On the Enumeration of Spanning Trees of the Complete Multipartite Graph

Lane Clark
Department of Mathematics
Southern Illinois University Carbondale
Carbondale, IL 62901–4408
lclark@math.siu.edu

Abstract. We give a formula for the polynomial

$$p_{K_{n_1,\ldots,n_k}}(x_1,\ldots,x_n) = \sum_{T \text{ spanning tree of } K_{n_1,\ldots,n_k}} x_1^{d_T(1)-1} \cdots x_n^{d_T(n)-1}$$

where $K_{n_1,...,n_k}$ is the complete multipartite graph on [n]. Among the consequences is a formula for the number of spanning trees of $K_{n_1,...,n_k}$ with given degree sequence.

Introduction

Austin [1] found a formula for the number of spanning trees of K_{n_1,\ldots,n_k} using the matrix-tree theorem. Good [4] used a multivariate generating function and generalized Lagrange inversion to give another derivation. Eğecioğlu and Remmel [3] found a bijective proof of this formula. A different bijective proof of the formula was recently given by Lewis [5]. In this paper, we give a formula for the polynomial

$$p_{K_{n_1,\ldots,n_k}}(x_1,\ldots,x_n) = \sum_{T \text{ spanning tree of } K_{n_1,\ldots,n_k}} x_1^{d_T(1)-1} \cdots x_n^{d_T(n)-1}$$

where $K_{n_1,...,n_k}$ is the complete multipartite graph on [n]. Immediate consequences of this result include the aforementioned results in [1], [3], [4] and [5]; a result of Rényi [7] concerning the complete graph; and a formula for the number of spanning trees of $K_{n_1,...,n_k}$ with given degree sequence.

The complete k-partite graph G with partition $\{A_1, \ldots, A_k\}$ is the graph with vertex set $A_1 \cup \cdots \cup A_k$ where uv is an edge of G if and only if $u \in A_i$, $v \in A_j$ with $1 \le i \ne j \le k$. The complete k-partite graph with partite sets of cardinality $n_1, \ldots, n_k \in \mathbb{P}$ is denoted K_{n_1, \ldots, n_k} and the complete graph with $n \in \mathbb{P}$ vertices is denoted K_n . The leaves of a tree T are denoted L(T) and the edges of T are denoted E(T). The degree of a vertex v in a tree T is denoted T is denoted T in a proper subset T of the vertices T of a graph T is denoted the subgraph of T induced by T i

The nonnegative integers are denoted by \mathbb{N} and the positive integers by \mathbb{P} . For $n \in \mathbb{P}$, $[n] = \{1, ..., n\}$.

Throughout this paper we work in the commutative ring $\mathbb{Z}[x_1,\ldots,x_n]$ of polynomials in the variables x_1,\ldots,x_n with integer coefficients. For reference we recall the multinomial theorem in $\mathbb{Z}[x_1,\ldots,x_n]$ (see [2; p. 28]). For $\ell \in \mathbb{N}$, $m,n \in \mathbb{P}$ with $m \leq n$ and distinct $i_1,\ldots,i_m \in [n]$,

$$(x_{i_1} + \dots + x_{i_m})^{\ell} = \sum_{\substack{(e_1, \dots, e_m) \in \mathbb{N}^m \\ e_1 + \dots + e_m = \ell}} \binom{\ell}{e_1, \dots, e_m} x_{i_1}^{e_1} \cdots x_{i_m}^{e_m}$$

where

$$\binom{\ell}{e_1, \dots, e_m} = \frac{\ell!}{e_1! \cdots e_m!}.$$

(As usual $x_i^0 = 1$ and 0! = 1.)

Our notation and terminology may be found in Comtet [2] and West [8].

Results

For $n_1, \ldots, n_k \in \mathbb{P}$ with $k \geq 2$, let $s_0 = 0$, $s_j = s_{j-1} + n_j$ $(1 \leq j \leq k)$ and $s_k = n = n_1 + \cdots + n_k$. Let $A_1 = [s_1] = \{1, \ldots, n_1\}$ and $A_j = [s_j] - [s_{j-1}] = \{s_{j-1} + 1, \ldots, s_j\}$ $(2 \leq j \leq k)$.

Associate $i \in [n]$ with the variable x_i and let $X = X_n = x_1 + \cdots + x_n$ and $X_D = X - \sum_{i \in D} x_i$ for $D \subseteq [n]$. Then, $X_{\phi} = X$ and $X_{[n]} = 0$. Here $X_D^0 = 1$ for all $D \subseteq [n]$.

Lemma 1. We have,

we have,
$$\sum_{\substack{(M_1,\dots,M_k)\\M_j\subseteq A_j(1\leq j\leq k)\\M=M_1\cup\dots\cup M_k}} (-1)^{|M|} X_{M\cup A_1}^{n_1-1}\cdots X_{M\cup A_k}^{n_k-1} X_M^{k-2} = 0.$$

Proof. Our result is immediately seen to be true for n = 2 (so $n_1 = n_2 = 1$, k = 2) and we assume $n \ge 3$.

Observe that $X_{M\cup A_1}^{n_1-1}\cdots X_{M\cup A_k}^{n_k-1}X_M^{k-2}=0$ if and only if $n_j\geq 2$ and $M\cup A_j=[n]$ for some $1\leq j\leq k$, or $k\geq 3$ and M=[n]; and 1 if and only if n=k=2 and $n_1=n_2=1$ (which does not occur since $n\geq 3$). Otherwise, after expansion, $X_{M\cup A_1}^{n_1-1}\cdots X_{M\cup A_k}^{n_k-1}X_M^{k-2}$ is a nonempty sum of terms of the form a nonzero integer multiplied by

$$\tau = \prod_{j \in J} \prod_{i \in B_j} x_i^{e_i} \,,$$

where $\phi \neq J \subseteq [k]$, $\phi \neq B_j \subseteq A_j$ $(j \in J)$, $e_i \in \mathbb{P}$ $(j \in J, i \in B_j)$ and $\sum_{j \in J} \sum_{i \in B_j} e_i = n - 2 \ (\geq 1)$. For notational convenience, we assume $J = \{1, \ldots, t\}$ (where $1 \leq t \leq k$) and $B_j = \{s_{j-1} + 1, \ldots, s_{j-1} + b_j\}$ $(1 \leq j \leq t)$ so that

$$\tau = x_1^{e_1} \cdots x_{b_1}^{e_{b_1}} x_{s_1+1}^{e_{s_1+1}} \cdots x_{s_1+b_2}^{e_{s_1+b_2}} \cdots x_{s_{t-1}+1}^{e_{s_{t-1}+1}} \cdots x_{s_{t-1}+b_t}^{e_{s_{t-1}+b_t}}$$

where $1 \le b_j \le n_j$ $(1 \le j \le t)$ and the exponents are positive integers with sum n-2. Let $B=B_1 \cup \cdots \cup B_t = \{c_1,\ldots,c_b\}$ written in increasing order, $|B|=b=b_1+\cdots+b_t, Y_j=\sum_{i\in B_i} x_i \ (1\le j\le t)$ and $Z=Y_1+\cdots+Y_t$.

Suppose $L_j \subseteq A_j - B_j$ $(1 \le j \le t)$, $L_j \subseteq A_j$ $(t < j \le k)$; possibly empty) and $L = L_1 \cup \cdots \cup L_k$. Let $C_j = A_j - B_j - L_j$ $(1 \le j \le t)$, $C_j = A_j - L_j$ $(t < j \le k)$ and $C = C_1 \cup \cdots \cup C_k$. Then, (empty sum is 0)

$$X_{L \cup A_j} = Z - Y_j + \sum \{x_i : i \in C - C_j\} \quad (1 \le j \le t),$$

 $X_{L \cup A_j} = Z + \sum \{x_i : i \in C - C_j\} \quad (t < j \le k),$
 $X_L = Z + \sum \{x_i : i \in C\}.$

For $t \geq 2$, the multinomial theorem in $\mathbb{Z}[x_1,\ldots,x_n]$ implies that the coefficient (possibly 0) of τ in $X_{L\cup A_1}^{n_1-1}\cdots X_{L\cup A_k}^{n_k-1}X_L^{k-2}$ is (empty sum is 0)

$$\sum \left\{ \prod_{j=1}^{k} \binom{n_j - 1}{d(j, 1), \dots, d(j, b)} \right\} \binom{k - 2}{d(k + 1, 1), \dots, d(k + 1, b)} \tag{1}$$

where $d(j,i) \geq 0$ is the number of times x_{c_i} is chosen from one of the $n_j - 1 \geq 0$ factors of $X_{L \cup A_j}^{n_j - 1}$ $(1 \leq j \leq k, 1 \leq i \leq b)$ or from one of the $k - 2 \geq 0$ factors of X_L^{k-2} $(j = k + 1, 1 \leq i \leq b)$. Here the sum

is over all $(k+1) \times b$ matrices D = [d(j,i)] of nonnegative integers where $d(j,1) + \cdots + d(j,b)$ equals $n_j - 1$ $(1 \leq j \leq k)$ and k-2 (j=k+1); d(j,i) = 0 $(j=1 \text{ and } 1 \leq i \leq b_1, \text{ or } 2 \leq j \leq t \text{ and } b_1 + \cdots + b_{j-1} + 1 \leq i \leq b_1 + \cdots + b_j)$; and $d(1,i) + \cdots + d(k+1,i) = e_{c_i}$ $(1 \leq i \leq b)$, should they exist. For $t=1, \ n_1 \geq 2$, the coefficient of τ in $X_{L \cup A_1}^{n_1-1} \cdots X_{L \cup A_k}^{n_k-1} X_L^{k-2}$ is 0 while no such D exists, and, for $t=1=n_1$, use $X_{L \cup A_1}^0 = 1$. In either case, (1) is correct here also. Moreover, (1) implies that the coefficient of τ in $X_{L \cup A_1}^{n_1-1} \cdots X_{L \cup A_k}^{n_k-1} X_L^{k-2}$ is the same for all such (L_1, \ldots, L_k) (this is obvious since only variables in Z can be selected).

Suppose $L_j \subseteq A_j$ $(1 \le j \le k)$, $L = L_1 \cup \cdots \cup L_k$ and τ appears with nonzero coefficient in $X_{L \cup A_1}^{n_1 - 1} \cdots X_{L \cup A_k}^{n_k - 1} X_L^{k - 2}$. If $m \in B_j \cap L_j$ $(1 \le j \le t)$, then x_m appears in no $X_{L \cup A_i}$ $(1 \le i \le k)$ nor in X_L ; a contradiction. Hence, $L_j \subseteq A_j - B_j$ $(1 \le j \le t)$.

Hence, τ appears with nonzero coefficient in $X_{L\cup A_1}^{n_1-1}\cdots X_{L\cup A_k}^{n_k-1}X_L^{k-2}$ only if $L_j\subseteq A_j-B_j$ $(1\leq j\leq t)$. Moreover, the coefficient of τ (given in (1)) is the same in each $X_{L\cup A_1}^{n_1-1}\cdots X_{L\cup A_k}^{n_k-1}X_L^{k-2}$ with $L_j\subseteq A_j-B_j$ $(1\leq j\leq t)$. Now,

$$\sum_{\substack{(L_{1},\dots,L_{k})\\L_{j}\subseteq A_{j}-B_{j}\ (1\leq j\leq t)\\L_{j}\subseteq A_{j}\ (t< j\leq k)}} (-1)^{|L_{1}|+\dots+|L_{k}|}$$

$$= \left(\sum_{L_{1}\subseteq A_{1}-B_{1}} (-1)^{|L_{1}|}\right) \dots \left(\sum_{L_{t}\subseteq A_{t}-B_{t}} (-1)^{|L_{t}|}\right) \left(\sum_{L_{t+1}\subseteq A_{t+1}} (-1)^{|L_{t+1}|}\right)$$

$$\dots \left(\sum_{L_{k}\subseteq A_{k}} (-1)^{|L_{k}|}\right)$$

$$= \begin{cases} 0, & (A_{1}-B_{1},\dots,A_{t}-B_{t},A_{t+1},\dots,A_{k}) \neq (\phi,\dots,\phi),\\ 1, & \text{otherwise}, \end{cases}$$

$$= 0, \qquad (2)$$

since $B_j = A_j$ for $1 \le j \le t = k$ implies that the sum of the exponents in τ is at least n; a contradiction. Consequently, (2; inclusion-exclusion) gives

$$\sum_{\substack{(M_1,\dots,M_k)\\M_j\subseteq A_j\ (1\leq j\leq k)\\M=M_1\cup\dots\cup M_k}} (-1)^{|M|} X_{M\cup A_1}^{n_1-1} \cdots X_{M\cup A_k}^{n_k-1} X_M^{k-2} = 0. \quad \blacksquare$$

For a connected graph G on $V = \{i_1, \ldots, i_n\} \subseteq [N]$ with $N \in \mathbb{P}$, let

$$p_G(x_{i_1},\dots,x_{i_n}) = \sum_{T \text{ spanning tree of } G} x_{i_1}^{d_T(i_1)-1} \cdots x_{i_n}^{d_T(i_n)-1} \,.$$

Note that this polynomial is independent of the order of the vertices of V in $\mathbb{Z}[x_1,\ldots,x_N]$. For a connected graph G' on $V'=\{i'_1,\ldots,i'_n\}\subseteq [N]$ where $G\cong G'$ by $i_j\leftrightarrow i'_j$ $(1\leq j\leq n)$, we have

$$p_{G'}(x_{i'_1},\ldots,x_{i'_n})=p_G(x_{i'_1},\ldots,x_{i'_n})$$

Let
$$X(G) = x_{i_1} + \cdots + x_{i_n}$$
 and $X(G)_D = X(G) - \sum_{i \in D} x_i$ for $D \subseteq V$.

We now give our main result which we prove by induction.

Theorem 2. For the complete k-partite graph G on $\{i_1, \ldots, i_n\} \subseteq \mathbb{P}$ with partition $\{D_1, \ldots, D_k\}$ where $|D_j| = n_j \in \mathbb{P}$ $(1 \leq j \leq k)$ and $k \geq 2$, we have

$$p_G(x_{i_1},\ldots,x_{i_n})=X(G)_{D_1}^{n_1-1}\cdots X(G)_{D_k}^{n_k-1}X(G)^{k-2}.$$

Proof. (Induction on n) Our result is immediately seen to be true for n=2 (as $p_G(x_{i_1},x_{i_2})=1=x_{i_1}^0x_{i_2}^0(x_{i_1}+x_{i_2})^0$) and we assume $n\geq 3$. In view of our comment above (where $D_j\leftrightarrow D_j'=\{i':i\in D_j\}$), we need only find $p_G(x_1,\ldots,x_n)$ when $G=G(A_1,\ldots,A_k)$ is the complete k-partite graph on [n] with partition $\{A_1,\ldots,A_k\}$. Here X(G)=X of Lemma 1.

Let $L_j\subseteq A_j$ $(1\leq j\leq k)$, $|L_j|=\ell_j$ $(1\leq j\leq k)$, $L=L_1\cup\cdots\cup L_k$ and $\overrightarrow{L}=(L_1,\ldots,L_k)$. Write $\mathcal{S}_G(\overrightarrow{L})$ for the set of spanning trees T of G with $L\subseteq L(T)$. Then, $\mathcal{S}_G(\overrightarrow{L})\neq \phi$ if and only if $L=[n]-A_j$ with $n_j=1$ for some $1\leq j\leq k$ or L omits vertices from at least two of A_1,\ldots,A_k . Let $\mathcal{L}=\{\overrightarrow{L}:\mathcal{S}_G(\overrightarrow{L})\neq \phi\}$ so $(A_1,\ldots,A_k)\not\in\mathcal{L}$. Then, $[n]-L-A_j\neq \phi$ if $L_j\neq \phi$ $(1\leq j\leq k)$ whenever $\overrightarrow{L}\in\mathcal{L}$. For $\overrightarrow{L}\in\mathcal{L}$, let $\mathcal{B}(\overrightarrow{L})=\{(B_1,\ldots,B_k):B_j\in([n]-L-A_j)^{\ell_j}$ $(1\leq j\leq k)\}$ where B_j is the empty tuple when $\ell_j=0$. Given $\overrightarrow{L}=(L_1,\ldots,L_k)\in\mathcal{L}$ and $\overrightarrow{B}=(B_1,\ldots,B_k)\in\mathcal{B}(\overrightarrow{L})$, let $L_j=\{a(j,1),\ldots,a(j,\ell_j)\}$ and $B_j=(b(j,1),\ldots,b(j,\ell_j))$ where the elements of L_j are written in increasing order $(1\leq j\leq k)$. Write $\mathcal{S}_G(\overrightarrow{L},\overrightarrow{B})$ for the set of spanning trees T of G with $L\subseteq L(T)$ and $a(j,i)b(j,i)\in E(T)$ $(1\leq j\leq k,1\leq i\leq \ell_j)$. Then $\mathcal{S}_G(\overrightarrow{L},\overrightarrow{B})\neq \phi$ for $\overrightarrow{L}\in\mathcal{L}$ and $\overrightarrow{B}\in\mathcal{B}(\overrightarrow{L})$. Also, $\mathcal{S}_G(\overrightarrow{L},\overrightarrow{B})\cap\mathcal{S}_G(\overrightarrow{L},\overrightarrow{C})=\phi$ for $\overrightarrow{L}\in\mathcal{L}$ and distinct $\overrightarrow{B},\overrightarrow{C}\in\mathcal{B}(\overrightarrow{L})$.

Clearly, $T \in \mathcal{S}_G(\overrightarrow{L})$ belongs to precisely one $\mathcal{S}_G(\overrightarrow{L},\overrightarrow{B})$ with $\overrightarrow{B} \in \mathcal{B}(\overrightarrow{L})$ when $\overrightarrow{L} \in \mathcal{L}$. Hence, $\{\mathcal{S}_G(\overrightarrow{L},\overrightarrow{B}): \overrightarrow{B} \in \mathcal{B}(\overrightarrow{L})\}$ partitions $\mathcal{S}_G(\overrightarrow{L})$ when $\overrightarrow{L} \in \mathcal{L}$. Write S_{G-L} for the set of spanning trees of G-L. Here, $S_{G-[n]} = \phi$. Then, $S_{G-L} \neq \phi$ if and only if $\overrightarrow{L} \in \mathcal{L}$. It is immediately seen that $\varphi: \mathcal{S}_G(\overrightarrow{L},\overrightarrow{B}) \to \mathcal{S}_{G-L}$ by $\varphi(T) = T-L$ is a bijection when $\overrightarrow{L} \in \mathcal{L}$. Hence, for $\overrightarrow{L} \in \mathcal{L}$ (empty product equals 1 and $x_i^0 = 1$),

$$\sum_{T \in \mathcal{S}_G(\overrightarrow{L}, \overrightarrow{B})} x_1^{d_T(1)-1} \cdots x_n^{d_T(n)-1}$$

$$= \prod_{j=1}^{k} \left(x_{b(j,1)} \cdots x_{b(j,\ell_j)} \right) \sum_{S \in \mathcal{S}_{G-L}} \prod_{i \in [n]-L} x_i^{d_S(i)-1}$$

and, consequently $(X_{L \cup A_j}^{\ell_j} = 1 \text{ for } \ell_j = 0),$

$$\sum_{T \in \mathcal{S}_G(\overrightarrow{L})} x_1^{d_T(1)-1} \cdots x_n^{d_T(n)-1}$$

$$= X_{L \cup A_1}^{\ell_1} \cdots X_{L \cup A_k}^{\ell_k} \sum_{S \in \mathcal{S}_{G-L}} \prod_{i \in [n]-L} x_i^{d_S(i)-1}. \tag{3}$$

We distinguish three cases for $\overrightarrow{L} \neq \overrightarrow{\phi}$, $\overrightarrow{A} = (A_1, ..., A_k)$.

Exactly k-1 of the $L_j=A_j$. Assume $L_1=A_1,\ldots,L_{k-1}=A_{k-1}$ with no loss of generality. Necessarily, $L_k=\phi$ and $n_k=1$ or $\overrightarrow{L} \notin \mathcal{L}$. Here, $(X_{[n]}^0=1)$ we calculate

$$\sum_{T \in \mathcal{S}_G(\overrightarrow{L})} x_1^{d_T(1)-1} \cdots x_n^{d_T(n)-1} = x_n^{n-2} = X_{L \cup A_1}^{n_1 - 1} \cdots X_{L \cup A_k}^{n_k - 1} X_L^{k-2}, \qquad (4)$$

since $S_G(\overrightarrow{L})$ contains only one tree.

Exactly t of the $L_j = A_j$; $1 \le t \le k-2$. Here $\overrightarrow{L} \in \mathcal{L}$. Assume $L_1 = A_1, \ldots, L_t = A_t, L_{t+1} \ne A_{t+1}, \ldots, L_k \ne A_k$ with no loss of generality. By (3) together with induction (G - L) is a complete k - t (≥ 2)-partite graph on [n] - L with partition $\{A_{t+1} - L_{t+1}, \ldots, A_k - L_k\}$ and order

$$2 \leq n - |L| \leq n - 1), \text{ we have}$$

$$\sum_{T \in S_G(\overrightarrow{L})} x_1^{d_T(1) - 1} \cdots x_n^{d_T(n) - 1}$$

$$= X_{L \cup A_1}^{\ell_1} \cdots X_{L \cup A_k}^{\ell_k} X(G - L)_{A_{t+1} - L_{t+1}}^{n_{t+1} - \ell_{t+1} - 1} \cdots$$

$$\cdots X(G - L)_{A_k - L_k}^{n_k - \ell_k - 1} X(G - L)^{k - t - 2}$$

$$= X_{L \cup A_1}^{\ell_1} \cdots X_{L \cup A_k}^{\ell_k} X_{L \cup A_{t+1}}^{n_{t+1} - \ell_{t+1} - 1} \cdots X_{L \cup A_k}^{n_k - \ell_k - 1} X_L^{k - t - 2}$$

$$= X_{L \cup A_1}^{n_1 - 1} \cdots X_{L \cup A_t}^{n_{t-1}} X_{L \cup A_{t+1}}^{n_{t+1} - 1} \cdots X_{L \cup A_k}^{n_k - 1} X_L^{k - 2}, \tag{5}$$

since $L \cup A_j = L \ (1 \le j \le t)$.

No $L_j = A_j$; not all $L_j = \phi$. Here $\overrightarrow{L} \in \mathcal{L}$. By (3) together with induction (G - L) is a complete $k \geq 2$ -partite graph on [n] - L with partition $\{A_1 - L_1, \ldots, A_k - L_k\}$ and order $2 \leq n - |L| \leq n - 1$, we have

$$\sum_{T \in \mathcal{S}_G(\overrightarrow{L})} x_1^{d_T(1)-1} \cdots x_n^{d_T(n)-1}$$

$$= X_{L_{l+l}A_1}^{\ell_1} \cdots X_{L_{l+l}A_k}^{\ell_k} X(G-L)_{A_1-L_1}^{n_1-\ell_1-1} \cdots X(G-L)$$

$$= X_{L\cup A_1}^{\ell_1} \cdots X_{L\cup A_k}^{\ell_k} X(G-L)_{A_1-L_1}^{n_1-\ell_1-1} \cdots X(G-L)_{A_k-L_k}^{n_k-\ell_k-1} X(G-L)^{k-2}$$

$$= X_{L\cup A_1}^{\ell_1} \cdots X_{L\cup A_k}^{\ell_k} X_{L\cup A_1}^{n_1-\ell_1-1} \cdots X_{L\cup A_k}^{n_k-\ell_k-1} X_L^{k-2}$$

$$= X_{L\cup A_1}^{n_1-1} \cdots X_{L\cup A_k}^{n_k-1} X_L^{k-2}.$$
(6)

We note that $\overrightarrow{L} \not\in \mathcal{L}$ implies $\overrightarrow{L} = \overrightarrow{A}$ or $L \supseteq [n] - A_j$ with $n_j \ge 2$ for some $1 \le j \le k$. In either case, $X_{L \cup A_1}^{n_1 - 1} \cdots X_{L \cup A_k}^{n_k - 1} X_L^{k - 2} = 0$ as $n \ge 3$. Conversely (see the second paragraph in the proof of Lemma 1), $X_{L \cup A_1}^{n_1 - 1} \cdots X_{L \cup A_k}^{n_k - 1} X_L^{k - 2} = 0$ implies $\overrightarrow{L} = \overrightarrow{A}$ or $L \supseteq [n] - A_j$ with $n_j \ge 2$ for some $1 \le j \le k$. In either case, $\overrightarrow{L} \not\in \mathcal{L}$.

Fix a spanning tree T of G with leaves $M_1 \cup \cdots \cup M_k$ where $M_j \subseteq A_j$ $(1 \leq j \leq k)$. Then, $T \in \mathcal{S}_G((L_1, \ldots, L_k))$ if and only if $L_j \subseteq M_j$ $(1 \leq j \leq k)$. Now,

$$\sum_{\substack{(L_1,\dots,L_k)\\L_j\subseteq M_j(1\leq j\leq k)}} (-1)^{|L_1|+\dots+|L_k|} = \left(\sum_{L_1\subseteq M_1} (-1)^{|L_1|}\right) \cdots \left(\sum_{L_k\subseteq M_k} (-1)^{|L_k|}\right)$$

$$= 0,$$
(7)

since $(M_1, \ldots, M_k) \neq (\phi, \ldots, \phi)$. Hence (7; inclusion-exclusion) gives

$$\sum_{\substack{\overrightarrow{M} = (M_1, \dots, M_k) \\ M_j \subseteq A_j (1 \le j \le k) \\ M = M_1 \cup \dots \cup M_k}} (-1)^{|M|} \sum_{T \in \mathcal{S}_G(\overrightarrow{M})} x_1^{d_T(1) - 1} \cdots x_n^{d_T(n) - 1} = 0.$$
 (8)

Consequently, (8), (4-6), our comments regarding \mathcal{L} and Lemma 1 give

$$p_{G}(x_{1},...,x_{n}) = \sum_{T \in S_{G}(\overrightarrow{\phi})} x_{1}^{d_{T}(1)-1} \cdots x_{n}^{d_{T}(n)-1}$$

$$= \sum_{\substack{\overrightarrow{M} = (M_{1},...,M_{k}) \neq \overrightarrow{\phi} \\ M_{j} \subseteq A_{j} (1 \le j \le k) \\ M = M_{1} \cup \cdots \cup M_{k}}} (-1)^{|M|+1} \sum_{T \in S_{G}(\overrightarrow{M})} x_{1}^{d_{T}(1)-1} \cdots x_{n}^{d_{T}(n)-1}$$

$$= \sum_{\substack{\overrightarrow{M} = (M_{1},...,M_{k}) \neq \overrightarrow{\phi} \\ M_{j} \subseteq A_{j} (1 \le j \le k) \\ M = M_{1} \cup \cdots \cup M_{k}}} (-1)^{|M|+1} X_{M \cup A_{1}}^{n_{1}-1} \cdots X_{M \cup A_{k}}^{n_{k}-1} X_{M}^{k-2}$$

$$= X_{A_{1}}^{n_{1}-1} \cdots X_{A_{k}}^{n_{k}-1} X^{k-2} . \blacksquare$$

Remark. Alternatively, the referee has suggested that it may be possible to give a bijective proof of Theorem 2 using a sign-reversing involution/pairing on the underlying k-tuples.

Let $\tau(G)$ denote the number of distinct spanning trees of a connected graph G. An immediate consequence of Theorem 2 is the formula for $\tau(K_{n_1,\ldots,n_k})$ given in Austin [1], Good [4], Eğecioğlu and Remmel [3] and Lewis [5].

Corollary 3. ([1], [3], [4], [5]) For $n = n_1 + \cdots + n_k$ where $n_1, \ldots, n_k \in \mathbb{P}$ and $k \geq 2$,

$$\tau(K_{n_1,\dots,n_k}) = n^{k-2} \prod_{j=1}^k (n - n_j)^{n_j - 1}.$$

Proof. Clearly,

$$\tau(K_{n_1,\ldots,n_k}) = p_G(1,\ldots,1) = n^{k-2} \prod_{j=1}^k (n-n_j)^{n_j-1}$$

where $G = G(A_1, ..., A_k) \cong K_{n_1, ..., n_k}$ is the graph in Theorem 2.

In particular, we have Cayley's theorem for $\tau(K_n)$.

Corollary 4. For $n \geq 2$,

$$\tau(K_n) = n^{n-2} \, .$$

Proof. Clearly,

$$\tau(K_n) = \tau(K_{\underbrace{1,\dots,1}}) = n^{n-2}. \quad \blacksquare$$

Another immediate consequence of Theorem 2 is the formula for $p_G(x_1, \ldots, x_n)$ given in Rényi [7] when G is the complete graph on [n]. This is also a direct consequence of the encoding in Prüfer [6].

Corollary 5. ([7]) For $n \geq 2$,

$$p_{K_n}(x_1,\ldots,x_n) = (x_1 + \cdots + x_n)^{n-2}$$
.

Proof. Theorem 2 when $G = G(\{1\}, ..., \{n\})$ is the complete graph on [n] gives

$$p_{K_n}(x_1,\ldots,x_n) = (x_1 + \cdots + x_n)^{n-2}$$
.

For a tree T on [n], let

$$w(T) = \sum_{i=1}^{n} i \, d_T(i)$$

and for a connected graph G on [n], let

$$q_G(x) = \sum_{T \text{ spanning tree of } G} x^{w(T)}$$
.

A further consequence of Theorem 2 is a formula for $q_G(x)$, similar to one given in Eğecioğlu and Remmel [3], when G is the graph in Theorem 2. Here $[0]_x = 0$ and $[s]_x = 1 + x + \cdots + x^{s-1}$ for $s \in \mathbb{P}$.

Corollary 6. For the graph G in Theorem 2,

$$q_G(x) = x^{\binom{n+1}{2}+n-2} [n]_x^{k-2} \prod_{j=1}^k \left\{ [s_{j-1}]_x + x^{s_j} [n-s_j]_x \right\}^{n_j-1}.$$

Proof. Clearly,

$$q_G(x) = x^{\binom{n+1}{2}} p_G(x^1, x^2, \dots, x^n)$$

$$= x^{\binom{n+1}{2}+n-2} [n]_x^{k-2} \prod_{j=1}^k \left\{ [s_{j-1}]_x + x^{s_j} [n-s_j]_x \right\}^{n_j-1}. \quad \blacksquare$$

Formulas for

$$\widetilde{q}_G(x) = \sum_{T ext{ spanning tree of } G} x^{\widetilde{w}(T)}$$

where

$$\widetilde{w}(T) = \sum_{i=1}^n f(i) \, d_T(i)$$

and f(i) is a (nonnegative integer-valued) function of i can immediately be given by finding $p_G(x^{f(1)}, x^{f(2)}, \dots, x^{f(n)})$.

Let $\tau(G; d_1, ..., d_n)$ denote the number of spanning trees T of a connected graph G with vertex set [n] where $d_T(i) = d_i$ $(1 \le i \le n)$. Our final result is a formula for $\tau(K_{n_1,...,n_k}; d_1, ..., d_n)$.

Corollary 7. For $n = n_1 + \cdots + n_k$ where $n_1, \ldots, n_k \in \mathbb{P}$ and $k \geq 2$,

$$\tau(K_{n_1,...,n_k}; d_1,...,d_n) = \sum \left\{ \prod_{i=1}^k \binom{n_i - 1}{d(j,1),...,d(j,n)} \right\} \binom{k-2}{d(k+1,1),...,d(k+1,n)}$$

where the sum is over all $(k+1) \times n$ matrices D = [d(j,i)] of nonnegative integers where $d(j,1) + \cdots + d(j,n)$ equals $n_j - 1$ $(1 \le j \le k)$ and k-2 (j = k+1); d(j,i) = 0 $(1 \le j \le k, s_{j-1} + 1 \le i \le s_j)$; and $d(1,i) + \cdots + d(k+1,i) = d_i - 1$ $(1 \le i \le n)$.

Proof. For the graph $G = G(A_1, ..., A_k) \cong K_{n_1,...,n_k}$ of Theorem 2, we have (as in (1))

$$\begin{split} &\tau(K_{n_1,\dots,n_k};d_1,\dots,d_n)\\ &= \text{coefficient of } x_1^{d_1-1}\cdots x_n^{d_n-1} \text{ in } p_G(x_1,\dots,x_n)\\ &= \sum \bigg\{\prod_{j=1}^k \binom{n_j-1}{d(j,1),\dots,d(j,n)}\bigg\}\binom{k-2}{d(k+1,1),\dots,d(k+1,n)} \end{split}$$

where the sum is over all $(k+1) \times n$ matrices D = [d(j,i)] of nonnegative integers where $d(j,1) + \cdots + d(j,n)$ equals $n_j - 1$ $(1 \le j \le k)$ and k-2 (j = k+1); d(j,i) = 0 $(1 \le j \le k, s_{j-1} + 1 \le i \le s_j)$; and $d(1,i) + \cdots + d(k+1,i) = d_i - 1$ $(1 \le i \le n)$.

Acknowledgement. I wish to thank the referee for his insightful and informative comments.

References

- [1] T.L. Austin, The enumeration of point labelled chromatic graphs and trees, Canadian Journal of Mathematics 12 (1960), no. 4, 535–545.
- [2] L. Comtet, "Advanced Combinatorics", D. Reidel, Boston, 1974.
- [3] O. Eğecioğlu and J.B. Remmel, A bijection for spanning trees of complete multipartite graphs, Congressus Numerantium 100 (1994), 225–243.
- [4] I.J. Good, The generalization of Lagrange's expansion and the enumeration of trees, *Proceedings of the Cambridge Philosophical Society* **61** (1965), 499–517.
- [5] R.P. Lewis, The number of spanning trees of a complete multipartite graph, *Discrete Mathematics* **197/198** (1999), 537–541.
- [6] H. Prüfer, Neuer beweis eines satzes über Pemutationen, Archiv für Mathematik und Physik 27 (1918), 742–744.
- [7] A. Rényi, On the enumeration of trees, in "Combinatorial Structures and Their Applications" (R. Guy, H. Hanani, N. Sauer and J. Schonheim, Eds.), pp. 355–360, Gordon and Breach, New York, 1970.
- [8] D.B. West, "Introduction to Graph Theory", Prentice-Hall, Upper Saddle River, NJ, 1996.