On the Enumeration of Spanning Trees
of the Complete Multipartite Graph

Lane Clark
Department of Mathematics
Southern Illinois University Carbondale
Carbondale, IL 62901-4408
lclark@math.siu.edu

Abstract. We give a formula for the polynomial

pKnl """ nk((ltl,...,.’l,‘n)
o § dr(1)—1 dr(n)—1
— xl e znT( )
T spanning tree of Kn,, ..,n,
where K, .. n, is the complete multipartite graph on

[n]. Among the consequences is a formula for the
number of spanning trees of K, . », with given degree
sequence.

,,,,,

Introduction

Austin (1] found a formula for the number of spanning trees of Ky, . n,
using the matrix-tree theorem. Good [4] used a multivariate generating
function and generalized Lagrange inversion to give another derivation.
Egecioglu and Remmel [3] found a bijective proof of this formula. A
different bijective proof of the formula was recently given by Lewis [5].
In this paper, we give a formula for the polynomial
g (Z130 203 Zn) = Z x‘liT(l)‘l‘.. gdr(m)=1

T spanning tree of K"l ..... ng

where K, . .. is the complete multipartite graph on [n]. Immediate
consequences of this result include the aforementioned results in [1], 3],
[4] and [5]; a result of Rényi (7] concerning the complete graph; and a
formula for the number of spanning trees of K, . . n, With given degree
sequence.
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The complete k-partite graph G with partition { A,,..., Ax} is the graph
with vertex set A; U---U Ag where wv is an edge of G if and only if u € A;,
v € A; with 1 <14 # j < k. The complete k-partite graph with partite sets
of cardinality n;,...,nx € P is denoted Ky, .  n, and the complete graph
with n € P vertices is denoted K,,. The leaves of a tree T" are denoted L(T’)
and the edges of T are denoted E(T'). The degree of a vertex v in a tree
T is denoted dr(v). For a proper subset L of the vertices V of a graph G,
G — L denotes the subgraph of G induced by V — L.

The nonnegative integers are denoted by N and the positive integers by
P. Forn e¥, 0| = 4{1,.-.,8)

Throughout this paper we work in the commutative ring Z[z1,. .., Z,]
of polynomials in the variables z,,...,z, with integer coefficients. For
reference we recall the multinomial theorem in Z[z1, ..., z,] (see [2; p. 28]).

For £ € N, m,n € P with m < n and distinct iy,...,inm € [n],

14
& m
ORI L DU R i

(e1,...,em)EN™
e1+:+en=4_

e\ _ e
€1,.-s8m] el -em!’

(As usual 2¥ =1 and 0! = 1.)
Our notation and terminology may be found in Comtet [2] and West [8].

where

Results

For ny,...,ng € Pwithk > 2,let s =0, s; = sj_1+n; (1 < j < k) and
sSk=n=mn1+- -+ng. Let A; = [81] = {1,...,m} and 4; = [s;]—[sj-1] =
{sj-1+1,...,8;} (2< 7 < k).

Associate 7 € [n] with the variable z; and let X = X,, =1 + -+ + 2,
and Xp = X — ) ;. pz; for D C [n]. Then, X4 = X and X|,) = 0. Here
X9 =1 forall D C [n].

Lemma 1. We have,

_1\IM| yn1—-1 | nE—1 k—2 __
E (D)™ X054, - XpMoa, Xm  =0.
(My,...,My)
M;CA;(1<j<k)
M=MU---UMj
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Proof. Our result is immediately seen to be true for n =2 (so ny = ng =
1, k = 2) and we assume n > 3.

Observe that X}Q‘JAI -~-XX,,"J;,‘X§,,_2 = 0 if and only if n; > 2 and
MUA; = [n] for some 1 < j <k, ork>3and M = [n]; and 1 if and
only if n = k = 2 and n; = ny = 1 (which does not occur since n > 3).
Otherwise, after expansion, X7 /11 v X3P ‘ij]’f,;2 is a nonempty sum of
terms of the form a nonzero integer multiplied by

€
r=II II =&,
JE€J i€B;

where ¢ # J C k], ¢ # B; C Aj (je J),ei€P(jeJ,i€ Bj) and
e Ziij e; = n —2 (> 1). For notational convenience, we assume
J = {1,...,t} (where 1 < t < k) and B; = {8j_1 + 1,...,85-1 + b;}
(1<j<t)so that

1 €y €si+1 €ajtby €ap_1+1 €s—1+be

—_— e . .. ... ...
F==r Tp, Tsy41 Ts1+bs Tgp_1+1 L ge1+be

where 1 < b; < n; (1 <j <t) and the exponents are positive integers with
sumn—2. Let B= B,U---UB; ={¢c,...,cp} written in increasing order,
[Bl=b=b1+ - +b,Y; =3 icp,zi (1<j<t)and Z=Y1+ -+ Y.
Suppose L; C A;—B; (1< j <t),L; C Aj (t <j <k; possibly empty)
and L=L;U---U Lg. Leth=A]‘—Bj—Lj (ISjSt),Cj ZAJ'—L]'
(t<j<k)and C=CiU---UCk. Then, (empty sum is 0)
Xpoa; =2Z-Y;+ ) {mi:i€C-C;} (1<j<t),
Xpoa;=Z+» {zi:i€C-Cj} (t<j<k),
XL=2Z+)» {zi:i€C}.

For t > 2, the multinomial theorem in Z[zy,...,&,] implies that the
coefficient (possibly 0) of 7 in XZL;II . XZGZ}‘ X I’f_z is (empty sum is 0)

k

2 H <d(j, l)nj -_-,ld(j, b)> (d(k+ l,l)l,c.._.,2d(k+ l,b)) (1)

Jj=1

where d(j,7) > 0 is the number of times z., is chosen from one of the
n; —1 > 0 factors of XZ(;C (1 <j<k 1<1i<b)orfrom one of
the k — 2 > 0 factors of Xf_2 (j =k+1,1<1i<b). Here the sum
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is over all (k + 1) x b matrices D = [d(j,7)] of nonnegative integers where
d(7,1)+---+d(j,b) equals n;—1 (1 < j < k)and k-2 (j = k+1);d(j,7) =0
(j=1land1<i<bj,or2<j<tandbi+---+bj_1+1 <i < bi+---+b;);
and d(1,%) + -+ + d(k + 1,%) = e, (1 < 7 < b), should they exist. For
t = 1, n; > 2, the coefficient of 7 in XZL‘qul1 .- -XZG;iX[’f‘z is 0 while
no such D exists, and, for ¢ = 1 = nq, use XguAl = 1. In either case,
(1) is correct here also. Moreover, (1) implies that the coefficient of 7 in
XPUah - XPea X172 is the same for all such (Ly, ..., Lg) (this is obvious
since only variables in Z can be selected).

Suppose L; € A; (1 <j<k),L=L;U---UL and 7 appears with
nonzero coefficient in X775 ---X’L‘f;iin_z. ImeB;NL; (1£j <),
then z,, appears in no Xrua;, (1 < ¢ < k) nor in X; a contradiction.
Hence, L; C A; — B; (1< j <t).

Hence, 7 appears with nonzero coefficient in X7 - -« X771 XF~2 only
if L; € A; — B; (1 < j <t). Moreover, the coefficient of 7 (given in (1))
is the same in each X}l‘;‘ll e XZG;}CXZ‘Z with L; C A; — B; (1<j<t).
Now,

Z (_1)|L1|+"'+|Lk|

(L1,--Lk)
L;jCA;—B; (1<j<t)
L;CA; (t<j<k)

=( v (_1)|L1|)...( ¥ (_1)|L:|)( >3 (_1)1Lt+1|)

L,CA—-B; LiCA¢—B: Ley1CAe4r

( Z (_1)ILkI)

LrCAk

, otherwise,

0 ) (-Al_Bly"'vAt_Bt,At+17"'aAk)#(¢)""¢)7
i |
0,

since B; = Aj for 1 < j <t = k implies that the sum of the exponents in 7
is at least m; a contradiction. Consequently, (2; inclusion-exclusion) gives

WM pni-1 | yn—1 yk—2 _

> (=)™ X304, Xioa Xy =0. B
(M,y,...,My)

M;CA; (1<j<k)

M=M,U--UM;
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For a connected graph G on V = {i1,...,i,} C [N] with N € P, let

dr (i) —1 dr(in)=1
T B <

T spanning tree of G

Note that this polynomial is independent of the order of the vertices of V' in
Z[zy,...,zN]. For a connected graph G’ on V' = {¢/,...,i/,} C [N] where
G =G’ by i; < i; (1 <j <n), we have

PG'(HH;,-‘-,%‘;) ZPG(i'Ji;,u-,xi'n)

Let X(G) =i, +--- + x4, and X(G)p = X(G) =Y ;epTifor DC V.

We now give our main result which we prove by induction.

Theorem 2. For the complete k-partite graph G on {i1,...,i,} C P
with partition {D1,...,Dx} where |Dj| =n; € P (1 <j < k) and k > 2,
we have

pa(@iys- . 25,) = X(G)B - X(G) 5 X(G) 2.

Proof. (Induction on n) Our result is immediately seen to be true for
0 .0

n =2 (as pg(zi,, i) = 1 = 20 29, (z:, + 2:,)°) and we assume n > 3. In
view of our comment above (where D; < D} = {# : i € D;}), we need
only find pg(z1,...,z,) when G = G(A;,..., Ax) is the complete k-partite
graph on [n] with partition {A;,..., Ax}. Here X(G) = X of Lemma 1.
Let L; CA; 1<j<k),|Lj|=¢4 (1<j<k),L=L1U---UL and
= (Ly,...,Lx). Write Sc(f) for the set of spanning trees T of G with
L C L(T). Then, SG(Z) # ¢ if and only if L = [n] — A, with n; =1 for
some 1 < j < k or L omits vertices from at least two of Ay,..., Agx. Let
= {f Sa( f) # (;b}so(Al,.. Ak) ¢ L. Then, [n]—L Aj #QifL; # ¢
(1 < j < k) whenever L € L. For L € L, let B(L )—-{Bl,.. ,Bg) :
Bj € ([n] — L - A;)% (1 < j < k)} where B; is the empty tuple when
— 0. Given L = (L1,...,Lx) € L and B = (By,...,Bx) € B(L),
let L; = {a(j,1),...,a(),4;)} and B; = (b(j,1),...,b(j,%¢;)) where the
elements of L; are written in increasing order (1 < j < k). Write Sc(f ?)
for the set of spanning trees T of G thh L C L(T) and a(7, )b(], ) € E(T)
(1 <]<k 1<z<£) ThenSG(L B);éd)for T E[,andB EB( )
Also, SG(L B)ﬂSG(L C) ¢ for L € £ and distinct B,C ¢ B( )-

g

54



Clearly, T € Sg(L ) belongs to precnsely one SG(L B) with B € B( L)
when L € L. Hence, {Sc( L, B) Be B(L)} partitions SG(H) when
i € L. Write Sg_, for the set of spanning trees of G — L. Here, Sg_[n) =
¢. Then, Sg_; # ¢ if and only if Tecl Itis immediately seen that
A Sc(f,ﬁ) — Sg-r by ¢(T) = T — L is a bijection when T =L
Hence, for LEL (empty product equals 1 and z? = 1),

Z x‘liT(l)_l e zf’ilT(n)_l

TesS(T,B)
d ds(i)
1)—1
H ToGn)TGe) D, LI ="
j=1 SeSg-L i€[n]-L

and, consequently (Xi’QAj =il for'ty=0),

Z x‘li”'(l)_l i .;,;trilT(")—1

TESG(?)

dg(i 1
:Xllqu,‘ LUAk Z H "33() (3)

S€Sg-L i€[n]-L
- - —
We distinguish three cases for L # ¢, A = (Ay, ..., Ax).

Exactly k — 1 of the L; = Aj. Assume L; = Ay,...,Ly_1 = Ar
—

with no loss of generality. Necessarily, Ly = ¢ and npx = 1 or L ¢ L.

Here, (X7, = 1) we calculate

dr(1)—1 dr(n)—1 __ . n—2 __ yni—1 ng—1 yk—2
z Ty ©Tn =T —XLUAI'”XLUA,:XL ) (4)
TeSe(T)

—
since Sg( L) contains only one tree.

Exactly t of the L; = A;; 1 <t <k—2. Here L € L. Assume

=Ay,...,Ly = Ay, Lyyy # Ay, .., Lr # Ay with no loss of generality.
By (3) together with induction (G — L is a complete k — ¢t (> 2)-partite
graph on [n] — L with partition {A;+1 — Li41,..., Ak — Lg} and order
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2<n-—|L| <£n-1), we have

Z xcliT(l)_l o ‘T:'T(")_l
TeSe(T)

_vh Lx npp1—Lep1—1
_XLUAI"'XLuAkX(G_L)

At41—Lesr
S X(@- LB XG - D

—_ vl vk nep1—Ce1—1 ng—Lr—1 yvk—t—2
- XLUA1 XLUAkXLUAg+1 e XLUAk XL

=1 -1 -1 —1 yk—2
= XZLlJAl "'XZDA,_XZUXM "'XZGAkXL ) (5)
since LUA; =L (1<j<1).

No Lj = Aj; not all L; = ¢. Here 1 el By (3) together with
induction (G — L is a complete k (> 2)-partite graph on [n] — L with
partition {A; — L,..., Ax — Lx} and order 2 < n — |L| < n — 1), we have

Z :1:1117'(1)—1 105 x;izT(")—l
TGSG(?)

L £ ny—~£€;— ne—L€r— —
=X X K@~ B X = D TE T X(G - 1
£ /4 ny1—£€;—1 —lx—1 yvk—2
= XLluA1 "'XLkUAkXLLlJAll "'XZGA: XL
— ne—1 k—2
== XrleAll "'XLLkJAkXL : (6)

We note that L ¢ L implies L=AorLD [n] — A; with n; >
2 for some 1 < j < k. In either case, XZb;ll ---XZG;}CXE” =0 as
n > 3. Conversely (see the second paragraph in the proof of Lemma 1),

— -

Xl X Xe7 =40 implies L = Aor L D [n] — A; with n; > 2 for
some 1 < j < k. In either case, L ¢ L.

Fix a spanning tree T' of G with leaves M; U --- U M}, where M; C
Aj (1 <j < k). Then, T € Sg((L1,...,Lx)) if and only if L; C M;
(1 <j < k). Now,

Z (—1)/Eal++Lal =( Z (_1)|L1I) ( Z (_1)|Lk|)

(L1yeonli) L,CM,; L C My
L; CM;(1<j<k)

=0, (7)

56



since (Ma, ..., M) # (9, ...,¢). Hence (7; inclusion-exclusion) gives

S M Y a0 el )
M=(Ma,....My) TeSc(M)
M;CA; (1<j<k)
M=M;U-~-UM;

Consequently, (8), (4-6), our comments regarding £ and Lemma 1 give

pa(Z1,...,Tn) = Z g;‘liT(l)‘l...xiT(")—l
TeSc(4)
dr(l)—1 =
:ﬁ Z _,(_I)IMHl Zn zlr() .. gdr()-1
=(My,...,My)# ¢ TeS
VAL (1252k) S

M=MU---UMj

i M|+1 -1 -1 k—2
= E (—1)!Ml Xnioa,  Xmoac X
M=(M,...,Mp)#£
M,C A (1<5<k)

M=M;U---UMj

ot ny—1 ng—1yvk—2
=Xpt.. pa-iyed m

Remark. Alternatively, the referee has suggested that it may be
possible to give a bijective proof of Theorem 2 using a sign-reversing
involution/pairing on the underlying k-tuples.

Let 7(G) denote the number of distinct spanning trees of a connected
graph G. An immediate consequence of Theorem 2 is the formula for
7(Kn, ... .n) given in Austin [1], Good [4], Egecioglu and Remmel [3] and
Lewis [5].

Corollary 3. ([1], [3], [4], [5]) Forn =ny+---+mng whereny,...,nx € P
and k > 2,

k
T(Kny,..ni) = n*? H(Tl - nj)nj_l :

Jj=1
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Proof. Clearly,
k
T(Kny,.m) =pc(L,. .., 1) =2 ] (n — ny)™~?
j=1
where G = G(A,...,Ax) = K, ... n, is the graph in Theorem 2. W
In particular, we have Cayley’s theorem for 7(Ky).

Corollary 4. For n > 2,

Proof. Clearly,

Another immediate consequence of Theorem 2 is the formula for
pc(z1,...,Tn) given in Rényi [7] when G is the complete graph on [n].
This is also a direct consequence of the encoding in Priifer [6].

Corollary 5. ([7]) Forn> 2,
pK"(l‘l,...,.’l)n) = (.'131 + oo xn)"_z.
Proof. Theorem 2 when G = G({1},...,{n}) is the complete graph on

[n] gives
Pk, (Z1,..yZn)=(z1+ -+ z,)""2. W

For a tree T on [n], let
n
w(T) =Y idr(i)
i=1

and for a connected graph G on [n], let

T
w@= Y o,
T spanning tree of G
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A further consequence of Theorem 2 is a formula for gg(z), similar to one
given in Egecioglu and Remmel [3], when G is the graph in Theorem 2.
Here [0]; =0 and [s]; =14+ +---+ 2! for s € P.

Corollary 6. For the graph G in Theorem 2,

k
gc(z) = z("37)4n—2 [n]:—z H {[sj—l]z +2%[n— sj]x}nj—l '

j=1
Proof. Clearly,

qc(z) = z(";l)pc(l‘l,z2, . sey l’n)

k
= :l:(";’l)""'l_2 [n]’;_2 H {[Sj_l];,; + 2% [n = Sj]z}nj_l . n
i=1
Formulas for
dc(z) = Z 2®(T)

T spanning tree of G

where b
@(T) =Y £(i) dr(i)
i=1
and f(2) is a (nonnegative integer-valued) function of 7 can immediately be
given by finding pg(zfM), 2/ @) 2f(n),

Let 7(G;d;,...,d,) denote the number of spanning trees T of a
connected graph G with vertex set [n] where dr(i) = d; (1 < i < n).
Our final result is a formula for 7(Ky,, .. n.;d1,-..,dn).

Corollary 7. Forn =mny + - -+ n, where ny,...,ng € Pand k > 2,

T(Kymni A1, - .oy dy)
k L B
- {,I;Il (d(j, 1)n] . .,fi(j, 'n)) } (d(k 1 1){6. . .,2d(k $ l,n))

where the sum is over all (k + 1) x n matrices D = [d(j, )] of nonnegative
integers where d(j,1) + --- + d(j,n) equals n; — 1 (1 < j < k) and k — 2
G=k+1);d(,39)=01<j<k sj_1+1<i<s;);andd(1,i)+ -+
dk+1,i) =d; —1 (1< i< n).
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Proof. For the graph G = G(Ay,..., Ax) = Ky, n, of Theorem 2, we
have (as in (1))

T(Kn1 ..... nk;dlv---;dn)

= coefficient of a:‘f‘fl . ~a:‘,il"_1 in pg(z1,...,25)
‘Z{ﬁ( nj—1 ) ( k—2
. d(3,1),...,d(j,n) dk+1,1),...,d(k+1,n)

j=1
where the sum is over all (k + 1) x n matrices D = [d(j,?)] of nonnegative
integers where d(j,1) +--- +d(j,n) equals n; —1 (1 < j < k) and k — 2
(G=k+1);d(,i) =0(1<j<k sj-1+1<i<s;);andd(1,3)+ -+
dk+1,i)=di-1(1<i<n). B

Acknowledgement. I wish to thank the referee for his insightful and
informative comments.
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