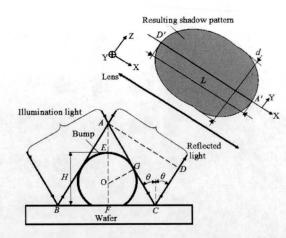
Optical micro-shadowgraph-based method for measuring micro-solderball height

Shihua Wang Chenggen Quan Cho Jui Tay National University of Singapore Department of Mechanical Engineering 10 Kent Ridge Crescent Singapore, 119260

Abstract. An optical micro-shadowgraph for the height measurement of a micro-solderball on a semiconductor wafer is proposed. The micro-shadow image resulting from an oblique illumination onto the protruded solderball/bump on the wafer is clearly captured. Experimental investigation shows that accurate solderball height measurement can be readily obtained. © 2005 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1906003]

Subject terms: geometrical optics; metrology; microscopy; optical shadowgraphs; semiconductor wafers; micro-solderballs.


Paper L040542R received Aug. 11, 2004; revised manuscript received Dec. 29, 2004; accepted for publication Feb. 22, 2005; appeared online Feb. 23, 2005; published online May 23, 2005.

The reliability of the solder joint/solderball in the microball grid array (micro-BGA)¹ has been observed to be highly dependent on the height uniformity/coplanarity² of the micro-solderballs across the wafer. To obtain the height information from a micro-BGA on a silicon wafer, we explore a simple but effective method using the inherent shadow phenomenon of an object illuminated by an oblique illumination.

Figure 1 shows a schematic of a micro-solderball/bump illuminated by an incident beam of angle θ . The image plane of the CCD sensor in the X-Y plane is parallel to the line AD and perpendicular to the reflected light. A lens would direct the resulting shadow onto the CCD sensor and hence a typical shadow and projection image of a micro-solderball in the X-Y plane can be illustrated as an overlapped shadow pattern. The length of both d and L can be measured, where d is the diameter of the bump and L is the total length across the bump and its shadow. Hence, from Rt ΔACD , we have

$$\sin 2\theta = \frac{\overline{AD}}{\overline{AC}} = \frac{\overline{A'D'}/\beta}{\overline{AC}} = \frac{L/\beta}{\overline{AC}},\tag{1}$$

$$\overline{AC} = \frac{L}{\beta \cdot \sin 2\theta},$$

Ι

T

H

Fig. 1 Cross-section view of the bump and corresponding shadow pattern on the CCD sensor located in the X-Y plane.

where β is magnification of the microscopic system. From Rt ΔAOG ,

$$(\overline{AE} + \overline{EO})\sin\theta = \overline{GO},\tag{3}$$

where $EO = GO = d/2\beta$. We have

$$\overline{AE} = \frac{d}{2\beta \cdot \sin \theta} - \frac{d}{2\beta},\tag{4}$$

and from Rt ΔAFC , we have

$$AF = AC\cos\theta. \tag{5}$$

Substituting Eqs. (2), (4), and (5) into H=AF-AE, the height of the solderball is given by:

$$H = \frac{1}{2\beta\sin\theta} [L - (1 - \sin\theta) \cdot d].$$
(6)

In Fig. 2, light from a halogen lamp passes through a collimating lens 1 and is directed onto a focusing lens 2. The light beam emerging from lens 2 is focused onto an aperture stop 1. A telecentric illumination consisting of lens 1, lens 2, stop 1, and lens 3 enables illumination with collimated light over the test surface.³ Note that lens 3 (semilens) allows the illumination angle to be easily adjusted by selecting illumination axis offset (P) and most of the light

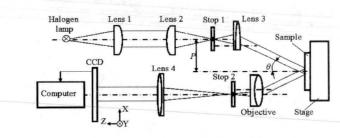


Fig. 2 System configuration.

0091-3286/2005/\$22.00 © 2005 SPIE

(2)

S

Wang, Quan, and Tay: Optical micro-shadowgraph-based method

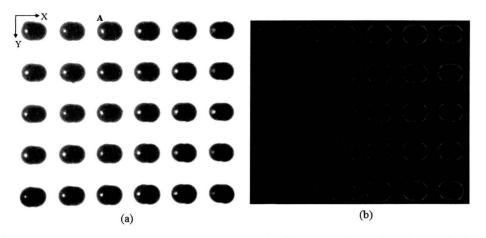


Fig. 3 Results of (a) a shadow image of bumps on a wafer, (b) edge contour of those bumps obtained through image processing using Canny's method.

is reflected in the specular direction as the test surface (silicon wafer) is mirror-like.⁴ To capture the resulting shadow pattern, another telecentric microscope consisting of an objective (focal length $f_o = 20 \text{ mm}$), aperture stop 2, and lens 4 (focal length $f_4 = 100 \text{ mm}$) is aligned in the specular direction of the reflected light. This arrangement ensures an optimal contrast of the recorded white-black pattern on a CCD sensor Stop 2 located at the focal plane of the lens 4 ensures that rays primarily parallel to the optical axis reach the CCD sensor. The resulting shadow pattern is recorded through a frame grabber for the further processing.

Figure 3(a) shows a typical shadow pattern of microsolderballs on a wafer. It is seen that those shadows are elongated in the X direction. To determine the shadow contour, Canny's edge method⁵ was applied to the above shadow pattern. Figure 3(b) shows the edges/contours of those shadows. As shown in Fig. 3(b), the shadow edges have been located and the corresponding shadow length is correlated to the micro-solderball/bump height. For example, the edge locations across the centroids of a specific bump A and its shadow length along the Y direction have been used to measure the bump diameter d(=58 pixels)and the elongated shadow along the X direction in a length of L(=75 pixels) was also obtained. Based on Eq. (6), the bump height of 108 μ m was determined. Similarly, individual height of each bump on the wafer can be measured accordingly. For those bumps in Fig. 3, the bump height variation (uniformity/coplanarity) was evaluated using a statistical parameter of standard deviation σ to be ± 4.8 μ m. To verify the accuracy of the proposed method, the height (108.2 μ m) of bump A was obtained using a commercial WYKO profiler (Model: Wyko NT 3300, a whitelight interferometric profiler). Compared to the height (108 μ m) obtained by the proposed method, the discrepancy is less than 0.2%. According to the ISO guide,⁶ the combined standard uncertainty $u_c(H)$ attributed to H based on Eq. (6) is given as follows:

$$u_{c}(H) = \left[\left(\frac{\partial H}{\partial L} \right)^{2} u_{(L)}^{2} + \left(\frac{\partial H}{\partial d} \right)^{2} u_{(d)}^{2} + \left(\frac{\partial H}{\partial \beta} \right)^{2} u_{(\beta)}^{2} + \left(\frac{\partial H}{\partial \theta} \right)^{2} u_{(\theta)}^{2} \right]^{1/2},$$
(7)

where the partial derivatives $(\partial H/\partial L = 0.3, \partial H/\partial d = 0.2,$ $\partial H/\partial \beta = 22$, and $\partial H/\partial \theta = 137$) for bump A are called sensitivity coefficients, $u_{(L)}$, $u_{(d)}$, $u_{(\beta)}$ and $u_{(\theta)}$ are the standard uncertainties of L, d, β , and θ , respectively. The error resulting from determination of those lengths of L and d are less than 1 pixel (10 μ m) which is 2 μ m on the test surface while the magnification (β) is 5×. The corresponding standard uncertainties assuming a rectangular distribution are given approximately by $u_{(L)} = u_{(d)} = 2/\sqrt{3} = 1.2 \ \mu \text{m}$. The magnification (β =5×) is in a tolerance of ±0.05× with standard uncertainty $u_{(\beta)} = 0.05/\sqrt{3} = 0.03 \times$. The error resulting from illumination angle uncertainty was estimated to be in the range of $\pm 1 \text{ deg } (0.02 \text{ rad})$ and the corresponding standard uncertainty is given by $u_{(\theta)} = 0.02/\sqrt{3}$ = 0.01 rad. The combined standard uncertainty $u_c(H)$ in Eq. (7) can be calculated as follows:

$$u_c(H) = (0.3^2 \times 1.2^2 + 0.2^2 \times 1.2^2 + 22^2 \times 0.05^2 + 137^2 \times 0.01^2)^{1/2} = 1.8 \ \mu \text{m.}$$
(8)

In summary, the proposed microscopic system is feasible to do measurement on the height of the smooth and curved micro-solderball. The results presented in this letter demonstrate the potential of the proposed method to be a practical tool for in-situ inspection of height and coplanarity on a micro-BGA.

References

- 1. H. M. Clearfield, J. L. Young, S. D. Wijeyesekera, and E. A. Logan, Wafer-lever chip scale packaging: benefits for integrated passive devices," *IEEE Trans. Adv. Packag.* 23, 247–251 (2000).
 D. Miller, "Inspection criteria for ball grid arrays," *EE-Eval. Eng.* 38, 137–145 (1999).
- 3. S. H. Wang, C. J. Jin, C. J. Tay, C. Quan, and H. M. Shang, "Design of an optical probe for testing surface roughness and micro-displacement," *Precis. Eng.* 25, 258–265 (2001).
- 4. S. H. Wang, C. G. Quan, C. J. Tay, and H. M. Shang, "Surface roughness measurement in the submicrometer range using laser scat-
- tering," Opt. Eng. 39, 1597–1601 (2000).
 5. D. C. He and L. Wang, "Edge-detection in numerical image-processing," Int. J. Remote Sens. 12, 651–657 (1991).
- International Organization for Standardization, Guide to the Expres-6 sion of Uncertainty in Measurement, ISO, Geneva (1995).