.(0). To 
the extent data are properly sampled from the population and the variables are 
properly measured, empirical measures of fit (such as chi-square, root mean 
squared error of approximation [RMSEA], etc.) will be reasonable estimates of 
true empirical fit. Unfortunately, empirical fit does not guarantee theoretical fit as 
demonstrated by Olsson et al. ( 1999). In fact, a method that performs well in terms 
of empirical fit may have a poor theoretical fit. 

Although theoretical fit is the objective ofresearch projects, the true model is not 
known in substantive research and there is no direct evidence for judging the corre­
spondence of the theoretical model to the true model. In fact, our ignorance of the 
true model in substantive research is the rationale for empirical research. Simulated 
data can be used to assess how models that depart from a known "true" model affect 
the performance of various estimation methods when data vary in nonnormality. 

Table 1 summarizes previous studies that have addressed issues relevant to 
those in this study. Cell 1 represents the case when both ideal criteria are satisfied. 
As pointed out earlier, Browne ( 1974, 1984) showed that for this case different es­
timation methods will produce converging results both in terms of theoretical and 
empirical fit. For correctly specified models Finch, West, and MacKinnon (1997) 
found negligible effects of nonnormality on parameter estimates for both ML and 
ADF (Asymptotic Distribution of Fit). This was also found in earlier studies by 
Bollen ( 1989), Boomsma (1983), Browne ( 1987), and Joreskog and Sorbom 
( I 988). Cell 2 represents studies that have addressed violations of the normality 
criterion. Chou, Bentler, and Satorra ( 1991 ), among others, concluded that the per­
formance of GLS and ML with respect to empirical fit was reasonably robust to 
moderate deviations from multivariate normality. But Bentler (1989), Bollen 
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TABLE 1 
Overview of Studies Addressing the Effects of Misspecification and Nonnormal 

Distributions 

Specification Error 

No 
Empirical fit 
Theoretical fit 

Yes 
Empirical fit 
Theoretical fit 

Yes 

Ia, 81 
lb, 81 

3a, 0TH 
3b, 0TH 

Multivariate Normal Distribution 

No 

2a, CBS, YB, Be,Bo,J&S 
2b,YB, FWM, Bo, Bm, J&S, 82,* 

4a,CWF 
4b, * 

Note. BI = Browne, 1974; 82 = Browne, 1987; Be= Bentler, 1989; Bo= Bollen, 1989; Bm = 
Boomsma, 1983; J&S = Joreskog and Siirbom, I 988; FWM = Finch, West, and MacKinnon, 1997; 0TH 
= Olsson, Troye, and Howell, 1999; CWF = Curran, West, and Finch, 1996; CBS = Chow, Bentler, and 
Satorra, 1991; YB = Yuan and Bentler, 1997; *=this study. 

(1989), and Joreskog and Sorbom ( 1988) reported that model fit and significance 
tests may be affected by deviations from normality. The study by Olsson et al. 
(1999) fits in the third cell. They investigated the performance of GLS and ML 
both in terms of empirical fit and theoretical fit under varying conditions of 
misspecification. Whereas it has been observed in some studies (Browne, 1974; 
Ding, Velicer, & Harlow 1995; Olsson et al., 1999) that GLS tends to produce 
better empirical fit than ML, the Olsson et al. study showed that the superiority in 
terms of empirical fit for GLS appears to come at the cost of lower theoretical fit 
when models contain specification error. Parameter estimates for correctly speci­
fied paths within a partly misspecified model were found to be significantly more 
biased for GLS than for ML. Curran, West, and Finch (1996) examined the impact 
on empirical fit of GLS and ADF ( or WLS) with both nonnormality and specifica­
tion error (Cell 4). Yuan and Bentler (1997) found that ML is much less biased 
than ADF estimators for all distributions and sample sizes, but when the sample 
size is large ADF can compete with ML (Cell 2). 

This study extends knowledge in two directions: (a) It extends the issues inves­
tigated in Olsson et al. ( 1999) by adding the effects of nonnormality (see Cell 2; 
because we relax the assumption of nonnormality it becomes natural to also in­
clude asymptotically distribution free estimators or weighted least squares in 
LIS REL terminology) and (b) it extends the Curran et al. ( 1996) study by investi­
gating performance in terms of theoretical fit. 

The rationale for addressing both the nonnormality and the misspecification is­
sue in the same study is that there might be a tradeoffbetween the estimation meth­
ods' ability to handle the two types of violations. The apparent benefits obtained 
with ML in terms of parameter estimates for partly misspecified models may not 
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hold when the data are not multivariate normal. On the other hand, the assumed su­
periority of ADF (WLS) when data are highly peaked or skewed may not hold 
when models are misspecified. 

In the next section we show how ML, GLS, and WLS can be expected to pro­
duce different results when the model does not hold in the population and/or the 
data are not normally distributed. Hence, discrepant results provide an indication 
that a model is not correctly specified. We then provide the rationale for some cri­
teria that can be used to choose between methods when discrepant results are ob­
tained. A simulation study is then presented for a particular class of misspecified 
models. 

WHY ESTIMATION METHODS MAY PRODUCE 
DISCREPANT EMPIRICAL FIT AND PARAMETER 

ESTIMATES 

This section illustrates that when models are misspecified, but the data are 
multivariate normal, the fit function and parameter estimates for ML should be ex­
pected to differ from those provided by GLS and WLS. On the other hand, when 
models are not misspecified (or only mildly misspecified), but data are not nor­
mally distributed, the WLS solutions should differ from those obtained with GLS 
and ML. 

In SEM the covariance structure is fitted to the sample covariance matrix S by 
minimizing a discrepancy function F(S,I.(0)) with respect to the parameter vector 
0. The fit function for ML can be expressed as 

F ML (0) = IoglI.(0)1 + tr{SI.(0)-1} - loglSI - q, 

qbeing thenumberofobserved variables. ForGLS asFaLS (0) = ½tr{(S-I.(0))S-1 } 2 

or equivalently as F aLS (0) = (s- cr8)' U0 LS- 1 (s-cr8), and for WLS as FwLs (0) = (s -
cre)' UwLS-1 (s - cre) . 

The reason why the various fit functions do not converge when models are 
misspecified or data are not multivariate normal is that the nature of the weight ele­
ment differs. In the following we first show why WLS will provide solutions that 
differ from those obtained with GLS and ML when distributions are nonnormal. 
We then explain why ML on one side and GLS and WLS on the other do not pro­
vide equivalent results when models are misspecified. 

The estimation theory of ML and GLS is based on the assumption of 
multivariate normality. Browne (1984) generalized this theory to any 
multivariate distribution for continuous variables satisfying very mild as­
sumptions. 
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The WLS estimator uses a weight matrix with a typical element that is a combi­
nation of estimates of second- and fourth-order moments: 

where 

is an estimate of 

L,(X; -i;)(x j -i)(x8 -X8)(xh -xh) 

N 

E being the expectation symbol, and sii is an estimate of the covariance <Jii. 

The matrix UwLs is of order u x u where u = q(q + I )/2. For the GLS fit function, 
however, these elements only consist of second-order moments: 

The matrix UcLs is of order u x u where u = q(q + I )/2. When the model is cor­
rect under normality the elements of VWLs and UcLs will converge in probabil­
ity to the population values O;g <Jjh + <J;h <JJg although their variability is different 
(Hu, Bentler, & Kano 1992). For the ML estimator loglI:(0)1 + tr{SI.(0)- 1} -

loglSI - q Browne (1974) showed that if 01 is an ML estimate for 81rue the GLS 
estimate 02 for V = I:- 1(0

1
) in FcLs (I.(0)1V) = ½tr{(S - I:(0))V} 2 will be a Best 

Generalized Least Squares (B.G.L.S.) estimator and Jim N➔~P(l 01 -02 I< o) =I, 
for any o > 0. This implies that the ML estimator can be seen as a GLS estima­
tor, and consequently it will have the same asymptotic properties given that the 
model is correct. 

The reason why some findings indicate that GLS provides better empirical fit 
than ML (Browne, 1974; Ding et al., 1995; Olsson et al. , 1999) is that the estima­
tors are no longer equivalent when models are misspecified. 

The weight matrix for ML (UML - I =KP -cr.(01 )-I ®:r.(01 ) -1 )KP - I' where Kp 
and Kp- are defined in Browne, 1974) is a function of the model, but for GLS and 
WLS the elements in the weight matrix are only functions of second- and 
fourth-order moments of the observed variables. The elements of UcLs1 for GLS 
do not depend on the model, only on S, and because Swill converge to I. even if the 
model is poor, the result can be quite different from the ML situation in which 
r(0 1) (where 01 is an ML - estimate), approximates I: only when the model fits 
very well or exactly. For the WLS method the elements of UcLs- 1 also depend on S 
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but include in addition the fourth-order moments that are estimated from the sam­
ple. Without any specification error we know that both Sand 1:(81 ) will converge 
to L. In this situation the differences between the ML and GLS are due only to sam­
pling error. For small deviations from normality and little or no specification error, 
the weight matrix for WLS should not differ systematically from the weight matrix 
ofGLS or ML. 

Consequently, if S ""1:(8) then s ij ""a ij implying that min(ML)"" min(GLS)"" 
0. Whether min(WLS) will be close to min(ML) and min(GLS) will depend on 
the distributional properties. For negligible kurtosis it is reasonable that the three 
are close. WLS is in the literature recommended when data are nonnormal. The 
assumed superiority of WLS when data are peaked or skewed may not hold 
when models are misspecified because WLS (a quadratic form estimator) be­
longs to the same family of estimators as GLS and therefore may have the same 
problems in terms of parameter bias (Olsson et al., 1999). 

In summary, the reason why ML provides results that differ from those ob­
tained with GLS and WLS is that misspecification will cause the model-based esti­
mated covariances in the weight matrix for ML to be different from the observed 
covariances entered in the weight matrices ofGLS and WLS. The discrepancy be­
tween WLS and the two other estimators when data are nonnormal is that only the 
weight matrix of the former contains elements (the fourth moments) that reflect 
this violation. As shown in Table 2, when the models are incorrectly specified and 
the data are not multivariate normal (Cell 4), the methods should give different re­
sults. With multivariate normal data but a misspecified model, WLS and GLS will 
be equivalent (Cell 2). 

Theoretical Fit Versus Empirical Fit 

A desirable characteristic of an estimation method is that it provide realistic indica­
tions of the theoretical model's correspondence with the true model and provide 
nonbiased estimates of parameters of paths that overlap with the true model. In 
most realistic situations the researcher will not know the structure of the true model 
(M,ruc) or the parameter values (0true)- The researcher therefore has to resort to indi-

Model/Distribution 

Correct model 

Misspecified model 

TABLE 2 
When Are ML, GLS, and WLS Equivalent? 

No.-ma/ 

ML ~ GLS ~ WLS 
asymptotically 

GLS ~ WLS asymptotically 

Nonnormal 

ML~ GLS asymptotically, but 

(N - I )Fis not X2 distributed 
No equivalence 
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cations of empirical fit, that is the model's ability to recapture the covariances, as a 
basis for judging theoretical fit. The typical procedure is to base the acceptance of a 
theoretical model-if not a proof of its verisimilitude or truth-on the degree of 
correspondence between a structure implied by the model and the structure in the 
actual data (as measured by fit indexes) in addition to the statistical significance of 
the parameter estimates. The better the empirical fit, and the more statistically sig­
nificant the parameter estimates, the more faith one has in the theoretical model. 
Moreover, modification indexes in combination with theoretical considerations 
provide the basis for improvements of the original model. 

This mode of theory testing appears to be justifiable as long as it can be 
safely assumed that theoretical fit and empirical fit are perfectly related. If the 
goal of attaining empirical fit is attained at the cost of lower theoretical fit, the 
procedure is problematic and may lead to TYPE- II errors. Several factors pre­
clude good empirical fit from guaranteeing that the structure of M1rue has been 
identified and the parameter estimates are accurate. For example, because mod­
els that are theoretically distinct may produce the same variance-covariance ma­
trix (i.e., may be empirically equivalent; see Luijben, 1991; MacCallum, 
Wegener, Uchino, & Gabrigar, 1993), empirical support for one theoretic model 
does not preclude the possibility that the data are generated by another model. 
Also, in a simulation study of model respecification based on modification in­
dexes, Maccallum ( 1986) showed that under certain circumstances data can ap­
pear to be well-accounted for by a wrongly respecified model when a 
substantially different model was used to generate the data. Therefore, estima­
tion procedures that appear to successfully fit models to the data may do so both 
at the expense of identifying the wrong model a.rid providing incorrect parameter 
estimates. Olsson et al. ( 1999) further demonstrated that the correspondence be­
tween theoretical fit and empirical fit cannot be taken for granted. Their simula­
tion study showed that the empirical fit of misspecified models (in the sense of 
being parsimonious representations of the true model) can easily be overesti­
mated. ML and GLS were found to differ with respect to theoretical and empiri­
cal fit. An analysis of variance (ANOV A) of theoretical fit (parameter bias) and 
empirical fit (RMSEA) as a function of sample size, degree of misspecification, 
and choice of estimator showed a very strong method-by-misspecification effect 
for both types of fit. The apparent superiority of GLS relative to ML in terms of 
empirical fit was achieved at the expense of higher parameter distortion, that is, 
lower theoretic fit. Moreover, the potential benefits of modification indexes as a 
criterion for correctly modifying the tested model to include omitted paths could 
not be taken for granted. The rather optimistic estimates of empirical fit obtained 
with GLS lead apparently to complacency and no apparent need for improve­
ments. The results of the Olsson et al. (1999) study have several implications for 
a number of decisions (e.g., choice of estimation procedure, acceptance/rejection 
of single models, choice between competing models, and modification of exist-
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ing models) and suggest that if the pursuit of empirical fit leads to the choice of 
GLS, the cost can lower theoretical fit with respect to both model structure and 
parameter bias. 

Parsimony As Specification Error 

A theoretical model will seldom perfectly represent real world phenomena 
(MacCallum & Tucker, 1991; Meehl, 1990). Lack of theoretical fit can occur for 
a number of reasons: inadequate operational procedures and estimation methods, 
distributional properties of data and sampling error, in addition to incorrectly 
specified models (Olsson et al., 1999). Often, less than perfect theoretical fit re­
sults from theories being parsimonious representations of reality (Browne & 
Cudeck, 1992; MacCallum & Tucker, 1991; Meehl, 1990). Parsimony can be 
due to ignorance of all the real-world complexities that result in the pattern of 
population variances and covariances, or can reflect a conscious choice of mod­
els that are restricted to only a part of the dimensions and causal structures in the 
domain. Certain factors are ignored or omitted, whereas factors that are known 
and considered important for theoretic or pragmatic reasons are included. The 
higher the parsimony relative to the true model, the lower the empirical fit of the 
parsimonious model (Mulaik et al., 1989) unless the parsimony is specifically 
taken into account as is the case for several fit indexes (e.g., RMSEA, Browne & 
Cudeck, 1992; PNFI, Mulaik et al., 1989; AIC, Akaike, 1974; SAIC, Schwartz, 
1978). 

Although all of these considerations threaten theoretical fit as well as empirical 
fit, this simulation study primarily focuses on parsimony as a source of error, that 
is, the omission of factors and relations that impinge on the phenomena of interest. 
When theoretical models under-represent the complexity of the true model, it is 
well known that this will impair empirical fit in the sense that the theoretic model 
cannot account for the portion of the variance in the data that is due to the omitted 
variables. Thus parsimony is attained at the cost of lower explanatory power. 
However, the researcher can still hope for theoretical fit in the sense that the pa­
rameters associated with the variables included in the simplified model are ap­
proximately correct. Thus, although empirical fit may not be perfect, and the 
theoretical model is known to be a simplified and therefore less-than-accurate re­
flection of the true model (Mm,e), the researcher should still be interested in param­
eter estimates (0) that are close to the true parameters (0true) for the part of the 
model that coincides with the true model. To the extent that empirical fit does not 
imply theoretic fit , one should prefer estimation methods that provide more accu­
rate parameter estimates even in the presence of simplified and less-than-perfect 
theoretical models, and estimation methods whose degree of empirical fit provides 
a closer indication of theoretical fit. 



566 OLSSON, FOSS, TROVE, HOWELL 

Nonnormality 

In contrast to misspecification, the other departure from the ideal condition, 
nonnormality can be assessed and screening (continuous) variables for normality 
prior to conducting the testing is an important step in every multivariate analysis. 
Normality of variables is assessed by either statistical or graphical methods. Two 
important aspects of nonnormality are skewness and kurtosis. Skewness, defined to 

I,(x-.x) 3 I N 
be a 3 = E(x - µ)3/cr3 can be estimated by ~ , and has to do with the 

(,..(x-x) 2 I N) 312 

symmetry of the distribution. Kurtosis, defined as~= E(x - µ)4/cr4, which can be 
l',(x-.x) 4 I N 

estimated by ~ has to do with the peakedness of the distribution. 
(L,(x-.x)2 I N)2 

With a normal distribution skewness is O and kurtosis is 3 (although, for the refer­

ence normal distribution to have a kurtosis of zero, 3 is subtracted from~). Conse­
quences ofnonzero skewness and kurtosis have been widely studied with results in­
dicating that tests of mean differences appear more affected by skewness than 
kurtosis, whereas tests for variances and covariances are more affected by kurtosis 
than skewness (Mardia, Kent, & Bibby, 1979). Browne (1982, 1984) and Finch et 
al. ( 1997) noted that kurtosis can have considerable impact on significance tests 
and standard errors of parameter estimates. Univariate normality is a necessary but 
not sufficient condition for multivariate normality. As a consequence, multivariate 
nonnormal data can be ascertained by creating nonnormal univariate data. This 
study concentrates on departures from nonnormality in terms of peakedness or 
kurtosis. The combined impact of misspecification and peakedness on theoretical 
fit has not been addressed previously in SEM. 

Design Methodology 

ML, GLS, and WLS were used to estimate four models varying from none to severe 
misspecification. Simulated data sets had 11 different levels of kurtosis ( ~ - 3) in the 
latent variables ranging from mild (-1.2) to severe peakedness ( + 25.45), keeping the 
distribution symmetric. The sample sizes wereN= l 00, 250,500, 1,000, and 2,000. 

A total of four models were designed: a "true model" and threemisspecifiedmod­
els nested within the true model. The "true model" (Mtrue) used to generate the data 
contained three major and four minor factors and 12 observed variables (Figure 2). 
The Mtrue model used was the same as the one in Olsson et al. ( 1999). This model is 
also quite similar to the one used by Maccallum and Tucker ( 1991) in their simula­
tion study. The first partially true model (M1) contained all observed variables and 
three latent variables (the four minor factors were omitted). The model is partially 
true in the sense that all paths for the remaining factors and variables overlap with 
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FIGURE 2 Population model (the error terms are not included in the figure) . 

those of the true model. The next partially true (M 2) but more parsimonious model is 
an orthogonal version ofM1 in which the correlations between the included factors 
were omitted. Finally, the most severely misspecified model (M3) excluded paths 
between two factors and the respective observed variables. 

The true model (M1rue) is an oblique CF A mode, X = A~ + o, with the structure 
shown graphically in Figure 2 and mathematically in Appendix B. The loadings 
from the domain factors were given the following values: Ai!= . 7 for i = I , 2, 3, and 
4 ; A.;2 = .8 for i = 5, 6, 7, and 8; and A.;3 = .6 for i = 9, 10, 11 , and 12. The loadings 
from the minor factors (A.;4) were set to .2 for i = I , 5, and 9. The values of the other 
loadings were set as follows: A.;5 = .3 for i = 2, 6, and IO; A.36 = .2; A-46 = .4; A.11,6 = . I ; 
An = .3 ; As1 = .4; and A.12,1 = . I . For the variance-covariance matrix of the latent 
variables(<!> matrix) the variances were fixed to one (c)>;; = 1.0) and the correlations 
between the three major factors were set to .2 ( <!>21= c)>31 = c)>32 = .2). The covariance 
matrix 0 0 is diagonal and var(O;) is a function of the model and the fact that var(x;) 
= I fori= I , 2, . . . , 12. 

The misspecified models were three nested simplifications of the true model. 

For M 1 we excluded the minor factors (i .e. , all AiJS for j > 3 were set to zero) . The 
rest remained unchanged. The next model was an orthogonal version ofM1 (i.e ., 

the <l>iJ i "# j were set to zero). The factor pattern was unchanged. Because the true 

model is of the form, x . = ~ 3 
A i: . + ~

7 
A. ,i:, + o. for i = I, 2, . .. , 12 and the 

I L 1= I lj ....,) .£.J t=4 I ...., I 

correlation between~ and ~1 for j = I, 2, 3 and/ = 4, 5, 6, 7 are all zero, no biased 
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parameter estimates were expected for these two models (M 1 and M2) because bias 
for an included parameter is a function of the correlation between the included and 
the excluded variables. The third model was an even more parsimonious model in 

which A52 and A-12,3 were also fixed to zero. 

Measures of Theoretic Fit 

As indicated by Olsson et al. ( 1999), the various indexes should ideally accomplish 
the following: ( a) give a numerical value of each model's degree of misspecification, 
(b) identify models that are truly acceptable, ( c) give a comparative basis for choos­
ing and ranking models according to their empirical and theoretic fit, and ( d) give 
valid indications for how to modify misspecified models by adding or deleting paths 
between included variables. Because the true parameter values used to generate the 
data sets are known, the discrepancy between the true values and the estimated pa­
rameter values can be calculated. The Mean Squared Parameter Bias (SPB) was de­
fined as a measure of parameter distortion and given by 

SPB=! ~' (.!_ ~• (1t -1t .*) 2
) 

~i= l k.J j =l estlJ J r a 

where 1t/ = true parameter value, 1tesuJ = estimated parameter value, a= number of 
free parameters to be estimated, and r = number of replications where the estima­
tion converged. 

This index gives a basis for selecting among solutions in terms of theoretical fit. 
The index is of course of reduced utility for comparing models that are not of the 
same metric in the parameters. 

Indexes of Misspecification 

To get a misspecification index that is independent of estimation and sampling pro­
cedure, Olsson et al. (1999) suggested the fixed root mean squared residual 
(FRMR), defined as 

where crF e I.(0*). 
In contrast to the s;/ elements in the Root Mean Squared Residual index that are 

based on the sample variance--<:ovariance matrix, S, and the estimated parameters 
E>, the OF elements in the FRMR formula are based on 0*, the subset of 0true values 
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for the subset of the theoretical model (Mtheory) that overlaps with the true model 
(M1rue), and the corresponding population variance-covariance matrix, S. The 
FRMR value will thus be zero for theoretic models that are correctly specified, that 
is, for models that overlap completely with the true model. The FRMR index can 
serve as a measure of misspecification when the true model is known. Models 
ranked according to the FRMR index can therefore be conveniently compared to 
the ranking based on empirical fit indexes to be discussed next. Although this in­
dex cannot be used when the true model is not known, it answers the call by 
Gerbing and Anderson ( 1993) for a method to characterize model lack of fit that is 
independent of the estimation method used. Ideally, empirical fit indexes should 
give the same ranking as the FRMR index if the goal is to identify the right models 
and the associated parameter values. 

Measures of Empirical Fit 

Steiger's ( 1990) RMSEA was employed as an indicator of empirical fit (Browne & 
Cudeck, 1992). It is based on the conceptualization that error of empirical fit can be 
partitioned into two types: EA and Error of Estimation (EE): 

£(Total Error)= EA+ £(EE) 

E(F(l::, 1:(0))) = F(l::, 1: (00)) + E(F(L{0o), 1:(0)) 

where 1:(00) is the matrix we get when the model is fitted to the population, L(0)is 
the matrix we get when the model is fitted to the sample, tis the number of parame­
ters to be estimated, and E is the expectation operator. 

Because Fo generally decreases when parameters are added, EA can be adjusted 
by the degrees of freedom to meet the desire for parsimony. The resulting RMS EA 
thus measures EA as discrepancy per degree of freedom (Browne & Cudeck, 

1992). Using EActr as the notation for EA per degrees of freedom, EActr = {F;_ vdJ 
EActr is an unknown population value "measuring the True Empirical Fit" (see Fig­
ure 1 ). The RMSEA index 

is an estimate of this quantity. 
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Data Generating Process 

Simulations were used to study the effects of structural error and distributional er­
ror on empirical and theoretical fit using the true model presented earlier. The simu­
lations were performed with C++, PREUS 2, and LISREL 8 (also used for estima­
tion; Joreskog & Sorbom, 1993 ). The distributions of the population data were 
divided into three different categories of kurtosis holding the skewness constant 
equal to zero: For the distributions with negligible kurtosis the alpha values (°'4) 

were set at 1.8, 2.0, and 2.4. Distributions of medium kurtosis were generated with 
the following values: °'4 = 5, 6, 8, 8.5, and 9.35 while the three most highly peaked 
distributions were generated based on the following values: °'4 = 18.14, 22.21 , and 
28.45 . Because kurtosis was defined with respect to the latent variables, a proce­
dure based on Mattson ( 1997) and Ramberg, Tadikamalla, Dudewicz, and 
Mykytka ( 1979) was developed to produce observed variables with the desired dis­
tribution properties. Following we give just a brief overview of the procedure (fur­
ther details are given in Appendix A). 

The aim is to generate observations randomly from a population that may 
not be normally distributed. To do this we use the Lambda distribution and, as­
suming that p is taken randomly from a uniform distribution over the interval 
[0, 1), then the distribution for R(p) = Ai + [p"-3 - (I - p)M] I A2 will depend on 
the values we chose for A.1, A.2, A.3, and A.4- For this study we chose lambdas (A;) 
so that the expectation of R(p) is zero (µ1 = 0), the variance of R(p) is I (µ2 = 
I), and the distribution of R(p) is symmetric (µ3 = 0; see Ramberg et al., 1979). 
At the same time we can choose the levels of kurtosis (~, the fourth-order mo­
ment is equal to °'4 because µ2 = I) for the distribution of R(p) (see appendix A 
for details). 

The generating model is given by the equation: X = Ax~+ o; where Xis a q x I 
matrix, A, is a q x k matrix, ~ is a k x I matrix of stochastic variables with the 
covariance matrix <I> of dimension k x k, and o is a q x I matrix of uncorrelated er­
ror terms with the variance-covariance matrix 00. The q x I matrix X of "ob­
served" variables was generated based on the following 5 steps: 

I. By the Lambda distribution we draw a k x I matrix 001 of uncorrelated val­
ues with expected kurtosis equal to ~-

2. We then calculate~= P 001, where Pis a k x kmatrix so that PP'= <I>.~ then 
has the covariance matrix <l>. 

3. A q x I matrix roi of uncorrelated values is drawn with expected kurtosis 
equal to µ.i. 

4. We then calculate o= Droi; whereD is aq x q diagonal matrix so that Var(o) 
=06. 

5. The observations are now easily calculated by the formula X =A.~+ o. 
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These observations have an expected covariance matrix I: (the population 
covariance matrix), and the kurtosis depends on µ4 (see Table A5). The observa­
tions are then used as input to PREUS for the simulation process and then LISREL 
is used for estimation. 

RESULTS 

In the following we first demonstrate how ML, GLS, and WLS differ in terms of 
empirical fit as a function of misspecification, sample size, and kurtosis. Second, 
we show how estimates of empirical fit are biased and further demonstrate how this 
bias varies as a function of the same factors. Finally, we investigate how estimation 
method, misspecification, sample size, and kurtosis affect theoretical fit. The three 
methods were applied to 16,500 randomly selected replications each, for a total of 
49,500 estimations. 

Empirical Fit 

Empirical fit was measured in terms of RMS EA, the degree of misspecification was 
captured by the FRMR index, and nonnormality was represented by the fourth-or­
der moment (kurtosis), a4. Because the RMSEA values are method-specific (see 
Appendix A) and thus not quite comparable, 1 ANOV A was used to test the follow­
ing model for each estimation method separately: 

RMSEA = µ + FRMR + N + ~ + FRMR*~ + N*~ 

where N= sample size, FRMR = index of specification error, and~ =the fourth-or­
der moment. 

Diagnostics suggest no substantial violation of the distributional assumption or 
the homogeneity of variance assumption of ANOV A. As can be seen in Tables 
3A- 3C, sample size (N) and misspecification (FRMR) all have a highly significant 
main effect for the three methods. This was quite expected. It is also desirable that 
measures of empirical fit reflect the actual level of misspecification. For ML and 
GLS the main effect of kurtosis, a.i, is slightly significant (F= 5.23 and 2.38), but 
not very strong (TJ2 < .001 for both) whereas for WLS this effect is remarkably 
strong (F = 52.66 and ri2 = .0448). Another difference can be observed: The inter-

1We know that min F ML(S,l:(0))c,c min FGdS,I:(0)) c,c minF wdS,I:(0)) when the model is not correct. 
So empirical fit values (RM SEA, etc. ) will be method-specific (i.e. , not in the same metric) because the 
minimum of the fit function value enters into the empirical fit indexes. 



TABLE 3A 
Analysis of Varia nce of RMSEA for ML 

Factor df Adjusted SS Sequential SS F p 
,,} 

FRMR 2 0.294479 0.294479 66000 0.000 0.9978 
N 4 0.000 123 0.000123 13.75 0.000 0.0004 
a4 10 0.000 117 0.000117 5.23 0.000 0.0000 
FRMR*a4 20 0.000042 0.000042 0.93 0.549 0.0000 
N*a4 40 0.000 157 0.000157 1.76 0. 150 0.0005 
Error 88 0.000 197 0.000197 
Total 164 0.2951 16 

Note. RM SEA = root mean squared error of approximation; ML = maximum likelihood; SS = sum 
of squares ; FRMR = fixed root mean squared residual. 

TABLE3B 
Analysis of Variance of RMSEA fo r GLS 

Factor df Adjusted SS Sequential SS F p 112 

FRMR 2 0.106711 0.106711 35000 0.000 0.9375 
N 4 0.006846 0.006846 11 28.16 0.000 0.0601 

a. 10 0.000036 0.000036 2.38 0.015 0.0000 
FRMR*a. 20 0.000024 0.000024 0.80 0.7 12 0.0000 
N*a., 40 0.000074 0.000074 1.22 0.216 0.0006 
Error 88 0.000134 0.000 134 
Total 164 0. 113825 

Note. RMSEA = root mean squared error of approximation; GLS = generalized least squares; SS = 
sum of squares; FRMR = fixed root mean squared residual. 

TABLE 3C 
Analysis of Variance of RMSEA for WLS 

Factor df Adjusted SS Sequential SS F p 112 

FRMR 2 0.0837 15 0.083715 1928.52 0.000 0.3278 
N 4 0. 15 1353 0.15 1353 1743.35 0.000 0.5928 

a. 10 0.0 11429 0.011429 52.66 0.000 0.0448 
FRMR*a. 20 0.006554 0.006554 15.10 0.000 0.0257 

N*a. 40 0.000360 0.000360 0.42 0.998 0.0014 
Error 88 0.00 19 10 0.001910 
Total 164 0.255327 

Note. RMSEA = root mean squared error of approximation; WLS = weighted least squares; SS = 
sum of squares; FRMR = fixed root mean squared residual. 

572 



ML, GLS, AND WLS PERFORMANCE IN SEM 573 

action effect of misspecification and kurtosis, FRMR*04, is only significant for 
WLS (F= 15.10 and ll 2 = .0257). For ML and GLS this interaction effect is absent 
(p = .55 and . 71 ) . Because WLS is designed to adjust for violations of normality, 
the strong effect of 04, kurtosis, for WLS should be expected. It is more surprising 
that the positive interaction effect of kurtosis and misspecification reflects that em­
pirical fit actually increases (becomes better) with kurtosis. The interaction effect 
of sample size and kurtosis, N--04, is not significant at 5% level for either of the 
three methods. 

Referring to the results presented in Tables B l-B7 (Appendix B; the mean val­
ues for RMSEA for each sample size based on I 00 replications), the tables are or­
ganized so that the ML results are at the top, GLS results are in the middle, and 
WLS results are at the bottom in each cell. It is quite clear that RMSEA for WLS 
tends to drop relatively more (as a function of 04) for severely misspecified models 
than for less misspecified models. As an example, for N = 2,000 (Table B5), 
RMSEA drops from .0454 to .0402 (11.2%) for M1, from .0509 to .0421 for M2 
(17.2%), and from .0864 to .0669 (22.5%) for M3. 

Empirical Bias 

Although the aforementioned analyses show the impact of sample size, kurtosis, 
and misspecification of empirical fit, we do not know the degree to which the esti­
mates of empirical fit (RMSEA) are biased (i .e., depart from their population val­
ues). In this section we therefore address how the bias ofRMSEA, RMSEAbias, de­
fined as RMSEA - EAdf , where EAdris the population EA, varies as a function of 
the same factors that affect empirical fit. The reason for addressing bias as a sepa­
rate issue is that the two components of RMSEAbias are both method-specific. To 
analyze the bias, we thus need to calculate the EAdr, which is a population quantity 
that reflects the inadequacy of the model given the estimation method (Browne & 
Cudeck, 1992). 

EAdf = {F;; where Fo = min F(I., I.(0)) = F(I., I.(0o)) , thus varies across meth-
~ef 

ods and must be calculated for each estimation method separately. F(I., I.(0)) is of­
ten referred to as the population fit function. 

For ML and GLS, EAdr is independent of the fourth-order moment and can 
easily be derived. The procedure for deriving EAdr for WLS is not so straightfor­
ward because it contains the fourth-order population moments and the products 
of second-order population moments. It therefore needs to be calculated for each 
distribution. In Appendix A the procedure for calculating EAdr values is shown. 
The E~r values that are derived are shown in Tables A I- A4 and demonstrate 
the following. The E~r values for GLS are lower than those for ML. WLS ap-
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pears to reward the researcher for using highly peaked data: For a given model, 
the EAdr for WLS decreases with increasing values of 04. As pointed out earlier, 
the decrease is substantially larger for severely misspecified models than for less 
misspecified models. When we compare the EAdf values (which are the true val­
ues, see tables Al - A4) with the estimated values (RMSEA in Tables B1- B7) for 
each estimation method, the following pattern emerges : For the 165 compari­
sons (11 levels of kurtosis, 5 sample sizes, and 3 levels of misspecifications), 
ML produces 98 RMSEA values higher than the population value and thus has a 
slight tendency to provide conservative estimates of empirical fit. This is not the 
case with GLS, which in 158 out of the 165 comparisons of EAdr and RMSEA 
produces overoptimistic estimates of empirical fit. There is, however, a tendency 
for GLS to produce more realistic RMSEA values for larger sample sizes. For 
WLS the pattern is more complicated. WLS is highly sensitive to sample size 
with respect to its ability to produce realistic RMSEA values. For N = I 00 the 
bias varies between .07 and .13. For N = 250 the bias is in the interval from .013 
to .046, for N = 500 the bias is in the interval from .0028 to .028, for N = I ,000 
the bias is in the interval from .00 I to .024, and finally, for N = 2,000 the bias is 
in the interval from .0005 to .018. The RMSEA value thus appears to approxi­
mate the population value at larger sample sizes. This supports the findings 
made by Hu et al. (1992), who reported that the ADF (WLS) method had a ten­
dency to overestimate (i .e., give too good estimates) the true goodness of fit 
value for almost all "normal" sample sizes. However, the bias is in particular af­
fected by kurtosis and specification error. 

Theoretical Fit 

ANOV A was used in an overall test of the effect of misspecification, sample size, 
kurtosis, and estimation method on theoretic fit , measured by the SPB index intro­
duced earlier. The following model was tested: 

SPB = µ + FRMR + N + °'4 + METHOD + FRMR *°'4 + METHOD*<l4 + 
FRMR*METHOD + N"'METHOD + N"'<l4 + FRMR*<l4*METHOD 

where N = sample size, FRMR = index of specification error, °'4 = the fourth-order 
moment (kurtosis), and METHOD= estimation method. 

The main effects of misspecification, sample size, and method are all signifi­
cant. The main effect of kurtosis is also significant, which can be attributed to the 
relatively large sample. The interaction between misspecification and method 
(FRMR *METHOD) and the interaction between sample size and method 
(N"'METHOD) are highly significant, whereas the interaction between kurtosis 
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TABLE4A 
Analysis of Variance of SPB 

Factor df Aqjusted SS Sequential SS F p 11 ] 

FRMR 2 0.37775 0.37775 8530. 11 0.000 0.43638 
N 4 0.06231 0.06231 703.55 0.000 0.07200 

a. 10 0.01078 0.01078 48.68 0.000 0.01246 
Method 2 0.14754 0.14754 331 .62 0.000 0.17049 
FRMR*a.. 20 0.00905 0.00905 20.44 0.000 0.01045 
a..•Method 20 0.01047 0.01047 23.65 0.000 0.01209 
FRMR *Method 4 0.20169 0.20169 2277.23 0.000 0.23307 
N*Method 8 0.01978 0.01978 111.66 0.000 0.02286 
N*a.. 40 0.00162 0.00162 1.83 0.002 0.00187 
FRMR •a. *Method 40 0.01674 0.01674 18.90 0.000 0.01934 
Error 344 0.02902 0.02902 
Total 494 0.86536 

Note. SPB = mean squared parameter bias; SS = sum of squares; FRMR = fixed root mean squared 
residual. 

and method (<X4*METHOD), misspecification and kurtosis (FRMR*<X-4), and the 
third-order interaction between misspecification, kurtosis and method 
(FRMR *Cl4*METHOD) are moderately significant. The interaction effect of sam­
ple size and kurtosis (N*CX4) is not significant. Analysis of mean differences shows 
that ML (M SPB = .00662, SD = .00664) is by far superior to GLS (M SPB = 
.03233, SD= .0366), which on its side outperforms WLS (M SPB = .04855, SD= 
.0547) with respect to theoretic fit. 

The various interaction effects where METHOD is a component of the interac­
tion term suggest that the impact of factors such as misspecification and kurtosis is 
contingent on which estimation method is chosen. To get a more detailed impres­
sion of the effects on the SPB value we therefore tested the following model for the 
three methods separately: 

SPB = µ + FRMR + N + a.i + FRMR *a.i + N*a.i 

where N = sample size, FRMR = index of specification error, and a.i = the fourth-or­
der moment. 

In contrast to the results obtained for empirical fit, only sample size has a sub­
stantial main effect on the parameter precision for ML. The effects of 
misspecification and kurtosis are significant, but not strong (F= 5. 14 and 3.52; 112 

= .015 and .051) compared to what we find for GLS and WLS. As for ML, sample 
size also affects the theoretical fit of GLS. However, consistent with the findings 
reported by Olsson et al. ( 1999) for normal data, theoretical fit for GLS is also 
highly influenced by misspecification (F = 4152.12 and 112 = .926) and sample 



TABLE4B 
Analysis of Variance of SPB for ML 

Factor df Adjusted SS Sequential SS F p TJ1 

FRMR 2 0.000108 0.000108 5.14 0.008 0.01492 
N 4 0.005068 0.005068 120.02 0.000 0.70019 
a. 10 0.000371 0.000371 3.52 0.001 0.05125 
FRMR*a., 20 0.000175 0.000175 0.83 0.675 0.02417 
N*a.. 40 0.000586 0.000586 1.39 0.102 0.08096 
Error 88 0.000929 0.001515 
Total 164 0.007238 

Note. SPB = mean squared parameter bias; ML = maximum likelihood; SS = sum of squares; 
FRMR = fixed root mean squared residual. 

TABLE4C 
Analysis of Variance of SPB for GLS 

Factor df AdjustedSS Sequential SS F p ..,1 

FRMR 2 0.203543 0.203543 4152.12 0.000 0.92674 
N 4 0.011261 0.oJ1261 114.86 0.000 0.05127 

a. 10 0.000941 0.000941 3.84 0.000 0.00428 
FRMR*a., 20 0.001303 0.001303 2.66 0.001 0.00059 
N*a.. 40 0.000428 0.000428 0.44 0.998 0.00195 
Error 88 0.002156 0.002156 
Total 164 0.219633 

Note. SPB = mean squared parameter bias; GLS = generalized least squares; SS = sum of squares; 
FRMR = fixed root mean squared residual. 

TABLE4D 
Analysis of Variance of SPB for WLS 

Factor df AdjustedSS Sequential SS F p ..,] 

FRMR 2 0.375787 0.375787 4077.79 0.000 0.76543 
N 4 0.065763 0.065763 356.81 0.000 0.13395 

a. 10 0.019942 0.019942 43.28 0.000 0.04062 
FRMR*a.. 20 0.024317 0.024317 36.39 0.000 0.04953 
N*a., 40 0.001082 0.001082 0.59 0.969 0.00220 
Error 88 0.004055 0.004055 
Total 164 0.490946 

Note. SPB = mean squared parameter bias; WLS = weighted least squares; SS = sum of squares; 
FRMR = fixed root mean squared residual. 
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size. Theoretical fit increases with sample size, but decreases considerably with 
misspecification. 

For WLS we find similar effects of misspecification and sample size as for 
GLS, but also find significant effects of kurtosis and the interaction of 
misspecification and kurtosis (FRMR *Cl4). More detailed analyses show how the 
performance of the various estimation methods varies with misspecification and 
sample size. Let us first address the results for the least misspecified model, M1 
(FRMR = .026). As can be seen in Tables 88-814, ML and GLS perform 
equally well and significantly better than WLS for M1 when sample size is less 
than 500. For sample sizes in this range ML and GLS provide almost equal pa­
rameter estimates for all levels of kurtosis . To be precise, GLS performs some­
what better than ML. For the partially true model, the performance of WLS 
improves with larger sample sizes and provides fairly precise parameter esti­
mates for sample sizes of 1,000 and 2,000 and, in fact, achieves higher theoretic 
fit than the other methods. For the sample sizes of 1,000 and 2,000, WLS also 
provides precise estimates. In fact, WLS is the most accurate for M1 (the least 
misspecified model) of the three for N = 2,000, particularly for high values of 
kurtosis (Cl4 ~ 9.35). 

For the intermediate model in terms of misspecification, M2 (FRMR =.089), 
ML and GLS give almost identical SP8 values for N = 100. For larger sample 
sizes, ML outperforms GLS across all levels of kurtosis. For the most severely 
misspecified model, M3, the pattern observed for M2 is even clearer: In 55 out of 
55 comparisons ML provides lower SP8 values (i.e. , better) than GLS. The rela­
tive accuracy of ML is-as the ANOV A results suggest-very robust to violations 
of the normality and specification conditions. In contrast, the parameter bias of es­
timates obtained with GLS and WLS is strongly affected by misspecification and 
kurtosis. 

A representative replication (Table 5) for a sample size of 250, which is a 
typical sample size in empirical studies, and the most severely misspecified 
model, M3 (FRMR = .17), illustrates that the differences in theoretical fit be­
tween the three methods are quite substantial: For Cl4 values from 5 to 28.45, 
SP8 for ML varies from .0058 to .0095, whereas the corresponding value for 
GLS varies from .0715 to .0930. The SP8 for GLS is almost l O times larger 
than that for ML. However, the performance of WLS in terms of SP8 is still 
worse as it varies from 0.0958 to .1527, and is for the most extreme case more 
than 16 times larger than for ML. 

CONCLUSIONS, IMPLICATIONS, AND LIMITATIONS 

The results can be summarized as follows: The performance in terms of empiri­
cal and theoretical fit of the three estimation methods is differentially affected 
by sample size, specification error, and kurtosis. Of the three methods, ML is 
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TABLE 5 
Theoretical Fit of ML, GLS, and WLS as a Function of Kurtosis Relative to the Performance 

of ML for~ = 9.35 

a , 5 6 8 8. 5 9.35 18.14 22.21 28.45 

ML 0.0061 0.0059 0.006 0.0069 0.0058 0.0091 0.0084 0.0095 
1.05 1.01 103 1.18 100 1.56 1.45 164 

GLS 0.0745 0.0715 0.0734 0.0822 0.0745 0.0930 0.0909 0.0906 
12.84 12.33 12.65 14.17 12.84 16.03 15.67 15.62 

WLS 0.1002 0.0958 0.1013 0.1250 0.1152 0.1527 0.1483 0.1486 
17.28 16.52 17. 46 2 1.55 19.86 26.33 25.57 25.62 

Note. The ratios SPB/0.0058 are in the second row. ML = maximum likelihood; GLS = generalized 
least squares; WLS = weighted least squares; SPB = mean squared parameter bias. 

considerably more insensitive than the two others to variations in sample size 
and kurtosis. Only empirical fit is affected by specification error-as it should 
be. Moreover, ML tends in general not only to be more stable, but also demon­
strates higher accuracy in terms of empirical and theoretical fit compared to the 
other estimators. 

GLS requires well-specified models, but allows small sample sizes to do an 
acceptable job in terms of theoretical and empirical fit. As reported by Olsson et 
al. ( 1999), its appealing performance in terms of empirical fit can easily mislead 
researchers to retain and thus interpret parameters of a misspecified model. 

WLS also requires well-specified models, but in contrast to GLS and ML it 
also requires large sample sizes to perform well. It not only allows peaked data, 
but actually appears to reward the researcher for using nonnormal data: The 
more highly peaked the data, the more encouraging its estimates of empirical fit. 
However, this apparent advantage is misleading: Our analyses suggest that the 
RMSEA values are inflated and that the apparent, but misleading advantage in 
terms of empirical fit is obtained at the cost of more inaccurate parameter esti­
mates. 

Our goal is not to declare a winner. Of course, within the constraints of this 
study, we admit that our choice of estimator would be ML. However, there is an al­
ternative implication of our results. 2 Rather than choosing one estimation method, 
it could be argued that researchers may be well advised to employ a triangulation 
approach using all three, If the methods provide similar parameter estimates, one 

2This idea is based on the Hausman Test, discussed in Anningerand Schoenber(l989) and in White 
( 1994): "If the model is correctly specified, these different estimators should have similar values asymp­
totically. If these values are not sufficiently similar, then the model is not correctly specified" (p. 218). 
The obvious problem is that the methods are asymptotically similar, and might be problematic to use in 
practical situations where sample sizes often are quite small. 
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has an additional indication that the correct structure is identified and that the pa­
rameter estimates are accurate. When this is the case, additional precision in pa­
rameter estimates can be gained by using GLS when the sample is small. If the 
sample size is large and the kurtosis very high, improved theoretical fit in terms of 
parameter estimates can be achieved by choosing to rely on those provided by 
WLS. In all other cases (i .e. , when the methods give discrepant results or sample 
sizes and kurtosis falls outside the ranges that suggest the choice ofGLS and WLS) 
ML seems to be the natural choice. 

Nonnormality can also affect significance tests. The reason for this is that stan­
dard errors can be underestimated when data are nonnormal. A comparison of 
LIS REL estimates of standard errors and estimates of standard errors based on I 00 
replications in this study partly supports the findings reported by Browne (1984) 
and Finch et al. ( 1997) that standard errors of parameter estimates can be consider­
ably underestimated by ML and GLS. However, preliminary analysis suggests that 
the amount of misspecification can affect the underestimation of standard errors of 
ML and GLS relative to WLS. For severely misspecified models, estimated stan­
dard errors for ML appear to be more realistic than is the case is for GLS and par­
ticularly for WLS. Future studies should address the generalizability of this 
tentative conclusion. 

More research is also needed to investigate whether across-method variability 
of parameter estimates can be used to assess what parts of the tested model, if any, 
are close to the true model. Preliminary analyses suggest that the discrepancy of 
parameter estimates given by the three methods is higher for the misspecified parts 
of the model. 

We admit that our results and implications may not be generalizable across 
all types of misspecification and models. In the current research we focused on a 
family of nested models where incorrect models represent higher parsimony. 
More research should be conducted to investigate other types of specification er­
ror. Nevertheless, our analyses have underscored the fact that indexes of esti­
mated empirical fit (e.g., RMSEA) cannot be easily compared across methods 
because both the population value (here EAdr) and the estimated value are de­
pendent on the estimation method. The reliance on fixed criterion values of ac­
ceptance (e.g., RMSEA < .05), irrespective of estimation method, may therefore 
not be appropriate. The rather over-optimistic RMSEA values provided by GLS 
and WLS suggest that more stringent threshold levels for acceptance may be in 
order for these methods. 
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APPENDIX A 

Error of Approximation (EA) for Maximum Likelihood (ML), 
Generalized Least Squares (GLS), and Weighted Least 
Squares (WLS) 

For ML and GLS, EAdr is independent of the fourth-order moment. It only depends 
on elements and products of elements from I:(8) and S. The population fit functions 
are given by F ML(L, I:(8)) = (loglI:(8)1 + tr{I:I:(8)- 1} - loglI:1-q); q being the number 
ofobserved variables andFGLS(I:, L(8)) = l /2tr{(J - I:(8) • I:-1) 2}. As we know, GLS 
can equivalently be written as the quadratic form : F Gd.._o) = (o-o8)'UG1I 1(o - 0 8), 

where the weight matrix now is given by [UGLs]u.gh =o;g Ojh + O ;h Ojg; i~j andg~ h. 
Note that we now are using elements of I: in the weight matrix instead of ele­

ments ofS. 
In Table A 1 the EA values for ML and GLS are presented. 
For the WLS fit functionFwLs(8) = (o-oa)'UwLS-1 (0 - 00), the elements of the 

weight matrix are of the form : [UwLsfo.gh = O iJgh - O ;;<Jgh where O iJgh is the 
fourth-order population moments and O iJ<Jgh is the product of second-order popula­
tion moments. The derivation of the EAwLs is therefore a much more complicated 
task than for ML and GLS. In the following section we give a brief discussion of 
the derivation of the population elements in the weight matrix for WLS. 
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TABLE A1 
EAML and E~LS 

FRMR/Method Ml GLS 

0.026 0.05047997 0.046075966 
0 .089 0.0621080 0.0555370 
0 .17 0.14442252 0.104266835 

Note. EA = error of approximation; ML = maximum likelihood; GLS = generalized least squares; 
FRMR = fixed root mean squared residual. 

We start with the true model 

and show that the population elements ofU for WLS is a function of this model. To 
do this it is convenient to write the true model on a simpler form : 

X = A.~ + o = Aro (2) 

where A is aq x (q + k) matrix and ro is a (q + k) x 1 vector of independent variables 
where E( ro) and E( COO)') = I. We have assumed that Xis a q x 1 vector of observed 
variables, Ax is a q x kmatrix of factor loadings, ~ is a k x 1 vector oflatent variables, 
and o is a q x 1 vector of stochastic error terms. Following the tradition we assume 
that£(~) = 0 and Var(~)= 1. The covariance of~, E(~ ~')=cl> will therefore beak x k 
matrix with ls along the diagonal. We also assume that E(o) = 0 and Var(&)= 0 0. 

The argument for writing X =A.~+ o = Aro is as follows : 

Because cl> is positive definite there will exist a k x k matrix P so that cl>= PP'. 

We can then write ~ = Pro, where ro1 is a k x 1 vector of independent stochastic 
variables . 

LetD = 

.J061 
0 

0 

0 

0 

.J062 .. 

0 

0 
be a q x q matrix where the standard error of o 

is along the main diagonal, and zeros elsewhere. 
Then o = D<m. where ffi2 is a q x l vector of independent stochastic variables 

where £(0>2) = 0 and Var(<m.) = 1. We can now write 

X=Ax~+o=AxPffii +Dro2 =(AxPID)(: )+Aro 
2 
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where A is composed of the q x kmatrix AxPand the q x q matrix D. A is therefore a 
q x (q + k) matrix. The vector co is composed of the k+ 1 vector co1 and the q x I vec­
tor ffii. co is therefore a (q + k) x 1 vector of independent variables where E(co) = 0 
and £( co co') = 1. 

The covariance matrix L can then be written as 

E(XX') = E(Arow'A') = AE(ww')A' = Al A' = AA'. (3) 

Let Ube the asymptotic covariance matrix. 
A typical element of U is <Jijgh - <J;_lJgh where <Jijgh = E(X; J{_j X g Xh) and CT rs is the 

population covariance between Xr and X5• The matrix £((XX')® (XX')) will have 
CTifgh as a typical element. 

If we use X = Aw and the fact that (EF) ® (GH) = (E ® G)(F ® H) (*), the 
Kroenecker product (XX') ® (XX') can be written as 

(XX')® (XX') = (Aoxo' A')® (Aoxo' A')= ((Aco) ® (Aco))((ro' A')® (ro' A')) (4) 

where we have set£= G = Aco andF= H = co' A' from(*) . In the same way we can 
write(Aco)® (Aw) = (A ®A)(co ® co) and (ro' A')® (w' A') = (co'® w')(A' ®A'). 

Substituting this into the equation for (XX') ® (XX') we get 

(XX)® (XX) = (A ® A)(co ® co)(co' ® co')(A' ®A') = 

(A® A)(cow') ® (ww')(A ® A)' 

The expectation of (XX') ® (XX') is a q2 x q2 matrix that we denote T: 

T = E((XX') ®(XX)) = (A® A)E((cow') ® (cow'))(A ® A)' (5) 

A ® A is a q2 x (q + k)2 matrix, £(( cow') ® ( coco')) is a (n + k)2 x (n + k)2 matrix and (A 
® A)' is a (q + k)2 x q2 matrix. 

A typical element in the matrix £((coco') ® (roco')) is E(ro; co; Wg ffih) - Be­
cause ro is a vector of independent stochastic variables this expression is easy 
to calculate: 

E( W; coi co8 Wn) = E( C0;4) = ~ if / = j = g = h 

E( CO; Wj Wg wh) = µ? = I if (i = j and g = h and i -t:- g) 
or (i = g and j = h and i -t:- j ) 

or (i = h and j = g and i -t:- j) 

E(co; roi co8 Wn) = 0 elsewhere. 
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With the earlier derivations we can calculate E(((J)(I)') ® ((1)(1.)')). Tis calculated 
from Equation 5. We also wish to calculate the products of the second-order mo­
ments: CJij CJgh-

This is done by letting l = AA', then the matrix l ® l =AA'® AA'= (A ® A)(A 
® A)' has CJiJ CJgh as a typical element. 

For the WLS weight matrix we then have 

U = T- l ® l =(A® A)E((roro') ® (roro'))(A ® A)' - (A® A)(A ® A)' (6) 

In Tables A2-A4 we have calculated the EActr values for WLS for the three 
models with 11 different levels of kurtosis. 

Thus we see that EActr decreases significantly when CX4 goes up. This ten­
dency is a result of the presence of the fourth-order moment in the weight ma­
trix U. It is therefor also likely that the RMSEA will decrease as a function of 
<X<! - Because RMSEA is an estimate of EA it will be affected by the sample 
size. As showed by Hu, Bentler, and Kano (1992) the WLS (ADF) almost 
never diagnosed the true model for sample sizes below 2,500 (i.e., it was posi­
tively biased). So it is reasonable that the RMSEA index estimated with WLS 
will show positive bias also for misspecified models, especially for small sam­
ple size. 

Data Generating Process 

The data were generated according to the following design: From Equation 2 we 
can write the true model 

RMR/a., 

0.026 
0.089 
0.17 

X=Aro 

TABLE A2 
Negligible kurtosis: EAwLs 

1.8 

0.047112 
0.062358 
0.121726 

2 

0.046931 
0.060807 
0.117990 

2.4 

0.046575 
0.058303 
0.111717 

(7) 

Note. EA = error of approximation; WLS = weighted least squares; RMR = root mean squared 
residual. 



RMR/a, 

0.026 
0.089 
0.17 

5 

0.044560 
0.050139 
0.089244 
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TABLE A3 
Medium Kurtosis: EAWLs 

6 

0.043824 
0.048363 
0.084115 

8 

0.042485 
0.045722 
0.076561 

8. 5 

0.041759 
0.044463 
0.073006 

9.35 

0.040867 
0.043471 
0.071038 

Note. EA = error of approximation; WLS = weighted least squares; RMR = root mean squared 
residual. 

0.026 
0.089 
0.17 

TABLE A4 
Extreme Kurtosis: EAWLS 

18.14 

0.037405 
0.038486 
0.057802 

22.21 

0.035871 
0.036661 
0.053739 

28.45 

0.033890 
0.034407 
0.049044 

Note. EA = error of approximation; WLS = weighted least squares; RMR = root mean squared 
residual. 

Generating a vector ro will give us an X vector. Ramberg et al . (1979) showed 
how we can generalize Tukey's (1960) Lamda function to a four-parametric distri­
bution given by the equation 

where A-1 is a location parameter, A-2 is a scale, and A-3 and A4 are shape parame­
ters (Ramberg, Tadikamalla, Dudewicz, and Mykytka, 1979). Drawing ran­
domly an element p from the uniform distribution over the interval [O, I] , R(p ), 
will be a random variable from a distribution of finite moments of first- , sec­
ond-, third-, and fourth-order. The magnitude of these moments will depend on 
the values of A-1 to A-t-

Letting µ1 , µ2, a.3, and 04 be the expectation, variance, skewness, and kurtosis 
to R(p ), we can use the tables in Ramberg et al. ( 1979) to find the correct choice for 
the lambdas that will give R(p) with the desired values ofµ,, µ 2, a.3, and 04-

In our study we choose the lambdas so that µ1 = 0 and µ2 = 1 (i.e. , the mean is 
zero and the variance is 1) . This will imply that the skewness and kurtosis will 
be the same as the third- and fourth-order moments (or - 3 ifwe shall follow the 
tradition of using the normal distribution as a reference) , Using this approach 
we can generate the vector ro. ro is a vector of independent stochastic variables. 
X =A ro will give us the realizations of the observed variab les. The fourth-order 



a, 

1.8 
2 
2.4 
5 
6 
8 
8.5 
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moments for x;, E(x;4) will be functions of the first- , second-, third-, and 
fourth-order moments for W;, which are given by 

E(x © x'© x ® x') = E((xx') 18) (xx'))= (A® A)(ww') 18) (ww')(A 18) A)' (8) 

Because a typical element in this matrix is E(X; J{_j Xg Xh), the fourth-order mo­
ment element for x;, is taken to be E(X; X; X; X;) from this moment matrix. 

Alternatively this can be done in a computationally less intensive way: Letting 

A= 

a q 

where a'; is row no. i. a; will be a ( q x I) matrix and E(x;4) = ( a; © a;)' ( wco') ® 
(a; © a;). Because the w/s are independent we can write 

The third-order moment of xis given by E(x ® x' ® x) and 

x © x' ® x =(xx')® x = (A(l)(O' A')® Aw= (Aw® Aro)w' A'= (A ® A)(co © 
co)w' A'= (A ® A)(ww') ® w) A'. 

TABLE AS 
Expected Fourth-Order Moments E(x;4 ) 

xi x2 x3 x4 x5 x6 x7 x8 x9 xlO xii 

2.58 2.63 2.58 3.78 2.67 2.69 2.69 2.71 2.50 2.56 2.41 
2.65 2.69 2.65 2.87 2.72 2.74 2.76 2.76 2.58 2.64 2.50 
2.79 2.81 2.79 4.05 2.84 2.85 2.85 2.85 2.75 2.78 2.68 
3.68 3.60 3.68 5.20 3.54 3.49 3.49 3.46 3.86 3.71 3.80 
4.02 3.91 4.02 5.66 3.81 3.74 3.74 3.70 4.23 4.07 4.24 
4.71 4.52 4.71 6.56 4.36 4.25 4.25 4.17 5.05 4.80 5.11 
5.14 4.90 5.14 7.11 4.70 4.56 4.56 4.46 5.57 5.25 5.65 

xl2 

2.51 
2.60 
2.78 
3.97 
4.44 
5.35 
5.93 

9.35 5.36 5.11 5.36 7.43 4.91 4.75 4.75 4.65 5.82 5.48 5.91 6.20 
18.14 8.19 7.61 8.19 11.11 7.13 6.78 6.78 6.54 9.23 8.45 9.51 10.o2 
22.21 9.58 8.85 9.58 12.92 8.23 7.79 7.79 7.49 10.9 9.91 11.28 11.88 
28.45 11.71 10.71 11.71 15.72 9.93 9.35 9.35 8.95 13.46 12.16 13 .98 14.75 
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Because co is a vector of stochastic independent variables we can easily calculate 
£((1)(1)'@co). The third-order moment i therefore E(x ® x'® x) = (A ® 
A)E((l)(l)'®co)A'. A typical element will be on the form E(x; Xj x8 ). 

The third-order moment E(x,3) will be one element in the moment matrix. 
A computationally less intensive way of calculating E(x,3 ) is by using 

Because co is a vector of stochastic independent variables, this can be reformulated 
as (Mattson, 1997). 

By generating N realizations of co we can generate N realizations of X. This 
raw data ofxs is used as input in LISREL 8.14 for ML and GLS. For WLS the 
raw data is first used as input in PREUS 2.12 for calculating the asymptotic 
covariance matrix. 

The expectation values, E(x / ) = !, a im 
4 µ 4 m + 6 !, I a ;/ a / , of the 

m =I m =2 k 

fourth-order moments for the 12 observed variables under the 11 different CX4 val­
ues are given in Table A5 . 

APPENDIX B 

In matrix notation the true model can be expressed as 

x , A-11 0 0 A-1 4 0 0 0 o, 

X 2 A- 21 0 0 0 A-25 0 0 02 

X3 A-31 0 0 0 0 A,36 0 
~ I 

03 

A-41 0 0 0 0 A,46 0 04 X4 
~2 

X 5 0 A-52 0 A.54 0 0 0 
~ J 

05 

x 6 0 A,62 0 0 A,65 0 0 
~4 

06 
= + 

X7 0 A.72 0 0 0 0 A.77 
~5 

07 

X s 0 As2 0 0 0 0 A,87 
~6 

os 

X 9 0 0 A.93 A.94 0 0 0 
~7 

09 

X1 0 0 0 A-103 0 A-105 0 0 010 

X1 1 0 0 Am 0 0 A,! 16 0 011 

X12 0 0 A.123 0 0 0 A.12 ,7 0,2 



588 OLSSON, FOSS, TROVE, HOWELL 

The <p matrix is given by 

<l>11 <l>1 2 <1>13 0 0 0 0 

<l>21 <l>22 <l>23 0 0 0 0 

<1>31 <1>32 <j}33 0 0 0 0 

0 0 0 <1>44 0 0 0 

0 0 0 0 <1>55 0 0 

0 0 0 0 0 <1>66 0 

0 0 0 0 0 0 <l>11 

The loadings from the domain factors were given the following values: 

A.;1 = 0.7 for i = l , 2, 3, and 4; Ai2 = 0.8 for i = 5, 6, 7, and 8; and A.,1 = 0.6 for i = 
9, IO, l l, and 12. 

The loadings from the minor factors (A.;4) were set to 0.2 for i = l, 5, and 9. The val-
ues if the other loadings were set as follows: A.;5 = 0.3 for i = 2, 6, and IO. A.36 = 0.2, 
~ = 0.4, A.11 ,6 = 0.1 A.11 = 0.3, As1 = 0.4, and A.1 2,1 = 0.1. For the variance--<:ovariance 
matrix of the latent variables (<p matrix), the variances were fixed to one (q>;; = 1.0) 
and the correlations between the three major factors were set to 0.2 (<j)21 = <j)31 =<j)32 = 
0.2). The covariance matrix 0 6 is diagonal and var(O;) is a function of the model and 
the fact that var(x;) = I for i = l, 2, . . . , 12. 

TABLE B1 
RMSEA for ML, GLS, and WLS (N= 100) 

a., 5 6 8 8. 5 9.35 18. 14 22.21 28.45 

FRMR 

0.026 0.0517 0.0491 0.0552 0.0506 0.0527 0.0487 0.0520 0.0527 
(100) (100) (100) (99) (100) (100) (100) (100) 

0.0298 0 .0274 0.0309 0.0278 0.0288 0.0242 0.0296 0.0270 
(100) (100) (100) (98) (100) (100) (100) (100) 

0.1120 0.1138 0.1164 0.1114 0.1153 0.1112 0.1103 0.1147 
(83) (85) (79) (71) (79) (74) (75) (69) 

0.089 0.0619 0 .0652 0.0658 0.0677 0.0618 0.0648 0.0697 0.0702 
(100) (100) (99) (100) (100) (100) (99) (100) 

0.0340 0.0377 0.0384 0.0410 0.0357 0.372 0.0402 0.0407 
(99) (100) (100) (100) (100) (98) (97) (100) 

0.1303 0.1310 0.1267 0.1319 0.1291 0.1245 0.1269 0.1277 
(73) (79) (71) (71) (61) (60) (69) (72) 

(continued) 



TABLE B1 (Continued) 

a, 5 6 8 8.5 9.35 18.14 22.21 28.45 

0.17 0. 1469 0.1455 0.1480 0.1495 0.1504 0.1529 0 .1508 0.1555 
(99) (98) (100) (99) (100) (99) (100) (99) 

0.0852 0.0877 0.0884 0.0893 0.0878 0.0893 0.0868 0.09 17 
(46) (55) (53) (34) (46) (56) (45) (47) 

0. 1796 0.1 749 0. 1694 0.1620 0.1734 0. 1596 0. 1835 0. 1647 
( 19) (2 1) ( 12) (12) ( 17) (9) (8) (1 1) 

Note. RMSEA = root mean squared error of approximation; ML = maximum likelihood; GLS = 
generalized least squares; WLS = weighted least squares; FRMR = fixed root mean squared residual. A 
total of500 repetitions gives ML = 0.0638; GLS = 0.0363, and WLS = 0. 1297. 

TABLE B2 
RMSEA for ML, GLS, and WLS (N = 250) 

a., 5 6 8 8.5 9.35 18.14 22.21 28.45 

FRMR 

0.026 0.0507 0.0502 0.0498 0.05 12 0.0471 0.05 10 0.0484 0.0510 
( 100) (100) (100) ( 100) (100) (100) (100) (100) 

0.04 12 0.04 14 0.0405 0.0426 0.0379 0.0422 0.0387 0.04 17 
( 100) (100) (100) ( 100) (100) ( 100) ( 100) ( 100) 

0.0615 0.0606 0.0585 0.0586 0.0566 0.575 0.0554 0.0567 
( 100) (100) (100) (100) (100) (100) (100) (99) 

0.089 0.0653 0.0604 0.0649 0.0636 0.065 1 0.0668 0.0653 0.0653 
( 100) ( 100) (100) (100) ( 100) (100) (100) (100) 

0.0526 0.0496 0.052 1 0.0511 0.0523 0.0537 0.0524 0.0525 
(100) ( 100) ( 100) (100) (100) (100) (100) ( 100) 

0.0695 0.0651 0.0655 0.0644 0.064 1 0.0632 0.0635 0.0623 
( 100) (100) ( 100) ( 100) (99) (100) (100) (99) 

0. 17 0.1452 0. 1438 0.1451 0. 1475 0.1464 0.1482 0.1450 0.1473 
( 100) (100) ( 100) ( 100) ( 100) (100) (100) ( 100) 

0.0990 0.0980 0.0983 0.0997 0.0994 0.0994 0.0983 0.0983 
(89) (89) (83) (79) (88) (89) (80) (79) 

0.1109 0.1070 0.1029 0.1030 0.1043 0.083 0.0962 0.0954 
(50) (52) (53) (36) (49) (44) (40) (47) 

Note. RMSEA = root mean squared error of approximation; ML = maximum likelihood; GLS = 

generalized least squares; WLS = weighted least squares; FRMR = fixed root mean squared residual. 
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TABLE 83 
RMSEA for ML, GLS , and WLS (N = 500) 

a, 5 6 8 8.5 9.35 18. 14 22.21 28.45 

FRMR 

0.026 0.0503 0.0512 0.0505 0.0504 0.0493 0.0507 0.0490 0.0502 
(100) (100) (l00) (l00) (100) (100) (100) (100) 

0.0442 0.045 1 0.0442 0.0437 0.0429 0.0443 0.0428 0.0440 
(l00) (l00) (100) (100) (l00) (100) (100) (l00) 

0.0494 0.0497 0.0478 0.0471 0.0473 0.466 0.0456 0.0453 
(100) (l00) (100) (l00) (100) (100) (l00) (l00) 

0.089 0.0605 0.0633 0.06 13 0.0624 0.0644 0.0654 0.0632 0.0644 
(l00) (l00) (l00) (100) (l00) (l00) ( 100) (l00) 

0.0522 0.054 1 0.0526 0.0535 0.0554 0.0548 0.0547 0.0551 
(l00) (100) (l00) (l00) (100) (l00) (100) (100) 

0.0537 0.0545 0.0525 0.05 15 0.0545 0.0494 0.0504 0.0489 
(l00) (l00) (100) (100) (l00) ( 100) (l00) (l00) 

0.1 7 0.1445 0. 1457 0. 1453 0.1446 0. 1452 0. 1459 0. 1465 0. 1445 
(l00) (l00) (100) (100) (100) (l00) (l00) (l00) 

0. 10 15 0. 1017 0.1 019 O.l0 15 0.1 02 1 0.10 15 0. 1019 0.10 11 
(96) (96) (98) (97) (93) (96) (92) (94) 

0.0980 0.0947 0.0907 0.0889 0.0882 0.0824 0.0822 0.0808 
(75) (73) (69) (74) (60) (55) (50) (58) 

Note. RMS EA = root mean squared error of approximation; ML = maximum likelihood; GLS = 

generalized least squares; WLS = weighted least squares; FRMR = fixed root mean squared residual. 

TABLE 84 
RMSEA for ML, GLS, and WLS (N = 1000) 

a, 5 6 8 8.5 9.35 18.14 22.21 28.45 

FRMR 

0.026 0.0504 0.0505 0.0502 0.0509 0.0504 0.0514 0.0502 0.0506 
(l00) (l00) (l00) (100) (l00) (100) ( 100) (l00) 

0.0454 0.0454 0.0449 0.0455 0.045 1 0.0460 0.0450 0.0452 
(100) (l00) ( 100) (100) ( 100) (100) (l00) (l00) 

0.0468 0.046 1 0.0452 0.0452 0.0444 0.429 0.0420 0.04 14 
(l00) (l00) (l00) (l00) (100) (100) (l00) (l00) 

0.089 0.0632 0.0631 0.0618 0.062 1 0.0632 0.0639 0.0634 0.0626 
(100) ( 100) (100) (100) (100) (l00) (100) (100) 

0.0556 0.0553 0.0545 0.0546 0.0553 0.0559 0.0554 0.0553 
(100) (100) (l00) (l00) (100) (l00) (100) (100) 

0.0526 0.05 13 0.0484 0.0484 0.0485 0.0462 0.0461 0.04 15 
(100) (100) (100) (100) (l00) ( 100) (100) (100) 

0. 17 0. 1446 0.1447 0.1445 0. 1450 0.1450 0.1 455 0. 1462 0.1450 
(l00) (100) (100) (100) (100) (100) (100) (100) 

0. !031 0. 1032 0.1026 0. 1029 0.1028 0. 1029 0.1035 0.1 030 
(97) (99) (98) (99) (99) (100) (99) (100) 

0.0934 0.0894 0.0844 0.0830 0.0831 0.0770 0.0742 0.0727 
(91) (93) (85) (79) (88) (74) (63) (74) 

Note. RMSEA = root mean squared error of approximation; ML = maximum likelihood; GLS = 

generalized least squares; WLS = weighted least squares; FRMR = fixed root mean squared residual. 



TABLE 85 
RMS EA for ML, GLS , and WLS (N = 2 ,000) 

a, 5 6 8 8.5 9.35 18. 14 22.21 28.45 

FRMR 

0.026 0.0503 0.050 1 0.050 1 0.0503 0.05 1 I 0.05 13 0.0507 0.0501 
( 100) ( 100) (100) ( 100) ( 100) (100) (100) (100) 

0.0457 0.0454 0.0454 0.0456 0.0462 0.0466 0.0458 0.0453 
(100) ( 100) ( 100) ( 100) (100) (100) ( 100) (100) 

0.0454 0.0447 0.043 1 0.0432 0.0440 0.4 14 0.0409 0.0402 
(100) ( 100) ( 100) (100) (100) ( 100) ( 100) (100) 

0.089 0.0618 0.06 19 0.0626 0.0627 0.062 1 0.0627 0.0623 0.0619 
(100) ( 100) ( 100) (100) ( 100) ( 100) (100) (100) 

0.0549 0.0549 0.0554 0.0555 0.0551 0.0555 0.0553 0.0549 
(100) (100) ( 100) (100) ( 100) ( 100) ( 100) (100) 

0.0509 0.0495 0.0472 0.0467 0.0465 0.0439 0.0432 0.0421 
( 100) (100) (100) (100) ( 100) (100) ( 100) (100) 

0. 17 0.1444 0. 1442 0. 1445 0.1447 0.1449 0.1447 0.1 450 0.1 458 
(100) ( 100) ( 100) (100) (100) (100) ( 100) (100) 

0.1032 0.1033 0. 1036 0. 1035 0.1037 0.1035 0.1038 0. 1039 
(100) ( 100) (98) (99) (100) (100) (100) (100) 

0.0864 0.0907 0.0810 0.0797 0.0785 0.07 16 0.0696 0.0669 
(99) (93) (94) (92) (96) (92) (94) (89) 

Note. RMS EA = root mean squared error of approximation; ML = maximum likelihood; GLS = 

generalized least squares; WLS = weighted least squares; FRMR = fixed root mean squared residual. 

TABLE 86 
RMSEA for ML, GLS, and WLS: Negative Kurtosis 

a , 1.8° 2.0" 2.4" J.8b 2.Qb 2.4b I.Be 2.(): 2.4c 

FRMR 

0.026 0.0477 0.0518 0.0495 0.0506 0.0474 0.0477 0.0488 0.0499 0.050 1 
(100) (100) (l00) ( 100) ( 100) (100) (100) (100) ( 100) 

0.0268 0.0278 0.0271 0.0414 0.0389 0.0388 0.0426 0.0439 0.0441 
(100) (100) (99) (100) ( 100) (100) (100) (100) (100) 

0.1164 0. 11 83 0. 11 98 0.0635 0.0599 0.06 13 0.0499 0.0515 0.0507 
(86) (86) (80) (100) (100) (100) (100) (100) ( 100) 

0.089 0.0614 0.06 14 0.0626 0.0612 0.0602 0.0619 0.0613 0.0616 0.0622 
( 100) (100) (100) (100) (100) 100 (100) (100) 99 

0.033 7 0.0341 0.0362 0.0504 0.0485 0.0505 0.0530 0.0529 0.0533 
(100) (100) (98) (100) (100) 100 ( 100) (100) 100 

0.1414 0.1 415 0.1405 0.0777 0.0750 0.0732 0.0673 0.0653 0.0629 
(86) (82) (79) (100) (100) 100 ( JOO) ( 100) 100 

0. 17 0.1446 0.1452 0 .1452 0.1453 0.1444 0.1435 0.1435 0.1444 0.1440 
(100) (100) (100) ( IOU) (100) (100) (100) ( 100) (100) 

0.0862 0.0844 0.0859 0.0994 0.0982 0.0975 0.1013 0. 1018 0.10 14 
(58) (37) (59) (78) ( 100) (81) (94) (98) (96) 

0.2076 0.2070 0.1897 0.1421 0.1356 0.1296 0.1279 0.1258 0.1192 
(22) (I 7) (26) (72) (74) (76) (97) (97) (88) 

Note. RM SEA = root mean squared error of approx imation; ML = maximum likelihood; GLS = 

generalized least squares; WLS = weighted least squares; FRMR = fixed root mean squared residual. 
' n = 100. bn = 250. en = 500. 



TABLE 87 
RMSEA for ML, GLS, and WLS: Negative Kurtosis 

a, 1.8° 2.(}' 2.4° J.8b 2.(Jb 2.4b 

FRMR 

0.026 0.0501 0.0502 0.0508 0.0502 0.0505 0.0502 
( 100) (100) (100) (100) (100) (100) 

0.0451 0.0452 0.0456 0.0456 0.0457 0.0456 
(100) (100) (100) (100) (100) (100) 

0.0482 0.0485 0.0485 0.0476 0.0476 0.0470 
(100) (100) (100) (100) (100) (100) 

0.089 0.0625 0.0620 0.0622 0.0626 0.0619 0.0618 
(100) (100) (100) (100) (100) (100) 

0.0547 0.0546 0.0547 0.0555 0.0549 0.0549 
(100) (100) (100) (100) (100) (100) 

0.0643 0.0626 0.060 1 0.0636 0.0615 0.0588 
(100) (100) (JOO) (100) (100) (100) 

0.17 0.1436 0.1447 0.1447 0.1444 0.1440 0.1443 
(100) (100) (100) (100) (100) ( 100) 

0.1023 0.1028 0.1030 0.1036 0.1033 0.1035 
(98) (100) (100) (100) (100) (100) 

0.1242 0.1208 0.1 155 0.1233 0. 11 95 0.1133 
(100) (100) (95) (100) (100) ( 100) 

Note. RMS EA = root mean squared error of approximation; ML = maximum likelihood; GLS = 
generalized least squares; WLS = weighted least squares; FRMR = fixed root mean squared residual. 

' n = 1,000. bn = 2,000. 

TABLE 88 
SPB: ML, GLS, and WLS (N = 100) 

a , 5 6 8 8.5 9.35 18. 14 22.2 1 28.45 

FRMR 

0.026 0.01 17 0.0130 0.0138 0.0156 0.0 141 0.0162 0.0174 0.0 176 
0.0125 0.0143 0.0160 0.0187 0.0 154 0.017 1 0.0173 0.01 83 
0.0382 0.0389 0.0400 0.0536 0.0488 0.0527 0.0489 0.0542 

0.089 0.0277 0.0227 0.0248 0.0 127 0.0159 0.0189 0.0478 0.0329 
0.0227 0.0205 0.0242 0.0230 0.0237 0.0303 0.031 1 0.0258 
0.0551 0.0528 0.0588 0.0567 0.0603 0.0749 0.0702 0.0641 

0.0 148 
0.0226 
0.0532 

0.17 0.0126 0.0 141 0.0146 0.0160 0.0 160 0.0224 0.0207 0.0 182 
0.0928 0.0910 0.0959 0.1021 0.0938 0.1176 0.1201 0.1 147 
0.1402 0.1449 0.1598 0.1636 0.1511 0.1883 0.2243 0.2053 

Note. SPB = mean squared parameter bias; ML = maximum likelihood; GLS = generalized least 
squares; WLS = weighted least squares; FRMR = fixed root mean squared residual. 

•Replications = 500. 
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TABLE B9 
SPB: ML, GLS, and WLS (N = 250) 

a, 5 6 8 8.5 9.35 18.14 22.21 28.45 

FRMR 

0.026 0.0056 0.0058 0.0060 0.0066 0.0083 0.0069 0.0068 0.0072 
0.0053 0.0057 0.0058 0.0064 0.0076 0.0067 0.0068 0.0073 
0.0080 0.0081 0.0090 0.0092 0.0095 0.0099 0.0099 0.0127 

0.089 0.0051 0.0060 0.0067 0.0063 0.0072 0.0 183 0.0094 0.0 184 
0.0093 0.0100 0.0101 0.0098 0.0108 0.0125 0.0127 0.0119 
0.0131 0.0134 0.0155 0.0145 0.0156 0.0 199 0.0198 0.0 185 

0.17 0.0061 0.0059 0.0060 0.0069 0.0058 0.009 1 0.0084 0.0095 
0.0745 0.0715 0.0734 0.081 1 0.0745 0.0930 0.0909 0.0906 
0.1 002 0.0958 0.1013 0.1250 0. 1152 0.1527 0.1483 0.1486 

Note. SPB = mean squared parameter bias; ML = maximum likelihood; GLS = generalized least 
squares; WLS = weighted least squares; FRMR = fixed root mean squared residual. 

TABLE B10 
SPB: ML, GLS, and WLS (N= 500) 

a, 5 6 8 8.5 9.35 18.14 22.21 28.45 

FRMR 

0.026 0.0033 0.0034 0.0035 0.0036 0.0038 0.0044 0.0048 0.0055 

0.0030 0.0031 0.0032 0.0035 0.0036 0.0040 0.0044 0.0050 
0.0036 0.0037 0.0037 0.0039 0.0040 0.0048 0.0056 0.0051 

0.089 0.0034 0.0038 0.0039 0.0040 0.0041 0.0043 0.0043 0.0049 
0.0055 0.0058 0.0057 0.0060 0.0058 0.0070 0.0070 0.0072 
0.0067 0.0075 0.0074 0.0084 0.0074 0.0097 0.01 07 0.0112 

0. 17 0.0037 0.0039 0.0040 0.0038 0.0045 0.0054 0.0053 0.0054 
0.0675 0.0688 0.0658 0.0676 0.0678 0.0806 0.0874 0.0821 
0.0902 0.0937 0.0978 0. 1069 0.1046 0.1399 0.1415 0.1434 

Note. SPB = mean squared parameter bias; ML = maximum likelihood; GLS = generalized least 
squares; WLS = weighted least squares; FRMR = fixed root mean squared residual. 
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TABLE B1 1 
SPB: ML, GLS, and WLS (N = 1,000) 

a, 5 6 8 8.5 9.35 18./4 22.21 28.45 

FRMR 

0.026 0 .0022 0 .0022 0.0025 0.0024 0.0026 0.0029 0.0032 0.0028 
0.0020 0.0020 0.0023 0.0021 0.0023 0.0026 0.0030 0.0026 
0.0020 0.0020 0.0023 0.0022 0.0022 0.0026 0.0028 0.0026 

0.089 0.0023 0 .0025 0.0025 0.0025 0.0028 0.0027 0.0029 0.0022 
0.0036 0.0037 0.0038 0.0039 0.0041 0.0047 0.0049 0.0038 
0.0042 0.0046 0.0047 0.0047 0.0050 0.0062 0.0067 0.0047 

0.17 0.0033 0.0032 0.0034 0.0033 0.0032 0.0035 0.0038 0.0038 
0.0777 0.0775 0.0784 0.0782 0.0755 0.0775 0.0782 0.0785 
0.0980 0.1050 0. 111 9 0.12 13 0.1154 0.1328 0.1399 0.1444 

Note. SPB = mean squared parameter bias; ML = maximum likelihood; GLS = generalized least 
squares; WLS = weighted least squares; FRMR = fixed root mean squared residual. 

TABLE B12 
SPB: ML, GLS, and WLS (N = 2,000) 

a, 5 6 8 8.5 9.35 18. 14 22.21 28.45 

FRMR 

0.026 0.00 17 0.0017 0.0017 0.0017 0.0019 0.0020 0.00 19 0.0021 
0.0015 0.0015 0.00 15 0.00 15 0.0017 0.0018 0.00 17 0.0019 
0.00 15 0.0014 0.00 14 0.00 13 0.0014 0.0014 0.00 14 0.0016 

0.089 0.00 18 0.0017 0.00 19 0.0020 0.0020 0.0021 0.0020 0.0021 
0.003 1 0.0030 0.0031 0.0035 0.0028 0.0034 0.0031 0.0035 
0.0033 0.0033 0.0036 0.0041 0.0032 0.0044 0.0040 0.0044 

0. 17 0.002 1 0.0020 0.0021 0.0022 0.0025 0.0028 0.0029 0.0032 
0.0620 0.0625 0.0625 0.0633 0.06 12 0.0754 0.075 1 0.0756 
0.0867 0.0801 0.096 1 0.0988 0.0987 0.1409 0.1429 0.1466 

Note. SPB = mean squared parameter bias; ML = maximum likelihood; GLS = generalized least 
squares; WLS = weighted least squares; FRMR = fixed root mean squared residual. 
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TABLE B13 
SPB: ML, GLS, a nd WLS: Negative Kurtosis 

a., 1.8° 2.oa 2.4° f .8b 2.()h 2.4b I.SC 2.0C 2.4c 

FRMR 

0.026 0.0108 0.0108 0.0120 0.0052 0.0051 0.0051 0.0029 0.0034 0.0031 
0.0128 0.0121 0.0138 0.0050 0.0049 0.0051 0.0027 0.0031 0.0029 
0.0370 0.0362 0.0418 0.0070 0.0070 0.0068 0.0034 0.0038 0.0036 

0.089 0.0113 0.0101 0.0 111 0.0051 0.0052 0.0052 0.0033 0.0032 0.0031 
0.0189 0.0 181 0.0 192 0.0079 0.0082 0.0082 0.0051 0.0049 0.0052 
0.0456 0.0396 0.0429 0.0098 0.0101 0.0104 0.0057 0.0055 0.0057 

0.17 0.0132 0.0147 0.0 135 0.0060 0.0061 0.0065 0.0037 0.0040 0.0038 
0.1050 0.1151 0. 1084 0.0908 0.0877 0.0849 0.0784 0.0803 0.08 10 
0.1207 0.1400 0.1504 0.0761 0.0792 0.0810 0.0629 0.0704 0.0787 

Note. SPB = mean squared parameter bias; ML = maximum likelihood; GLS = generalized least 
squares; WLS = weighted least squares; FRMR = fixed root mean squared residual. 

'n = 100. bn = 250. <n = 500. 

TABLE B14 
SPB: ML, GLS, a nd WLS 

a., 1.8° 2.oa 2.4" f.8b 2.()h 2.4b 

FRMR 

0.026 0.0021 0.0020 0.0020 0.0016 0.0016 0.0016 
0.00 18 0.001 8 0.001 8 0.0014 0.0014 0.0014 
0.0021 0.0020 0.0020 0.0016 0.00 15 0.0015 

0.089 0.0022 0.0021 0.0022 0.0017 0.0017 0.0018 
0.0036 0.0035 0.0036 0.0030 0.0029 0.0029 
0.0038 0.0036 0.0038 0.0031 0.0028 0.0029 

0.17 0.0030 0.0029 0.0029 0.0024 0.0023 0.0025 
0.0752 0.0765 0.0763 0.0745 0.0741 0.0752 
0.0590 0.0633 0.0697 0.0574 0.0609 0.0667 

Note. SPB = mean squared parameter bias; ML = maximum likelihood; GLS = generalized least 
squares; WLS = weighted least squares; FRMR = fixed root mean squared residual. 

' n = 1,000. bn = 2,000. 

595 




