Bounds on total domination in terms of minimum degree

Tao Jiang
Department of Mathematics and Statistics
Miami University, Oxford, OH 45056, USA
E-mail: jiangt@muohio.edu

Abstract

A set S of vertices of graph G is a total dominating set, if every vertex of G is adjacent to some vertex in S. The total domination number of G, denoted by $\gamma_{t}(G)$, is the minimum cardinality of a total dominating set of G. For graphs G_{r} with order n and minimum degree δ, we prove that $\gamma_{t}(G) \leq \frac{1+\ln (2 \delta)}{\delta} n$. Furthermore, if δ is sufficiently large then this upper bound cannot be improved to be less than $(1+o(1)) \frac{1+\ln (\delta+1)}{\delta+1} n$. As a consequence of our main result, we verify a conjecture of Favaron et al. [4] for all graphs G with minimum at least 8 .

Let G be a graph without isolated vertices. A set $U \subseteq V(G)$ is a dominating set, if every vertex in $V(G)-U$ is adjacent to a vertex in U. A set $S \subseteq V(G)$ is a total dominating set, if every vertex in $V(G)$ is adjacent to a vertex in S. In other words, a total dominating set of G is a dominating set of G that induces a subgraph with no isolated vertices. Every graph without isolated vertices has a total dominating set, since $S=V(G)$ is such a set. The total domination number of G, denoted by $\gamma_{t}(G)$, is the minimum cardinality of a total dominating set. Total domination in graphs was introduced by Cockayne, Dawes, and Hedetniemi [3], and is now well studied (see $[4,5,6,7])$.

The decision problem to determine the total domination number of a graph is known to be NP-complete. Therefore, it is of interest to find good bounds on the total domination number of a graph. Cockayne et al. [3] showed that $\gamma_{t}(G) \leq 2 n / 3$ for every connected graph G of order $n \geq 3$. Favaron et al. [4] showed that $\gamma_{t}(G) \leq 7 n / 13$ for every graph G of order n and minimum degree at least 3. They further conjectured

Conjecture 1 ([4]) If G is a graph of order n with minimum degree $\delta(G) \geq 3$, then $\gamma_{t}(G) \leq n / 2$.

The purpose of this short note is to give a general upper bound on $\gamma_{t}(G)$ in terms of the order and minimum degree of G, which is asymptotically not far from being optimal. In particular, our result confirms Conjecture 1 for graphs G with minimum degree at least 8 .

We prove the following result using a simple probabilistic argument similar to the one used in [1] (see page 6).

Theorem 2 Let G be graph of order n with minimum degree $\delta>1$. Then $\gamma_{t}(G) \leq \frac{1+\ln (2 \delta)}{\delta} n$.

Proof. First, for each $v \in V=V(G)$, let us pick an arbitrary neighbor of v in G and denote it by z_{v}. Let $p=\ln (2 \delta) / \delta$. Let us pick, randomly and independently, each vertex of V with probability p. Let X be the (random) set of all vertices picked, and let $Y=Y_{X}$ denote the set of all vertices in V that do not have any neighbor in X. Let $Z=\left\{z_{y}: y \in Y\right\}$. Note that $|Z| \leq|Y|$, and that X, Y, Z may overlap each other. Clearly, the set $U=X \cup Y \cup Z$ is a total dominating set of G. We show that the expected value of $|U|$, to be denoted by $E(|U|)$, is small.

Let $E(|X|), E(|Y|), E(|Z|)$ denote the expected values of $|X|,|Y|,|Z|$, respectively. Clearly $E(|X|)=n p$ and $E(|Z|) \leq E(|Y|)$. We now estimate $E(|Y|)$. Note that $|Y|=\Sigma_{v \in V} \lambda_{v}$, where $\lambda_{v}=1$ if $v \in Y$
and $\lambda_{v}=0$ otherwise. For each $v \in V$, the expected value of λ_{v} is just $\operatorname{Prob}(v \in Y)$. Hence, by linearity of expectation, we have $E(|Y|)=\Sigma_{v \in V} \operatorname{Prob}(v \in Y)$.

Now, for each fixed $v \in Y, \operatorname{Prob}(v \in Y)=\operatorname{Prob}$ (none of v 's neighbors is in X). Since v has at least δ neighbors, each not appearing in X with probability $1-p$, we have $\operatorname{Prob}(v \in Y) \leq(1-p)^{\delta}$. Therefore, $E(|Y|)=\Sigma_{v \in V} \operatorname{Prob}(v \in Y) \leq n(1-p)^{\delta}$. So, we have

$$
\begin{aligned}
E(|U|) & \leq E(|X|)+E(|Y|)+E(|Z|) \\
& \leq n p+2 n(1-p)^{\delta} \\
& \leq n p+2 n e^{-p \delta} \\
& =n(\ln 2 \delta) / \delta+n / \delta \quad(\text { since } \mathrm{p}=\ln (2 \delta) / \delta) \\
& =\left[\frac{1+\ln (2 \delta)}{\delta}\right] n
\end{aligned}
$$

Consequently, there is at least one choice of $X \subseteq V$ such that the corresponding set $U=X \cup Y \cup Z$ has cardinality at most $\frac{1+\ln (2 \delta)}{\delta} n$, yielding a total dominating set of the desired cardinality.

Note that Theorem 2 yields $\gamma_{t}(G)<n / 2$ for a graph G with order n and minimum degree at least 8 , which partially verifies Conjecture 1. In general, for large δ, there is not much room for improvement on the linear coefficient of n in Theorem 2 due to the following result of Alon (noting that our upper bound $\frac{1+\ln (2 \delta)}{\delta} n$ is less than $\frac{2+\ln \delta}{\delta} n$).

Proposition 3 ([2]) For large positive integers k, there exist k regular graphs on $n=k \ln k$ vertices with no dominating set (hence no total dominating set) of size less than $(1+o(1)) \frac{1+\ln (k+1)}{k+1} n$.

Note added in proof

A proof of Conjecture 1 was recently proposed in [8] by Peter Che Bor Lam and Bing Wei.

References

[1] N. Alon, J. H. Spencer, The Probabilistic Method, Wiley, New York, 1992.
[2] N. Alon, Transversal Numbers of Uniform Hypergraphs, Graphs and Combinatorics 6, 1-4, 1990.
[3] E.J. Cockayne, R.M. Dawes, S.T. Hedetniemi, Total dominations in graphs, Networks 10, 211 - 219, 1980.
[4] O. Favaron, M. Henning, C. M. Mynhart, J. Puech, Total domination in graphs with minimum degree three, J. Graph Theory 34, no. 1, 9-19, 2000.
[5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.
[6] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Editors), Domination in graphs: advanced topics, Marcel Dekker, New York, 1998.
[7] M. Henning, Graphs with large total domination number, J. Graph Theory 35, no.1, 21 - 45, 2000.
[8] Peter Che Bor Lam, Bing Wei, On the total domination number of graphs, submitted.

