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Abstract. We specifically give a one-stage and one error-correcting solution to the well-
known balance scale problem for a single counterfeit coin. Our method can be generalized
to the one-stage multiple error-correcting balance scale problem for a single counterfeit coin.
Our solution for the one error-correcting case is optimal in many instances. In particular, for
the cases of 12 and 39 coins, our one-stage and one error-correcting solutions use six and
seven balance scale comparisons respectively. Using the sphere packing bound, we show that

these solutions are optimal.
1. Introduction

A survey of counterfeit coin problems is given in [3]. One of the most
famous of these can be stated as:

Given a set of N coins, all but one of which has uniform
weight, what is the best way to find the non-uniform (or
counterfeit) coin?

In this paper, we give a one-stage algorithm for this problem that is as
elegant as that given by Dyson in [2]. Moreover, our method can easily be
augmented to an error-correcting one-stage algorithm. In a one-stage algorithm,
all balance scale comparisons (or weighings) must be planned in advance. In a
multi-stage algorithm, the information gained from (some) initial comparisons
is used to determine (some of) the latter comparisons. Our error-free method is
similar to that in [1]. Pelc considered the problem of unreliable balance scale
comparisons in [5]. However, the method in [5] uses a multi-stage approach and
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assumes that the non-uniform coin is known at the outset to be heavy. Our one-
stage error-correcting algorithm doesn't require any prior knowledge about the
non-uniformity of the counterfeit coin.

We assume that we have set of N coins. The goal is to find a one-stage
algorithm that identifies the counterfeit and decides whether it is lighter or
heavier than the others are. We use the acronym OB(N) to denote the problem
for N coins. An OB(N) algorithm is a one-stage algorithm that identifies the
state of the coins. FIGURE 1 is compact representation of our solution to
OB(12), the classic problem of 12 coins. In Section 2, we show how to decode
this representation.
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FIGURE 1

OB(N) is an example of a search problem. If one thinks about a search
algorithm as a battery of tests (e.g., balance scale comparisons), then no test in a
one-stage search algorithm can be modified by the results of other tests. Thus
the order in which the tests are performed is irrelevant. Every parallel algorithm
is a one-stage algorithm. In general, one-stage algorithms are desirable when
memory or data storage capability is limited. Multi-stage search algorithms are
dynamic procedures. They are not predetermined in as far as data from previous
stages is used to define the current stage of the search. An example of a multi-
stage algorithm is the process of dividing the coins in thirds and then, depending
upon which third contains the counterfeit coin, repeating this process on that
third until the counterfeit is isolated.

2. The algorithm

We assume that all genuine coins weigh one ounce and that exactly one
coin is counterfeit?. To see how the matrix M3 in FIGURE 1 is a solution to

OB(12), identify the 12 coins with the columns of M3. M3 is an example of a

search matrix and throughout this paper we will identify coins with columns of
some search matrix. The jth coin for 1 < j < 12 is now the jth column of M3.

The three rows of M3 describe how to weigh the coins. For 1 < i < 3 | put the
set of coins L; = {j: (M3);; = 1} on the left side of the balance scale and the set of
coins Rj = {j: (M3);; = 2} on the right side of the scale. Call this the ith
comparison. We use bold-faced letters for vectors. We can now define a 3x1

2 We do this for simplicity. If there is no counterfeit, then the output vector o will be the
constant zero vector.



ternary output vector o by setting 0; = 0 if the ith comparison is balanced, 0; =
1 if the ith comparison has the left side lower than the right and finally o; =2 if
the ith comparison has the left side higher than the right.

Because of the properties of M3 (which are described below) only one of
two things can happen. Either o is a column of M3 or -0 mod 3 is a column of
M3. If 0 is a column of M3, then the coin that doesn't weigh one ounce (i.e.,

the counterfeit) is represented by o and it is heavier than the others are. If -0 is a
column of M3, then the coin that doesn't weigh one ounce is represented by -o

and it is lighter than the others are. See Example 1.

Example 1. Consider OB(12). Using M3 and the comparison procedure
1

given above, if the seventh coin is lighter, then 0 = [o] Observe that o is not
2

2
a column of M3 , but -0 = (oJ is. It's the seventh column of M3. Thus the
1
3x12 matrix M3 tells us that OB(12) can be solved with three comparisons.
From Theorem 1 below, M3 is an optimal solution to OB(12) because it is an

optimal inverse-free balanced matrix.

Definition 1. We say that a non-empty matrix M is an inverse-free balanced
(IFB) matrix if:

(a.) M is ternary and each row has the same number of 1s as it has 2s,
i.e., every row is balanced.

(b.) If j is a column of M then -j mod 3 isn'r a column of M.

(c.) Each column of M is distinct.

(d.) M doesn't contain a column of zeros.

To solve the general OB(N) in n comparisons, we exhibit an IFB nx N
matrix M and we identify the N coins with the N columns of M. Then for 1 < i
< n, the ith comparison is:

Put the set of coins L; = {j: M;j =1} on the left side of the balance
scale and the set of coins R; = {j: Mj; = 2} on the right side.

The outcomes of these comparisons define an nx1 ternary output
vector o by setting o; = O if the ith comparison is balanced, o; = 1 if the ith
comparison has the left side lower than the right, and o; = 2 if the ith

comparison has the left side higher than the right. Because M is IFB, then
exclusively o or -0 mod 3 is a column of M. If o is a column of M, then the
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coin that doesn't weigh one ounce is represented by o and it is heavier. If -0 is a
column of M, then the coin that doesn't weigh one ounce is represented by -o
and it is lighter.

3. Why the algorithm works

Suppose the jth coin is the counterfeit. If it's heavier, then every
comparison in which j is on the left (right) [neither] side of the balance scale
results in the left side being lower than (higher than) [level with] the right and
the output is recorded asa 1 (2) [0]. However, our matrix M puts j on the left
(right) [neither] side of the scale in the ith comparison exactly when M;; = 1 (2)

[0]. This implies that the jth column of M is equal to o.

On the other hand, suppose j is lighter, then every comparison in which
j is on the left (right) [neither] side of the balance scale results in the left side
being higher than (lower than) [level with] the right and the output is recorded as
a2 (1) [0]. However, our matrix M puts j on the left (right) [neither] side of the
scale in the ith comparison exactly when M;j; = 1 (2) [0]. This implies that the
jth column of M, is equal to -0 mod 3.

4. Constructing maximal IFB matrices

Let w(n) = max{N: M is an I[FB nXxN matrix}. If M is an nx u(n)
IFB matrix, then we say that M is a maximal (or optimal) IFB matrix. Clearly

. . o n
an inverse-free ternary matrix> with n rows has at most 3 -1 + 1 columns.

2

From here is straightforward to verify that w(n) = 3"=3. One might use this

observation to try to construct a maximal IFB by starting with the nx (3" —3)

matrix that has all possible distinct and non-constant ternary n-sequences as
columns. Then from this matrix one could take and keep any column j , delete -
Jj and simply repeat this procedure until no columns are left. However, this
method is slow, tedious, and it doesn't always work. Below we give a recursive
method of constructing maximal [FB matrices.

Definition 2. Let By = [? : (2)] For n > 2, we define the nx3""! IFB

matrix B, recursively in terms of B,,_|. Fori=0,1,2and n > 2, let B,_|(i) be
the nx3"~2 matrix derived from B,,.1 by top row augmenting B, with a row
of all i's. Then B, is simply the column augmentation of B,_1(0), B,,_1(1) and
B,.1(2). We use B,, to construct our solution to OB(N). See FIGURE 2.

3 Just condition (b.) in Definition 1.
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By(0) Bo(l) By(2)
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FIGURE 2

Definition 3. Let M, = B;. For n > 2, we inductively define the n x ﬂ—;i
matrix M, as the matrix described in FIGURE 3.

I I I

{ | | M,

Bn—-](o) : Bn—l(]) : Bn—1(2) : =

i ; ! 120 120 120

| I I

: ! ! 3-2_3

! : : 3 times

FIGURE 3
"-3

It follows from induction that M,, is an IFB matrix. Since it has -

“

columns, then it is a maximal IFB matrix. In Theorem 1 below, we show that

n
M,, is an optimal solution to OB(3 :3). M3 and My are depicted in FIGURES

V4

4 and 5 respectively.

l : I 000 111 2220 1 2
| | | M—,
M3 = B,(0) ! Bo(1) ! By(2) ! __~ [=] 012 012 012 1 2 0].
; ! ' 120 120 120 120 1 2 0
FIGURE 4
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M4 =B,(0) | By(1) | B3(2)
: ; : 120 120 120 120

000000000 ! 111111111 ! 222222222 1000 111 222 0 12
000111222 | 000111222 | 000111222 1 012 012 012 120
012012012 | 012012012 { 012012012 1 120 120 120 1 2 0
120120120 1 120120120 1 120120120 1120 120 120 120

FIGURE 5
5. Optimal general solutions for OB(N)

Essentially by definition, every solution to OB(N) has an IFB matrix
representation. So to find a solution for OB(N), we need to find an IFB matrix

with N columns. If N = 3" -3, then M,, is an optimal solution because it is a
2

maximal IFB. Suppose that we have N coins where N is a multiple of three and

33 o N -3 We proceed to recursively define an nxN IFB
2 2

submatrix, M,(N), of M,,.

Suppose n = 3. The possible values of N are 3, 6, 9, and 12. Then
one can directly verify that the submatrices of M3 depicted with boldfaced entries
respectively in FIGURES 6 (a), (b), (c), and (d) are examples of IFB submatrices
M3(N) with N= 3,6, 9 and 12.

000 111 2220 1 2 000 111 222 0 1 2
012 012 0121 2 0 012 012 012 1 2 O
120 120 1201 2 0 120 120 120 1 2 O
@ (b)
000 111 2220 1 2 000 111 222 0 1 2
012 012 0121 2 O 012 012 0121 2 0
120 120 120 1 2 O 120 120 1201 2 0
© @
FIGURE 6
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Now suppose that n >3, 3"-3 <N <

for any y which is multiple of three and Welg o« y .S 33,

2

3n+l

&

2

"
P4

-3 and we have a M,,_1(y)

Then

n-2 .
N=k,_;-3""+ Y k;3' +k,3 where 1 <kj<3for 1 <i<n-1and0 < kg <

i=1

n—-2 !
1. Lety = Z k;3' +ky3. We have three cases. In each case, the submatrix

i=1

M, (N) of M, is depicted by the boldfaced pieces. See FIGURES 7,8, and 9.

If k-1 = 1, then let

M,(N) =

Bn—l(o)

By (1) |

Bn—l(z)

FIGURE 7

If k;,-1 = 2, then let

M,(N) =

B,-1(0)

By (D)

B,12)

FIGURE 8

If k.1 = 3, then let

M,(N) =

By_1(0)

I
1
I
I
I
1
I
|
I
|
|

Bp_1(1)

Bn—1(2)

FIGURE 9
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In each case, it is straightforward to verify that M,,(N) is an IFB matrix.

: ; 3"-3
We now have the following theorem. Note that if N=-_-, then

M, (N)=M,.

Theorem 1. Let N be a multiple of three. If i'l—lf-‘ < N < 3"-3 then
:7_ ¢ ]

M, (N) is an optimal solution to OB(N).

Proof: By definition, an OB(N) solution must have an IFB matrix representation.
Thus the shortest solution to OB(N) is an IFB matrix with 6(N) = min{m: M is

, -1 !
an IFB m X N matrix} rows. Let 3" -3< N < 3"-3 and suppose N is a

"

multiple of three. Since My(N) is IFB nx N matrix and pt(n) = 3" -3, we have

2
that 6(N) = n and thus M,(N) is optimal solution to OB(N). Q.E.D.

Example 2. FIGURES 4 and 5 are optimal solutions to OB(12) and OB(39)
respectively. Suppose N =33 =3(32) + 2(3!). Thenn=4,k,.| =3, and y=6.
Then My4(33) is the submatrix of My formed by the bold faced entries in
FIGURE 10.

000000000 | 111111111 | 222222222 000 111 222 0 1 2
000111222 | 000111222 | 000111222 012 012 012 1 2 0
012012012501201201250120120125 120 120 120 1 2 0
120120120 | 120120120 ' 120120120 | 120 120 120 1 2 0

FIGURE 10

Example 3. Suppose N = 51= 1(33) + 2(32)+1(3)+ 3. Thenn =5, k.| = 1,
andy = 24. Then M5(51) and My4(24) are depicted by the bold faced entries in
FIGURES 11 and 12 respectively

i |

B (0) b, S E B g (2)) - o L
! ! L1200 120 120
] 1 I

8 times

FIGURE 11
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000000000 | 111111111 | 222222222} 000 111 222 0 1 2
000111222 | 000111222 | 000111222} 012 012 012 1 2 0
012012012 1 012012012 | 012012012 1 120 120 120 | 2 0
120120120 | 120120120 | 1201201201 120 120 120 1 2 0

FIGURE 12
6. Error-correcting OB(N)

For simplicity, we explicitly discuss the single error case and we derive

3N _32 3n_3

results for N =~ . Because we are using the general theory of linear

codes it is straightforward to generalize our method to correct multiple balance
scale errors and/or to consider other multiples of three as values of N.

Suppose we have N coins and an IFB matrix M that is used to search
for counterfeit coin j. Assume that at most one error can occur in the
comparisons. Then the observed output vector o differs in at most one entry
from j or -j where j is the column M that has been identified with coin j. If j is
the only column with this property, then we can find it by searching for the only
column of M such that it or its inverse differs from o in at most one place. To
ensure that j is the only column with this property, then any two distinct
columns of j; and jo of M must have H(jj.j2) = 3 and H(j,-j2) = 3 where

H(j1.2) is the number of entries where j| and jo are different. H(jjjo2) is

known as the Hamming distance between j; and jo. We write HY(M) > 3 if
H(j1.2) = 3 and H(jy,-j2) = 3 for all pairs of columns (ji,j2) of M.

To have a one-stage solution to OB(N) that can correct at most one
error, we need an IFB matrix E with N columns and HY(E) > 3. The main idea
behind constructing such an IFB matrix E is to use linear algebra to add
redundancy rows to the matrices M;(N). We do this essentially by multiplying
by a suitable generator matrix. See [4]. However, before we can extend our
methods, we need to ensure that certain linear combinations of the row vectors of
our IFB matrices are balanced. To do this we need to define an IFB submatrix of
M, that is nearly all of M,,. Recall that a ternary row vector is balanced if and
only if it has an equal number of 1s and 2s.

ah _a2

Definition 4. Let L3 = B3. Forn > 3, we define the nx "~ —— matrix L,

recursively in terms of B,_j. We define L,, as the matrix in FIGURE 13.
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Bn~1(0) Bn—](l) Bn—l(z)

120 120 120

373 {imes

FIGURE 13

Note that L, is an IFB submatrix of M,. L, is all but the last three
columns of M,, Ly is depicted in FIGURE 14.

000000000 ! 111111111 ! 222222222 1000 111 222
000111222 ;000111222 ;000111222 } 012 012 012 |
012012012 | 012012012 { 012012012 | 120 120 120
120120120 1 120120120 1 120120120 1 120 120 120

FIGURE 14

It is straightforward to verify that any linear combination of the rows of
B, over GF(3) is either a balanced or constant row vector. From this

observation, we have the following trivial result.

Proposition 1. LetR be a rxn ternary matrix whose first column is the
constant 1 vector. Then the matrix product R-L (over GF(3),) is a balanced

matrix.

Definition 5. LetR be a rxn ternary matrix. R is called a redundancy
matrix if R has the following properties:

(a.) The first column consists entirely of Is.
(b.) No column of R is a scalar multiple of another column of R over GF(3).
(c.) Each column has at least two non-zero entries.

Our next result comes from the theory of linear codes. The statement is
non-standard, but is specifically aimed at the problem at hand.

Proposition 2. LetR be a rxn redundancy matrix, let M be an nxN
ternary matrix and let G be the (n+r)xn matrix that is the nxn identity

matrix bottom row augmented with R. This is G(R) = [%“:I Then the matrix

product E = G(R)-M has H(E) > 3.

Proof (sketch). We follow the discussion found in [4]. In [4], the codewords are
thought of as row vectors, but we think of codewords (e.g., coins) as column
vectors. So we need to consider the matrix transpose to apply the well-known
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results found in [4]. By Theorem 7.6 in [4], a parity check matrix H for the
linear code with generator matrix GR)T =[In|RT] is H=[—R|Ir]. The
conditions (b) and (c) in Definition 5 ensure that any two columns of H are

linearly independent. Then our result follows by applying Theorem 8.4 in [4].
QED.

Let [Ln |—Ln] be the matrix L, column augmented with all the
inverses of columns of L,,. Since L, is an IFB, we have that [Ln | -Ln] is a
nx (3" —32) matrix. Now we can construct an IFB matrix E with H*(E) > 3.

Let R be a rxn redundancy matrix. From Proposition 2, it follows that
G(R)-[L, | -L,] = [E | =E] has H([E | —=E]) 2 3. From this it follows that

H*(E) > 3. Since L, is inverse-free, it follows that E is inverse-free. From
Proposition 1, we have that E is an [FB. Thus we have the following result.

Theorem 2. If R is a r X n redundancy matrix, then the matrix G(R)-L, =E
is an IFB matrix and has H(E) > 3. Thus E is a one-error correcting solution to
OB( 3N __32 %

2

The immediate question is how many more comparisons are needed
when one moves from the error-free OB(N) to the one error-correcting version of

OB(N)? Since for a fixed r there are at most 3"-2r-1 columns in a redundancy
2

matrix with r rows, we have:

=] ¢
Corollary 1. If 3" -20-D-l< n < 3"-2r-1 then we can use the result in
o) 2
Theorem 2 to construct an IFB matrix E that is a solution to the one-error

. . ) : -
correcting version of OB( 3~ -3 ) using n + r comparisons.

<

It would be nice to be have a result like that in Theorem 2 with M, in
place of L,,. We can get such a result, but it is tedious to carefully delineate.
We give a brief description. Let [Mn \Ln] be the submatrix that consists of
the last three columns of M;,. The reason why we used L, instead of M, in
Theorem 2 is because R-[Mn \ Ln] can have non-balanced rows even if R is a
redundancy matrix. However, if any row in R-[Mn \ Ln] is not balanced, then
it must be constantly 2. Thus if we have a redundancy matrix R and the first
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column of R~[M“ \ Ln] has no entry which is 2, then G(R)-M, =E’ is a

3"-3
2
Example 4. Here are the one error-correcting solutions of OB(12) and

1 2 14 112 100
OB@39). LetR=[1 0 1 220 1 1 1f. Forl €1 <10, let R(1) be the
1 1 0 10 2 21 2
submatrix that consists of the first 1 columns of R. Then each R(i) is a
redundancy matrix.  Consider M3 and My. Since the first column of

R(i)-[Mi \ Li] for i = 3, 4 doesn't contain a 2, we form G(R(i))-M; = Ei’.
FIGURES 15 and 16 are respectively the solutions.

).

one-stage, one-error correcting solution to OB(

RN —

1 00 000 111 2220 1 2
010l i omo g 2y |02 02 02120
G(R(3))-M; = —— 012 012 0121 2 0f=| 2;2 0(*)00 ; 5
120 120 1201 2 0
10 1 120 201 0121 0 2
11 0 012 120 2011 0 2
FIGURE 15
1 000
010 0]
& W G & 000000000 111111111 222222222 000 111 222 012
GROM=[ o 0 000111222 000111222 000111222 012 012 012 120
e 012012012 012012012 012012012 120 120 120 120
. W § [ 120120120 120120120 120120120 120 120 120 120
1 1 0 2]
(000000000 111111111 222222222 000 111 222 0 1 2]
000111222 000111222 000111222 012 012 012 120
012012012 012012012 012012012 120 120 120 120
=[120120120 120120120 120120120 120 120 120 12 0|.

102021210 210102021 021210102 210 012 120 10 2
222000111 000111222 111222000 000 111 222 01 2
1210021102 021102210 102210021 222 000 111 01 2

FIGURE 16

From the sphere packing bound, we can see that our one-error correcting
one-stage solutions to OB(12) and OB(39) are optimal. (See Theorem 2.16 in
[4].) We consider OB(12). The argument for OB(39) is similar. From the
sphere packing bound, any ternary code C of length five with H(C) 23 can have
at most 22 codewords. If we have an IFB matrix E with H¥(E) > 3, then the
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code that consists of the columns of [E| = E] has a Hamming distance of at least
three. So by the above augment there can't be a 5x12 IFB matrix E with

H*(E) > 3, because this would imply the existence of ternary code C of length
five with H(C) 23 and | C |=24. In other words, a one error-correcting solution
to OB(12) requires at least six comparisons.

T

1.
2
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