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Abstract

A critical set in an n X n array is a set C of given entries, such
that there exists a unique extension of C' to an n x n Latin square
and no proper subset of C' has this property. The cardinality of
the largest critical set in any Latin square of order n is denoted by
lcs(n). We give a lower bound for les(n) by showing that les(n) >
n?(1 — 2ty | (1 4 567y _ a2

Inn Inn"*

1 Introduction

A Latin square of order n is an n x n array of integers chosen from the set
X ={1,2,...,n} such that each element of X occurs exactly once in each
row and exactly once in each column. A Latin square can also be written
as a set of ordered triples {(7,j;k) | symbol k occurs in cell (z,7) of the
array}.

A partial Latin square P of order n is an n x n array with entries chosen
from the set X = {1,2,...,n}, such that each element of X occurs at most
once in each row and at most once in each column. Hence there are cells in
the array that may be empty, but the cells that are filled have been filled
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so as to conform with the Latin property of the array. Let P be a partial
Latin square of order n. Then |P| is said to be the size of the partial Latin
square and the set of cells Sp = {(i,7) | (i,7; k) € P} is said to determine
the shape of P.

A partial Latin square C' contained in a Latin square L is said to be
uniquely completable if L is the only Latin square of order n with % in the
cell (z,7) for every (7, j;k) € C. A critical set C contained in a Latin square
L is a partial Latin square that is uniquely completable and no proper
subset of C satisfies this requirement. The name “critical set” and the
concept were invented by a statistician, John Nelder, about 1977, and his
ideas were first published in a note [4]. This note posed the problem of
giving a formula for the size of the largest and smallest critical sets for a
Latin square of a given order. Let lcs(n) denote the size of the largest critical
set in any Latin square of order n. Nelder [5] constructed a critical set of
size (n? — n)/2 for the n x n back circulant Latin square. He conjectured
that les(n) = (n? — n)/2. This equality was shown to be false in 1978,
when Curran and van Rees [3], found that les(4) > 7. The following is an
example of a largest critical set of size 11 for a 5 x 5 Latin square, taken
from [1], which also contradicts Nelder’s conjecture.

2 413

1(2

213(1
3112

In the following table some known values of les(n) for n < 6 are listed,

n 1
les(n) | 0

2 3 4 5 6

1 3 7 11 18

and in the following table some known lower bounds for les(n) are shown
for 7<n <10,

n |7 8 9 10
les(n) > | 25 37 44 57

See [1] for the references. Recently Bean and Mahmoodian [1] have found
the upper bound lcs(n) < n? —3n 4 3. Nelder’s (n? —n)/2 is the best lower
bound that is found for les(n) so far. In this note we improve this bound
asymptotically for n large enough (n > 195).
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2 A lower bound for lcs(n)

Theorem 1 For any integer n we have,

les(n) > n?(1 —

2+1In2 In (87) In2
Inn fmL Inn )_ln—n'

Proof. By Theorem 17.2 in [7], as a result of van der Warden conjecture,
we know the following bound for L(n), the number of Latin squares of

2n
order n: L(n) > (:—2,—

If in a partial Latin square all the entries, except the entries of the first
row and the first column be given, then it is uniquely completable. So every
Latin square has at least one critical set which has no intersection with its
first row and first column. And also obviously the number of these critical
sets is greater than or equal to L(n). For choosing the shape of such a
critical set we have at most 2("~1° ways, and for choosing the entries of
each given shape we have at most nlcs(") different ways. So the number
of critical sets is less than or equal to gn?—2n+lples(n)  Thys the following
inequalities hold:

(n|)2n
nﬂ

< L(TL) < 9n 2_2n+1 lcs(n)

Now by Stirling’s approximation formula, (see for example [2]), we can
replace n! with a smaller value v/27rn (2)". So

(27r)nn2n2+n

n?—2n+1_lcs(n
e2n?pn? <2 n ( ),

or .
(2m)"nn les(n)
e2n2 2n2—2n+1 S n' 3
Thus, nln(27r)+(n +n) Inn—2n2 — (n?—=2n+1)In2 < les(n) Inn. This
implies that n2(1 — 2n2) 4 (1 4 HAn24h@n)y _ In2 L jeq(p), [

Inn

Note. Stinson and van Rees [6] have shown that lcs(2m) > 4™ —3™. This
lower bound for n = 2™, is better than the bound given in Theorem 1.
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A note on the Grundy number
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Abstract

In 1982, Hedetniemi, Hedetniemi, and Beyer gave a bound on the
Cirundy number of a tree. This note provides a simpler proof of their
result, as well as a bound in the same spirit for general simple graphs.

1 Introduction

The lamily of complete minimum broadcast trees is defined recursively; the
first member 77 consists of a single vertex, and 7; is derived by adjoin-
img a pendant vertex to every vertex of 7,_y for ¢ > 1. An alternative
characterisation of the family is as follows: 77 consists of a single vertex,
which is designated as the root of the tree; 7; consists of copies ol each of

Ti.... . Ti—1, plus a new root vertex which is adjacent to the root vertices
of the smaller trees. f

The Grundy number ['(G) of a graph (7 can be defined as the largest
number of colours that can be assigned to the vertices of (v using the greedy
algorithm with a suitable ordering of the vertices: each vertex v; will receive
the least colour not assigned to any adjacent v;, j < 7. This parameter was
first defined and studied in [1]; several alternative characterisations are
given in [4].)

In [2]. it is mentioned that there is o proof in [3] that for any tree 17,
(7)< 1+4log, |VA(T)|. They also show that this bound is sharp by demon-
strating that the family of complete mimnmum broadcast trees satisties the
above with equality. and that the Grundy number of any graph is equal
to the Grundy number of the largest such broadcast tree it contains as a
subgraph.

This last claim is false: as a simple counterexample, the path Py 1s a
minimum broadeast tree with Grundy number 3. but I'(CY4) = 2. In fact,
the claim is not even true if we restrict our attention to induced subgraphs:
all we can say is that I'((/) of any graph (/ is at least the Grundy number of
the largest complete minimum broadcast tree that is an induced =ubgraph
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Figure 1: The graph K> x I»: the circled vertices induce /7

of (. For example, consider the graph Ny x I'o depicted in Figure 1; it
contains P4 as an induced subgraph (and is too small to contain the next
largest CMBT), but I'( A3 x Ky) = 4.

2 Confirming the Inequality
The basic result, however, holds true; what follows is an elementary proof.

Theorem 1 Let T' be a tree; then U(T) < 1+ log, |V(T)|, with cquality if
and only of T' 1s a complete mnemum broadecast tree.

Proof. We proceed by induction on the Grundy number. Since the ex-
pression on the right-hand side of the inequality is at least 1, the inequality
liolds for any tree T" with I'(T') = 1. Note that there is only one such 77,
namely 77, for which equality holds.

We now assume that if 7" is a tree and ['(7') = j < k then 7" has at
loast 2771 vertices, and that T'is a CMBT if [V(T)] = 2/=1. Let H be a
iree with Grundy number & + | which is minimal; in other words, which

contains no induced subtrees with Grundy number at least k& + . Let (;
denote the set of vertices in H receiving the colour 7 in a Grundy colouring
of H. By minimality |Ggy1| = 1. since otherwise we can easily find an
induced subtree with Grundy number & + 1. Let v be the sole vertex in
(/re41: v must have at least one neighbour in each of y,... Gy let v; be

a neighbour of v in ;. Finally, let H; denote the component of H \ {v}
containing v;.

Note that for any i, the graph /{; can have a Girundy number of at most
I, since H was minimal; thus we can imvoke our induction hypothesis on
I1;. Also note that the Grundy number of H; is at least 7, since the ordering
ol vertices which gave us a colouring of // can be restricted to the vertices
ol H; and yield the same colouring locally. And so counting the number of
vertices of H gives us:
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VH)| > Hod+ D> V()|

p=]
,‘,
> [+Z._,i—l
=1
=14+ (2" -1)

M. 2/;

Taking logarithms on both sides yvields the inequality.

Now suppose that H is a tree with Girundy number & that is not mini-
mal; then we can find an induced subtree with Grundy number & by deleting
all but one of the vertices that have been coloured & in a Grundy colouring.
Since this new graph satisfies the inequality, the original A must as well.

Finally, let H be a tree with Grundy number k41 and 2% vertices. Then
cach [V(H;) ]
by the induction hypothesis, this can only happen in a tree with Grundy
number ¢ if that tree is the CMBT 7;. T'lhe alternative characterisation of
C'MBTs given above then shows that H = T4, ]

term in the above equation must be exactly equal to 2'~": and

Theorem 2 Let T be a tree, and supposc that some ordering of the vertices
quoes a greedy colouring where the verter v € V(1) recewves colour j. Then
1" contains T; as an induced subgraph wilh v as its root.

Proof. We proceed by induction on j. I j = 1 then the result 1= obvious.
since the vertex v itself induces 77 with ¢ as its root. Now supposc that the
theorem is true for all j < &, and let v be a vertex coloured k& in soie greedy
colouring. Then we can find vertices vy, v+, ...v5_ which are adjicent to v
such that the vertex v; receives colour 7 in the greedy colouring. i.et 71 be
the component of 7"\ {v} which contains v;; by the induction hypothesis,
/7 contains a subset of vertices S; which induces a copy of 7; rooted at v;.

Lot S = (USZ)'Sy) U {v}: then TTS] consists of a vertex v adjacent to the
root vertices of 71, ...7.—1: in other words, T[,’ﬁ'] = Ti: O

Corollary 1 The Grundy number of a tree T ws equal to the highest order
of a CMBT contamed in T as an induced subgraph.

Proof. If (is a graph and H an induced subgraph of &, then I'(11) < I'((/):
therclore the Grundy number of a tree /7 is at least the order of the largest
CMBT induced by some subset of its vertices. If 7" has Grundy number
k. then some vertex © gets coloured & in a greedy colouring of /' by the
previons theorem, 17 therefore contains an induced copy of 7, rooted at
. Henee, the Grundy number of 77 1s also at most the order of a largest

imduced CMBT. O



3 A More General Bound

We can also derive an upper bound for the Grundy number of @ general
oraph, in a similar spirit. It is well known that any proper n-colouring
of a graph (7 1s equivalent to a graph homomorphism from ' to L, it
is casily seen that any colouring given by a greedy algorithm has the ad-
ditional property that every edge in I\, has a preimage in (/ nnder the
llomomorphism. This implies the following:

Theorem 3 Let i be a graph on m cdges. Then T'(G) < m

Proof. Let I'(GG) = n. Then we can find a homomorphism from ¢ to i,
such that each edge in the latter has a preimage. This means that m > (),
the number of edges in \',,. Solving for n vields the desired inequality. O
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