Sometimes Optimal One-Stage Balance Scale Searching with Errors

Charles Engelhart* and Anthony J. Macula*, ${ }^{\text { }}$
Department of Mathematics
SUNY Geneseo
Geneseo, NY 14454

This paper is dedicated to our former and very balanced Chair, Donald W. Trasher.

Abstract

We specifically give a one-stage and one error-correcting solution to the wellknown balance scale problem for a single counterfeit coin. Our method can be generalized to the one-stage multiple error-correcting balance scale problem for a single counterfeit coin. Our solution for the one error-correcting case is optimal in many instances. In particular, for the cases of 12 and 39 coins, our one-stage and one error-correcting solutions use six and seven balance scale comparisons respectively. Using the sphere packing bound, we show that these solutions are optimal.

1. Introduction

A survey of counterfeit coin problems is given in [3]. One of the most famous of these can be stated as:

Given a set of N coins, all but one of which has uniform weight, what is the best way to find the non-uniform (or counterfeit) coin?

In this paper, we give a one-stage algorithm for this problem that is as elegant as that given by Dyson in [2]. Moreover, our method can easily be augmented to an error-correcting one-stage algorithm. In a one-stage algorithm, all balance scale comparisons (or weighings) must be planned in advance. In a multi-stage algorithm, the information gained from (some) initial comparisons is used to determine (some of) the latter comparisons. Our error-free method is similar to that in [1]. Pelc considered the problem of unreliable balance scale comparisons in [5]. However, the method in [5] uses a multi-stage approach and

[^0]Subj. Class.: 05B20, 68P10, 90B40, 94B99
assumes that the non-uniform coin is known at the outset to be heavy. Our onestage error-correcting algorithm doesn't require any prior knowledge about the non-uniformity of the counterfeit coin.

We assume that we have set of N coins. The goal is to find a one-stage algorithm that identifies the counterfeit and decides whether it is lighter or heavier than the others are. We use the acronym $O B(N)$ to denote the problem for N coins. An $O B(N)$ algorithm is a one-stage algorithm that identifies the state of the coins. FIGURE 1 is compact representation of our solution to $\mathrm{OB}(12)$, the classic problem of 12 coins. In Section 2, we show how to decode this representation.

$$
M_{3}=\left[\begin{array}{llllll}
000 & 111 & 222 & 0 & 1 & 2 \\
012 & 012 & 012 & 1 & 2 & 0 \\
120 & 120 & 120 & 1 & 2 & 0
\end{array}\right]
$$

FIGURE 1

$\mathrm{OB}(\mathrm{N})$ is an example of a search problem. If one thinks about a search algorithm as a battery of tests (e.g., balance scale comparisons), then no test in a one-stage search algorithm can be modified by the results of other tests. Thus the order in which the tests are performed is irrelevant. Every parallel algorithm is a one-stage algorithm. In general, one-stage algorithms are desirable when memory or data storage capability is limited. Multi-stage search algorithms are dynamic procedures. They are not predetermined in as far as data from previous stages is used to define the current stage of the search. An example of a multistage algorithm is the process of dividing the coins in thirds and then, depending upon which third contains the counterfeit coin, repeating this process on that third until the counterfeit is isolated.

2. The algorithm

We assume that all genuine coins weigh one ounce and that exactly one coin is counterfeit ${ }^{2}$. To see how the matrix M_{3} in FIGURE 1 is a solution to $\mathrm{OB}(12)$, identify the 12 coins with the columns of $\mathrm{M}_{3} . \mathrm{M}_{3}$ is an example of a search matrix and throughout this paper we will identify coins with columns of some search matrix. The jth coin for $1 \leq \mathrm{j} \leq 12$ is now the j th column of M_{3}. The three rows of M_{3} describe how to weigh the coins. For $1 \leq i \leq 3$, put the set of coins $L_{i}=\left\{j:\left(M_{3}\right)_{i j}=1\right\}$ on the left side of the balance scale and the set of coins $\mathrm{R}_{\mathrm{i}}=\left\{\mathrm{j}:\left(\mathrm{M}_{3}\right)_{\mathrm{ij}}=2\right\}$ on the right side of the scale. Call this the ith comparison. We use bold-faced letters for vectors. We can now define a 3×1

[^1]ternary output vector \boldsymbol{o} by setting $\mathbf{o}_{\mathbf{i}}=0$ if the ith comparison is balanced, $\mathbf{o}_{\mathrm{i}}=$ 1 if the ith comparison has the left side lower than the right and finally $\mathbf{o}_{\boldsymbol{i}}=2$ if the ith comparison has the left side higher than the right.

Because of the properties of M_{3} (which are described below) only one of two things can happen. Either \mathbf{o} is a column of M_{3} or $-\mathbf{o} \bmod 3$ is a column of M_{3}. If \mathbf{o} is a column of M_{3}, then the coin that doesn't weigh one ounce (i.e., the counterfeit) is represented by \mathbf{o} and it is heavier than the others are. If $\mathbf{- 0}$ is a column of M_{3}, then the coin that doesn't weigh one ounce is represented by -o and it is lighter than the others are. See Example 1.

Example 1. Consider $\mathrm{OB}(12)$. Using M_{3} and the comparison procedure given above, if the seventh coin is lighter, then $\boldsymbol{o}=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$. Observe that \boldsymbol{o} is not a column of M_{3}, but $-\mathbf{o}=\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)$ is. It's the seventh column of M_{3}. Thus the 3×12 matrix M_{3} tells us that $\mathrm{OB}(12)$ can be solved with three comparisons. From Theorem 1 below, M_{3} is an optimal solution to $\mathrm{OB}(12)$ because it is an optimal inverse-free balanced matrix.

Definition 1. We say that a non-empty matrix M is an inverse-free balanced (IFB) matrix if:
(a.) M is ternary and each row has the same number of 1 s as it has 2 s , i.e., every row is balanced.
(b.) If \mathbf{j} is a column of M then $-\mathbf{j} \bmod 3$ isn't a column of M .
(c.) Each column of M is distinct.
(d.) M doesn't contain a column of zeros.

To solve the general $\mathrm{OB}(\mathrm{N})$ in n comparisons, we exhibit an IFB $\mathrm{n} \times \mathrm{N}$ matrix M and we identify the N coins with the N columns of M . Then for $1 \leq \mathrm{i}$ $\leq \mathrm{n}$, the ith comparison is:

Put the set of coins $L_{i}=\left\{j: M_{i j}=1\right\}$ on the left side of the balance scale and the set of coins $R_{i}=\left\{j: M_{i j}=2\right\}$ on the right side.

The outcomes of these comparisons define an $\mathrm{n} \times 1$ ternary output vector \boldsymbol{o} by setting $\mathbf{o}_{\mathbf{i}}=0$ if the ith comparison is balanced, $\mathbf{o}_{\mathbf{i}}=1$ if the ith comparison has the left side lower than the right, and $\mathbf{o}_{\mathbf{i}}=2$ if the ith comparison has the left side higher than the right. Because M is IFB, then exclusively \mathbf{o} or $-\mathbf{o} \bmod 3$ is a column of M. If \mathbf{o} is a column of M, then the
coin that doesn't weigh one ounce is represented by $\boldsymbol{0}$ and it is heavier. If - \boldsymbol{o} is a column of M , then the coin that doesn't weigh one ounce is represented by $-\mathbf{o}$ and it is lighter.

3. Why the algorithm works

Suppose the jth coin is the counterfeit. If it's heavier, then every comparison in which j is on the left (right) [neither] side of the balance scale results in the left side being lower than (higher than) [level with] the right and the output is recorded as a 1 (2) [0]. However, our matrix M puts j on the left (right) [neither] side of the scale in the ith comparison exactly when $\mathrm{M}_{\mathrm{ij}}=1$ (2) [0]. This implies that the jth column of \mathbf{M} is equal to $\mathbf{0}$.

On the other hand, suppose j is lighter, then every comparison in which j is on the left (right) [neither] side of the balance scale results in the left side being higher than (lower than) [level with] the right and the output is recorded as a 2 (1) [0]. However, our matrix M puts j on the left (right) [neither] side of the scale in the ith comparison exactly when $\mathrm{M}_{\mathrm{ij}}=1$ (2) [0]. This implies that the j th column of M_{n} is equal to -mod 3 .

4. Constructing maximal IFB matrices

Let $\mu(\mathrm{n})=\max \{\mathrm{N}: \mathrm{M}$ is an IFB $\mathrm{n} \times \mathrm{N}$ matrix $\}$. If M is an $\mathrm{n} \times \mu(\mathrm{n})$ IFB matrix, then we say that M is a maximal (or optimal) IFB matrix. Clearly an inverse-free ternary matrix ${ }^{3}$ with n rows has at most $\frac{3^{\mathrm{n}}-1}{2}+1$ columns. From here is straightforward to verify that $\mu(n)=\frac{3^{n}-3}{2}$. One might use this observation to try to construct a maximal IFB by starting with the $\mathrm{n} \times\left(3^{\mathrm{n}}-3\right)$ matrix that has all possible distinct and non-constant ternary n-sequences as columns. Then from this matrix one could take and keep any column \mathbf{j}, delete \mathbf{j} and simply repeat this procedure until no columns are left. However, this method is slow, tedious, and it doesn't always work. Below we give a recursive method of constructing maximal IFB matrices.

Definition 2. Let $B_{2}=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 0\end{array}\right]$. For $n>2$, we define the $n \times 3^{n-1}$ IFB matrix B_{n} recursively in terms of $\mathrm{B}_{\mathrm{n}-1}$. For $\mathrm{i}=0,1,2$ and $\mathrm{n}>2$, let $\mathrm{B}_{\mathrm{n}-1}$ (i) be the $n \times 3^{n-2}$ matrix derived from B_{n-1} by top row augmenting B_{n-1} with a row of all i 's. Then B_{n} is simply the column augmentation of $B_{n-1}(0), B_{n-1}(1)$ and $B_{n-1}(2)$. We use B_{n} to construct our solution to OB(N). See FIGURE 2.

[^2]\[

$$
\begin{gathered}
\mathrm{B}_{2}=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 0
\end{array}\right] .
\end{gathered}
$$ \mathrm{B}_{3}=\left[$$
\begin{array}{ccc}
\mathrm{B}_{2}(0) & \mathrm{B}_{2}(1) & \mathrm{B}_{2}(2) \\
000 & 111 & 222 \\
012 & 012 & 012 \\
120 & 120 & 120
\end{array}
$$\right] .
\]

FIGURE 2

Definition 3. Let $M_{2}=B_{2}$. For $n>2$, we inductively define the $n \times \frac{3^{n}-3}{2}$ matrix M_{n} as the matrix described in FIGURE 3 .

$$
\left[\begin{array}{c:l:l:c}
& & & M_{n-1} \\
B_{n-1}(0) & B_{n-1}(1) & B_{n-1}(2) & 120 \quad 120 \quad 120 \\
& & & \frac{3^{n-2}-3}{2} \text { times }
\end{array}\right]
$$

FIGURE 3

It follows from induction that M_{n} is an IFB matrix. Since it has $\frac{3^{n}-3}{2}$ columns, then it is a maximal IFB matrix. In Theorem 1 below, we show that M_{n} is an optimal solution to $\mathrm{OB}\left(\frac{3^{n}-3}{2}\right) \cdot \mathrm{M}_{3}$ and M_{4} are depicted in FIGURES 4 and 5 respectively.

$$
\mathbf{M}_{3}=\left[\begin{array}{l:l:l:l}
\mathrm{B}_{2}(0) & \mathrm{B}_{2}(1) & \mathrm{B}_{2}(2) & \mathrm{M}_{2} \\
\hdashline & & & 120
\end{array}\right]=\left[\begin{array}{llllll}
000 & 111 & 222 & 0 & 1 & 2 \\
012 & 012 & 012 & 1 & 2 & 0 \\
120 & 120 & 120 & 1 & 2 & 0
\end{array}\right] .
$$

FIGURE 4

$$
\begin{aligned}
& M_{4}=\left[\begin{array}{l:l:l:lllllll}
& B_{3}(0) & B_{3}(1) & B_{3}(2) & & M_{3} & & & \\
\hdashline & & & 120 & 120 & 120 & 120 & &
\end{array}\right]= \\
& {\left[\begin{array}{llllllllll}
000000000 & 111111111 & 222222222 & 000 & 111 & 222 & 0 & 1 & 2 \\
000111222 & 000111222 & 000111222 & 012 & 012 & 012 & 1 & 2 & 0 \\
012012012 & 012012012 & 012012012 & 120 & 120 & 120 & 1 & 2 & 0 \\
120120120 & 120120120 & 120120120 & 120 & 120 & 120 & 1 & 2 & 0
\end{array}\right] .}
\end{aligned}
$$

FIGURE 5

5. Optimal general solutions for $\mathrm{OB}(\mathrm{N})$

Essentially by definition, every solution to $\mathrm{OB}(\mathrm{N})$ has an IFB matrix representation. So to find a solution for $\mathrm{OB}(\mathrm{N})$, we need to find an IFB matrix with N columns. If $N=\frac{3^{n}-3}{2}$, then M_{n} is an optimal solution because it is a maximal IFB. Suppose that we have N coins where N is a multiple of three and $\frac{3^{n-1}-3}{2}<N \leq \frac{3^{n}-3}{2}$. We proceed to recursively define an $n \times N$ IFB submatrix, $M_{n}(N)$, of M_{n}.

Suppose $n=3$. The possible values of N are $3,6,9$, and 12 . Then one can directly verify that the submatrices of M_{3} depicted with boldfaced entries respectively in FIGURES 6 (a), (b), (c), and (d) are examples of IFB submatrices $\mathrm{M}_{3}(\mathrm{~N})$ with $\mathrm{N}=3,6,9$ and 12 .
$\left[\begin{array}{llllll}000 & 111 & 222 & \mathbf{0} & \mathbf{1} & \mathbf{2} \\ 012 & 012 & 012 & \mathbf{1} & \mathbf{2} & \mathbf{0} \\ 120 & 120 & 120 & \mathbf{1} & \mathbf{2} & \mathbf{0}\end{array}\right]$
(a)
(c)
$\left[\begin{array}{llllll}\mathbf{0 0 0} & \mathbf{1 1 1} & \mathbf{2 2 2} & 0 & 1 & 2 \\ \mathbf{0 1 2} & \mathbf{0 1 2} & \mathbf{0 1 2} & 1 & 2 & 0 \\ \mathbf{1 2 0} & \mathbf{1 2 0} & \mathbf{1 2 0} & 1 & 2 & 0\end{array}\right]$
$\left[\begin{array}{llllll}\mathbf{0 0 0} & \mathbf{1 1 1} & \mathbf{2 2 2} & 0 & 1 & 2 \\ \mathbf{0 1 2} & \mathbf{0 1 2} & \mathbf{0 1 2} & 1 & 2 & 0 \\ \mathbf{1 2 0} & \mathbf{1 2 0} & \mathbf{1 2 0} & 1 & 2 & 0\end{array}\right]$
$\left[\begin{array}{llllll}000 & \mathbf{1 1 1} & \mathbf{2 2 2} & 0 & 1 & 2 \\ 012 & \mathbf{0 1 2} & \mathbf{0 1 2} & 1 & 2 & 0 \\ 120 & \mathbf{1 2 0} & \mathbf{1 2 0} & 1 & 2 & 0\end{array}\right]$
(b)
$\left[\begin{array}{llllll}000 & 111 & 222 & 0 & 1 & 2 \\ 012 & 012 & 012 & 1 & 2 & 0 \\ 120 & 120 & 120 & 1 & 2 & 0\end{array}\right]$
(d)

FIGURE 6

Now suppose that $\mathrm{n}>3, \frac{3^{\mathrm{n}}-3}{2}<\mathrm{N} \leq \frac{3^{\mathrm{n}+1}-3}{2}$ and we have a $\mathrm{M}_{\mathrm{n}-1}(\mathrm{y})$ for any y which is multiple of three and $\frac{3^{n-1}-3}{2}<\mathrm{y} \leq \frac{3^{n}-3}{2}$. Then $\mathrm{N}=\mathrm{k}_{\mathrm{n}-1} \cdot 3^{\mathrm{n}-1}+\sum_{\mathrm{i}=1}^{\mathrm{n}-2} \mathrm{k}_{\mathrm{i}} 3^{\mathrm{i}}+\mathrm{k}_{0} 3$ where $1 \leq \mathrm{k}_{\mathrm{i}} \leq 3$ for $1 \leq \mathrm{i} \leq \mathrm{n}-1$ and $0 \leq \mathrm{k}_{0} \leq$ 1. Let $y=\sum_{i=1}^{n-2} k_{i} 3^{i}+k_{0} 3$. We have three cases. In each case, the submatrix $M_{n}(N)$ of M_{n} is depicted by the boldfaced pieces. See FIGURES 7, 8, and 9 .

If $k_{n-1}=1$, then let

$$
\mathbf{M}_{\mathrm{n}}(\mathrm{~N})=\left[\begin{array}{c:c:c:c}
\mathbf{B}_{\mathbf{n}-\mathbf{1}}(\mathbf{0}) & \mathrm{B}_{\mathrm{n}-1}(1) & \mathrm{B}_{\mathrm{n}-1}(2) & \mathbf{M}_{\mathbf{n - 1}}(\mathbf{y}) \\
& & & \mathbf{1 2 0} \\
& & \mathbf{1 2 0} \quad \mathbf{1 2 0} \\
& & & \frac{y}{3} \text { times }
\end{array}\right]
$$

FIGURE 7

If $\mathrm{k}_{\mathrm{n}-1}=2$, then let

$$
M_{n}(N)=\left[\begin{array}{c:c:c:c}
& & & \mathbf{M}_{n-1}(\mathbf{y}) \\
B_{n-1}(0) & \mathbf{B}_{n-1}(\mathbf{1}) & \mathbf{B}_{n-1}(2) & \mathbf{1 2 0} \\
& & \mathbf{1 2 0} \quad \mathbf{1 2 0} \\
& & & \frac{y}{3} \text { times }
\end{array}\right]
$$

FIGURE 8
If $\mathrm{k}_{\mathrm{n}-1}=3$, then let

$$
M_{n}(N)=\left[\begin{array}{c:c:c:c}
\mathbf{B}_{\mathrm{n}-1}(0) & \mathbf{B}_{\mathrm{n}-1}(\mathbf{1}) & \mathbf{B}_{\mathrm{n}-1}(2) & \mathbf{M}_{\mathrm{n}-1}(\mathbf{y}) \\
& & & \mathbf{1 2 0} \quad \mathbf{1 2 0} \quad \mathbf{1 2 0} \\
& & & \frac{y}{3} \text { times }
\end{array}\right] .
$$

FIGURE 9

In each case, it is straightforward to verify that $\mathrm{M}_{\mathrm{n}}(\mathrm{N})$ is an IFB matrix.
We now have the following theorem. Note that if $N=\frac{3^{n}-3}{2}$, then $M_{n}(N)=M_{n}$.

Theorem 1. Let N be a multiple of three. If $\frac{3^{n-1}-3}{2}<N \leq \frac{3^{n}-3}{2}$, then $\mathrm{M}_{\mathrm{n}}(\mathrm{N})$ is an optimal solution to $\mathrm{OB}(\mathrm{N})$.

Proof: By definition, an $\mathrm{OB}(\mathrm{N})$ solution must have an IFB matrix representation. Thus the shortest solution to $\mathrm{OB}(\mathrm{N})$ is an IFB matrix with $\sigma(\mathrm{N})=\min \{\mathrm{m}: \mathrm{M}$ is an IFB $\mathrm{m} \times \mathrm{N}$ matrix $\}$ rows. Let $\frac{3^{\mathrm{n}-1}-3}{2}<\mathrm{N} \leq \frac{3^{\mathrm{n}}-3}{2}$ and suppose N is a multiple of three. Since $M_{n}(N)$ is IFB $n \times N$ matrix and $\mu(n)=\frac{3^{n}-3}{2}$, we have that $\sigma(N)=n$ and thus $M_{n}(N)$ is optimal solution to $O B(N)$. Q.E.D.

Example 2. FIGURES 4 and 5 are optimal solutions to $\mathrm{OB}(12)$ and $\mathrm{OB}(39)$ respectively. Suppose $N=33=3\left(3^{2}\right)+2\left(3^{1}\right)$. Then $n=4, k_{n-1}=3$, and $y=6$. Then $M_{4}(33)$ is the submatrix of M_{4} formed by the bold faced entries in FIGURE 10.

$$
\left[\begin{array}{l:l:l:llllll}
\mathbf{0 0 0 0 0 0 0 0 0} & \mathbf{1 1 1 1 1 1 1 1 1 1} & \mathbf{2 2 2 2 2 2 2 2 2} & 000 & \mathbf{1 1 1} & \mathbf{2 2 2} & 0 & 1 & 2 \\
\mathbf{0 0 0 1 1 1 2 2 2} & \mathbf{0 0 0 1 1 1 2 2 2} & \mathbf{0 0 0 1 1 1 2 2 2} & 012 & \mathbf{0 1 2} & \mathbf{0 1 2} & 1 & 2 & 0 \\
\mathbf{0 1 2 0 1 2 0 1 2} & \mathbf{0 1 2 0 1 2 0 1 2} & \mathbf{0 1 2 0 1 2 0 1 2} & 120 & \mathbf{1 2 0} & \mathbf{1 2 0} & 1 & 2 & 0 \\
\mathbf{1 2 0 1 2 0 1 2 0} & \mathbf{1 2 0 1 2 0 1 2 0} & \mathbf{1 2 0 1 2 0 1 2 0} & 120 & \mathbf{1 2 0} & \mathbf{1 2 0} & 1 & 2 & 0
\end{array}\right]
$$

FIGURE 10

Example 3. Suppose $\mathrm{N}=51=1\left(3^{3}\right)+2\left(3^{2}\right)+1(3)+3$. Then $\mathrm{n}=5, \mathrm{k}_{\mathrm{n}-1}=1$, and $y=24$. Then $M_{5}(51)$ and $M_{4}(24)$ are depicted by the bold faced entries in FIGURES 11 and 12 respectively

$$
\left[\begin{array}{c:c:c:c}
\mathbf{B}_{4}(\mathbf{0}) & \mathrm{B}_{\mathrm{n}-1}(1) & \mathbf{B}_{\mathrm{n}-1}(2) & \mathbf{M}_{4}(\mathbf{2 4}) \\
& & & \mathbf{1 2 0} \quad \mathbf{1 2 0} \quad \mathbf{1 2 0}
\end{array}\right]
$$

FIGURE 11

$$
\left[\begin{array}{l:l:l:llllll}
000000000 & \mathbf{1 1 1 1 1 1 1 1 1} & \mathbf{2 2 2 2 2 2 2 2} & 000 & \mathbf{1 1 1} & \mathbf{2 2 2} & 0 & 1 & 2 \\
000111222 & \mathbf{0 0 0 1 1 1 2 2 2} & \mathbf{0 0 0 1 1 1 2 2 2} & 012 & \mathbf{0 1 2} & \mathbf{0 1 2} & 1 & 2 & 0 \\
012012012 & \mathbf{0 1 2 0 1 2 0 1 2} & \mathbf{0 1 2 0 1 2 0 1 2} & 120 & \mathbf{1 2 0} & \mathbf{1 2 0} & 1 & 2 & 0 \\
120120120 & \mathbf{1 2 0 1 2 0 1 2 0} & \mathbf{1 2 0 1 2 0 1 2 0} & 120 & \mathbf{1 2 0} & \mathbf{1 2 0} & 1 & 2 & 0
\end{array}\right]
$$

FIGURE 12

6. Error-correcting $\mathrm{OB}(\mathrm{N})$

For simplicity, we explicitly discuss the single error case and we derive results for $\mathrm{N}=\frac{3^{\mathrm{n}}-3^{2}}{2}, \frac{3^{\mathrm{n}}-3}{2}$. Because we are using the general theory of linear codes it is straightforward to generalize our method to correct multiple balance scale errors and/or to consider other multiples of three as values of N .

Suppose we have N coins and an IFB matrix M that is used to search for counterfeit coin j. Assume that at most one error can occur in the comparisons. Then the observed output vector \mathbf{o} differs in at most one entry from \mathbf{j} or $\mathbf{- j}$ where \mathbf{j} is the column M that has been identified with coin \mathbf{j}. If \mathbf{j} is the only column with this property, then we can find it by searching for the only column of M such that it or its inverse differs from \boldsymbol{o} in at most one place. To ensure that \mathbf{j} is the only column with this property, then any two distinct columns of \mathbf{j}_{1} and \mathbf{j}_{2} of M must have $\mathrm{H}\left(\mathbf{j}_{1}, \mathbf{j}_{2}\right) \geq 3$ and $\mathrm{H}\left(\mathbf{j}_{1},-\mathbf{j}_{2}\right) \geq 3$ where $\mathrm{H}\left(\mathbf{j}_{1} \mathbf{j}_{2}\right)$ is the number of entries where \mathbf{j}_{1} and \mathbf{j}_{2} are different. $\mathrm{H}\left(\mathbf{j}_{1} \mathbf{j}_{2}\right)$ is known as the Hamming distance between \mathbf{j}_{1} and \mathbf{j}_{2}. We write $\mathrm{H}^{+}(\mathrm{M}) \geq 3$ if $H\left(\mathbf{j}_{1}, \mathbf{j}_{2}\right) \geq 3$ and $H\left(\mathbf{j}_{1},-\mathbf{j}_{2}\right) \geq 3$ for all pairs of columns $\left(\mathbf{j}_{1}, \mathbf{j}_{2}\right)$ of M .

To have a one-stage solution to $\mathrm{OB}(\mathrm{N})$ that can correct at most one error, we need an IFB matrix E with N columns and $\mathrm{H}^{+}(\mathrm{E}) \geq 3$. The main idea behind constructing such an IFB matrix E is to use linear algebra to add redundancy rows to the matrices $\mathrm{M}_{\mathrm{n}}(\mathrm{N})$. We do this essentially by multiplying by a suitable generator matrix. See [4]. However, before we can extend our methods, we need to ensure that certain linear combinations of the row vectors of our IFB matrices are balanced. To do this we need to define an IFB submatrix of M_{n} that is nearly all of M_{n}. Recall that a ternary row vector is balanced if and only if it has an equal number of 1 s and 2 s .

Definition 4. Let $L_{3}=B_{3}$. For $n>3$, we define the $n \times \frac{3^{n}-3^{2}}{2}$ matrix L_{n} recursively in terms of $\mathrm{B}_{\mathrm{n}-1}$. We define L_{n} as the matrix in FIGURE 13.

$$
\mathrm{L}_{\mathrm{n}}=\left[\begin{array}{c:c:c:c}
& & & \mathrm{B}_{\mathrm{n}-1}(0) \\
& \mathrm{B}_{\mathrm{n}-1}(1) & \mathrm{B}_{\mathrm{n}-1}(2) & -120 \\
& & & 120 \quad 120 \\
& & & 3^{\mathrm{n}-3} \text { times }
\end{array}\right]
$$

FIGURE 13
Note that L_{n} is an IFB submatrix of $M_{n} . L_{n}$ is all but the last three columns of $\mathrm{M}_{\mathrm{n}} . \mathrm{L}_{4}$ is depicted in FIGURE 14.
$\left[\begin{array}{l:l:l:lll}000000000 & 111111111 & 222222222 & 000 & 111 & 222 \\ 000111222 & 000111222 & 000111222 & 012 & 012 & 012 \\ 012012012 & 012012012 & 012012012 & 120 & 120 & 120 \\ 120120120 & 120120120 & 120120120 & 120 & 120 & 120\end{array}\right]$.

FIGURE 14
It is straightforward to verify that any linear combination of the rows of B_{n} over $\mathrm{GF}(3)$ is either a balanced or constant row vector. From this observation, we have the following trivial result.

Proposition 1. Let R be a $\mathrm{r} \times \mathrm{n}$ ternary matrix whose first column is the constant 1 vector. Then the matrix product $R \cdot L_{n}$ (over $G F(3)$,) is a balanced matrix.

Definition 5. Let R be a $\mathrm{r} \times \mathrm{n}$ ternary matrix. R is called a redundancy matrix if R has the following properties:
(a.) The first column consists entirely of 1 s .
(b.) No column of R is a scalar multiple of another column of R over $\mathrm{GF}(3)$.
(c.) Each column has at least two non-zero entries.

Our next result comes from the theory of linear codes. The statement is non-standard, but is specifically aimed at the problem at hand.

Proposition 2. Let R be a $r \times n$ redundancy matrix, let M be an $n \times N$ ternary matrix and let G be the $(\mathrm{n}+\mathrm{r}) \times \mathrm{n}$ matrix that is the $\mathrm{n} \times \mathrm{n}$ identity matrix bottom row augmented with R. This is $G(R)=\left[\frac{I_{n}}{R}\right]$. Then the matrix product $\mathrm{E}=\mathrm{G}(\mathrm{R}) \cdot \mathrm{M}$ has $\mathrm{H}(\mathrm{E}) \geq 3$.

Proof (sketch). We follow the discussion found in [4]. In [4], the codewords are thought of as row vectors, but we think of codewords (e.g., coins) as column vectors. So we need to consider the matrix transpose to apply the well-known
results found in [4]. By Theorem 7.6 in [4], a parity check matrix H for the linear code with generator matrix $G(R)^{T}=\left[I_{n} \mid R^{T}\right]$ is $H=\left[-R \mid I_{r}\right]$. The conditions (b) and (c) in Definition 5 ensure that any two columns of H are linearly independent. Then our result follows by applying Theorem 8.4 in [4]. Q.E.D.

Let $\left[L_{n} \mid-L_{n}\right]$ be the matrix L_{n} column augmented with all the inverses of columns of L_{n}. Since L_{n} is an IFB, we have that $\left[L_{n} \mid-L_{n}\right]$ is a $\mathrm{n} \times\left(3^{\mathrm{n}}-3^{2}\right)$ matrix. Now we can construct an IFB matrix E with $\mathrm{H}^{+}(\mathrm{E}) \geq 3$. Let R be a $\mathrm{r} \times \mathrm{n}$ redundancy matrix. From Proposition 2, it follows that $G(R) \cdot\left[L_{n} \mid-L_{n}\right]=[E \mid-E]$ has $H([E \mid-E]) \geq 3$. From this it follows that $H^{+}(E) \geq 3$. Since L_{n} is inverse-free, it follows that E is inverse-free. From Proposition 1, we have that E is an IFB. Thus we have the following result.

Theorem 2. If R is a $r \times n$ redundancy matrix, then the matrix $G(R) \cdot L_{n}=E$ is an IFB matrix and has $\mathrm{H}^{+}(\mathrm{E}) \geq 3$. Thus E is a one-error correcting solution to $\mathrm{OB}\left(\frac{3^{n}-3^{2}}{2}\right)$.

The immediate question is how many more comparisons are needed when one moves from the error-free $\mathrm{OB}(\mathrm{N})$ to the one error-correcting version of $O B(N)$? Since for a fixed r there are at most $\frac{3^{r}-2 r-1}{2}$ columns in a redundancy matrix with r rows, we have:

Corollary 1. If $\frac{3^{r-1}-2(\mathrm{r}-1)-1}{2}<\mathrm{n} \leq \frac{3^{\mathrm{r}}-2 \mathrm{r}-1}{2}$, then we can use the result in Theorem 2 to construct an IFB matrix E that is a solution to the one-error correcting version of $\mathrm{OB}\left(\frac{3^{\mathrm{n}}-3^{2}}{2}\right)$ using $\mathrm{n}+\mathrm{r}$ comparisons.

It would be nice to be have a result like that in Theorem 2 with M_{n} in place of L_{n}. We can get such a result, but it is tedious to carefully delineate. We give a brief description. Let $\left[M_{n} \backslash L_{n}\right]$ be the submatrix that consists of the last three columns of M_{n}. The reason why we used L_{n} instead of M_{n} in Theorem 2 is because $R \cdot\left[M_{n} \backslash L_{n}\right]$ can have non-balanced rows even if R is a redundancy matrix. However, if any row in $R \cdot\left[M_{n} \backslash L_{n}\right]$ is not balanced, then it must be constantly 2 . Thus if we have a redundancy matrix R and the first
column of $R \cdot\left[M_{n} \backslash L_{n}\right]$ has no entry which is 2 , then $G(R) \cdot M_{n}=E^{\prime}$ is a one-stage, one-error correcting solution to $\mathrm{OB}\left(\frac{3^{\mathrm{n}}-3}{2}\right)$.
Example 4. Here are the one error-correcting solutions of $\mathrm{OB}(12)$ and $\mathrm{OB}(39)$. Let $\mathrm{R}=\left[\begin{array}{llllllllll}1 & 2 & 1 & 1 & 1 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 2 & 2 & 2 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 2 & 1 & 0 & 2 & 2 & 1 & 2\end{array}\right]$. For $1 \leq \mathrm{i} \leq 10$, let $\mathrm{R}(\mathrm{i})$ be the submatrix that consists of the first i columns of R. Then each $R(i)$ is a redundancy matrix. Consider M_{3} and M_{4}. Since the first column of $R(i) \cdot\left[M_{i} \backslash L_{i}\right]$ for $i=3,4$ doesn't contain a 2 , we form $G(R(i)) \cdot M_{i}=E_{i}{ }^{\prime}$. FIGURES 15 and 16 are respectively the solutions.
$\mathrm{G}(\mathrm{R}(3)) \cdot \mathrm{M}_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \hline 1 & 2 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]\left[\begin{array}{llllll}000 & 111 & 222 & 0 & 1 & 2 \\ 012 & 012 & 012 & 1 & 2 & 0 \\ 120 & 120 & 120 & 1 & 2 & 0\end{array}\right]=\left[\begin{array}{llllll}000 & 111 & 222 & 0 & 1 & 2 \\ 012 & 012 & 012 & 1 & 2 & 0 \\ 120 & 120 & 120 & 1 & 2 & 0 \\ \hline 111 & 222 & 000 & 0 & 1 & 2 \\ 120 & 201 & 012 & 1 & 0 & 2 \\ 012 & 120 & 201 & 1 & 0 & 2\end{array}\right]$.
FIGURE 15
$\begin{aligned} \mathrm{G}(\mathrm{R}(4)) \mathrm{M}_{4} & =\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 0 & 1 & 2 \\ 1 & 1 & 0 & 2\end{array}\right]\left[\begin{array}{lllllllllll}000000000 & 111111111 & 222222222 & 000 & 111 & 222 & 0 & 1 & 2 \\ 00000000 & 1111111111 & 222222222 & 000111222 & 000111222 & 012 & 012 & 012 & 1 & 2 & 0 \\ 000 & 111 & 222 & 0 & 1 & 2 \\ 012012012 & 012012012 & 012012012 & 120 & 120 & 120 & 1 & 2 & 0 \\ 120120120 & 120120120 & 120120120 & 120 & 120 & 120 & 1 & 2 & 0\end{array}\right] \\ & =\left[\begin{array}{llllllllll}000011222 & 000111222 & 000111222 & 012 & 012 & 012 & 1 & 2 & 0 \\ 0001120 & 120 & 120 & 120 & 1 & 2 & 0 \\ 012012012 & 012012012 & 012012012 & 120 & 120 & 120 & 120 & 120 & 120 & 120 \\ 120120120 & 120120120 & 120120120 & 120 & 120 & 120 & 1 & 2 & 0 \\ 102021210 & 210102021 & 021210102 & 210 & 012 & 120 & 1 & 0 & 2 \\ 222000111 & 000111222 & 111222000 & 000 & 111 & 222 & 0 & 1 & 2 \\ 210021102 & 021102210 & 102210021 & 222 & 000 & 111 & 0 & 1 & 2\end{array}\right] .\end{aligned}$
FIGURE 16
From the sphere packing bound, we can see that our one-error correcting one-stage solutions to $\mathrm{OB}(12)$ and $\mathrm{OB}(39)$ are optimal. (See Theorem 2.16 in [4].) We consider $\mathrm{OB}(12)$. The argument for $\mathrm{OB}(39)$ is similar. From the sphere packing bound, any ternary code C of length five with $H(C) \geq 3$ can have at most 22 codewords. If we have an IFB matrix E with $\mathrm{H}^{+}(\mathrm{E}) \geq 3$, then the
code that consists of the columns of $[\mathrm{E} \mid-\mathrm{E}]$ has a Hamming distance of at least three. So by the above augment there can't be a 5×12 IFB matrix E with $\mathrm{H}^{+}(\mathrm{E}) \geq 3$, because this would imply the existence of ternary code C of length five with $\mathrm{H}(\mathrm{C}) \geq 3$ and $|\mathrm{C}|=24$. In other words, a one error-correcting solution to $\mathrm{OB}(12)$ requires at least six comparisons.

7. References

1. M. Aigner, Combinatorial Search, Wiley, (1988)
2. F. J. Dyson, Note 1931--The problem of the pennies, Math. Gaz. 30, 231-234 (1946)
3. R. K. Guy and R. J. Nowakowski, Coin-weighing problems, American Mathematics Monthly, 102, no. 2, 164-167, (1995)
4. R. Hill, A First Course in Coding Theory, Oxford, (1986)
5. A. Pelc, Detecting a counterfeit coin with unreliable weighings, Ars Combinatoria 27,181-192, (1989)

[^0]: * Both authors were partially supported by NSF-DMS 9973252.
 ${ }^{1}$ Correspondence, macula@geneseo.edu
 Keywords: balance scale search, error-correction, unreliable weighings, counterfeit coin, one-stage algorithm, nonadaptive

[^1]: 2 We do this for simplicity. If there is no counterfeit, then the output vector \boldsymbol{o} will be the constant zero vector.

[^2]: 3 Just condition (b.) in Definition 1.

