Bounds on total domination in terms of minimum degree

Tao Jiang

Department of Mathematics and Statistics Miami University, Oxford, OH 45056, USA E-mail: jiangt@muohio.edu

Abstract

A set S of vertices of graph G is a total dominating set, if every vertex of G is adjacent to some vertex in S. The total domination number of G, denoted by $\gamma_t(G)$, is the minimum cardinality of a total dominating set of G. For graphs G_t with order n and minimum degree δ , we prove that $\gamma_t(G) \leq \frac{1+\ln(2\delta)}{\delta}n$. Furthermore, if δ is sufficiently large then this upper bound cannot be improved to be less than $(1 + o(1))\frac{1+\ln(\delta+1)}{\delta+1}n$. As a consequence of our main result, we verify a conjecture of Favaron et al. [4] for all graphs G with minimum at least 8.

Let G be a graph without isolated vertices. A set $U \subseteq V(G)$ is a dominating set, if every vertex in V(G) - U is adjacent to a vertex in U. A set $S \subseteq V(G)$ is a total dominating set, if every vertex in V(G) is adjacent to a vertex in S. In other words, a total dominating set of G is a dominating set of G that induces a subgraph with no isolated vertices. Every graph without isolated vertices has a total dominating set, since S = V(G) is such a set. The total domination number of G, denoted by $\gamma_t(G)$, is the minimum cardinality of a total dominating set. Total domination in graphs was introduced by Cockayne, Dawes, and Hedetniemi [3], and is now well studied (see [4, 5, 6, 7]).

Bulletin of the ICA, Volume 38 (2003), 101-104

The decision problem to determine the total domination number of a graph is known to be NP-complete. Therefore, it is of interest to find good bounds on the total domination number of a graph. Cockayne et al. [3] showed that $\gamma_t(G) \leq 2n/3$ for every connected graph G of order $n \geq 3$. Favaron et al. [4] showed that $\gamma_t(G) \leq 7n/13$ for every graph G of order n and minimum degree at least 3. They further conjectured

Conjecture 1 ([4]) If G is a graph of order n with minimum degree $\delta(G) \geq 3$, then $\gamma_t(G) \leq n/2$.

The purpose of this short note is to give a general upper bound on $\gamma_t(G)$ in terms of the order and minimum degree of G, which is asymptotically not far from being optimal. In particular, our result confirms Conjecture 1 for graphs G with minimum degree at least 8.

We prove the following result using a simple probabilistic argument similar to the one used in [1] (see page 6).

Theorem 2 Let G be graph of order n with minimum degree $\delta > 1$. Then $\gamma_t(G) \leq \frac{1+\ln(2\delta)}{\delta} n$.

Proof. First, for each $v \in V = V(G)$, let us pick an arbitrary neighbor of v in G and denote it by z_v . Let $p = \ln(2\delta)/\delta$. Let us pick, randomly and independently, each vertex of V with probability p. Let X be the (random) set of all vertices picked, and let $Y = Y_X$ denote the set of all vertices in V that do not have any neighbor in X. Let $Z = \{z_y : y \in Y\}$. Note that $|Z| \leq |Y|$, and that X, Y, Zmay overlap each other. Clearly, the set $U = X \cup Y \cup Z$ is a total dominating set of G. We show that the expected value of |U|, to be denoted by E(|U|), is small.

Let E(|X|), E(|Y|), E(|Z|) denote the expected values of |X|, |Y|, |Z|, respectively. Clearly E(|X|) = np and $E(|Z|) \leq E(|Y|)$. We now estimate E(|Y|). Note that $|Y| = \sum_{v \in V} \lambda_v$, where $\lambda_v = 1$ if $v \in Y$ and $\lambda_v = 0$ otherwise. For each $v \in V$, the expected value of λ_v is just $\operatorname{Prob}(v \in Y)$. Hence, by linearity of expectation, we have $E(|Y|) = \sum_{v \in V} \operatorname{Prob}(v \in Y)$.

Now, for each fixed $v \in Y$, $\operatorname{Prob}(v \in Y) = \operatorname{Prob}$ (none of v's neighbors is in X). Since v has at least δ neighbors, each not appearing in X with probability 1-p, we have $\operatorname{Prob}(v \in Y) \leq (1-p)^{\delta}$. Therefore, $E(|Y|) = \sum_{v \in V} \operatorname{Prob}(v \in Y) \leq n(1-p)^{\delta}$. So, we have

$$E(|U|) \leq E(|X|) + E(|Y|) + E(|Z|)$$

$$\leq np + 2n(1-p)^{\delta}$$

$$\leq np + 2ne^{-p\delta}$$

$$= n(\ln 2\delta)/\delta + n/\delta \quad (\text{since } p = \ln(2\delta)/\delta)$$

$$= \left[\frac{1 + \ln(2\delta)}{\delta}\right] n$$

Consequently, there is at least one choice of $X \subseteq V$ such that the corresponding set $U = X \cup Y \cup Z$ has cardinality at most $\frac{1+\ln(2\delta)}{\delta}n$, yielding a total dominating set of the desired cardinality.

Note that Theorem 2 yields $\gamma_t(G) < n/2$ for a graph G with order n and minimum degree at least 8, which partially verifies Conjecture 1. In general, for large δ , there is not much room for improvement on the linear coefficient of n in Theorem 2 due to the following result of Alon (noting that our upper bound $\frac{1+\ln(2\delta)}{\delta}n$ is less than $\frac{2+\ln\delta}{\delta}n$).

Proposition 3 ([2]) For large positive integers k, there exist k-regular graphs on $n = k \ln k$ vertices with no dominating set (hence no total dominating set) of size less than $(1 + o(1)) \frac{1 + \ln(k+1)}{k+1} n$.

Note added in proof

A proof of Conjecture 1 was recently proposed in [8] by Peter Che Bor Lam and Bing Wei.

References

- N. Alon, J. H. Spencer, The Probabilistic Method, Wiley, New York, 1992.
- [2] N. Alon, Transversal Numbers of Uniform Hypergraphs, Graphs and Combinatorics 6, 1 - 4, 1990.
- [3] E.J. Cockayne, R.M. Dawes, S.T. Hedetniemi, Total dominations in graphs, Networks 10, 211 – 219, 1980.
- [4] O. Favaron, M. Henning, C. M. Mynhart, J. Puech, Total domination in graphs with minimum degree three, J. Graph Theory 34, no. 1, 9–19, 2000.
- [5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.
- [6] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Editors), Domination in graphs: advanced topics, Marcel Dekker, New York, 1998.
- [7] M. Henning, Graphs with large total domination number, J. Graph Theory 35, no.1, 21 45, 2000.
- [8] Peter Che Bor Lam, Bing Wei, On the total domination number of graphs, submitted.