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Abstract. We spec ifi ca ll y g ive a one-stage and o ne erro r-co rrec tin g so lution 10 the well ­

know n ba lance sca le prob le m for a single co un1 erfe i1 co in. Our method can be ge nera li zed 

to the one- stage mulliple e rro r- correcting balance scale prob lem fo r a single co unterfe it co in. 

Our so lution for the o ne e rror-correcting case is optimal in many instances . In panic ul ar, for 

the cases of 12 and 39 co ins , our one-s tage and one e rror-correc ting so lutions use s ix and 

seven ba lance sca le compari sons respecti ve ly . Using the sphere pack ing bound , we show 1ha1 

these so luti ons are optima l . 

1. Introduction 

A survey of counterfeit coi n problems i g iven in [3] . One of the most 
famo us o f these can be sta ted as: 

Given a set of N coins, all but one of which has uniform 
weight , what is the best way to find the non-uniform (or 
counterfeit) coin? 

In thi s paper , we g ive a o ne-stage algorithm for thi s proble m that is as 
e lega nt as that g iven by Dyson in [2]. Moreover , our method can eas il y be 
aug me nted to an error-correcting o ne-stage algorithm . In a o ne-stage algo rithm , 
a ll ba la nce sca le comparisons (or weighings) must be planned in ad vance. In a 
multi-stage algorithm , the in fo rmati on gained fro m (some) initia l compari so ns 
is used to determine (some of) the latter comparisons. Our e 1Tor-free method is 
s imilar to that in [ 1]. Pelc considered the problem of unre li able balance scale 
compari sons in (5). H oweve r, the method in [5 ] uses a multi-s tage approach and 
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assumes that the non-uni fo rm coin is known at the outset to be heavy. Our one­
stage error-correcting a lgorithm doesn't require any prior knowledge about the 
non-uni fo nnity of the coun terfeit coin . 

We assume th at we have set of N co ins. T he goa l i to fi nd a one-stage 
algori thm that identifies the counterfe it and decides whether it is li ghte r or 
heav ier than the others are . We use the acronym OB(N) to denote the prob lem 
for N co ins . An OB(N) algorithm is a one-stage algori thm th at identifi es the 
state of the co ins. FIGURE 1 is compact representation of our so lutio n to 
08(12), the classic prob lem of 12 co ins. In Sectio n 2 , we show how to decode 
thi s representation. 

000 111 222 0 

0 12 0 12 0 12 

120 120 120 

F IGURE I 

OB( ) is an example of a search problem. If one thin ks about a search 
algorithm as a battery of tests (e.g ., balance scale compari sons), then no test in a 
one-stage search algorithm can be modified by the results of o ther test . Thus 
the order in whi ch the tests are performed is irre levant. Every para ll el algorithm 
is a one-stage a lgorithm . In general, one-stage a lgorithms are desirable when 
memory o r data storage capability is limited . Multi-stage search algorithms are 
dynamic procedures. They are not predetermined in as far as data from prev ious 
stages is used to define the current stage of the search. An example of a multi ­
stage algorithm is the process of di viding the coins in thirds and then , depending 
upon whi c h third conta ins the counterfe it co in , repeatin g thi s process on that 
third until the counterfe it is iso lated . 

2. The algorithm 

W e ass ume tha t all genuine coins weigh one ounce and that exactly one 
co in is counterfe it2 . To see how the matri x M 3 in FIG URE I is a so lutio n to 

OB ( l2), ide ntify the 12 coins with the columns of M3. M 3 is an example o f a 

search matrix and throughout this paper we will identi fy coins with co lumns of 
some search matrix. The jth co in for I ::; j ::; 12 is now the j th co lumn of M 3. 

The three rows of M3 describe how to we igh the co ins. For I ::; i ::; 3 , put the 

set of coins Li= {j: (M3) ij = I} on the left side o f the balance sca le and the set of 

coins Ri = {j : (M3) ij = 2} on the right side of the scale. Call this the ith 
comparison . We use bold-faced letters for vectors. We can now define a 3 x I 

2 We do this for simplicity. If there is no counterfeit , then the output vec tor o will be the 
constant zero vector. 
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ternary output vector o by setti ng Oi = 0 if the ith compari on is balanced, Oi = 
I if the ith comparison has the left s ide lower than the ri ght and fin a lly oi = 2 if 

the ith comparison has the left side higher than the ri ght. 

Because of the propertie of M3 (w hich are described below) only one of 

two things can happen. Either o is a co lumn of M 3 or -o mod 3 is a co lumn of 

M 3. Tf o is a co lumn of M3 , then the coin that doesn 't weigh one ounce (i .e., 
the cou nterfe it) is represented by o and it is heav ier than the others are. If -o is a 
co lumn of M3, then the coin that doe n't weigh o ne ou nce is represented by -o 
and it i li ghte r than the o thers are. See Example 1. 

Example l. Consider OB(l2). Using M 3 and the compari on procedure 

gi,en , bo,e, if the se,omh coin i Jighte,, then o = [i} Ob em that o i not 

, colomn of M3 , bot -o = [:) is. Tt's the smnth colomn of M3 Tho the 

3 x 12 matrix M 3 tell s u that OB( 12) can be solved with three compari ons. 

From Theorem 1 below, M 3 i an optimal solutio n to OB( l2) because it is an 

optimal inverse-free balanced ma trix. 

Definition I. We say that a non-empty matrix M 
(IFB) matrix if: 

an i.nver e-free balanced 

(a .) M i ternary and each row has the same number of Is a it has 2 , 
i.e., every row is balanced . 

(b.) If j is a co lumn of M then -j mod 3 isn 't a column of M . 
(c .) Each co lumn of M i di tinct. 
(d.) M doesn't conta in a co lumn of zeros . 

To so lve the general OB ( ) in n compari ons, we exhibit an TFB n x 
matrix M and we identify the co ins with the N co lu mns of M . Then fo r I ~ 1 

~ n, the ith comparison is: 

Put the set of coins Li = {j: Mu = l } on the left side of the balance 
scale and the set of coins Ri = {j: M u= 2} on the right side . 

The outcomes of these comparisons define an n x I ternary output 
vector o by se tting O j = 0 if the ith comparis n is balanced, Oj = I if the ith 

comparison has the left s ide lower than the right , and O i = 2 if the ith 

comparison has the left side higher th an the ri g ht. Because M is IFB , then 
exc lu ive ly o o r -o mod 3 is a column of M . If o i a co lum n of M , then the 
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co in that doesn 't weigh one ounce is represented by o and it is heav ier . If -o is a 
column of M , then the co in that doesn 't we igh one ounce is represented by -o 
and it is li g hte r. 

3. Why the algorithm works 

Suppose the jth coin is the counterfe it . If it's heavier, then every 
com parison in which j is on the left (right) [ne ither] side of the balance scale 
results in the left side being lower than (higher than) [level with] the right and 
the output is recorded as a 1 (2) [OJ. However, our matri x M puts j o n the left 
(right) [neither] s ide of the scale in the ith comparison exactly when Mij = 1 (2) 

[OJ . This implies tha t the jth column of Mis eq ual to o. 

On the o ther hand , suppose j is li ghter, then every compari son in which 
j is o n the left (right) [neither] side of the balance scale results in the left side 
being higher than (lower than) [l eve l wi th] the right and the output is recorded as 
a 2 ( 1) [O]. However, ou r matrix M puts j on the left (right) [neither] side of the 
scale in the ith comparison exact ly when Mij = 1 (2) [OJ . This implies that the 

jth co lumn of M11 is equal to -o mod 3. 

4. Constructing maximal IFB matrices 

Let µ (n) = max{N: M is an IFB n x N matri x} . If M is an n x µ (n) 

IFB matrix, then we say that Mis a max imal (or optimal) IFB matrix. Clearly 

an inverse-free ternary matrix3 with n rows has at most 3
11 

- 1 + I columns . 
2 

From here is straightforward to verify th at µ (n) = 3
11 

-3 . One might use this 
2 

observation to try to construct a max imal IFB by starting with the n x (3 11 
- 3) 

matrix that has a ll possible distinct and non-constant te rnary n-sequences as 
columns. Then from thi s matrix one could take and keep any column j , delete -
j and simpl y repeat thi s procedure unti l no columns are left. However, thi s 
method is s low, tedious, and it does n't a lways work. Below we give a recursive 
method of constructing max imal IFB matrices. 

Definition 2. Let B2 = [ 0 1 2
]. For n > 2, we define the n x 3n-l IFB 

I 2 0 

matri x B11 recu rsive ly in terms of 8 11 _ ,. For i = 0, 1, 2 and n > 2, let 8 11 _, ( i) be 

the n x 311
-

2 matrix deri ved from B 11 _ , by top row augmenting B 11 _ , with a row 

of all i's . Then B 11 is s imply the column augmentation of B11 _, (0), B 11 _, ( l ) and 

8 11_, (2). We use B 11 to construct our solution to OB (N). See FIGURE 2 . 

3 Just condition (b.) in Definition I . 
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B2 (0) B2 ( I) B2 (2) 

B2 = [ ~ 

I ~]. 
000 111 222 

2 B3 = 012 0 12 012 

120 120 120 

B3 (0) B3 ( 1) B3(2) 

000000000 I I I 11 l 111 222222222 
B4 = 0001 11 222 000 111 222 000 111222 

0120 12012 0120 I 2012 012012012 

120 120 120 120120120 120 120120 

FIGURE 2 
3 11 -3 Definition 3. Le t M2 = B2. For n > 2 , we inducti vely define the n x ----i-

matrix M 11 as the matrix described in FIGURE 3. 

I I I 

: : : M 
Bn-1 (0) : Bn- 1 ( I ) : Bn- 1 (2) : --------~~-~----- - -

120 120 120 

FIGURE 3 

311 - 2_3 . 
--

2
- 1, mes 

311 -3 
It fo llows from induction that Mn is an IFB matri x. Since it has 

2 
co lumns , then it is a maxima l IFB matrix. In Theorem I below , we show that 

Mn is an optimal solution to os( 3'~-
3
). M3 and M4 are depicted in FIGURES 

4 and 5 respect ively. 

FIGURE 4 
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[

000000000 : I 11 I I I I I I : 222222222 : 000 

000 111 222: 0001 11222: 00011 1222: 012 

0120 12012: 0120 120 12: 012012012: 120 
I I I 

)20120)20 I )20 120)20 I 120120 )20 I 120 

FIGURE 5 

5. Optimal general so lutions for OB (N) 

111 222 

012 0 12 

120 120 

120 120 

0 I 21 I 2 0 

I 2 0 . 

I 2 0 

Essentiall y by definition , every o lution to OB(N) ha an IFB matrix 
representation . So to find a solution for OB(N) , we need to find an IFB matri x 

with N columns. If N = 3
11

- 3 , then M 11 is an optimal solution because it is a 
2 

max imal TFB . Suppose that we have N co ins where N is a multiple of three and 

3
11

-
1
-3 < N ~ 3

11
-3_ We proceed to recursively define an n x N IFB 

2 2 
submatrix, M 11(N), of M 11 • 

Suppose n = 3. The possible values of N are 3, 6, 9, and 12 . Then 
one can directly veri fy that the submatrices of M3 depicted with boldfaced entries 
respectively in FIGURES 6 (a) , (b), (c) , and (d) are examples of IFB submatrices 
M3(N) with N = 3, 6, 9 and 12. 

[ 000 
111 222 0 1 

:] 
[ 000 

111 222 0 1 ~] 012 012 012 1 2 012 012 012 1 2 

120 120 120 1 2 120 120 120 1 2 

(a) (b) 

[ 000 
111 222 0 1 ~] [ 000 

111 222 0 1 

:] 012 012 012 1 2 012 012 012 1 2 

120 120 120 1 2 120 120 120 1 2 

(c) (d) 
FIGURE 6 
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11 3 11+] Now suppose that n > 3, 3 -3 < N ::; ~ and we have a M11 _ 1 (y) 
2 2 

for any y which is multiple of three and 3n-I -3 < y ::; 3
11 

-3 . Then 
2 2 

n-2 
N = k 11 _ 1 . 3n- I + I, k; 3i + k 0 3 where 1 ::; k; .,::3 for I ::; i ::; n - 1 and O ::; ko::; 

i= l 
n-2 

I. Let y = I, k; 3i + k0 3. We have three cases. ln each case, the submatri x 
i = l 

M 11(N) of Mn is depicted by the boldfaced pieces. See FIGURES 7, 8, and 9. 

If kn- I = 1, then let 

I 

B (2) : Mn-1 (y) 
n-1 I------------------

If kn- I = 2, then let 

If kn-I= 3, then let 

I 

I 

FIGURE 7 

FIGURE 8 

Bn-1 (0) : Bn-1 (1 ) 
Mn(N) = 

FIGURE 9 
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Tn each case, it is stra ightforward to veri fy that M 11(N) i an IFB matri x. 

We now have the fo llowing theorem . 

M 11 ( ) = M n. 

ote that if 

Theorem 1. Let N be a multiple of three. If 3
11

-
1
-3 < N ~ 3

11 
-3, then 

2 2 
M 11(N) is an optimal so lution to OB ( ) . 

Proof: By definiti on, an OB (N) solution must have an IFB matri x representation . 
Thus the shortes t so lutio n to OB( ) i an TFB matri x with o (N) = min{ m: M is 

an [FB m X N matri x} rows . Let 3n- l _3 < N ~ 3
11

-3 and suppose N is a 
2 2 

multiple o f three. Since M 11 ( ) is IFB n x N matri x and µ (n) = 3
11 
-3, we have 

2 

th at o (N) = n and thus M n(N) i optimal solution to OB( ). Q.E.D . 

Example 2. FIGURES 4 and 5 are o ptima l solutions to OB(l 2) and OB(39) 

respec ti vely . Suppose = 33 = 3(32) + 2(3 1). The n n = 4 , k n- I= 3 , and y = 6. 

Then M4(33) is the ubmatri x of M4 formed by the bold faced entries in 
FIGURE 10 . 

l 
000000000 : 11111111 J : 222222222 : 000 111 222 0 I 

!] 
000111222 : 000111222 : 000111222 012 012 012 I 2 

I I 
0120120]2 I 012012012 I 012012012 120 120 120 I 2 

I I 

120120120 I 120120120 I 120120120 120 120 120 I 2 

FIGURE 10 

Example 3. Suppose N = 51= 1(33) + 2(32)+1 (3)+ 3. Then n = 5, kn- I = I , 
and y = 24 . Then M5(5 I) and M4(24) are depicted by the bold faced entries in 
FIGURES 11 and I 2 respecti vely 

I 

I 

B 11 _ 1 (I ) : B 11 _ 1 (2) 

FIGURE 11 
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r 

000000000 : 1111 Jl I JI : 222222222 : 000 111 222 0 I 

lJ 

000 111 222: 000111222 : 000111222 : 0 12 012 012 2 
I I I 

0 120120 12 I 012012012 I 012012012 I 120 120 120 2 
I I I 

120 120 120 I 120120120 I 120120120 '. 120 120 120 I 2 

FIGU RE 12 

6. Error-correcting OB{N) 

For simplic ity , we ex pli c itl y d iscuss the ing le error case and we derive 
3n-32 3n _3 

resul t fo r = --
2

- ,-
2
- . Becau ewe are using the general theory of linear 

code it i straightforward to genera li ze our method to correct multipl e balance 
sca le errors and/or to consider other multiple of three as va lues of 

Suppose we have co in and an rFB matri x M that is used to search 
fo r co unte rfeit co in j. Assume that at most o ne error can occur in the 
compari sons. T hen the observed o utput vecto r o differs in at most o ne entry 
fro m j or -j where j is the co lumn M th at has been identi fied with co in j . If j i 
the o nl y co lumn with thi s property, the n we can find it by searching fo r the onl y 
column of M suc h that it or it inve r e differs from o in at most one place . To 
en ure that j is the only co lu mn with thi s property , then any two di stinct 
co lumn o f j I and j 2 of M mu t have HU I j 2) 2'. 3 and HU 1,-h ) 2'. 3 where 

H(j I j 2) is the number of e ntries where j I and h are different. H(j I j 2) is 

known as the Hamming disiance between j I and h . We write H+(M) 2'. 3 if 

H(j I j 2) 2'. 3 and HU 1 ,-h ) 2'. 3 for a ll pa ir o f columns U I j 2) of M . 

To have a one-stage o lution to OB(N) that can correct at mo t one 

error , we need an IFB matrix E with columns and H+(E) 2'. 3 . T he main idea 
behind construct ing such an TFB matri x E is to use linear a lgebra to a1:I 
redundancy rows to the matrices M n(N). We do thi s e enti ally by mu ltip lying 

by a suitab le generator matri x . See [4] . Howe e r , before we can extend our 
methods, we need to ensure that certain linear combination of the row vectors of 
ou r fFB matri e are balanced . To do thi s we need to defin e an [FB sub matrix of 
M n th at is nearly a ll of M n. Reca ll th at a te rnary row vector i balanced if and 
on ly if it has an equal numbe r of J and 2 . 

n 2 
Definition 4. Let L3 = 8 3. For n > 3, we define the n x ~ matrix Ln 

2 
recurs ively in term of Bn-1 · We defi ne L,, as the matrix in F IG URE 13. 
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l 
I I I j I I I B 

L = Bn _ , (0): B11 _ , ( l) : 8 11 _ 1(2): ---------'~-:::_
1 
_______ _ 

11 
: : : I 20 I 20 I 20 

: : : 3n - 3 tin1es 

FIGURE 13 

Note that L 11 i an IFB submatri x of M 11 . Ln is a ll but the las t three 

co lumns of M11 _ L4 is depicted in FIGURE 14. 

r

ooooooooo: 111111111 : 222222222: ooo 
000111222: 000111222 : 000111222: 012 

0 I 20 I 20 I 2 : 0 I 20 I 20 I 2 : 0 I 20 I 20 I 2 : 120 
I I I 

1201 20 120 I 120120120 I 120120120 I 120 

FIGURE 14 

1 II 

0 12 

120 

120 

222j 
0 12 · 

120 

120 

It is strai ghtforward to verify that any linear combination of the rows of 
8 11 over GF(3) is either a balanced or constant row vector. From thi s 

observation , we ha ve the fo llow ing tri vial resu lt. 

Proposition 1. Let R be a r x n ternary matri x whose first column is the 
constant I vector. Then the matrix product R · L n (over GF(3),) is a balanced 

matrix . 

Definition 5. Let R be a r x n ternary matri x. R is called a redundancy 
matrix if R has the fo ll ow ing properti es : 

(a.) The first co lumn consists entire ly of ls. 
(b .) No co lumn of R is a sca lar multiple of another co lum n of R over GF(3). 
(c.) Each co lumn has at least two non-zero entries. 

Our next result comes from the theory of linear codes. The statement is 
non-stand ard , but is specifi cally a imed at the prob lem at hand . 

Proposition 2. Let R be a r x n redundancy matrix , le t M be an 11 x N 
tern ary matrix and le t G be the (n + r) x n mat ri x tha t is the 11 x n identity 

matri x bottom row augmented with R . This is G(R) = [ i]. Then the matrix 

product E = G(R) · M has H(E) ~ 3. 

Proof (sketch). We fo llow the di cuss ion found in [4] . In [4], the codewords are 
thought of as row vectors, but we think of codewords (e .g., coins) as column 
vectors . So we need to consider the matri x transpose to apply the well-known 
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result found in [4] . By Theorem 7.6 in [4], a pari ty check matrix H fo r the 

linear code w ith generator matrix G(Rl = [In lR T] is H=[- RII,]. The 

conditions (b) and (c) in Definition 5 ensure that any two columns of H are 
linearly inde pendent . Then o ur res ult fo llows by applying Theorem 8.4 in [4]. 
Q .E.D . 

Let [L 11 I -L 11 ] be the matri x L 11 column augmented with all the 

in verses of columns of L 11 • Since L 11 i a n fFB , we have that [L 11 I - L 11 ] is a 

n x(3
11 

-3
2

) matrix . Now we can construct an IFB matrix E w ith H+(E) ~ 3. 
Let R be a r x n redundancy matri x. From Proposition 2, it follows that 
G(R) · [L 11 I - L 11 ] =[EI -E] has H( [E 1-E] ) ~ 3. From thi s it fo llows that 

H+(E) ~ 3. Since Ln i in verse-free, it fo llows that E is inverse-free. From 

Propos iti on 1. we have th at E is an TFB . T hus we have the fo ll owi ng result. 

Theorem 2. If R is a r x n redu ndancy matrix, then the matrix G(R) · L 11 = E 

i a n IFB matrix and has H+(E) ~ 3 . Thus E is a o ne-error correcting solutio n to 

OB( 311 _32 ) . 

2 

The immediate question is how many more comparisons are needed 
when one moves from the error- free OB(N) to the one error-correcting versio n of 

OB(N)? Since for a fixed r there are at most 3' -2r-I columns in a redundancy 
2 

matrix with r rows , we have: 

Corollary 1. If 3'-
1
- 2(r-I)-I < n ::, 3' -2 r- l , then we can use the result in 

2 2 
Theorem 2 to construct an IFB matri x E that is a solution to the one-error 

correcting version of OB( 3
11 

-3
2 

) using n + r compari sons . 
2 

It would be nice to be have a result like that in Theorem 2 w ith Mn in 

place of L 11 . We can get such a result , but it i tedio us to carefu lly delineate . 

We g ive a b rief description . Let [M 11 \ L 11 ] be the subm atrix that cons ists of 

the last three co lumns of M 11 • T he reason why we u ed Ln in read of Mn in 

Theorem 2 is because R · [M11 \ L 11 ] can have non-balanced rows even if R is a 

redu ndancy matri x . However, if any row in R · [M 11 \ L 11 ] is not balanced , then 

it must be constantly 2. Thus if we have a redundancy ma tri x R and the first 
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colum n of R -[M 11 \ L 11 ] has no entry which is 2, then G(R) · Mn = E ' is a 

o ne-stage, o ne-error correct in g solution to OB( 
311 

- 3 ). 
2 

::::::.,eLe~~ = [:e~e : re~ tl:e r~ e:TO~-c~lrrec~:: 
1 
s:IL:ti; n~O ,o~eto;~; 2:e ::: 

1 102 1 02212 

submatri x that consists of the first i columns o f R . Then each R(i) is a 
redundancy mat ri x . Consider M 3 and M4 . Since the first co lu mn of 

R(i) ·[Mi \ Li] for i = 3 , 4 doesn't contain a 2, we fo rm G(R( i))· M i = Ei 

FIGURES 15 and 16 are respectively the so lu tions. 

I 0 0 000 111 222 0 I 2 
0 I 0 

l l = 

0 12 0 1'.! 012 I 2 0 
[ 000 

111 222 0 I 
0 0 I 120 120 120 I 2 0 

G ( R(3)) · M3 = 01 2 012 012 I 2 
I 2 I 111 222 000012 

120 120 120 I 2 
I 0 I 120 20 1 0 12 I 0 2 

I I 0 0 12 120 20 1 I 0 2 

FIGURE 15 
I 0 0 0 

0 I 0 

: r=ooooo 111111111 222222222 000 111 222 

0 "j 0 0 I 
G ( R(4)) M 4= 0001 11222 000111222 000 111222 012 0 12 012 2 0 

0 0 0 I 
01201201 2 0 120 12012 0120 120 12 120 120 120 2 0 

2 I 
120 120 120 120120120 120 120120 120 120 120 2 0 

0 I 2 

I 0 2 

000000000 11111 I I 11 222222222 000 111 222 0 I 2 

000 111 222 000 111 222 000 111222 0 12 012 012 2 0 

0 120 120 12 0 120 120 12 012012012 120 120 120 I 2 0 

= 120120120 120 1201 20 1201 20 120 120 120 120 I 2 0 

102021210 210102021 02 1210 102 210 012 120 I O 2 

2220001 11 000 111222 111222000 000 111 222 0 I 2 

210021102 02 1102210 1022 1002 1 222 000 111 0 I 2 

FIGURE 16 

From the sphere pac king bound , we can see that our one-error correcting 
o ne-stage so lutions to OB( l2) and OB (39) are optimal. (See Theorem 2 .1 6 in 
[4] .) We consider 08( 12) . The arg ument for OB(39) is s imil ar. From the 
sphere packing bound , any ternary code C of length fi ve with H(C) ~3 can have 

at most 22 codewords. If we have an IFB matrix E with H+(E) 2'. 3, then the 
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code that consists of the columns of [ El - E) has a Hamming di stance of at least 

three. So by the above augment there can't be a 5 x 12 TFB matrix E with 
H+(E) 2: 3 , because this would imply the ex istence of ternary code C of length 
five with H(C) ~ 3 and IC I= 24. In other words, a one error-correcting solution 
to 08( 12) requires at least six comparisons . 
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