On the Enumeration of Spanning Trees of the Complete Multipartite Graph

Lane Clark
Department of Mathematics
Southern Illinois University Carbondale
Carbondale, IL 62901-4408
lclark@math.siu.edu

Abstract. We give a formula for the polynomial

$$
\begin{aligned}
& p_{K_{n_{1}}, \ldots, n_{k}}\left(x_{1}, \ldots, x_{n}\right) \\
& \quad=\sum_{T \text { spanning tree of } K_{n_{1}, \ldots, n_{k}}} x_{1}^{d_{T}(1)-1} \cdots x_{n}^{d_{T}(n)-1}
\end{aligned}
$$

where $K_{n_{1}, \ldots, n_{k}}$ is the complete multipartite graph on $[n]$. Among the consequences is a formula for the number of spanning trees of $K_{n_{1}, \ldots, n_{k}}$ with given degree sequence.

Introduction

Austin [1] found a formula for the number of spanning trees of $K_{n_{1}, \ldots, n_{k}}$ using the matrix-tree theorem. Good [4] used a multivariate generating function and generalized Lagrange inversion to give another derivation. Eğecioğlu and Remmel [3] found a bijective proof of this formula. A different bijective proof of the formula was recently given by Lewis [5]. In this paper, we give a formula for the polynomial

$$
p_{K_{n_{1}, \ldots, n_{k}}}\left(x_{1}, \ldots, x_{n}\right)=\sum_{T \text { spanning tree of } K_{n_{1}, \ldots, n_{k}}} x_{1}^{d_{T}(1)-1} \cdots x_{n}^{d_{T}(n)-1}
$$

where $K_{n_{1}, \ldots, n_{k}}$ is the complete multipartite graph on $[n]$. Immediate consequences of this result include the aforementioned results in [1], [3], [4] and [5]; a result of Rényi [7] concerning the complete graph; and a formula for the number of spanning trees of $K_{n_{1}, \ldots, n_{k}}$ with given degree sequence.

The complete k-partite graph G with partition $\left\{A_{1}, \ldots, A_{k}\right\}$ is the graph with vertex set $A_{1} \cup \cdots \cup A_{k}$ where $u v$ is an edge of G if and only if $u \in A_{i}$, $v \in A_{j}$ with $1 \leq i \neq j \leq k$. The complete k-partite graph with partite sets of cardinality $n_{1}, \ldots, n_{k} \in \mathbb{P}$ is denoted $K_{n_{1}, \ldots, n_{k}}$ and the complete graph with $n \in \mathbb{P}$ vertices is denoted K_{n}. The leaves of a tree T are denoted $L(T)$ and the edges of T are denoted $E(T)$. The degree of a vertex v in a tree T is denoted $d_{T}(v)$. For a proper subset L of the vertices V of a graph G, $G-L$ denotes the subgraph of G induced by $V-L$.

The nonnegative integers are denoted by \mathbb{N} and the positive integers by \mathbb{P}. For $n \in \mathbb{P},[n]=\{1, \ldots, n\}$.

Throughout this paper we work in the commutative ring $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ of polynomials in the variables x_{1}, \ldots, x_{n} with integer coefficients. For reference we recall the multinomial theorem in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ (see [2; p. 28]). For $\ell \in \mathbb{N}, m, n \in \mathbb{P}$ with $m \leq n$ and distinct $i_{1}, \ldots, i_{m} \in[n]$,

$$
\left(x_{i_{1}}+\cdots+x_{i_{m}}\right)^{\ell}=\sum_{\substack{\left(e_{1}, \ldots, e_{m}\right) \in \mathbb{N}^{m} \\ e_{1}+\cdots+e_{m}=\ell}}\binom{\ell}{e_{1}, \ldots, e_{m}} x_{i_{1}}^{e_{1}} \cdots x_{i_{m}}^{e_{m}}
$$

where

$$
\binom{\ell}{e_{1}, \ldots, e_{m}}=\frac{\ell!}{e_{1}!\cdots e_{m}!} .
$$

(As usual $x_{i}^{0}=1$ and $0!=1$.)
Our notation and terminology may be found in Comtet [2] and West [8].

Results

For $n_{1}, \ldots, n_{k} \in \mathbb{P}$ with $k \geq 2$, let $s_{0}=0, s_{j}=s_{j-1}+n_{j}(1 \leq j \leq k)$ and $s_{k}=n=n_{1}+\cdots+n_{k}$. Let $A_{1}=\left[s_{1}\right]=\left\{1, \ldots, n_{1}\right\}$ and $A_{j}=\left[s_{j}\right]-\left[s_{j-1}\right]=$ $\left\{s_{j-1}+1, \ldots, s_{j}\right\}(2 \leq j \leq k)$.

Associate $i \in[n]$ with the variable x_{i} and let $X=X_{n}=x_{1}+\cdots+x_{n}$ and $X_{D}=X-\sum_{i \in D} x_{i}$ for $D \subseteq[n]$. Then, $X_{\phi}=X$ and $X_{[n]}=0$. Here $X_{D}^{0}=1$ for all $D \subseteq[n]$.

Lemma 1. We have,

$$
\sum_{\substack{\left(M_{1}, \ldots, M_{k}\right) \\ M_{j} \subseteq A_{j}(1 \leq j \leq k) \\ M=M_{1} \cup \cdots \cup M_{k}}}(-1)^{|M|} X_{M \cup A_{1}}^{n_{1}-1} \cdots X_{M \cup A_{k}}^{n_{k}-1} X_{M}^{k-2}=0 .
$$

Proof. Our result is immediately seen to be true for $n=2$ (so $n_{1}=n_{2}=$ $1, k=2$) and we assume $n \geq 3$.

Observe that $X_{M \cup A_{1}}^{n_{1}-1} \cdots X_{M \cup A_{k}}^{n_{k}-1} X_{M}^{k-2}=0$ if and only if $n_{j} \geq 2$ and $M \cup A_{j}=[n]$ for some $1 \leq j \leq k$, or $k \geq 3$ and $M=[n]$; and 1 if and only if $n=k=2$ and $n_{1}=n_{2}=1$ (which does not occur since $n \geq 3$). Otherwise, after expansion, $X_{M \cup A_{1}}^{n_{1}-1} \cdots X_{M \cup A_{k}}^{n_{k}-1} X_{M}^{k-2}$ is a nonempty sum of terms of the form a nonzero integer multiplied by

$$
\tau=\prod_{j \in J} \prod_{i \in B_{j}} x_{i}^{e_{i}}
$$

where $\phi \neq J \subseteq[k], \phi \neq B_{j} \subseteq A_{j}(j \in J), e_{i} \in \mathbb{P}\left(j \in J, i \in B_{j}\right)$ and $\sum_{j \in J} \sum_{i \in B_{j}} e_{i}=n-2(\geq 1)$. For notational convenience, we assume $J=\{1, \ldots, t\}$ (where $1 \leq t \leq k$) and $B_{j}=\left\{s_{j-1}+1, \ldots, s_{j-1}+b_{j}\right\}$ $(1 \leq j \leq t)$ so that

$$
\tau=x_{1}^{e_{1}} \cdots x_{b_{1}}^{e_{b_{1}}} x_{s_{1}+1}^{e_{s_{1}+1}} \cdots x_{s_{1}+b_{2}}^{e_{s_{1}+b_{2}}} \cdots x_{s_{t-1}+1}^{e_{s_{t-1}+1}} \cdots x_{s_{t-1}+b_{t}}^{e_{s_{t-1}+b_{t}}}
$$

where $1 \leq b_{j} \leq n_{j}(1 \leq j \leq t)$ and the exponents are positive integers with sum $n-2$. Let $B=B_{1} \cup \cdots \cup B_{t}=\left\{c_{1}, \ldots, c_{b}\right\}$ written in increasing order, $|B|=b=b_{1}+\cdots+b_{t}, Y_{j}=\sum_{i \in B_{j}} x_{i}(1 \leq j \leq t)$ and $Z=Y_{1}+\cdots+Y_{t}$.

Suppose $L_{j} \subseteq A_{j}-B_{j}(1 \leq j \leq t), L_{j} \subseteq A_{j}(t<j \leq k$; possibly empty) and $L=L_{1} \cup \cdots \cup L_{k}$. Let $C_{j}=A_{j}-B_{j}-L_{j}(1 \leq j \leq t), C_{j}=A_{j}-L_{j}$ $(t<j \leq k)$ and $C=C_{1} \cup \cdots \cup C_{k}$. Then, (empty sum is 0)

$$
\begin{aligned}
X_{L \cup A_{j}} & =Z-Y_{j}+\sum\left\{x_{i}: i \in C-C_{j}\right\} \quad(1 \leq j \leq t), \\
X_{L \cup A_{j}} & =Z+\sum\left\{x_{i}: i \in C-C_{j}\right\} \quad(t<j \leq k), \\
X_{L} & =Z+\sum\left\{x_{i}: i \in C\right\} .
\end{aligned}
$$

For $t \geq 2$, the multinomial theorem in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ implies that the coefficient (possibly 0) of τ in $X_{L \cup A_{1}}^{n_{1}-1} \cdots X_{L \cup A_{k}}^{n_{k}-1} X_{L}^{k-2}$ is (empty sum is 0)

$$
\begin{equation*}
\sum\left\{\prod_{j=1}^{k}\binom{n_{j}-1}{d(j, 1), \ldots, d(j, b)}\right\}\binom{k-2}{d(k+1,1), \ldots, d(k+1, b)} \tag{1}
\end{equation*}
$$

where $d(j, i) \geq 0$ is the number of times $x_{c_{i}}$ is chosen from one of the $n_{j}-1 \geq 0$ factors of $X_{L \cup A_{j}}^{n_{j}-1}(1 \leq j \leq k, 1 \leq i \leq b)$ or from one of the $k-2 \geq 0$ factors of $X_{L}^{k-2}(j=k+1,1 \leq i \leq b)$. Here the sum
is over all $(k+1) \times b$ matrices $D=[d(j, i)]$ of nonnegative integers where $d(j, 1)+\cdots+d(j, b)$ equals $n_{j}-1(1 \leq j \leq k)$ and $k-2(j=k+1) ; d(j, i)=0$ $\left(j=1\right.$ and $1 \leq i \leq b_{1}$, or $2 \leq j \leq t$ and $\left.b_{1}+\cdots+b_{j-1}+1 \leq i \leq b_{1}+\cdots+b_{j}\right)$; and $d(1, i)+\cdots+d(k+1, i)=e_{c_{i}}(1 \leq i \leq b)$, should they exist. For $t=1, n_{1} \geq 2$, the coefficient of τ in $X_{L \cup A_{1}}^{n_{1}-1} \cdots X_{L \cup A_{k}}^{n_{k}-1} X_{L}^{k-2}$ is 0 while no such D exists, and, for $t=1=n_{1}$, use $X_{L \cup A_{1}}^{0}=1$. In either case, (1) is correct here also. Moreover, (1) implies that the coefficient of τ in $X_{L \cup A_{1}}^{n_{1}-1} \cdots X_{L \cup A_{k}}^{n_{k}-1} X_{L}^{k-2}$ is the same for all such $\left(L_{1}, \ldots, L_{k}\right)$ (this is obvious since only variables in Z can be selected).

Suppose $L_{j} \subseteq A_{j}(1 \leq j \leq k), L=L_{1} \cup \cdots \cup L_{k}$ and τ appears with nonzero coefficient in $X_{L \cup A_{1}}^{n_{1}-1} \cdots X_{L \cup A_{k}}^{n_{k}-1} X_{L}^{k-2}$. If $m \in B_{j} \cap L_{j}(1 \leq j \leq t)$, then x_{m} appears in no $X_{L \cup A_{i}}(1 \leq i \leq k)$ nor in X_{L}; a contradiction. Hence, $L_{j} \subseteq A_{j}-B_{j}(1 \leq j \leq t)$.

Hence, τ appears with nonzero coefficient in $X_{L \cup A_{1}}^{n_{1}-1} \cdots X_{L \cup A_{k}}^{n_{k}-1} X_{L}^{k-2}$ only if $L_{j} \subseteq A_{j}-B_{j}(1 \leq j \leq t)$. Moreover, the coefficient of τ (given in (1)) is the same in each $X_{L \cup A_{1}}^{n_{1}-1} \cdots X_{L \cup A_{k}}^{n_{k}-1} X_{L}^{k-2}$ with $L_{j} \subseteq A_{j}-B_{j}(1 \leq j \leq t)$. Now,

$$
\begin{align*}
& \sum_{\substack{\left(L_{1}, \ldots, L_{k}\right) \\
L_{j} \subseteq A_{j}-B_{j}(1 \leq j \leq t) \\
L_{j} \subseteq A_{j}(t<j \leq k)}}(-1)^{\left|L_{1}\right|+\cdots+\left|L_{k}\right|} \\
& =\left(\sum_{\substack{L_{1} \subseteq A_{1}-B_{1}}}(-1)^{\left|L_{1}\right|}\right) \cdots\left(\sum_{L_{t} \subseteq A_{t}-B_{t}}(-1)^{\left|L_{t}\right|}\right)\left(\sum_{L_{t+1} \subseteq A_{t+1}}(-1)^{\left|L_{t+1}\right|}\right) \\
& \cdots\left(\sum_{L_{k} \subseteq A_{k}}(-1)^{\left|L_{k}\right|}\right) \\
& = \begin{cases}0 & , \quad\left(A_{1}-B_{1}, \ldots, A_{t}-B_{t}, A_{t+1}, \ldots, A_{k}\right) \neq(\phi, \ldots, \phi) \\
1 & , \quad \text { otherwise },\end{cases} \\
& =0,
\end{align*}
$$

since $B_{j}=A_{j}$ for $1 \leq j \leq t=k$ implies that the sum of the exponents in τ is at least n; a contradiction. Consequently, (2; inclusion-exclusion) gives

$$
\sum_{\substack{\left(M_{1}, \ldots, M_{k}\right) \\ M_{j} \subseteq A_{j}(1 \leq j \leq k) \\ M=M_{1} \cup \cdots \cup M_{k}}}(-1)^{|M|} X_{M \cup A_{1}}^{n_{1}-1} \cdots X_{M \cup A_{k}}^{n_{k}-1} X_{M}^{k-2}=0 .
$$

For a connected graph G on $V=\left\{i_{1}, \ldots, i_{n}\right\} \subseteq[N]$ with $N \in \mathbb{P}$, let

$$
p_{G}\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)=\sum_{T \text { spanning tree of } G} x_{i_{1}}^{d_{T}\left(i_{1}\right)-1} \cdots x_{i_{n}}^{d_{T}\left(i_{n}\right)-1}
$$

Note that this polynomial is independent of the order of the vertices of V in $\mathbb{Z}\left[x_{1}, \ldots, x_{N}\right]$. For a connected graph G^{\prime} on $V^{\prime}=\left\{i_{1}^{\prime}, \ldots, i_{n}^{\prime}\right\} \subseteq[N]$ where $G \cong G^{\prime}$ by $i_{j} \leftrightarrow i_{j}^{\prime}(1 \leq j \leq n)$, we have

$$
p_{G^{\prime}}\left(x_{i_{1}^{\prime}}, \ldots, x_{i_{n}^{\prime}}\right)=p_{G}\left(x_{i_{1}^{\prime}}, \ldots, x_{i_{n}^{\prime}}\right)
$$

Let $X(G)=x_{i_{1}}+\cdots+x_{i_{n}}$ and $X(G)_{D}=X(G)-\sum_{i \in D} x_{i}$ for $D \subseteq V$.
We now give our main result which we prove by induction.

Theorem 2. For the complete k-partite graph G on $\left\{i_{1}, \ldots, i_{n}\right\} \subseteq \mathbb{P}$ with partition $\left\{D_{1}, \ldots, D_{k}\right\}$ where $\left|D_{j}\right|=n_{j} \in \mathbb{P}(1 \leq j \leq k)$ and $k \geq 2$, we have

$$
p_{G}\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)=X(G)_{D_{1}}^{n_{1}-1} \cdots X(G)_{D_{k}}^{n_{k}-1} X(G)^{k-2} .
$$

Proof. (Induction on n) Our result is immediately seen to be true for $n=2\left(\operatorname{as} p_{G}\left(x_{i_{1}}, x_{i_{2}}\right)=1=x_{i_{1}}^{0} x_{i_{2}}^{0}\left(x_{i_{1}}+x_{i_{2}}\right)^{0}\right)$ and we assume $n \geq 3$. In view of our comment above (where $D_{j} \leftrightarrow D_{j}^{\prime}=\left\{i^{\prime}: i \in D_{j}\right\}$), we need only find $p_{G}\left(x_{1}, \ldots, x_{n}\right)$ when $G=G\left(A_{1}, \ldots, A_{k}\right)$ is the complete k-partite graph on $[n]$ with partition $\left\{A_{1}, \ldots, A_{k}\right\}$. Here $X(G)=X$ of Lemma 1 .

Let $L_{j} \subseteq A_{j}(1 \leq j \leq k),\left|L_{j}\right|=\ell_{j}(1 \leq j \leq k), L=L_{1} \cup \cdots \cup L_{k}$ and $\vec{L}=\left(L_{1}, \ldots, L_{k}\right)$. Write $\mathcal{S}_{G}(\vec{L})$ for the set of spanning trees T of G with $L \subseteq L(T)$. Then, $\mathcal{S}_{G}(\vec{L}) \neq \phi$ if and only if $L=[n]-A_{j}$ with $n_{j}=1$ for some $1 \leq j \leq k$ or L omits vertices from at least two of A_{1}, \ldots, A_{k}. Let $\mathcal{L}=\left\{\vec{L}: \mathcal{S}_{G}(\vec{L}) \neq \phi\right\}$ so $\left(A_{1}, \ldots, A_{k}\right) \notin \mathcal{L}$. Then, $[n]-L-A_{j} \neq \phi$ if $L_{j} \neq \phi$ $(1 \leq j \leq k)$ whenever $\vec{L} \in \mathcal{L}$. For $\vec{L} \in \mathcal{L}$, let $\mathcal{B}(\vec{L})=\left\{\left(B_{1}, \ldots, B_{k}\right)\right.$: $\left.B_{j} \in\left([n]-L-A_{j}\right)^{\ell_{j}}(1 \leq j \leq k)\right\}$ where B_{j} is the empty tuple when $\ell_{j}=0$. Given $\vec{L}=\left(L_{1}, \ldots, L_{k}\right) \in \mathcal{L}$ and $\vec{B}=\left(B_{1}, \ldots, B_{k}\right) \in \mathcal{B}(\vec{L})$, let $L_{j}=\left\{a(j, 1), \ldots, a\left(j, \ell_{j}\right)\right\}$ and $B_{j}=\left(b(j, 1), \ldots, b\left(j, \ell_{j}\right)\right)$ where the elements of L_{j} are written in increasing order $(1 \leq j \leq k)$. Write $\mathcal{S}_{G}(\vec{L}, \vec{B})$ for the set of spanning trees T of G with $L \subseteq L(T)$ and $a(j, i) b(j, i) \in E(T)$ $\left(1 \leq j \leq k, 1 \leq i \leq \ell_{j}\right)$. Then $\mathcal{S}_{G}(\vec{L}, \vec{B}) \neq \phi$ for $\vec{L} \in \mathcal{L}$ and $\vec{B} \in \mathcal{B}(\vec{L})$. Also, $\mathcal{S}_{G}(\vec{L}, \vec{B}) \cap \mathcal{S}_{G}(\vec{L}, \vec{C})=\phi$ for $\vec{L} \in \mathcal{L}$ and distinct $\vec{B}, \vec{C} \in \mathcal{B}(\vec{L})$.

Clearly, $T \in \mathcal{S}_{G}(\vec{L})$ belongs to precisely one $\mathcal{S}_{G}(\vec{L}, \vec{B})$ with $\vec{B} \in \mathcal{B}(\vec{L})$ when $\vec{L} \in \mathcal{L}$. Hence, $\left\{\mathcal{S}_{G}(\vec{L}, \vec{B}): \vec{B} \in \mathcal{B}(\vec{L})\right\}$ partitions $\mathcal{S}_{G}(\vec{L})$ when $\vec{L} \in \mathcal{L}$. Write S_{G-L} for the set of spanning trees of $G-L$. Here, $S_{G-[n]}=$ ϕ. Then, $S_{G-L} \neq \phi$ if and only if $\vec{L} \in \mathcal{L}$. It is immediately seen that $\varphi: \mathcal{S}_{G}(\vec{L}, \vec{B}) \rightarrow \mathcal{S}_{G-L}$ by $\varphi(T)=T-L$ is a bijection when $\vec{L} \in \mathcal{L}$. Hence, for $\vec{L} \in \mathcal{L}$ (empty product equals 1 and $x_{i}^{0}=1$),

$$
\begin{aligned}
& \sum_{T \in \mathcal{S}_{G}(\vec{L}, \vec{B})} x_{1}^{d_{T}(1)-1} \cdots x_{n}^{d_{T}(n)-1} \\
= & \prod_{j=1}^{k}\left(x_{b(j, 1)} \cdots x_{b\left(j, \ell_{j}\right)}\right) \sum_{S \in \mathcal{S}_{G-L}} \prod_{i \in[n]-L} x_{i}^{d_{S}(i)-1}
\end{aligned}
$$

and, consequently $\left(X_{L \cup A_{j}}^{\ell_{j}}=1\right.$ for $\left.\ell_{j}=0\right)$,

$$
\begin{align*}
& \sum_{T \in \mathcal{S}_{G}(\vec{L})} x_{1}^{d_{T}(1)-1} \cdots x_{n}^{d_{T}(n)-1} \\
= & X_{L \cup A_{1}}^{\ell_{1}} \cdots X_{L \cup A_{k}}^{\ell_{k}} \sum_{S \in \mathcal{S}_{G-L}} \prod_{i \in[n]-L} x_{i}^{d_{S}(i)-1} . \tag{3}
\end{align*}
$$

We distinguish three cases for $\vec{L} \neq \vec{\phi}, \vec{A}=\left(A_{1}, \ldots, A_{k}\right)$.
Exactly $\boldsymbol{k}-\mathbf{1}$ of the $\boldsymbol{L}_{\boldsymbol{j}}=\boldsymbol{A}_{\boldsymbol{j}}$. Assume $L_{1}=A_{1}, \ldots, L_{k-1}=A_{k-1}$ with no loss of generality. Necessarily, $L_{k}=\phi$ and $n_{k}=1$ or $\vec{L} \notin \mathcal{L}$. Here, ($X_{[n]}^{0}=1$) we calculate

$$
\begin{equation*}
\sum_{T \in \mathcal{S}_{G}(\vec{L})} x_{1}^{d_{T}(1)-1} \cdots x_{n}^{d_{T}(n)-1}=x_{n}^{n-2}=X_{L \cup A_{1}}^{n_{1}-1} \cdots X_{L \cup A_{k}}^{n_{k}-1} X_{L}^{k-2}, \tag{4}
\end{equation*}
$$

since $\mathcal{S}_{G}(\vec{L})$ contains only one tree.
Exactly t of the $L_{j}=\boldsymbol{A}_{\boldsymbol{j}} ; 1 \leq t \leq \boldsymbol{k}-\mathbf{2}$. Here $\vec{L} \in \mathcal{L}$. Assume $L_{1}=A_{1}, \ldots, L_{t}=A_{t}, L_{t+1} \neq A_{t+1}, \ldots, L_{k} \neq A_{k}$ with no loss of generality. By (3) together with induction ($G-L$ is a complete $k-t(\geq 2)$-partite graph on $[n]-L$ with partition $\left\{A_{t+1}-L_{t+1}, \ldots, A_{k}-L_{k}\right\}$ and order
$2 \leq n-|L| \leq n-1$), we have

$$
\begin{align*}
& \sum_{T \in \mathcal{S}_{G}(\vec{L})} x_{1}^{d_{T}(1)-1} \cdots x_{n}^{d_{T}(n)-1} \\
= & X_{L \cup A_{1}}^{\ell_{1}} \cdots X_{L \cup A_{k}}^{\ell_{k}} X(G-L)_{A_{t+1}-L_{t+1}}^{n_{t+1}-\ell_{t+1}-1} \cdots \\
& \cdots X(G-L)_{A_{k}-L_{k}}^{n_{k}-\ell_{k}-1} X(G-L)^{k-t-2} \\
= & X_{L \cup A_{1}}^{\ell_{1}} \cdots X_{L \cup A_{k}}^{\ell_{k}} X_{L \cup A_{t+1}}^{n_{t+1}-\ell_{t+1}-1} \cdots X_{L \cup A_{k}}^{n_{k}-\ell_{k}-1} X_{L}^{k-t-2} \\
= & X_{L \cup A_{1}}^{n_{1}-1} \cdots X_{L \cup A_{t}}^{n_{t}-1} X_{L \cup A_{t+1}}^{n_{t+1}-1} \cdots X_{L \cup A_{k}}^{n_{k}-1} X_{L}^{k-2},
\end{align*}
$$

since $L \cup A_{j}=L(1 \leq j \leq t)$.
No $L_{\boldsymbol{j}}=\boldsymbol{A}_{\boldsymbol{j}}$; not all $L_{\boldsymbol{j}}=\boldsymbol{\phi} . \quad$ Here $\vec{L} \in \mathcal{L}$. By (3) together with induction $(G-L$ is a complete $k(\geq 2)$-partite graph on $[n]-L$ with partition $\left\{A_{1}-L_{1}, \ldots, A_{k}-L_{k}\right\}$ and order $\left.2 \leq n-|L| \leq n-1\right)$, we have

$$
\begin{align*}
& \sum_{T \in \mathcal{S}_{G}(\vec{L})} x_{1}^{d_{T}(1)-1} \cdots x_{n}^{d_{T}(n)-1} \\
= & X_{L \cup A_{1}}^{\ell_{1}} \cdots X_{L \cup A_{k}}^{\ell_{k}} X(G-L)_{A_{1}-L_{1}}^{n_{1}-\ell_{1}-1} \cdots X(G-L)_{A_{k}-L_{k}}^{n_{k}-\ell_{k}-1} X(G-L)^{k-2} \\
= & X_{L \cup A_{1}}^{\ell_{1}} \cdots X_{L \cup A_{k}}^{\ell_{k}} X_{L \cup A_{1}}^{n_{1}-\ell_{1}-1} \cdots X_{L \cup A_{k}-1}^{n_{k}-\ell_{k}-1} X_{L}^{k-2} \\
= & X_{L \cup A_{1}}^{n_{1}-1} \cdots X_{L \cup A_{k}}^{n_{k}-1} X_{L}^{k-2} . \tag{6}
\end{align*}
$$

We note that $\vec{L} \notin \mathcal{L}$ implies $\vec{L}=\vec{A}$ or $L \supseteq[n]-A_{j}$ with $n_{j} \geq$ 2 for some $1 \leq j \leq k$. In either case, $X_{L \cup A_{1}}^{n_{1}-1} \cdots X_{L \cup A_{k}}^{n_{k}-1} X_{L}^{k-2}=0$ as $n \geq 3$. Conversely (see the second paragraph in the proof of Lemma 1), $X_{L \cup A_{1}}^{n_{1}-1} \cdots X_{L \cup A_{k}}^{n_{k}-1} X_{L}^{k-2}=0$ implies $\vec{L}=\vec{A}$ or $L \supseteq[n]-A_{j}$ with $n_{j} \geq 2$ for some $1 \leq j \leq k$. In either case, $\vec{L} \notin \mathcal{L}$.

Fix a spanning tree T of G with leaves $M_{1} \cup \cdots \cup M_{k}$ where $M_{j} \subseteq$ $A_{j}(1 \leq j \leq k)$. Then, $T \in \mathcal{S}_{G}\left(\left(L_{1}, \ldots, L_{k}\right)\right)$ if and only if $L_{j} \subseteq M_{j}$ $(1 \leq j \leq k)$. Now,

$$
\begin{align*}
\sum_{\substack{\left(L_{1}, \ldots, L_{k}\right) \\
L_{j} \subseteq M_{j}(1 \leq j \leq k)}}(-1)^{\left|L_{1}\right|+\cdots+\left|L_{k}\right|} & =\left(\sum_{L_{1} \subseteq M_{1}}(-1)^{\left|L_{1}\right|}\right) \cdots\left(\sum_{L_{k} \subseteq M_{k}}(-1)^{\left|L_{k}\right|}\right) \\
& =0
\end{align*}
$$

since $\left(M_{1}, \ldots, M_{k}\right) \neq(\phi, \ldots, \phi)$. Hence (7 ; inclusion-exclusion) gives

$$
\begin{equation*}
\sum_{\substack{\vec{M}=\left(M_{1}, \ldots, M_{k}\right) \\ M_{j} \leq A_{j}(1 \leq j \leq k) \\ M=M_{1} \cup \cdots \cup M_{k}}}(-1)^{|M|} \sum_{T \in \mathcal{S}_{G}(\vec{M})} x_{1}^{d_{T}(1)-1} \cdots x_{n}^{d_{T}(n)-1}=0 . \tag{8}
\end{equation*}
$$

Consequently, (8), (4-6), our comments regarding \mathcal{L} and Lemma 1 give

$$
\begin{aligned}
p_{G}\left(x_{1}, \ldots, x_{n}\right)= & \sum_{\substack{T \in \mathcal{S}_{G}(\vec{\phi})}} x_{1}^{d_{T}(1)-1} \cdots x_{n}^{d_{T}(n)-1} \\
= & \sum_{\substack{\vec{M}=\left(M_{1}, \ldots, M_{k}\right) \neq \vec{\phi} \\
M, A_{j}(1 \leq j \leq k) \\
M=M_{1} \cup \cdots \cup M M_{k}}}(-1)^{|M|+1} \sum_{T \in \mathcal{S}_{G}(\vec{M})} x_{1}^{d_{T}(1)-1} \cdots x_{n}^{d_{T}(n)-1} \\
= & \sum_{\substack{\vec{M}=\left(M_{1}, \ldots, M_{k}\right) \neq \vec{\phi} \\
M j \subseteq A_{j}(1 \leq j \leq k) \\
M=M_{1} \cup \cdots \cup M_{k}}}(-1)^{|M|+1} X_{M \cup A_{1}}^{n_{1}-1} \cdots X_{M \cup A_{k}}^{n_{k}-1} X_{M}^{k-2} \\
= & X_{A_{1}}^{n_{1}-1} \cdots X_{A_{k}}^{n_{k}-1} X^{k-2}
\end{aligned}
$$

Remark. Alternatively, the referee has suggested that it may be possible to give a bijective proof of Theorem 2 using a sign-reversing involution/pairing on the underlying k-tuples.

Let $\tau(G)$ denote the number of distinct spanning trees of a connected graph G. An immediate consequence of Theorem 2 is the formula for $\tau\left(K_{n_{1}, \ldots, n_{k}}\right)$ given in Austin [1], Good [4], Eğecioğlu and Remmel [3] and Lewis [5].

Corollary 3. ([1], [3], [4], [5]) For $n=n_{1}+\cdots+n_{k}$ where $n_{1}, \ldots, n_{k} \in \mathbb{P}$ and $k \geq 2$,

$$
\tau\left(K_{n_{1}, \ldots, n_{k}}\right)=n^{k-2} \prod_{j=1}^{k}\left(n-n_{j}\right)^{n_{j}-1}
$$

Proof. Clearly,

$$
\tau\left(K_{n_{1}, \ldots, n_{k}}\right)=p_{G}(1, \ldots, 1)=n^{k-2} \prod_{j=1}^{k}\left(n-n_{j}\right)^{n_{j}-1}
$$

where $G=G\left(A_{1}, \ldots, A_{k}\right) \cong K_{n_{1}, \ldots, n_{k}}$ is the graph in Theorem 2.
In particular, we have Cayley's theorem for $\tau\left(K_{n}\right)$.

Corollary 4. For $n \geq 2$,

$$
\tau\left(K_{n}\right)=n^{n-2} .
$$

Proof. Clearly,

$$
\tau\left(K_{n}\right)=\tau(\underbrace{K_{1, \ldots, 1}}_{n})=n^{n-2} .
$$

Another immediate consequence of Theorem 2 is the formula for $p_{G}\left(x_{1}, \ldots, x_{n}\right)$ given in Rényi [7] when G is the complete graph on [n]. This is also a direct consequence of the encoding in Prüfer [6].

Corollary 5. ([7]) For $n \geq 2$,

$$
p_{K_{n}}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}+\cdots+x_{n}\right)^{n-2} .
$$

Proof. Theorem 2 when $G=G(\{1\}, \ldots,\{n\})$ is the complete graph on $[n]$ gives

$$
p_{K_{n}}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}+\cdots+x_{n}\right)^{n-2} .
$$

For a tree T on $[n]$, let

$$
w(T)=\sum_{i=1}^{n} i d_{T}(i)
$$

and for a connected graph G on $[n]$, let

$$
q_{G}(x)=\sum_{T \text { spanning tree of } G} x^{w(T)} .
$$

A further consequence of Theorem 2 is a formula for $q_{G}(x)$, similar to one given in Eğecioğlu and Remmel [3], when G is the graph in Theorem 2. Here $[0]_{x}=0$ and $[s]_{x}=1+x+\cdots+x^{s-1}$ for $s \in \mathbb{P}$.

Corollary 6. For the graph G in Theorem 2,

$$
q_{G}(x)=x^{\binom{n+1}{2}+n-2}[n]_{x}^{k-2} \prod_{j=1}^{k}\left\{\left[s_{j-1}\right]_{x}+x^{s_{j}}\left[n-s_{j}\right]_{x}\right\}^{n_{j}-1} .
$$

Proof. Clearly,

$$
\begin{aligned}
q_{G}(x) & =x^{\binom{n+1}{2}} p_{G}\left(x^{1}, x^{2}, \ldots, x^{n}\right) \\
& =x^{\binom{n+1}{2}+n-2}[n]_{x}^{k-2} \prod_{j=1}^{k}\left\{\left[s_{j-1}\right]_{x}+x^{s_{j}}\left[n-s_{j}\right]_{x}\right\}^{n_{j}-1} .
\end{aligned}
$$

Formulas for

$$
\widetilde{q}_{G}(x)=\sum_{T \text { spanning tree of } G} x^{\widetilde{w}(T)}
$$

where

$$
\widetilde{w}(T)=\sum_{i=1}^{n} f(i) d_{T}(i)
$$

and $f(i)$ is a (nonnegative integer-valued) function of i can immediately be given by finding $p_{G}\left(x^{f(1)}, x^{f(2)}, \ldots, x^{f(n)}\right)$.

Let $\tau\left(G ; d_{1}, \ldots, d_{n}\right)$ denote the number of spanning trees T of a connected graph G with vertex set $[n]$ where $d_{T}(i)=d_{i}(1 \leq i \leq n)$. Our final result is a formula for $\tau\left(K_{n_{1}, \ldots, n_{k}} ; d_{1}, \ldots, d_{n}\right)$.

Corollary 7. For $n=n_{1}+\cdots+n_{k}$ where $n_{1}, \ldots, n_{k} \in \mathbb{P}$ and $k \geq 2$,

$$
\begin{aligned}
& \tau\left(K_{n_{1}, \ldots, n_{k}} ; d_{1}, \ldots, d_{n}\right) \\
& =\sum\left\{\prod_{j=1}^{k}\binom{n_{j}-1}{d(j, 1), \ldots, d(j, n)}\right\}\binom{k-2}{d(k+1,1), \ldots, d(k+1, n)}
\end{aligned}
$$

where the sum is over all $(k+1) \times n$ matrices $D=[d(j, i)]$ of nonnegative integers where $d(j, 1)+\cdots+d(j, n)$ equals $n_{j}-1(1 \leq j \leq k)$ and $k-2$ $(j=k+1) ; d(j, i)=0\left(1 \leq j \leq k, s_{j-1}+1 \leq i \leq s_{j}\right)$; and $d(1, i)+\cdots+$ $d(k+1, i)=d_{i}-1(1 \leq i \leq n)$.

Proof. For the graph $G=G\left(A_{1}, \ldots, A_{k}\right) \cong K_{n_{1}, \ldots, n_{k}}$ of Theorem 2, we have (as in (1))

$$
\begin{aligned}
& \tau\left(K_{n_{1}, \ldots, n_{k}} ; d_{1}, \ldots, d_{n}\right) \\
& =\text { coefficient of } x_{1}^{d_{1}-1} \ldots x_{n}^{d_{n}-1} \text { in } p_{G}\left(x_{1}, \ldots, x_{n}\right) \\
& =\sum\left\{\prod_{j=1}^{k}\binom{n_{j}-1}{d(j, 1), \ldots, d(j, n)}\right\}\binom{k-2}{d(k+1,1), \ldots, d(k+1, n)}
\end{aligned}
$$

where the sum is over all $(k+1) \times n$ matrices $D=[d(j, i)]$ of nonnegative integers where $d(j, 1)+\cdots+d(j, n)$ equals $n_{j}-1(1 \leq j \leq k)$ and $k-2$ $(j=k+1) ; d(j, i)=0\left(1 \leq j \leq k, s_{j-1}+1 \leq i \leq s_{j}\right)$; and $d(1, i)+\cdots+$ $d(k+1, i)=d_{i}-1(1 \leq i \leq n)$.

Acknowledgement. I wish to thank the referee for his insightful and informative comments.

References

[1] T.L. Austin, The enumeration of point labelled chromatic graphs and trees, Canadian Journal of Mathematics 12 (1960), no. 4, 535-545.
[2] L. Comtet, "Advanced Combinatorics", D. Reidel, Boston, 1974.
[3] O. Eğecioğlu and J.B. Remmel, A bijection for spanning trees of complete multipartite graphs, Congressus Numerantium 100 (1994), 225-243.
[4] I.J. Good, The generalization of Lagrange's expansion and the enumeration of trees, Proceedings of the Cambridge Philosophical Society 61 (1965), 499-517.
[5] R.P. Lewis, The number of spanning trees of a complete multipartite graph, Discrete Mathematics 197/198 (1999), 537-541.
[6] H. Prüfer, Neuer beweis eines satzes über Pemutationen, Archiv für Mathematik und Physik 27 (1918), 742-744.
[7] A. Rényi, On the enumeration of trees, in "Combinatorial Structures and Their Applications" (R. Guy, H. Hanani, N. Sauer and J. Schonheim, Eds.), pp. 355-360, Gordon and Breach, New York, 1970.
[8] D.B. West, "Introduction to Graph Theory", Prentice-Hall, Upper Saddle River, NJ, 1996.

