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Abstract. Laser communication systems developed for mobile plat-
forms, such as satellites, aircraft, and terrain vehicles, require fast wide-
range beam-steering devices to establish and maintain a communication
link. Conventionally, the low-bandwidth, high-steering-range part of the
beam-positioning task is performed by gimbals that inherently constitutes
the system bottleneck in terms of reliability, accuracy and dynamic per-
formance. Omni-Wrist™, a novel robotic sensor mount capable of carry-
ing a payload of 5 Ib and providing a full 180-deg hemisphere of azimuth/
declination motion is known to be free of most of the deficiencies of
gimbals. Provided with appropriate controls, it has the potential to be-
come a new generation of gimbals systems. The approach we demon-
strate describes an adaptive controller enabling Omni-Wrist™ to be uti-
lized as a part of a laser beam positioning system. It is based on a
Lyapunov function that ensures global asymptotic stability of the entire
system while achieving high tracking accuracy. The proposed scheme is
highly robust, does not require knowledge of complex system dynamics,
and facilitates independent control of each channel by full decoupling of
the Omni-Wrist™ dynamics. We summarize the basic algorithm and
demonstrate the results obtained in the simulation environment. © 2005
Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1917409]
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1 Introduction

Laser communications, including intersatellite cross-links
and aircraft-to-aircraft and air-to-surface communication, is
a technology that has the potential to provide the material
base for the information revolution. Lasers provide the
most logical connectivity channels and have unsurpassed
advantages over the traditional rf technology in terms of
speed and secure operation. Indeed, lasers enable a concen-
tration of energy within a very small spatial angle and, as a
result, lead to very low power consumption, low weight,
and small size. However, these advantages do not come
without a price: due to the low divergence, the laser beam
must be very accurately positioned on the target or the re-
ceiver station. In many aerospace applications, when the
optical platform is placed on board an aircraft, the ability to
track the target is affected by the resident vibration of the
airframe and the complex maneuvers performed by the air
vehicle, often at supersonic speed. A laser-positioning task
must comply with the bandwidth, accuracy, and range-of-
operation requirements prompted by a particular applica-
tion.

Very often, the full functionality of the entire system
cannot be achieved without gimbals. Commonly used sys-
tems, such as Schaeffer gimbals, are two-degree-of-
freedom mechanical steering devices, designed to achieve
maximum decoupling between azimuth and declination
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channels. Driven by rotary dc brush motors, they exhibit
fairly wide steering range, but are flawed by singularity
inherent from their mechanical structure."* In addition,
their design is responsible for the narrow bandwidth, lim-
ited accuracy, complex, nonlinear friction phenomena that
interferes with operation, especially at low-range steering.
Moving electrical wires and complex coupling of the mo-
tors to the moving parts adversely affect the reliability and
energy efficiency and contribute to friction and nonlinear
behavior. Omni-Wrist III, a novel robotic manipulator, was
developed by Ross-Hime Designs® to address these issues.
It is a two-degree-of-freedom system capable of a full 180-
deg hemisphere (plus 5 deg below horizon) of singularity-
free yaw/pitch motion with up to 5 1b of payload. In com-
parison to traditional gimbals positioning devices, Omni-
Wrist III enjoys increased bandwidth due to a greater
power/mass ratio and reduced inertia and friction. How-
ever, its mechanical design does not eliminate nonlineari-
ties and cross-coupling, thus complicating the controls task.

This paper demonstrates a solution to decoupling and
improved dynamic performance of Omni-Wrist III. The ap-
proach, which was originally suggested by Seraji* and Slo-
tine and Li*® for robotic manipulators and developed fur-
ther for laser beam tracking systems,” is based on the
method of Lyapunov functions. The proposed control
scheme does not require knowledge of complex system dy-
namics, and facilitates accurate beam positioning while
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Fig. 1 Omni-Wrist Ill sensor mount.

providing independent (decentralized) control of the azi-
muth and declination channels. Note that the Lyapunov ap-
proach could be beneficial for a variety of mechanical de-
vices with complex dynamics, including other gimbals,
galvanometer mirrors, piezoelectric mirrors, etc.

2 Omni-Wrist lll Model

The Omni-Wrist™ device was developed with the aim to
address the inherent problems of commonly used gimbal
systems. It features an innovative solution that emulates the
kinematics of a human wrist, the ingenious manipulator
design honed to perfection by million-year evolution.® In
contrast to traditional robotic manipulators, the actuators
driving the Omni-Wrist are not located in the joints but
rather are attached to the links, just like muscles are at-
tached to bones in biological structures. The moving sensor
mount is connected to the stationary platform through 12
links and 16 joints (Fig. 1) constituting a singularity-free
two-degree-of-freedom pointing system. Incremental opti-
cal encoders embedded within the linear brushless actuators
provide the position feedback. Linear displacement of each
of the two actuators results in angular displacement of both
the azimuth and the declination coordinates of the Omni-
Wrist platform. The relationship between the positions of
the linear actuators and azimuth and declination platform
coordinates is complex, nonlinear and clearly exhibits
cross-coupling.

The development of an accurate mathematical model® is
a crucial starting point for the design of an efficient control
system. Figure 2 represents the proposed configuration of
the mathematical model of Omni-Wrist that comprises two
modules. The first, DYNAMICS, represents the dynamics
of two independently operating linear actuators coupled to
the sensor mount through a series of links and joints. It
includes two transfer functions, G (s) and G,(s), describ-
ing the typical linear relationships between the control ef-
forts, voltages U, and U,, and the resultant linear displace-

DYNAMICS KINEMATICS
Uh—f|G,6 | X @,(cp) BAx)) L5
Ug—s| Gyfs) Y, @,(cy) Pofxy) P

Fig. 2 Configuration of the Omni-Wrist model.
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ments x and y. Our laboratory experiments demonstrate that
the actuators exhibit the velocity response of a first-order
’ ! 8 . . ~ . 3 . oo L
system.” While the magnitude of the response differs in the
positive and negative direction, it is possible to model the
dynamics of the system using only two transfer functions,
one for each actuator, with voltage input and position out-
put as

] b 1
(l('s)_s(sﬂl)' )

where s is the Laplace transform variable, and a and b are
denominator and numerator coefficients, respectively.

The KINEMATICS module describes the nonlinear
static relationship between the linear actuator displace-
ments x and y and the angular displacements of the plat-
form ©®, and ®,. Elements ®;;(x,y), i, j=1, 2, reflect the
complex kinematics of the Omni-Wrist structure. Analysis
of the system has resulted in a system of trigonometric
equations; however, these equations are too complex for
any direct use, and it seems to be more practical to repre-
sent both the kinematics and inverse kinematics of the de-
vice by a sequence of three transformations.® Development
of this module implies the solution of the direct pose kine-
matics problem utilizing the Denavit-Hartenberg approach
and finding a transformation of the linear encoder readings
into joint coordinates; then into the yaw, pitch, and roll
angles; and finally, into the azimuth and declination coor-
dinates.

3 Control Synthesis

When used as a steering device for pointing, acquisition,
and tracking (PAT), Omni-Wrist III could be viewed as a
two-input, two-output system that positions the laser beam
over a wide range of azimuth and declination angles. Its
model, with the structure an shown in Fig. 2, could be
presented with a single nonlinear transformation that ac-
counts for both kinematic and dynamic properties as fol-

lows:
’(_)17 ’7(')11{.\'..\" (')13(.\'._\‘) (;l(\) 0] .L’vl-i
.('):J;:L(')Nl.\‘.,\'b Oy(x,y) 0 G,(s) || V2]
guls,x,y) guls.x,y)|[U,]
- | 2)
g2(s,x,y)  ganls,x,y) | U2
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Fig. 3 Decentralized adaptive control system.

Hence, the output of either dynamic channel can be found
as

0,=g.U;+3g,U;. (3)

Let d ; (disturbance signal) represent cross-coupling effects,
nonlinearities, and other unmodeled dynamics,* such that
Eq. (3) becomes

SATE " . )
®i=GiUi+diEEUi+di= Ui+di$ (4)
l

=
s tas

where N; and D; are the numerator and denominator poly-
nomials of G, , respectively.
Then, the suggested control signal is formed as follows

TI':NiUi:Di@i_Digi‘ (5)

For simplicity the subscript i identifying the dynamic chan-
nel can be omitted, resulting in the following differential
equation when Egq. (5) is presented in the time domain:

T=0"+a0'+d, (6)

where a new disturbance term is d=Dd; .

The proposed control system for each dynamic channel
has a unity gain feedback and three modules: a conven-
tional controller, adaptive feedback, and feedforward con-
trollers in the following form
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T=(10f edt+l|e) +(kget+ke')
+(q00,+¢,0,+4,07), (7)

where /;, k;, and g, are controller gains. The system con-
figuration for one channel is presented in Fig. 3.

Substituting the first term of Eq. (7) with £, as shown in
Fig. 3, and combining Egs. (6) and (7) results in

e"+(atk)e' +kpe=d—f—qy0®,—(q;—a,)0O,
—(g,—1)0O7. (8)
This second-order differential equation has a matrix-vector

equivalent that could be obtained by introducing X
=[ee']", as follows:

o IR P C A L
X= X+ + e,+ o)
—ky —a—k, [d_f —qo) " la1—q| "
0
+ 0. 9
{1_42] i @

If vector X,,=[e,,e,,]" represents the desired error signals,
then its dynamics of convergence toward zero can be de-
scribed by the following state equation written in the
canonical-controllable form.

’ 0 1
xszsz —a® —a™

]Xm' (10)
ap 1
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Since Eq. (10) is a stable system, there exists a solution to
the Lyapunov equation®

PD+D'P=-Q,

where P and Q are positive definite matrices.
Introduction of vector E=X,,—X leads to a formal
mathematical definition of the process of error convergence

s [0 0 I 0
= E+ X+
—ag —ay ko—ag a+k,—a¥ f—d
0 0 , 0 "
+ e+ e+ 0. (11)
q0 q:—a g2~ 1

A control law based on a Lyapunov function obtained from
Eq. (11) would ensure that, given any initial condition, E
converges asymptotically, and; therefore, the actual error
trajectory X will track the desired error trajectory X,, that
converges to zero. Consider the following positive-definite
function as a Lyapunov candidate.

V=E'PE+Q,(f—d)?+Q,(ko—al)*+ Q,(a+k,—aT)?
+ Q395+ Q4(q1—a)2+ Qs(g2— 1), (12)

where Q; are positive scalars. Its derivative must be
negative-definite to claim that Eq. (12) is a Lyapunov func-
tion. To obtain an analytical expression the assumption that
the controlled plant is “slowly time varying” compared to
the control effort is suggested:* therefore, d=0, and differ-
entiating Eq. (12) along the trajectory defined by Eq. (11)
results in

V=—E"QE+2Q,(f—d)f—(f—d)r+2Q,(ko—aj)ko
—(ko—apyre+2Q,(a+k,—a™k—(a+k,—al)re'

+20390G0—q0r0,+204(q,—a)g,—(q,—a)r®,

+205(g2—1)g2—(g,— 1)r®7, (13)
where
r=wge+we’, (14)

and w, and w, are positive weighting coefficients. Group-
ing terms of the Eq. (13) results in

V=—E’QE+(f—d)(2Q.f—r) +(ko—a§) (20 ko—re)
+(at+k,—al)(20k—re' )+ +qo(2034o—r®,)
+(q,=a)(2044,—r0;)+(g:—1)(205¢,—r®7).

(15)

While there could be multiple solutions to the control syn-
thesis problem that result in Eq. (15) being negative-
definite, the most natural way to select the adaptation law is
as follows:

2Q00f—r=0,
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ZQIk()—r(’:O,
2Q2/\"|—re'=0,
(16)
2Q3c}0—r®,.=0.
2Q4q-|_r®;=0.
2054,—rO7=0.
Hence, the time derivative of function V becomes
V=—E’QE. (17)

Solving Eq. (16) for unknown variables provides expres-
sions for the conventional controller

f=5frdt=5w(,J'edt+5w,e=10Jedr+1|e, (18)

and equations for the adjustable gains of adaptive control-
lers

kozalf re dt+ky(0),

k1=azf re'Vdt+k,(0),

‘I()z‘)’lf r®,dr+q,(0), (19)
q|=72fr®£dt+ql(0).

q>= 73J’ r@; dr+q,(0),

where &;, «;, and vy, are positive adaptation gains selected
by the system designer.

The results of the preceding mathematical analysis make
it evident that this approach does not require knowledge of
the Omni-Wrist dynamics. In addition, there is no explicit
definition of a reference model to specify the desired be-
havior of the system. However, signal ®, applied to the
input represents the desired dynamics of the system re-
sponse; hence, this signal could be generated by a reference
model G, selected to satisfy the design specifications.

4 System Implementation

Application of the method of Lyapunov functions results in
a highly robust controller design. However, before proceed-
ing with a prototype implementation a couple of important
issues, pertaining to system stability and performance,
should be discussed. Note that the control law defined by
Eq. (7) generates signal T;, while the physical input to the
dynamic channel is U, . A correspondence between the two
signals is established by Eq. (5), hence
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Fig. 4 Decentralized control system: CONV, conventional controller; AFB, adaptive feedback; AFF,

adaptive feedforward; AL, adaptation law.

U=N; (s)T; (20)

It appears that by applying 7', rather than U; the residual
signal [N;'(s)— 1]7; is ignored.” Even if this signal is
regarded as a part of component d, ; it cannot be considered
“slowly time varying,” since it includes signal 7; that has
high-frequency content. On the other hand, N; is a constant
coefficient, and it could be demonstrated that even if Eq.
(6) is scaled by a factor of N; and the proposed controller is
described by Eq. (7), we could still obtain the same expres-
sions for the conventional controller of Eq. (18) and adjust-
able gains of Eq. (19).

Another problem could be encountered because the
cross-coupling effects from the actuator inputs to the
azimuth/declination outputs, included in component d, are
very strong. Indeed, changing only one output coordinate
requires the motion of both linear actuators, and therefore,
the application of voltage signals to both motors. The adap-
tive algorithm presented in this paper is adequately suited
only for loosely coupled systems;>° therefore, additional
steps must be taken to reduce the coupling effects. A de-
coupling filter must be introduced in the input of the sys-
tem. This filter is based on the solution of the inverse pose
kinematics problem® and transforms desired azimuth/
declination angles into corresponding linear actuator coor-
dinates. Configuration of the entire decentralized system is
presented in Fig. 4.

The linear actuators, represented in Fig. 4 as
DYNAMICS, take voltage as inputs and provide actuator
position as outputs, generated by optical incremental en-
coders, which is the reason why the controller is built
around the actuators. The KINEMATICS block represents
the kinematical structure of the device coupling the outputs,
while the INVERSE KINEMATICS FILTER transforms
the reference azimuth and declination coordinates into ref-
erence actuator positions. Each channel is controlled indi-
vidually, thus facilitating decentralized operation.
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5 Simulation Results

The model of the Omni-Wrist™ gimbal® was used to test
the performance of the Lyapunov-based decentralized adap-
tive system described by Egs. (7), (18), and (19). The de-
sign goal is to achieve the settling time 7= 50 ms with no
overshoot, which places the poles of the closed-loop system
at —80=*j, and the reference model is

6401

_— (21)
52+ 180s + 6401

G,(s)=

Obtaining an open-loop response of the Omni-Wrist™ ma-
nipulator is meaningless, because applying voltage to a lin-
ear motor without any feedback signal will drive its shaft to
the end position. To provide a comparative example, a con-
ventional feedback system was designed and tested in the
simulation environment. For these purposes a constant-
coefficient proportional-integral (PI) controller was imple-
mented and tuned to achieve the best possible performance.
The results are presented in Figs. 5 and 6.

Figures 7 and 8 present simulation results for the
Lyapunov-based decentralized adaptive control system. As
the results in Figs. 5 and 6 demonstrate, conventional con-
trol scheme ensures steady state decoupling; however, it
does not meet the desired performance requirements. The
adaptive control system facilitates full decoupling and en-
hances tracking capabilities to a considerable extent (see
Figs. 7 and 8).

6 Conclusion

A decentralized adaptive control approach was presented in
this paper. The designed laser beam tracking system is
based on a Lyapunov function to ensure global asymptotic
stability. Application of this technique provides channel de-
coupling and significant enhancement of the dynamic per-
formance. The approach does not require knowledge of the
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Fig. 5 Response of the conventional control system to a square wave signal applied to the azimuth
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Fig. 6 Response of the conventional control system to a square wave signal applied to the declination
channel.
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gimbal dynamics; neither does it rely on the system identi-
fication. As demonstrated by the simulation results, the de-
centralized system enjoys good robustness, while achieving
high tracking accuracy over an extended range of pointing
angles. In addition, as the laser beam tracking system op-
erates, the adaptation mechanism keeps updating controller
parameters, thus, facilitating online tuning of the system to
alleviate the effects of nonlinearities and unmodeled dy-
namics parameter drift and maintaining a reliable laser link.
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