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Abstract. Lightweight mirrors experience optical image degradation due 
to mechanical loadings such as self-weight, polishing pressure , and vi
bration. Optical surface deformation of a lightweight primary mirror is an 
important factor that affects optical performance. We use topology opti
mization to design a lightweight primary mirror under self-weight and 
polishing pressure. For the optimization, we used a 3-D model of the 
mirror and based our calculations on the rms surface error of the mirror 
as an objective function constrained by the maximum weight of the mir
ror. In the first example of topology optimization , we consider the mirror's 
self-weight loading. In the second example, we include the polishing 
pressure. We present the results of the optimized design topology for the 
mirror with various mass constraints. To examine the optimal design re
sults, we manufacture a prototype of the mirror. © 200s Society of Photo
Optical Instrumentation Engineers. [DOI : 10.111 7/1.1901685] 
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1 Introduction 

In space optics, the performance of a design should be 
tested after the design has experienced the loadings of a 
launch, such as vibration and shock, in a space environment 
such as microgravity, vacuum, and radiation . In keeping 
with the launch capability and cost, space optics should 
al so be compact and light. Space optics, partic ularly large 
mirrors, should therefore be stiff and stable, and the weight 
should be kept to a minimum. 

Many studies have analyzed and optimized lightweight 
mirrors. Vale nte and Vukobratovich made a comparati ve 
study of optical performance according to the shape of a 
primary mirror 's substrate. 1 Cho, Richard , and Vukobratov
ich proposed des ign criteria to minimize optica l aberrations 
and to obtain the optimum support points of a lightweight 
primary mirror under a self-we ight load ing.2 Genberg and 
Cormany used a nonlinear programming method for the 
optimum design of a lightweight primary mirror. 3 In all 
these works, however, because parametric optimization was 
used, the given geometry of the mirror limited the fi nal 
solution. In contrast, we optimized a lightweight mirror us
ing a topology optimization method that overcomes the ini 
tial geometry limitation. The topology optimization uf a 
continuum structure was first attempted by Bendsoe and 
Kikuchi .4 Until now, however, such optimization has been 
conducted o nl y on nonoptical structures under conditions 
of static loading.5 

We used our topology optimization with various weight 
constraints to optimize several lightweight mirrors. In the 
manufacturing process, we based our calculations on rms 
surface deformation errors and the Strehl ratio as an objec
ti ve function under self-weight loading and poli shing pres
sure. That is, by using the suggested method of mirror de-

009 l -3286/2005/$22.00 © 2005 SPI E 

sign, we optimized the shape of a lightweight mirror that 
simultaneously satisfied the required optical perfo rmance 
and manufacturing constraints. The optimization method 
can therefore overcome the limitation of parametric studies 
on lightweight mirror design, and achieve the optimum 
shape of a lightweight mirror within the design specifica
tions and operating conditions. 

2 Topology Optimization Procedure 

2.1 Fundamental Concepts 

We can represent the shape of a structure with parameters 
of the structure 's boundary or with an indicator function. 
With parameters, we cannot change the topology of the 
structure during the optimi zation process, thereby mak ing it 
diffi cult to obtain a truly optimized structure through the 
optimization process. However, if we use an indicator func
tion, we can obtain a truly optimized structure. Thus, for 
the topology optimization, we introduced the fo llowing in 
dicator function: 

x(x)= {~ 
if XE fl

111
} 

if xE$ fl 111 
' 

( I ) 

where 0 111 is the region occupied by the materi a l. 
By using thi s indicator fu nction, we can represent the 

elastic ity tensor at point x as fo llows: 

(2) 

where E;Jkl is the materi al' s elasti c ity tensor. 
To find the optimized shape of a structure with the help 

of the indicator function, we must find the value of the 
indicator function at all points in the structure. In genera l, 
however, the so lution of the problem is not guaranteed, 
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Fig. 1 Full primary mirror model. 

because the indicato r fu nction is not smooth . We therefore 
need to use homogenization. By using materi al density in
stead of the indicator fu nction, we can state the general 
problem of shape opti mization in terms of fi nding the ma
terial de nsity at all points in the structure. 

We di vided the structure in to a fini te number of elements 
and soug ht the material density of each element through the 
optimization process. On the assumption that the material 
density in each element was uniform, we deduced that, if 
the materi al density p had a value between O and 1, we 
would o btain the fu nctional relationship between the elas tic 
moduli a nd the material density. 

There are several methods of obtaining the functional 
relationship between the moduli and the materi al density. 
We can a pply the homogenization method after introducing 
a microstructure, or we can use an artific ial material mode l 
that arbitrarily re lates the elas tic moduli to the material 
density w ithout introducing any specific microstructure. 
The homogenization method has been used since it was 
introduced by Bendsoe and Ki kuchi .4 However, the patterns 
of the optimal density di stributions depend strongly on the 
microstructure used. This approach also requires an addi 
tional fi ni te element analys is to obtain the homogenized 
material properties . Although the artific ial material model is 
simple, the quality of its solution is better than the homog
enization method if an adequate functional re lationship is 
used.6 We therefore used the fo llowing artific ial materi al 
model, which is based on the Hashin-Shtrikman lower 
bound:6 

Eijkl P idu 

E;Jkl l + a( 1 - P idu) ' 
(3) 

where Pidu is the density in the i' th element and a is a 
constant whose intennediate density is penali zed differ
ently. In the computation, we used a=20. 

2.2 Definition and Formulation of the Optimization 
Problem 

After in troducing the concept of material dens ity, we can 
state the problem of topo logy optimization as a typical op
timization problem. The material densities in the structure's 
element groups are treated as the fo llowing design vari
ables: 

j__ 
4 1.8 

r 
.I 

C lamped 

N on-design 
Domain 

[Unit: mm] 

Fig. 2 The 1/6 primary mirror model used in the topology optimiza
tion . 

minimize f( X) 

subject to h ;(X) ,s; 0, 1 ,s; i ,s; M , 
(4) 

where X= [ x 1 ,X2 ,· ·· ,X,,duf is the design variable vector 
and ndv is the number of element groups in the design 
domai n. The objecti ve function and constraint conditions in 
Eq. (4) can be defined differently depending on the purpose 
of the optimization. Our purpose was to minimize the rms 
surface deformation errors and the Strehl ratio under the 
constraint of the total mass of the design domain. Thus, we 
can define the objective function and the constraint condi
tion as fo llows: 

ndu 

h (X) = f pdfid - M o=. ~ POidu X idu D, idu- M o,s; O, 
flc1 ,du= I 

(6) 

where D, s is the optical surface, Un is the normal compo
nent of the mirror surface displacement, n se is the number 
of optical surface elements, fi e is the optical surface of the 
optical surface element, D,d is the design domain , p is the 
density, P0idu is the density of the materi al in the i' th ele
ment group, Xidu is the materi al density ( O,s;Xidu,s; 1), 
fi ;du is the volume of the i' th e lement group, and M O is the 
specified limit of mass. 

To obtain a 2-D density di stribution from a 3-D model , 
we used an element grouping procedure. That is, we gave 
each group of elements the same design variable in the 
optimization procedure. We then used a direct differentia-
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Optical Specifications and 
Mechanical Considerations 

- Perfoonance requirements 

- Weight limitations 

- Operating enviroment : Gravitational field 

- Self-weight, polishing pressure 

- Material selection and limitation : ZERODUR 

Key Physical Dimension 
- Diameter of the primary mirror body 

- Diameter optical surface 

- Radius of curvature of the mirror surface 

- Conic constant 

- Lateral height of Primary mirror 

PATRAN Geometric Modeling, Finite Element Modeling, 
- Physical Properties, and Boundary Conditions 

3D ela&ic analysis code I 3D Elastic Defonnation 3D deformation -, 
results 

I Displacement on Optical Surface I 

Optical analysis code 2.emike polynomial ~I ~ -1 Optical Analysis decorq,osition 

RMS value 

,, 
Topology Optimiz,ation 

Optimization code - Define objective function 
::: - Apply constraints 

- Oteck convergence 

Fig. 3 Flowchart of the analysis procedure. 

tion method to calculate the sensitivities of the objective 
function and constraint. The sens1t1v1t1es of the objecti ve 
function were calculated as follows: 

X ( f U"aaUn dO. ). 
n, X,du 

(7) 

2.3 Optimization Algorithm 

In the present optimization problem, the number of design 
variables is large because we needed fine finite element 

meshes to help resolve the shape of the structure. On the 
other hand, the constraints are simple. As a result, the op
timality criteria method is an adequate updating rule for the 
optimization problem in this category. The updating rule is 
based on the optimality suggested by Bendsoe and 
Kikuchi .4 Although the updating rule is simple and effi cient 
for typical static problems, it is inadequate in cases of self
weight loading. For typical static problems, the objecti ve 
function has negative sensitivities to the design vari ables. 
In other words, we can decrease the objective function by 
increasing the material density of the elements in the design 
domain of the structure. However, for the self-weight load
ing problem, the objecti ve function's sensitivities to design 
variables can be negati ve or positive, depending on the el
ements. After considering this feature of the self-weight 
loading problem, Ma, Kikuchi , and Hagiwara proposed a 
new algorithm, which they deri ved by using a new convex 
generali zed-liberahzation approach via a shift parameter.7 

In this work, we used the same algorithm. 
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a) Iteration= 0 b) Iteration= 10 c) Iteration= 15 d) Iteration= 31 

Fig. 4 Topology of the mirror as the optimization iterates. 

3 Application to the Design of a Lightweight 
Primary Mirror 

3.1 Primary Mirror Model 

For this study, we considered a primary mirror from a Cas
segrain space telescope. The mirror is an f/ I -x concave 
mirror with a diameter of 610 mm and a diameter hole of 
204.4 mm. The mirror is made of Zerodur with the follow
ing mechanical properties: Young 's modulus, £ 0 =91 GPa; 
Poisson's ratio, u = 0 .24; and density, Po= 2530 kg/m3

. The 
mirror is supported at three A-shaped flexure supports at 
the edge of the surface, as indicated in Fig. I. The thickness 
is 41.8 mm for the inner edge and 65 mm for the outer 
edges. 

To reduce the computing cost of topology optimization, 
we used a 1/6 model. Figure 2 shows the symmetry of the 
model. We then excluded the edge of the surface from the 
design domain for ease of support, manufacturing, and han
dling. We also distinguished the design domain with differ
ent grades of shading. Finally, we used eight-node linear 
solid elements to calculate the deformation of the primary 
mirror, and we used four-node linear surface elements on 
the optical surface. 

3.2 Application of the Topology Optimization 
Method 

Figure 3 presents a flowchart of the analysis procedure for 
topology optimization of the primary mirror. After consid
ering the element grouping in the height direction, we ob
tained 2-D patterns of the density distribution. Furthermore, 
because gravitational force and polishing pressure displace 
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Fig. 5 Objective function values for a mass ratio of 22% under self
weight loading. 

Fig. 6 Optimal density distribution of the primary mirror for a mass 
ratio of 22% under self-weight and polishing pressure loading. 

the surface of the primary mirror, we used 3-D finite ele
ment analysis to extract the normal component of this dis
placement. 

3.3 Application Results 

As a preliminary example, we optimized a primary mirror 
under self-weight loading. For our space application, we 
needed the mass ratio, which is the ratio of the mass of the 
current design to the mass of a solid-filled design , to be 
22%. 

Figure 4 shows the topology of the mirror as the opti
mization iterates. Figure 4(d) shows that, for the optimal 
topology, the material distribution is high around the 
clamped boundary regions . This result agrees with the hy
pothesis that the mirror should be rigid around the support 
regions. Furthermore, six branches are extended into the 
central region to reduce the maximum displacement of the 
optical surface. In Fig. 5, the objective function (the rms 
surface error) monotonically converges from 90 nm to a 
minimum value of 39.4 nm. From these results, we can 
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Fig. 7 Objective function values for a mass ratio of 22% under self
weight and polishing pressure loading. 
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a) Optimized topology b) Verification model 

Fig. 8 Optimized topology and its verification model for a mass ratio 
of 35% under self-weight and polishing pressure loading. 

a) Under parallel gravity to the optical axis and polishing pressure 

b) Under vertical gravity to the optical axis 

Fig. 9 Surface deformations of the verification model. 

(Unit mm) 

a) Lightweight hexagonal cell pattern b) Dimension of the unit hexagonal cell 

Fig. 10 Classical lightweight mirror model with a hexagonal pattern. 

confirm that, with respect to the primary mirror with a self
weight loading, the optimal topology has a good optical 
performance. 

However, depending on the manufacturing method, 
quilting of the optical surface poses a serious damage risk 
to the quality of the optical image. In the optimization pro
cess, we must therefore give practical consideration to how 
the polishi ng pressure deforms the optical surface. In thi s 
work, we assumed that the polishing pressure was 0.2068 
kPa (0.3 psi). 

Figure 6 shows the optimal density distribution of the 
primary mirror for a mass ratio of 22% under a self-weight 
and polishing pressure loading. Figure 7 shows that al
though the value of the objective function for these load
ings does not decrease monotonically, the value of the ob
jective function converges into a certain value. 

3.4 Comparison with a Classical Mirror and 
Development of a Prototype 

As a verification process, we used the re ults of the opti
mization to construct a model of a geometrical mirror. The 
optimized results featured a mass ratio of 35%, which was 
due purely to the limitation of the manufacturing capability. 

Figure 8 shows the optimized topology and its verifica
tion model. We modified the verification model in line with 
manufacturing constraints such as the minimum thickness 
of the lightweight patterns. 

Figure 9 shows the deformations in the optical surface of 
the verification model , first, under parallel gravity to the 
optical axis and polishing pressure, and second, under ver
tical gravity to the optical axis. 

To compare the rms value of the optimized mirror, we 
constructed a lightweight hexagonal cell mirror with the 
same design parameters-namely, the thickness of the op
tical surface, the inner diameter, the outer diameter, the 
inner-hole diameter, the radius of curvature, and the 35% 
mass ratio. Figure IO shows the geometry and dimensions 
of the hexagonal cell mirror. We maintained the cell thick
ness at 6 mm to correspond to the minimum thickness of 
the verification model of the optimized mirror. 

We then compared the rms values of the optimized mir
ror and the hexagonal cell mirror under two different load
ings. Table I shows the rms values of the mirrors . For the 
verification model of the optimized mirror, therms value is 
134.4 nm under the parallel gravity and polishing pressure 
loading. For the vertical gravity loading, the rms value is 
I 0.5 nm. However, the rms value of the hexagonal cell 
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Table 1 Analysis results : the rms value of the optimized mirror and the hexagonal cell mirror. 

rms value for parallel gravity to the optical axis and 
polishing pressure loading (nm) 

rms value for vertical gravity to the optical axis (nm) 

mirror is l56 .5 nm under the parallel gravity and polishing 
pressure loading, and 8.93 nm under the vertical gravity 
loadj ng. From the results, we conclude that the optimized 
mirror has 22.1 -nm improvements in the rms value for the 
parallel gravity and polishjng pressure loading, and 
1.57-nm immaterial differences for the vertical gravity 
loading. 

Based on a nalysis of the optimized mirror model, we 
manufactured a prototype mirror. Figure ll hows photo
graphs of the prototype. Because we are still preparing an 
optical setup for testing the manufactured mirror, we have 
omjtted the optical test results in thi s work. 

4 Conclusion 

Usjng a topology optimization method, we design a light
weight primary mirror under self-weight and polishing 
pressure loading. For the self-weight loading, the objective 
function shows monotonic convergence to a mjnimum 
value during the iterations. For the optimjzation, we give 
practical consideration to how the polishing pressure de
forms the optical surface. Our optimization produce pat
terns of a lightweight mirror under self-weight loadi ng and 
poli shing pres ure. To verify the topology optimization de
sign method, we compare the optical performance to that of 
a classical lightweight mirror with a hexagonal cell pattern. 
The optical performance of the optimized mirror is better. 
We therefore manufacture a prototype of the optimjzed mir
ror o n the basis of these results. 

In the future, we expect to research the topology optimi
zation of a lightweight primary mirror under other me
chanical conditions such as thermal and dynamic loading. 
Furthermore, for the optimization process, we will consider 
other manufactu ring constraints such as the minimum 
thickness of the lig htweight pattern. 

a) Front view b) Back-side view 

Fig. 11 Photographs of the prototype. 

Optimized mirror 

134.4 

10.5 
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